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Abstract

This review paper reports on the state-of-the-art concerning observations of surface winds,
waves, and currents from space and their use for scientific research and subsequent applica-
tions. The development of observations of sea state parameters from space dates back to
the 1970s, with a significant increase in the number and diversity of space missions since
the 1990s. Sensors used to monitor the sea-state parameters from space are mainly based
on microwave techniques. They are either specifically designed to monitor surface param-
eters or are used for their abilities to provide opportunistic measurements complementary
to their primary purpose. The principles on which is based on the estimation of the sea
surface parameters are first described, including the performance and limitations of each
method. Numerous examples and references on the use of these observations for scientific
and operational applications are then given. The richness and diversity of these applica-
tions are linked to the importance of knowledge of the sea state in many fields. Firstly,
surface wind, waves, and currents are significant factors influencing exchanges at the air/
sea interface, impacting oceanic and atmospheric boundary layers, contributing to sea level
rise at the coasts, and interacting with the sea-ice formation or destruction in the polar
zones. Secondly, ocean surface currents combined with wind- and wave- induced drift con-
tribute to the transport of heat, salt, and pollutants. Waves and surface currents also impact
sediment transport and erosion in coastal areas. For operational applications, observations
of surface parameters are necessary on the one hand to constrain the numerical solutions
of predictive models (numerical wave, oceanic, or atmospheric models), and on the other
hand to validate their results. In turn, these predictive models are used to guarantee safe,
efficient, and successful offshore operations, including the commercial shipping and energy
sector, as well as tourism and coastal activities. Long-time series of global sea-state obser-
vations are also becoming increasingly important to analyze the impact of climate change
on our environment. All these aspects are recalled in the article, relating to both historical
and contemporary activities in these fields.

Keywords Remote sensing - Satellite - Ocean - Atmosphere - Surface wind - Surface
waves - Surface current
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Article Highlights

e The different techniques and satellite missions to monitor winds, waves and currents at
the ocean surface from space are described

e Sea-state observations from space are widely used in operational meteorology, as well
as for research on ocean, atmosphere and climate processes

e Sea-state observations from space are also actively used by the offshore industry, as
well as in coastal zone management

1 Introduction

Surface winds, waves, and currents are the evident manifestation at the ocean surface of the
atmospheric and oceanic thermodynamic ‘engine effect.” However, in return, the processes
affected by surface wind, waves, and current are numerous (Cavaleri et al. 2012). This
includes momentum, heat and gas fluxes (e.g., CO,) at the air/sea interface, turbulence, and
vertical mixing in the ocean and atmospheric boundary layers, production of spray in the
atmosphere, and sea-ice evolution. When wind-generated waves in the open ocean arrive
at the coast, their properties are modified by the bathymetry and the near surface currents.
Several parameters, including surface wind and waves, contribute to a water level increase
at the coast during storm events. In addition, waves and currents are major factors in sedi-
ment transport and coastal erosion. At high latitudes, the sea-ice evolution is impacted by
wind, waves, and currents (Stopa et al. 2018). The ocean surface currents combined with
the drift induced by wind-generated waves contribute to the transport of heat, salt and pol-
lutants (Ardhuin et al. 2018). For all these reasons, observations of surface wind, waves,
and currents are needed by the research and operational communities to better understand
and quantify these interactions and represent them in numerical models.

In the operational application domain, the monitoring and modeling of wind, waves,
and currents (as well as ocean temperature, productivity, and bathymetry) are required
to promote more safe, efficient, and successful operations at sea and mitigate adverse
impacts on navigation, exploration, tourism, and coastal communities. Nowadays, forecast-
ers mainly rely on numerical models based on prognostic equations. The accuracy of the
wind and wave forecasts has impressively increased in the last 20 or 30 years (The WISE
group report 2007), as a result of improved modeling and initialization by observations in
so-called data assimilation procedures. Hence, observations of surface parameters remain
necessary on one hand to constrain the numerical solutions of the models, and on the other
hand to further improve their physical parameterizations and to validate them. Addition-
ally, more observations are needed to progress in the characterization, understanding and
modeling of the evolution of extreme events (severe storms, tropical cyclones).

To simulate the evolution of atmosphere ocean and at seasonal to inter-annual scales,
beyond simply coupling numerical atmospheric and oceanic circulation models, it is now
recognized that it is important to take into account the role of waves (Babanin et al. 2009;
Breivik et al. 2015) and surface currents (Brivoal 2021) because they impact the energy
exchanges at the ocean/atmosphere interface and thus the ocean/atmosphere coupling.

In the domain of ocean surface parameters, several “essential climate variables” (ECVs)
have been identified by the international community (program GCOS/WMO—Global Cli-
mate Observing System from the World Meteorological Organization). This includes the
surface wind stress (strongly related to wind speed, but also to surface waves and current),

@ Springer



Surveys in Geophysics (2023) 44:1357-1446 1359

the sea-state (with main focus on the significant wave height until now), and the sea surface
current. To account for this need, both European and US agencies support the creation and
curation of long time series of homogenous observations. In particular, the European space
agency (ESA) has implemented the “climate change initiative” (CCI) to support re-pro-
cessing of satellite data for generating long time series of inter-calibrated and homogenized
parameters (Dodet et al. 2020; https://climate.esa.int/fr/projects/sea-state/).

These statistics are essential to many applications in the maritime industries (comprising
sectors as broad as energy, health, leisure, minerals, and transport)—such as offshore fish-
eries, hydrocarbons / renewables and shipping—on which the future welfare and prosperity
of humankind depends (OECD report 2016, OECD is the Organization for Economic Co-
operation and Development). At the same time, government agencies and coastal managers
tackling the pressures of human activity in environmentally sensitive and highly urbanized
near-shore areas require information on related changes and hazards—such as coastal ero-
sion, pollutant dispersal, and water safety which are highly dependent on wind, waves and
current conditions.

To properly understand the opportunity presented by observations of wind, waves and
currents from space, it is useful to consider the relative advantages and disadvantages of
these satellite-based sampling methods compared to those obtained from traditional ocean-
ographic measurements, for example those collected from platforms such as buoys or ships.
An excellent discussion of these differences is presented in Srokosz et al. (1995). Addi-
tional, more recent, reviews on instrumentation and methods employed for the sampling
of metocean parameters are provided by Ardhuin et al. (2019c¢), Villas Boas et al. (2019),
and Rohrs et al. (2021). In summary, traditional oceanographic measurements are typically
obtained from moored or static instruments that record a time series at a single point or, at
best, along a single profile. These data often have a very high temporal resolution, but offer
little or no information about the spatial variability of the parameters and processes being
sampled and studied. Alternatively, ships (or, increasingly, autonomous equivalents such
as gliders) and drifters may be used to survey the ocean, to characterize both surface and
sub-surface dynamics. However, these measurements are either on a relatively local scale
or global with sparse coverage, and their analysis is further compounded by an acute con-
fusion of temporal and spatial signals.

Compared to conventional in-situ methods, remote sensing techniques from space allow
observations of wind, waves and currents to be mapped over much larger regions, in a near-
synoptic manner. Despite their spatial sampling capabilities, satellites have limited tempo-
ral sampling, due to a limited number of satellites and their chosen orbits. Also, consistent
with all data that is based on the detection of energy reflected or emitted from the Earth
as electromagnetic radiation, these techniques are restricted to only sampling the ocean
surface (or the inference of sub-surface properties derived from it) owing to the small pen-
etration depths in water of the wavelengths at which they operate. For some instruments
that operate in the visible and infrared part of the spectrum, the prevailing weather condi-
tions (e.g., presence of clouds or rain) can also adversely affect the propagation of signals.
These perhaps present the greatest challenges of remote sensing, but—depending on the
exact specification requirements—this is confined to only a subset of the available tech-
niques for the measurement of wind, wave, and currents data from space, and far exceeded
by the upside of unique datasets with global high-density coverage, that are unable to be
obtained any other way. Furthermore, since the archives from multiple long duration sat-
ellite missions are now over 30 years for some parameters, these offer the potential for
retrieval of observations when no in-situ data were available. Among other uses, this is
important for the sampling of extreme events, since these instruments continue to collect
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data in conditions for which traditional platforms (e.g., buoys or ships) are damaged or fail
to operate; although such measurements can be difficult to calibrate and/or validate owing
to lack of alternatives to compare.

In the following, Sect. 2 presents an overview of the different space-based techniques
currently used for measuring surface wind, waves and currents from space. This includes
a summary of the main principles of measurements from space-borne instruments (micro-
wave radiometers, wind scatterometer, radar altimeter, synthetic aperture radar, near-nadir
scatterometry), illustrated with results. Section 3 presents how these observations are used
for operational forecasts, for coupled ocean/atmosphere studies, and illustrates the particu-
lar case of extreme events. Section 4 discusses the utility of these observations for marine
and coastal applications. Finally, Sect.5 concludes this review.

2 On the Different Techniques Used from Space
2.1 The Physical Background on the Ocean Surface Microwave Remote Sensing

The most common approach to measurement of sea-state characteristics from space, in
terms of surface wind, waves, and currents is based on microwave sensors (Gade and Stof-
felen 2019). The first (main) reason for this is the ability of the electromagnetic waves in this
domain (typically 1-35 GHz) to propagate through the atmosphere even in presence of clouds
and precipitation, without too much degradation by these phenomena. The second reason is
the good sensitivity of the signal intensity received by these sensors to the surface geometry,
directly related to the surface roughness generated by wind and waves. Surface current meas-
urements from space additionally uses, the sensitivity of the received signals to the kinematics
of the ocean surface that impacts the temporal and phase properties of the received signal.

Two categories of microwave systems are distinguished. The first category termed
“active,” is based on the emission and reception of the return electromagnetic signal by the
same system. The sensors under this category are named “RaDAR” (radio detection and
ranging). With the development of the global navigation system satellites, the principle
of radar systems is also used from space to estimate surface parameters with a bi-static
approach (emission and reception from two different locations). In the second category,
termed “passive,” sensors do not emit any electromagnetic waves but receive the natural
radiation from the Earth’s environment (and in particular from the ocean surface). These
are named “microwave radiometers.”

Since World War II, when radar was operationally used for the first time, the microwave
domain was divided into different bands of frequency (or wavelength). Table 1 shows the
bands used for the measurements of ocean surface parameters from space, with their cor-
responding range of frequency and wavelength according to the standard designation of
IEEE (Institute of Electrical and Electronics Engineers).

In the microwave domain, the electromagnetic waves that strike the ocean surface either
from a natural source (the sun) or from a radar system are reflected by the surface, while
because of the dielectric nature of the water their penetration in the water under the sur-
face remains very limited in depth (typically over 1/10 of the electromagnetic wavelength).
Therefore, the characteristics of the signal received by a satellite microwave sensor depends
largely on the scattering mechanism induced by the rough oceanic surface (see below). In
the case of passive measurements, additional parameters like surface temperature, emissiv-
ity, and atmospheric attenuation also contribute to the received signal (English et al. 2020).

@ Springer



Surveys in Geophysics (2023) 44:1357-1446 1361

Table 1 Microwave bands used

) Name of the radar band Frequency Wavelength
for ocean remote sensing

L 1-2 GHz 15.0-30.0 cm
S 2-4 GHz 7.50-15.0 cm
C 4-8 GHz 3.75-7.50 cm
X 8-12 GHz 2.50-3.75 cm
Ku 12-18 GHz 1.67-2.5 cm
K 18-27 GHz 1.11-1.67 cm
Ka 27-40 GHz 0.75-1.11 cm

The main quantities estimated from the electric field detected by the sensor receiver are
the normalized radar cross section (NRCS, also note noted T;) for an active sensor, and the
brightness temperature for a passive sensor (noted 7). They both characterize the intensity
of the electromagnetic field detected by the receiver.

The normalized radar cross section characterizes the averaged backscattering strength of
the targets distributed over the illuminated area. In principle, it is defined as the effective
area that intercepts the transmitted radar power and then scatters that power isotropically
back to the radar receiver. In practice, it is estimated from the radar equation which gives
the relation between the transmitted and the received power:

PR _ P2 // G*(x, y)cfo(x y) o
(4 )’

where P, and P, are the received and transmitted powers respectively, A the electromagnetic
wavelength, G the antenna gain, o, the normalized radar cross section, R the radial dis-
tance, and x and y refer to coordinates at the surface. In most applications over the ocean,
the assumption is made that ¢, is constant within each resolution cell of the radar so that
it can be extracted from the integral and estimated by inverting Eq. (1) for each resolution
cell.

The brightness temperature T, of the ocean is expressed as the product of the ocean
physical temperature 7, and its emissivity € (when neglecting atmospheric effects).

Ty = €T, )

where the emissivity € depends upon sea surface temperature, surface roughness, presence
of foam, and on sensor parameters (frequency, polarization, looking angle). When looking
from space, Ty is also impacted by attenuation and scattering of the electromagnetic wave
by the atmosphere, mainly due to the presence of water vapor and liquid water (clouds and
rain). This effect is much more important at high frequencies (X-K bands) than at low fre-
quencies (C-S- L band).

Another important parameter eventually measured by a microwave system is the phase
of the electromagnetic field, which, in the case of the ocean surface, is affected by the Dop-
pler shift generated by the intrinsic motions of the surface scatters.

For both active and passive sensors, measurements performed under multiple polariza-
tions are often chosen, as this helps to separate different surface effects contributing to the
backscatter (see below) and make the inversion of geophysical variables more accurate.
The most common configuration for T} is to use horizontal H and vertical V polarizations.
For radar systems which look away from the nadir direction (typically at incidences larger
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Fig.1 Example of C-band micro- C-Band Wind Speed 10 m/s up-wind
wave ocean response (normalized 20-
radar cross section as a function —VV-SSA2
of incidence angle) in VV, HH 10 ---HH-SSA2
and VH polarization from a VH-SSA2
physically-based model. Stars 0
are VV verification data from o
the empirical CMOD7 model. hoA 10
Adapted from Fois (2015) 8
o .
> 20 ~
230
-40

0 10 20 30 40 50 60
einc [deg]

than 25-35° with respect to nadir), it is common to use dual polarizations (HH- horizon-
tally emitted and received polarizations and VV-vertically emitted and received polariza-
tions), or even three to four polarization configurations in certain cases (HH, VV, HV, and/
or VH).

For a given electromagnetic wavelength, the normalized radar cross section and the
brightness temperature depend on the polarization, the surface scattering mechanisms, the
geometry of illumination/reception, and eventually on perturbing effects by the atmosphere.

Due to the geometry of the scattering elements at the surface, the o, at intermediate
incidence angles (typically 25-70° from nadir) are the strongest in VV polarization while
HH 6, are up to an order of magnitude (— 10 dB) weaker (see Fig. 1), and appear more sen-
sitive to second-order scattering processes, initiated at ocean wave breaking events. VH or
HV polarization measurements are again an order of magnitude weaker than HH measure-
ments at intermediate incidence angles. However, due to their sensitivity to foam coverage
as a result of wave breaking, VH measurements, just like passive radiometers, are very
suitable for hurricane wind measurements (Stoffelen et al. 2020a).

The theory of electromagnetic wave scattering from a rough surface has been exten-
sively described in the past in textbooks or papers such as Beekmann and Spizzichino
(1963), Ishimaru (1978), Ulaby and Long (2015). Classical reviews of scattering from the
ocean surface are described by Valenzuela (1978), Stewart (1984), Geernaert and Plant
(1990); (1990) and Martin (2014), with only the main concepts summarized below.

It is common to distinguish two types of scattering mechanisms at the surface, namely
the specular (or quasi-specular reflection) and diffuse (or Bragg) scattering.

Specular reflection, associated with a presence of wave facets at the surface oriented
perpendicular to the incident electromagnetic waves, results in scattering in a specular
direction (like optical rays with a mirror). This type of mechanism is dominant when the
incident waves are close to the vertical, because slopes at the surface are usually small
(typically less than 10-15%). In this case, the mathematical solution for the normalized
radar cross section o, results from the Kirchhoff tangent plane approximation of the
Maxwell equations (valid when all dimensions of the rough surface are large compared
to the electromagnetic wavelength). These electromagnetic equations are then simplified
by using either a specular point approach or a correlation function approach—see for
example Brown (1990). In both cases, under the assumption that the surface curvature
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radius is large compared to the electromagnetic wavelength, the following expression is
obtained for o, in a monostatic case (Barrick 1968; Brown 1990):

m0°p (4 dy)

%(0) = cos* (0)

3
where 0 is the incidence angle with respect to the vertical, p the Fresnel reflection coef-
ficient at normal incidence, p(é’x, §y) the joint probability density function evaluated at the
specular point slopes, and ¢,, ¢, are the slopes in and perpendicular to the radar look direc-
tions, respectively. As the probability density (pdf) of surface slopes is dominated by the
presence of short waves (typically from a few centimeters to a few meters in wavelength)
which respond quickly to the wind, o, is related to the slope pdf of the wind-generated
waves and hence to the wind. This principle is used by radar altimeter systems to meas-
ure wind speed, and by near-nadir scatterometer systems to estimate properties of the long
tilting waves on which shorter waves serve as specular facets (see below). Estimation of
wind speed from GNSS (Global Navigation Satellite System) is also based on this specular
theory.

The other main type of scattering mechanism, which is dominant in non-specular
conditions (i.e., for incidence angles larger than typically 15° from the vertical) is a
resonant mechanism (Rice 1951; Valenzuela 1978), commonly called Bragg scatter-
ing. The mathematical approximate solutions for the scattered field and for o, assume
that the standard deviation of surface heights is small compared to the wavelength. For
the normalized radar cross section in monostatic configuration, the Bragg solution is
expressed as (Valenzuela 1978; Plant 1990):

4 . 4 2 .
Gpg(0) = 167K cos® 0s,,,(0)| S(2k, sin 6, 0) )

where p and g denote transmitting and receiving polarizations (vertical-V or horizontal-H),
k. is electromagnetic wavenumber (k, = i—” where A, is the electromagnetic wavelength),

S(Zk, sin 6, O) the two-dimensional wave héight density spectrum estimated at the resonant
Bragg wavenumber in the radar look direction, and g, the reflection coefficient. This latter
is a function of the local incidence and of the complex dielectric constant -see Valenzuela
(1978) or Donelan and Pierson (1987) for details.

At the ocean surface, waves of many scales co-exist, typically from very short waves
(a few millimeters in wavelengths to several hundred of meters). Furthermore, the
short waves which generate the Bragg scattering typically overlay longer waves, and
are slightly modified by the latter through hydrodynamic processes, as well as by the
atmospheric flow and wind input (Mastenbroek 1996). Therefore, in fact, the physical
description of the backscatter at moderate incidence is more complex than that given by
Eq. (4). Many theoretical works have been devoted in the past to the proposal of ana-
lytical approximations of the exact solution of the Maxwell equations, accounting for
the multi-scale nature of the ocean surface (e.g., see Elfouhaily and Guérin 2004; Fois
2015), but we will not enter into more details here.

It is sufficient at this stage to state that the sensitivity of microwave sensors at medium
incidence to short Bragg waves is the principle used by so-called “wind scatterometers” to
measure the surface wind. Wind scatterometers are radar systems functioning at centimeter
wavelengths and looking at typical incidence from 20 to 60° with respect to nadir. In these
conditions, as a first approximation, the sensitivity to the wind speed of the scatterometer
measurement is due to the sensitivity to wind speed of the wind-generated capillary-gravity
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waves that serve as Bragg scatterers (Eq. (4)). Furthermore, the development of these short
waves is not isotropic: the wave height density spectrum is maximal along the wind-direc-
tion and minimal in the cross-wind direction. This fact is used in wind scatterometry to
estimate both wind speed and wind direction from the radar signals (see Sect. 2.2.2).

Measurements from microwave radiometers are also based on the same principles but in
this case, the instrument receives the natural emission from all incidences, and therefore all
the above-mentioned mechanisms are combined.

Of course, the above presentation is necessarily a simplified view of the main scattering
mechanisms. In fact, there is generally a combination of effects with, in particular, long
ocean waves of small slopes (typically over 10 m in wavelength) tilting the short wind-gen-
erated waves and therefore adding a specular effect into the signals scattered at small and
medium incidence. In addition, when the sea-state is extreme, specular points due to break-
ing waves may affect the return power (see, e.g., Phillips 1988; Ericson et al. 1999). From
theoretical considerations, it has also been proposed that the polarization ratio can be used
as a proxy of the breaking occurrence (Kudryavtsev et al. 2003; Yurovsky et al. 2021).

Because the full physical description is rather complex with substantial uncertainty
in some key physical parameterizations (e.g., of wave spectra), in many applications, the
inversion of the measured signals is performed by using empirical Geophysical Model
Functions (GMFs), which relate the o, (or Tj) values in different configurations (inci-
dence, polarization, azimuth look angle) to the geophysical parameters to be retrieved. This
approach is used in wind scatterometry in particular. The most recent GMFs are expressed
as a function of the so-called stress-equivalent 10-m wind vector and of the sea surface
temperature (de Kloe et al. 2017; Stoffelen et al. 2017b; Wang et al. 2017) and result in
very accurate ocean surface wind vector retrievals (e.g., Vogelzang and Stoffelen 2021).

2.2 Space-Borne Instruments, Satellite Missions, and Examples of Results’
2.2.1 Microwave Radiometers

2.2.1.1 History and Evolution Originally, microwave radiometers were developed for
measuring parameters such as water vapor, liquid water, temperature, ozone content in the
atmosphere of the Earth as well as of other planets. However, it was realized since the
mid-1960s that in frequency bands not attenuated by the atmosphere, their measurements
are also sensitive to the roughness of the ocean surface. It was also realized that a combi-
nation of different electromagnetic frequencies (typically from 5 to 90 GHz) and polariza-
tion of the received signal was useful to separate atmospheric effects from surface effects.
The first wind speed maps provided at the global scale were obtained from observations at
10.7 GHz of the Scanning Multi-Channel Microwave Radiometer (SMMR) on the Seasat
satellite launched in 1978 (Njoku and Swanson 1983). Since then, this approach has been
extended to other frequencies or combinations of frequencies (usually in C and X-bands)
and used operationally from various series of satellites. A well-known example is the series
of the Defense Meteorological Satellite Program (DMSP) that carry the scanning radiom-
eter SSM/I (Special Sensor Microwave Imager, see Hollinger 1991) or its successor SSMIS.
Despite some limitations, particularly in regions affected by rain (see below), such observa-

! See Appendix 1 for the list of instruments and missions cited in this paper. The list includes the acronym
definition, agencies responsible of the instruments and period of operation.
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tions of wind speed from radiometer measurements are now systematically used in opera-
tional meteorological forecasting systems.

Since the 2000s, new types of microwave radiometers at lower frequencies (L-Band)
have been specifically designed to measure the sea-surface salinity and the soil moisture
over the continents, such as those on the SMOS and SMAP satellites (Kerr et al. 2010;
Entekhabi et al. 2010; Boutin et al., this issue). However, it was shown that the bright-
ness temperature in L-Band allows also to estimate the surface wind speed with a good
accuracy, and indeed with a much better performance in rain or high wind conditions
than that for higher frequency radiometers (see below).

2.2.1.2 Principles of measurement The microwave emission from the ocean surface is used
to estimate the ocean surface wind, based on the fact that the wind locally generates surface
waves and whitecaps, which contribute to the modification of the surface emissivity from
the perfectly flat sea surface value.

The sea surface emissivity contrast Ae induced by the rough and foamy sea surface is
expressed as the sum of two terms (Stogryn 1972):

Ae = (1= F(U,p)) - Aeyugn, (Uig: 0, &.f) + F(Ujp)Aep am,p(Uw, 0,%.f) 5)

where f, p, and 0 are the receiving electromagnetic frequency, polarization, and incidence
angle of the measuring radiometer, respectively, ¢ is the azimuth angle referenced to the
wind direction, F(U,,) is the fraction of sea surface area covered by whitecaps at 10 m
height, U, is the wind speed at 10-m height, and eg) am.p is the emissivity of typical sea-
foam layers. The roughness contribution to surface emission Ae,,,;, , is formulated as an
integral of the directional surface wave spectrum S(k,¢») multiplied by an electromagnetic
weighting function g, specifying the thermal emission contribution of each wave num-
ber-directional surface wave component (k’ P ) (Yueh et al. 1994a,b; Johnson and Zhang
1999):

oo 21

Acrougnp (U10:0.9.f) = [ [ S(K. "), (£.0. €. K. ¢')K' dK Ay (6)

where k is the wave number and €, is sea water relative permittivity. Because the ocean
surface becomes rougher and foamier with increasing wind speed, a potential technique
became available for the global monitoring of surface winds from Earth orbiting radi-
ometers. The signal of the low microwave frequency (L- to X-bands) radiometers show
no sign of saturation or sensitivity loss even in extreme winds. The reason for this is that
the low microwave frequency emission from the wind roughened ocean surfaces keeps
increasing approximately linearly with wind speed (Nordberg et al. 1971; Monahan and
O’Muircheartaigh 1980; Anguelova 2002; Reul and Chapron 2003; Hwang et al. 2019a, b),
and does not saturate, even at wind speeds above hurricane force, i.e., 64 kt/32 ms™! (Reul
et al. 2012, 2016; Yueh et al. 2013; Meissner et al. 2014, 2017; Fore et al. 2016).

The rough sea surface emission Ae,,qp , can also be expressed as a function of U, and
of the relative azimuthal direction following:

Aeougnp (Uig: 0, 0.F) = Ae, , (Ui, 0.f) + Bey ,(Uyg, 0.5) - cos (p) + Aey , (Uyg, 0.f) - cos (2¢) (7)

In Eq. (7), the wind direction dependence of the sea surface brightness temperature is
in the Ist and 2nd terms of the Fourier series expansion (Ae; ,, Ae, ). It is induced by
sea surface anisotropic features (sea surface slope, root mean square height of the small
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gravity-capillary waves). Laboratory, tower-based, aircraft, and satellite measurements
(Bespalova et al. 1982; Kunkee and Gasiewski 1997; Trokhimovski et al. 2003; Yueh
et al. 1995) have demonstrated that the wind direction impacts all Stokes parameters of sea
surface (the Stokes parameters characterize the polarization state of the electromagnetic
signal). However, the sensitivity of vertically and horizontally polarized brightness tem-
peratures to cloud liquid water and atmospheric water vapor at X- and C-band result in the
inability to measure the wind direction with a sufficient accuracy from space, as the signal
is relatively small with respect to the amplitudes of errors made in the atmospheric correc-
tions, particularly in rainy conditions. The 3rd (S3) and 4th (S4) Stokes parameters are less
sensitive to cloud liquid water and atmospheric water vapor at these frequencies, and are
therefore more suitable for wind direction retrieval (Yueh et al. 1995, 2006; Laursen and
Skou 2001; Piepmeier and Gasiewski 2001; Lahtinen et al. 2003). This principle is used for
the wind direction retrieval from WindSat and SMAP sensors (Meissner and Wentz 2009).

2.2.1.3 Performance and Limitations In rain-free conditions, radiometers operated at fre-
quencies in the bands from C- to Ku provide accurate estimates of the surface wind speed
(RMS error with buoys < 1 m/s). However, it is difficult to measure surface wind speeds in
the presence of precipitation with radiometers that operate at frequencies above 10 GHz
(Meissner and Wentz 2009). The atmospheric attenuation by rain droplets increases with
increasing frequency (Wentz 2005) and therefore results in a smaller wind signal at the
top of the atmosphere. Moreover, it is difficult to model the rain attenuation accurately.
This results in large errors for the retrieved wind speeds in the presence of rain if algo-
rithms developed in rain-free conditions are used. It has been shown that this problem can
be mitigated to a great extent if the sensor has a combination of multiple low-frequency
channels, as demonstrated for the airborne step frequency microwave radiometer (SFMR,
4-8 GHz), where a multi-frequency C-band channel combination is needed to correct for
the rain effect and in turn to retrieve the surface wind speed (Klotz and Uhlhorn 2014). For
satellite radiometers (e.g., AMSR-E, WindSat and AMSR-2), it is possible to find combi-
nations of the C-band and X-band channels that minimize the rain impact and allow the
retrieval of wind speeds in rain conditions (Meissner and Wentz 2009, 2012; Zabolotskikh
et al. 2016). Based on this principle, all-weather wind algorithms have been developed
for AMSR-E, WindSat and AMSR-2 instruments (see Meissner and Wentz 2012; Shibata
2006). These all-weather wind algorithms need to be trained using match-ups between the
measured radiometer brightness temperature 7 and a reliable true surface wind speed; as
described below, surface winds estimated recently from L-band radiometers can be used for
this purpose (Meissner et al. 2021). Therefore, currently, the major limiting factor of the C-
and X-band radiometers to measure winds are the rain impact and the relatively low spatial
resolution (~50-60 km) of these sensors. In many cases, this does not allow the resolving of
wind structure close to coastlines, around the eye of a tropical cyclone, or for small/compact
weather systems (e.g., polar lows).

The recent availability of spaceborne L-band radiometers operating at 1.4 GHz, such
as the soil moisture and ocean salinity (SMOS, Kerr et al. 2010) and the soil moisture
active passive (SMAP), see Entekhabi et al. 2010. Offers new opportunities to measure
surface wind, particularly in stormy and rainy conditions. These L-band radiometers
have a distinct advantage over most other passive microwave instruments: due to the use
of a long wavelength (21 cm), they are mostly unaffected by rain or frozen precipitation
(Wentz 2005; Reul et al. 2012). For wind speeds below 30 kt/15 ms~, the performance
of L-band radiometers to measure scalar wind speeds is typically ~2-3 m/s; not as good
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as that of higher frequency radiometers (i.e., GMI, AMSR-2, WindSat) or scatterometers
(QuikSCAT, ASCAT, RapidScat, ScatSat) due to larger radiometer noise and lower sensi-
tivity. It should be noted that the wind speed retrieval of L-band radiometer relies on ocean
surface salinity as external ancillary input. In some locations, this ancillary input can be
inaccurate, for example in highly dynamical ocean regions such as freshwater river plumes
(e.g., Amazon, Congo, Gulf of Bengal and Mississippi), which can result in increased wind
speed uncertainty in these areas. For extreme winds, algorithms for SMOS and SMAP
have been trained and/or tested using aircraft-based wind speed data from SFMR. Despite
the capabilities of this methodology, it is important to acknowledge that there is still a
scarcity of reliable in-situ wind measurements in major hurricanes with winds exceeding
100 kt/50 ms™', which makes it challenging to train/validate the L-band models or emis-
sivity GMFs. There are many examples of how SMAP and SMOS wind speeds are help-
ful for both intensity and wind radii estimates (Reul et al. 2012, 2016, 2017; Yueh et al.
2013; Meissner et al. 2014, 2017; Fore et al. 2016) and real-time data are helping tropical
cyclone (TC) forecasts as well as adding quality information to historical records. Similar
to C- and X-band radiometers, the low spatial resolution (~40-50 km) of currently orbiting
L-band radiometers imposes a limitation on how close to the coast accurate ocean wind
speed measurements can be performed and on the resolution of high wind speed gradients
in the inner core of tropical cyclones. For the SMOS case, root mean square differences
with other collocated wind speeds from other sensors (SMAP, WindSat, AMSR-2, SSMI)
increase from~2.5 m/s for open ocean scenes to~5 m/s when the distance to the coast is
less than ~ 250 km. However, combined data from SMOS and SMAP do provide new, inde-
pendent and very regular estimates of the gale force (R34), damaging (R50), and destruc-
tive (R64) wind radii for each given storm, as well as estimates of intensity at~40-50 km
resolution (Reul et al. 2017; Meissner et al. 2017; Fore et al. 2018).

2.2.2 Wind Scatterometers

2.2.2.1 History and Evolution Wind scatterometers are radar systems specifically designed
for measuring the ocean surface wind vector.

The first wind scatterometer entered space in 1978 on-board the Seasat satellite (Born
et al. 1979), and demonstrated the feasibility of measuring the ocean wind vector from
space. Further NASA instruments were flown on the Japanese spacecraft ADEOS-I and
ADEOS-II. Meanwhile, ESA launched the ERS satellites in the 1990s, resulting in the first
operational application of scatterometer-derived winds in Numerical Weather Prediction
(Stoffelen and Wagner 2013) and hurricane forecasting (Isaksen and Stoffelen 2000), after
developing the necessary calibration, empirical Geophysical Model Functions, retrieval,
wind direction ambiguity removal, quality assessment and monitoring tools (Stoffelen
1998). Subsequent missions followed, providing operational continuity in the 2000s, for
example by QuikSCAT, three ASCAT instruments on the MetOp platform from EUMET-
SAT (European Organization for the Exploitation of Meteorological Satellites), Rap-
idScat on the International Space Station (ISS), the O-SCAT instruments on the ScatSat
and OceanSat Indian platforms, as well as the Chinese HY2 series, and CFOSAT scatter-
ometers (Stoffelen et al. 2019). More recently, the virtual scatterometer constellation was
extended in 2021 with HY2-D, and WindRad, to be joined soon by the OceanSat-3 scatter-
ometer. A detailed description of the evolution and performance of scatterometer systems
since the 1990s, can be found in Bourassa et al. (2019).

@ Springer



1368 Surveys in Geophysics (2023) 44:1357-1446

2.2.2.2 Principles of Measurement As mentioned in Sect. 2.1, the principle of measure-
ment of wind scatterometers relies on the sensitivity of the normalized radar cross section
to the wind speed and wind direction at medium incidences (typically 20-60° from nadir).
In this configuration, the radar return is governed by the presence of short capillary-gravity
waves generated by the local wind with a very short response time (a few milliseconds).
As the wave height density spectrum is not isotropic (higher short waves in the along-wind
than in the cross-wind directions), multiple observations over a diversity of incidence and/or
azimuths angles are used to estimate both wind speed and wind direction in a Wind Vector
Cell (WVC) from the same system.

To achieve this, the current space-borne wind scatterometers are based on either a mul-
tiple fixed fan-beam geometry, like ASCAT on MetOp (Figa et al. 2002), or on a rotating
pencil-beam geometry with limited incidence angles, like QuikSCAT (Spencer et al. 2000).
The wind scatterometers from CFOSAT (Lin et al. 2019) and WindRAD (Tsai et al. 2000)
combines both concepts with a rotating fan-beam geometry.

2.2.2.3 Performance and Limitations Advanced relative calibration methods with accura-
cies better than 2% (Belmonte Rivas et al. 2017) provide an excellent basis for the develop-
ment of accurate GMFs and retrieval codes. Furthermore, the availability of plentiful col-
locations of different scatterometer types, subsequently allows scatterometer intercalibration
and refined wind processing algorithms that produce consistent geophysical products (Wang
et al. 2020; Xu and Stoffelen 2020, 2021). Processing codes for all scatterometer types are
made available by the Ocean and Sea Ice service-Satellite Application facilities (EUMET-
SAT OSI—SAFZ) and associated data sets are accessible from different data centers, e.g., in
Europe at EUMETSAT OSI SAF,? and the Copernicus Marine Service.*

A general method, called triple collocation, was first developed to estimate statis-
tical errors on winds from scatterometer, in-situ and numerical weather prediction
(NWP), all at the same time. In combination with studies on 3D atmospheric turbu-
lence spectra and horizontal wind variances, the spatial representation of the collo-
cated measurements has been evaluated and an error analysis on the measurement scale
of the scatterometer winds (20-50 km, depending on application) has been performed.
Recently, due to the abundance of scatterometers, quadruple collocation studies have
also become available (Vogelzang and Stoffelen 2021). Table 2 illustrates these recent
results and shows the standard deviations of the wind component errors for moored
buoys, ASCAT-A, ScatSat, and collocated NWP of the European Centre for Medium
Range Weather Forecast (ECMWF).

Whereas local buoy 10-min-mean measurements are typically very accurate
(0.1-1 m s typically), they do not cover the 25-km Wave Vector Cells (WVCs). There-
fore, the error standard deviations in Table 2 mainly constitute the natural wind com-
ponent variability within a 25-km size WVC. Due to their excellent calibration, moored
buoy stress-equivalent 10-m winds are used as the absolute calibration reference for
scatterometer and atmospheric model winds. The relatively high wind variability in
a WVC also determines the quality of the wind retrieval, as different geometric views
are consolidated in the retrieval process. For ASCAT, three views are collocated before

2 https://mwp-saf.eumetsat.int/site/software/scatterometer/.
3 https://osi-saf.eumetsat.int/products/wind-products.
4 https://marine.copernicus.eu/about/producers/wind-tac.
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Table2 Triple collocation error standard deviations for the u (zonal) and v (meridional) wind vector com-
ponents (in ms™!) for buoy (b), ASCAT-A (A), ScatSat (S) and ECMWF (E) collocations on the scatter-
ometer spatial scale (~25 km). The bottom row provides the spread in the results (in ms™") for the different
triple collocation results ((¢) AGU, Vogelzang and Stoffelen 2021)

Subset Buoy ASCAT-A ScatSat ECMWF

o_u o_v c_u o_v o_u o_v o_u o_v
bAS 1.03 1.12 0.41 0.49 0.78 0.65 - -
bAE 1.06 1.15 0.34 0.41 - - 0.94 1.03
bSE 1.09 1.21 - - 0.72 0.59 0.92 1.03
ASE - - 0.43 0.49 0.76 0.65 0.90 0.98
20 0.04 0.04 0.02 0.02 0.03 0.02 0.04 0.04

wind retrieval and its spatial footprints can be well aligned with advanced processing
methods, hence reducing the retrieval noise (Vogelzang and Stoffelen 2017). Rotat-
ing Ku-band scatterometers have less simple sampling properties, but can benefit from
image resolution-enhancement techniques, in particular over sea ice and land surfaces
(Long 2017). Unsurprisingly, the scatterometer wind retrieval residual, called maxi-
mum likelihood estimator (MLE) error, is a measure of the local inconsistency of the
backscatter views and hence related to the local wind variability (Lin et al. 2015).

Whereas natural variability determines the buoy errors, the global NWP model
wind component errors in Table 2 are determined by a lack of natural wind variabil-
ity (Belmonte and Stoffelen 2019). Conversely, ASCAT has the ability to measure the
extreme divergence and convergence associated with the updrafts and downdrafts in
tropical moist convection, while a global NWP model does not show these (King et al.
2022). Some of this lack of variability is furthermore associated with the local sea
surface temperature gradients and can be corrected by averaging wind differences over
a few days. Such averaging will remove scatterometer and atmospheric model wind
differences due to the transient weather, but will show differences that are related to
stationary ocean conditions and due to other systematic errors in the boundary layer
parameterization and dynamical model closure (e.g., diffusion operators; see Trindade
et al. 2020). The atmospheric model 10-m stress-equivalent wind errors do not only
appear on small scales, but also on larger scales as depicted in Fig. 2 (Belmonte and
Stoffelen 2019).

2.2.3 Radar Altimeters

Spaceborne altimeters are active microwave radars pointing vertically down at the Earth’s
surface (nadir incidence). As the name suggests, the original purpose of altimeters is to
measure the altitude of the satellite i.e., the distance between the satellite and the Earth’s
surface. Over the oceans, this provides valuable measurements of Sea Surface Height (see
Morrow et al. 2023; this issue) from which information is derived about geostrophic cur-
rents and sea level. With its unique capability to observe ocean circulation and sea level on
global, regional and local scales, satellite altimetry has revolutionized modern oceanogra-
phy and is now a cornerstone of the global ocean observing system.
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Fig.2 Mean differences between ASCAT-A and ERAS reanalysis for the meridional stress-equivalent 10-m
winds after ocean current correction during 2016. From Belmonte and Stoffelen (2019)

Together with SSH, satellite altimeters also provide high-quality measurements of Sig-
nificant Wave Height (SWH) and wind speed (U,), typically referenced to 10 m above the
sea surface. Altimeter SWH and U, have become important satellite observations in their
own right, bringing important wind and wave monitoring capability that is particularly rel-
evant for the assimilation in and validation of operational ocean forecasting systems.

Altimeter SWH and U, also play an essential role in the estimation of the ranging error in
altimeter SSH measurements introduced by ocean surface waves, a correction known as sea
state bias (SSB) (Srokosz 1986; Gommenginger et al. 2003; Tran et al. 2010; Ablain et al.
2019; Guérou et al. 2022). Today, SSB is still one of the largest contributions to the altimeter
SSH error budget (Masters et al. 2012; Cheng et al. 2019), the only altimeter correction to
have seen little progress in recent decades. Therefore, accurate and consistent measurements
of altimeter SWH and U, also underpin our ability to accurately observe sea level variability
and climate trends. In this chapter we are interested in the altimeter SWH and U, parameters.

2.2.3.1 History and Evolution Satellite altimetry first emerged in the mid-late 1970s and
the early success of SEASAT (1978) was followed by a succession of satellite altimeter mis-
sions that now form a quasi-continuous time series dating back to 1985 (GEOSAT; Dobson
et al. 1987; Carter et al. 1992) comprising the ERS-1/Envisat series, the Topex/Jason series
(Lambin et al. 2010; Escudier et al. 2017) and today’s Copernicus sentinels (Donlon et al.
2021; The International Altimetry Team 2021).
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In April 2010, ESA launched Cryosat-2 as its ice mission, motivated by the need to
measure sea ice thickness with greater accuracy in polar regions and observe changes in
the Greenland and Antarctica ice sheets (Laxon et al. 2013). Cryosat-2 carried the first
altimeter with synthetic aperture radar (SAR) and Interferometric (SARIn) capability
(Wingham et al. 2004). The SAR altimetry mode, also known as delay Doppler altime-
try (Raney 1998) uses higher Pulse repetition frequency than low-resolution mode (LRM)
instruments and unfocused along-track SAR processing to achieve greater precision (lower
noise) and finer along-track resolution over leads in sea ice covered oceans (e.g., Arctic).
Cryosat-2 was the first spaceborne altimeter to provide SAR mode data over a few ocean
regions and these data proved essential to demonstrate, in-orbit, the benefits of SAR mode
altimetry over water surfaces (Phalippou and Enjolras 2007; Gommenginger et al. 2011,
2013). SAR altimetry has now been adopted as the default operating mode on all altimeter
missions from Copernicus Sentinel-3 Surface topography mission and Sentinel-6 Michael
freilich onwards (Donlon et al. 2021).

In 2022, satellite altimetry is expected to take another leap forward with the launch of
the surface water and ocean topography mission (SWOT), a collaboration between the
USA and France with contributions from Canada and the United Kingdom. The SWOT
payload will use across-track SAR interferometry to provide high-resolution 2D observa-
tions of water levels over two off-nadir 60 km swaths on either side of the satellite ground-
track, accompanied by observations at nadir from a conventional pulse-limited nadir altim-
eter (Rodriguez et al. 2018; Morrow et al. 2019). SWOT has applications to both hydrology
(for inland water) and oceanography (for fine-scale ocean topography), but its capabilities
for ocean wind and sea state observing remain to be determined.

2.2.3.2 Principles of Measurement Nadir-pointing altimeters transmit short pulses of
microwave energy toward the Earth’s surface, whence they are reflected back toward the
instrument. The timing and temporal evolution of the reflected power measured by the
receiver conveys when and how the microwave energy hits, spreads and reflects off the water
surface. The temporal shape of the received echo is known as the delay waveform. Up to the
launch of Cryosat-2 in April 2010, all altimeter missions carried pulse-limited instruments,
whereby the received waveforms are formed by incoherent integration of uncorrelated ech-
oes originating from within the (pulse-limited) footprint as it moves along-track with the
satellite. Pulse-limited altimeters have traditionally operated at Ku-band (13.6 GHz) and
achieve a footprint 1-10 km in diameter (increasing with significant wave height) thanks
to short high-energy pulses (chirps) produced with an elaborate pulse-compression tech-
nique involving linear frequency modulation. One exception is SARAL/AltiKa, an India/
France altimeter mission also operating in pulse-limited mode but at Ka-band (35 GHz) that
reported remarkable improvements in along-track resolution and error reduction (Verron
et al. 2018). This mode of operation is variously known as ‘pulse-limited,” ‘conventional’ or
‘low-resolution mode’ (LRM) altimetry.

The principles used to retrieve the geophysical ocean parameters from the reflected ech-
oes are detailed in many references among which the interested reader is referred to, as
the book by Ulaby and Long (2015), or the chapter by Chelton et al. in Fu and Cazenave
(2011). Geophysical information about the water surface is contained in the timing and the
shape of the waveforms. Figure 3 shows examples of typical altimeter waveforms obtained
in LRM and SAR mode over the ocean for average sea state conditions (SWH=2 m). Note
that, for the same sea state, SAR waveforms are naturally narrower and peakier than LRM
as a result of unfocused SAR processing.
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Fig.3 Typical ocean type altimeter waveforms (received power versus range distance) for average sea state
conditions (significant wave height of about 2 m). a in the Low-Resolution Mode (LRM); b Synthetic aper-
ture radar mode (SAR). The blue lines are the raw measurement, the solid green lines are fitted waveforms
(from Gommenginger et al. 2013)

The geophysical ocean parameters are retrieved by fitting the waveforms with a para-
metric analytical or numerical model, a process known as ’retracking.” For LRM, wave-
forms are traditionally fitted with the Brown—Hayne model (Brown 1977; Hayne 1980;
Tokmakian et al. 1994; Thibaut et al. 2010; Zaron and DeCarvalho 2016), a well-estab-
lished analytical model based on theoretical scattering principles. The analytical SAMOSA
formulation (Ray et al. 2015) is the equivalent physically-based model to simulate SAR
ocean waveforms. SAMOSA is currently the baseline model in the operational Coperni-
cus Sentinel-3 ground-processor, although many other analytical, numerical and empirical
methods are still being actively investigated (e.g., Boy et al. 2016; Dinardo et al. 2018,
2021).

Sea surface height (SSH) is derived from the echo arrival time, which indicates the
distance traveled by the pulse from the radar to the surface and back. Significant wave
height (SWH) is derived from the slope of the leading edge (LRM) or the width of the
echo (altimeter SAR mode). Finally, wind speed (U,) is related to the maximum reflected
power which relates to the normalized radar cross section at normal incidence (o).

When SSH and SWH are parameters of the fitted models, these are direct outputs of
the waveform fitting process. However, for wind speed, U, has to be inferred from the
retrieved backscatter coefficient o,. Wind speed estimates are based on Eq. (3) com-
bined with the assumption that the slope pdf is characterized by a Gaussian function.
The variance parameter of the slope pdf is known as the mean square slope (mss) of
the surface, which is supported by the ocean waves generated by the wind. However, in
practice, wind retrieval relies on empirical algorithms that relate the measured o, to the
wind speed, built either through match-ups between altimeter 6, and independent wind
data (Witter and Chelton 1991; Gommenginger et al. 2002; Gourrion et al. 2002) or
with look-up tables tuned against the output from numerical weather prediction (NWP)
models (Abdalla 2012). In some cases, wind speed algorithms attempt to account for the
mss also having second-order dependencies on sea state, resulting in multi-parameter
inversions that usually invoke altimeter significant wave height (Gourrion et al. 2002;
Lillibridge et al. 2014).

2.2.3.3 Performance and Limitations Much like the principles used to retrieve the geo-
physical ocean parameters from the reflected echoes themselves, the evaluation of altim-
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eter SWH and U, observations is detailed in many publications. Validation typically
involves altimeter match-ups with buoys, weather stations and platforms or other satel-
lites. Comparisons with numerical model output are also common. Evaluation against
independent ground-truth is generally considered the gold standard, but results are sensi-
tive to methodological choices and the quality and quantity of fiducial data. In situ wind
and wave observations are globally sparse, mostly sited within 50 km of land and almost
exclusively in the North Hemisphere. Ensuring that in situ point measurements are repre-
sentative of wind and wave conditions sampled by the satellite has led to the practice of
constructing match-up datasets with maximum separation criteria of 50 km and 30 min
between satellite and in situ data. Accordingly, the uncertainties (root mean square error,
RMSE) of altimeters operating in LRM are of the order of 0.2 m for significant wave
height and 1.0 m/s for wind speed (Table 3).

SAR mode altimetry brings considerable advantages over LRM in terms of improved
precision (noise) in 1 Hz along-track SWH (~ 1.5fold reduction) and finer along-track
spatial resolution (~300 m), resulting in particular in useful improvements in coastal
regions (Gommenginger et al. 2011; Fenoglio-Marc et al. 2015; Boy et al. 2016;
Abdalla et al. 2018). Figure 4 shows two altimeter SWH tracks across atolls in the Cen-
tral Pacific by Jason-2 LRM (blue) and Cryosat-2 SAR mode (cyan). While SAR mode
presents visibly reduced along-track noise in SWH and quasi-continuous records up to
1 km of land, LRM is characterized by large anomalies and data loss within 10-20 km
of land that is typical of Ku-band pulse-limited altimeters (Benveniste et al. 2019). In
the last decade, major efforts in coastal altimetry have significantly improved the quan-
tity and quality of LRM altimeter data near land (Deng and Featherstone 2006; Cipollini
et al. 2010, 2017; Vignudelli et al. 2011; Birol et al. 2021) including now for sea state
(Passaro et al. 2014; Schlembach et al. 2020).

In the open ocean, LRM SWH can show along-track variability on scales less than
200 km, with important variations down to 10 km, that are associated with small-scale
ocean currents (Ardhuin et al. 2017). The uncertainty in LRM SWH can be consider-
ably reduced by introducing de-noising techniques (Quilfen and Chapron 2019; Dodet
et al. 2020). The finer along-track resolution of SAR mode altimetry makes it prone
to additional sensitivities to small-scale ocean phenomena, notably long-period waves
when these propagate in the direction of altimeter tracks (Aouf and Phalippou 2015;
Moreau et al. 2018; Rieu et al. 2021). Impacts on SAR SWH includes biases (~0.2 m) in
swell conditions and increased 1 Hz SWH noise that also depends on the period of long
waves. New processing and sampling continue to be proposed to mitigate these effects
and reduce the risk of contamination of the long-term high-quality sea surface topogra-
phy record (Moreau et al. 2021; Buchhaupt et al. 2021; Egido et al. 2021).

2.2.4 SARImagery

2.2.4.1 History and Evolution The first Synthetic aperture radar (SAR) system launched
in space for scientific applications was that carried by the Seasat (NASA) to monitor the
Earth’s surface on global scales at high resolution. In addition to a radar altimeter, a wind
scatterometer and a microwave radiometer, a visible and infrared radiometer, Seasat carried
an L-band SAR. Unfortunately, the mission lasted for only 100 days. However, many of the
now existing operational SAR ocean applications (ship detection, sea-ice detection, ocean
wave measurements and ocean wind speed) have been demonstrated with Seasat data (Fu
and Holt 1982). The launch of ERS-1 (C-band) satellite by ESA in 1991 initiated the provi-
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Fig.4 Altimeter transects across Palliser islands atolls in French Polynesia the Central Pacific showing the
significant wave height measured by the Jason-2 Low-Resolution Mode altimeter (cyan) and the Cryosat-2
altimeter operating in SAR mode (red). Note the anomalous spikes and data loss at the water-land interfaces
with LRM compared to the continuous records obtained in SAR mode

sion of operational services in Europe, with routine and global acquisition of imagettes over
the open ocean used for measuring and assimilating 2D swell spectra. Since then, numerous
spaceborne SARs have been orbiting the Earth, operating in C-, X- and L-bands. The imag-
ing capacity of SAR systems and the processing capabilities have increased substantially
since 1978. The increased transmitted bandwidth has improved the spatial resolution down
to meters, and the phased array antenna technology has increased the extent of coverage up
to 400 km swath width. Consequently, present SAR systems are very flexible in terms of
spatial resolution, polarization, swath width and operation modes. In comparison to other
systems presented here, the SAR missions cannot provide continuous acquisitions due to
on-board memory and down-link capacities, and the acquisition modes are exclusive. These
limitations imply a strategy to organize the acquisition planning and solve the potential con-
flicts with respect to the mission priorities (i.e., targeted applications).

To date, SAR images collected from space over the ocean are routinely used to esti-
mate the spectral properties of ocean waves, the surface velocity, or the surface wind.
For each of these applications, the measurement principles and performances are
described here below.

2.2.4.2 Surface Ocean Waves from SAR
(1) Principles of Measurement
The SAR is a two-dimensional imaging system that can produce images of the ocean

surface with a high spatial resolution. In the range direction (across-track), the sampling of
the backscattered signal is achieved by using the frequency modulation of the chirped radar
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signal, with the resolution in distance controlled by the frequency bandwidth. In the other
direction (azimuth i.e., along-track direction), successive echoes acquired by the antenna
over the same ocean scene are separated by their Doppler shift.

In the highest resolution mode (typical resolution at the surface of about 10 m), this
acquisition is usually carried out in the so-called wave mode (WM) which combines a high
resolution, small sized image (typical size of 10X 10 or 20X 20 km), and non-continuous
sampling (every 100-200 km along the track)- the exact configuration depending on the
mission.

The principles of wave spectra estimation from SAR observations are as follows.

Close to the range direction (across-track), the wave imaging process is the same as
for a real aperture radar (RAR). Over the ocean, it is characterized by the modulation in
backscatter due to the long wave induced varying surface tilt (local relative orientation)
and straining (local roughness modulation). In that sense, the imaging of ocean waves
by a very high-resolution radar instrument (SAR, RAR) is commonly described on the
basis of a two-scale model: waves shorter than the resolution cell mostly contribute to
the composite Bragg resonant backscattering mechanism, as they ride on a weakly ran-
dom sea of much longer waves. The short waves (waves within the resolution cell) are
only described through their statistical average properties (elevation and slope variances,
elevation spectrum amplitude and directionality). These directly contribute to the wind-
dependent mean radar cross section over the scene. The shortest components are usually
wind-generated waves that overlay more deterministic modulating longer waves to pro-
duce measurable local contrasts. These observed spatial modulations of the backscatter
intensity, o, ({) are supposed to be linear and small compared to the mean radar cross
section, o,

o,(x) =0, [1 + / <T(ls) (k) - JE=ow) +c-c->dl_<] ®)

where &(x) = / (Z (k) - ei(ﬂ_wk' 't) + c.c. )dk is the surface elevation caused by the long

waves, T is the modulation transfer function, and wj,| is the deep-water dispersion rela-
tion. The second term in the square brackets is the modulation of radar cross section
which results from different factors contributing to the formation and/or the degradation
of satellite SAR ocean wave images. Details on these imaging processes are given in
Appendix 2. In the spaceborne configuration, the most important ones are those due to
long-wave-induced varying surface tilt (tilt modulation), straining of short waves along
long wave profiles (hydrodynamic modulation) and velocity bunching caused by the
apparent shift in location due to scatterer motion on the surface. Depending on the motion
scatter statistics, the velocity bunching mechanism is either a constructive or destructive
imaging process so that it induces important nonlinearities between the image backscatter
modulations and the wave slopes. This nonlinearity is characterized in the spectral domain
by a cutoff in wavelength in the azimuth direction (along-track), which can be estimated
from the image itself (see Appendix 2). This azimuth cutoff is governed by both the satel-
lite R/V ratio (R being the distance and V the speed of the satellite), and the sea state and
wind conditions. For typical spaceborne missions like Sentinel-1, the global average azi-
muth cutoff wavelength is around 220 m. In many cases, this limits the detectability of the
wind-sea spectrum.
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Hasselmann and Hasselmann (1991) and Krogstad (1992) proposed closed form expres-
sions of the ocean-to-SAR spectral transform to relate the 2D Fourier transform of the SAR
image to the 2D ocean wave spectrum. Different inversion algorithms were then devel-
oped (Engen et al. 1994; Hasselmann et al. 1996; Engen et al. 2000; Mastenbroek and de
Valk 2000; Schulz-Stellenfleth 2005; Collard et al. 2005; Shao et al. 2015). Because of the
nonlinear relationship between SAR spectra and wave spectra, such retrieval algorithms
attempted to reconstruct the a priori ocean wave spectrum (first-guess estimation) by mini-
mizing the difference between the theoretical SAR image spectra and the satellite observed
SAR image spectra.

Breakthroughs were further introduced by Krogstad (1992) and Engen and Johnsen
(1995) for the inversion of SAR images in wave spectra, with two innovations: (1) a way to
separate the nonlinear and linear parts in the spectral domain and to approximate the non-
linear part with a filter function that can be estimated from the image itself (see Appendix
2), (2) a way to apply the inversion on image cross-spectra between two SAR single-look
images (looking at the same ocean surface) instead of considering the Fourier transform of
multi-look images. The advantage of this new method is first that it does not rely on a first
guess estimate of the wave spectra as previously, and then that inversion applied on cross-
spectra enables to minimize the speckle contribution and to remove the 180° ambiguity in
the wave propagation direction.

This is the approach implemented in both the ASAR Envisat Wave Mode Level 2 and
the Sentinel-1 WV Level 2 processors, where the nonlinear part of the Modulation Transfer
Function (MTF) is estimated from a look-up table as a function of wind speed, wind direc-
tion and wave age (see Sentinel-1 Ocean swell wave spectra—OSW algorithm definition’).

In Fig. 5 are shown examples of SAR image cross-spectra simulated using the equa-
tions given in Appendix 2 for a given ocean wave spectra synthesized for a wind speed of
8.6 m/s at an angle of 45 degrees to the radar line-of-sight.

An example of the Sentinel-1B image cross-spectra and the derived SAR wave spectra
is shown in Fig. 6.

To overcome the complex physical relationship between SAR images and wave spec-
tra, several authors have proposed wave parameter estimation methods without explicit
retrieval of wave spectra, but based on empirical models using either conventional multi-
parameter least-square fit methods (Schulz-Stellenfleth et al. 2007) or neural network
approaches (Stopa and Mouche 2017). Schultz-Stellenfleth et al. (2007) estimated 22
coefficients of a quadratic model function to estimate the significant wave height, mean
period, and wave height associated with different spectral bands and wave power. These 22
parameters of the SAR image include the radar normalized cross section, the image vari-
ance, and 20 parameters computed from the SAR image variance spectrum using a set of
orthonormal functions. Following this approach, Li et al. (2011) extended the method to
analyze ENVISAT data and Romeiser et al. (2015) employed a similar method to estimate
wave parameters from RADARSAT observations in tropical cyclones. Pleskachevsky et al.
(2016, 2019) and Shao et al. (2015) developed parametric models which empirically relate
SWH to both spectral and statistical properties of the image; mostly focusing on analysis of
large-sized images in coastal zones from either the TerraSAR-X mission or from Sentinel-1
in wide swath mode.

5 https://sentinel.esa.int/documents/247904/4766226/S1-TN-MDA-52-7445_Sentinel-1%20Level%201%
20Detailed%20Algorithm%20Definition_v2-4.pdf/83624863-6429-cfb8-2371-5c5ca82907b8.
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Fig.5 Upper left: SAR image cross-spectra, |P(l_< )‘ Upper right: Nonlinear part of SAR image cross-spec-

(k)| = [P(k) - P (&) Pau(®)|

Lower right: Ocean wave spectra, S| k ). See Appendix 2 for the definition of the different terms

tra, . Lower left: Quasi-linear part of SAR image cross-spectra,

Stopa and Mouche (2017) extended the idea of Schulz-Stellenfleth et al. (2007) by using
a neural network method to empirically relate SAR image properties to SWH and wave
periods. The neural network was trained using collocated data generated from the Wave-
Watch IIT (WW3) numerical model (Ardhuin et al. 2010) and independently verified with
observations from altimeters and buoys. They tested two approaches on Sentinel-1A ima-
gettes; in the first one, they decompose the shape of the image spectrum into orthogonal
components, similar to what was proposed by Schultz-Stellenfleth et al. (2007). In the other
one, they proposed the simplification of the parametric model by reducing the number of
input parameters to 6 (normalized radar cross-section azimuth cutoff, normalized variance,
skewness, peak wave length, and peak direction of the SAR image). A refinement of the
first approach of Stopa and Mouche (2017) was also proposed by Quach et al. (2021) who
used a neural network trained using altimeter SWH data. In an approach which is much
more blind, a convolutional neural network was used by Sihan et al. (2020) to establish an
empirical relationship between the SAR image (expressed as normalized radar cross) and
SWH without needing to calculate feature parameters from SAR images.

All these methods currently remain at a relatively low (research) technology readiness
level and do not replace the spectral inversion algorithms currently used by the Senti-
nel-1 SAR processing center to deliver operational products. However, the algorithm of
Stopa and Mouche (2017) is implemented in the latest version of the Sentinel-1 Level 2
processor.
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Fig.6 Upper left: Observed SAR (Sentinel 1-B) image cross-spectra—real part, QR{PSAR}. Upper right:
Observed SAR image cross-spectra—imaginary part, S{PSAR}. Lower left: Retrieved SAR ocean wave
spectra, S. Lower right: Collocated Wave Watch III (WW3) model wave spectra. See Appendix 2 for details

(2) Performance and Limitations

Starting with the ERS-1 mission, and continuing with the ENVISAT mission, as well as
now with the Sentinel-1 missions, wave spectra are operationally provided over the open
ocean thanks to imagettes collected with the so-called Wave Mode (called WM for ERS
and ENVISAT or WV for Sentinel-1). With the Sentinel-1 mission, the so-called Stripmap
mode is also compatible with the estimation of wave spectra.

For these missions, the wave spectra are estimated as explained above, using the quasi-
linear inversion of image cross-spectra, combined with an empirical parameterization of
the nonlinear term. Extensive geophysical validation of these ocean wave spectra has been
performed from the Envisat ASAR WM instrument and currently from the Sentinel-1 WV
instrument (Hadjuch et al. 2021). Considering the wave spectra within the spectral domain
resolved by the SAR, the overall performance of the mean wave spectral parameters is
listed in Table 4 for the two swaths of Sentinel-1 WV mode, where the reference is taken
from hindcasts from WW3. Further validation of wave parameters based on cross-assign-
ment of wave partitions between SAR wave spectra and WW3 spectra can be found in the
ESA annual report (Hajduch et al., 2021).

The scatterplots of effective SWH (i.e., significant wave height computed within the
spectral domain resolved by the SAR) between Sentinel-1B and WW3 are shown in Fig. 7
for the two swaths of WV mode.

@ Springer



1380 Surveys in Geophysics (2023) 44:1357-1446

Table 4 Performance of

Sentinel-1b WV ocean wave ‘Wave spectra parameter Bias RMSE Mean Swath
fgewaxe%izitﬁrs with respect Significant wave height -0.03 m 04 m 1.5m wvl
Mean wave period 0.7s 0.8s 10s wvl
Mean wave direction —0.7° 39° - wvl
Significant wave height 0.1 cm 0.5m 1.5m wv2
Mean wave period 0.6s 09s 10s wv2
Mean wave direction 0.7° 35° - wv2
Number of spectra is 25 K globally distributed, and time period is
one month. The parameters are computed within the spectral domain
resolved by the SAR for both Sentinel-1 and WW3
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Fig.7 Scatterplot of effective significant wave height obtained from Sentinel-1b WV wave spectra versus
that obtained from the WAVEWATCH III numerical wave model. Left: Swath WV 1, Right: Swath WV2.
These histograms were obtained from one month of global data (January 2021)

Because systematic SAR acquisition in a specific wave mode is mainly switched-on
away from the coastal zone, results on the assessment of SAR wave spectra or wave param-
eters based on in situ buoy observations are relatively scarce. However, using the method
initially developed by Collard et al. (2009), Wang et al. (2022) were able to assess the
significant wave height of the swell part with buoy data. This research was undertaken
using the so-called “fireworks technique,” which consists of propagating the swell proper-
ties extracted from the SAR spectra back toward the swell generating zone (gathering all
the swell measurements originating from the same storm event) and then forward in time
along their propagation path, until swell reaches the coast. This method allows a significant
increase in the spatial and temporal collocations with in situ reference data. However, it is
limited to assessing swell wave heights and relies on some physical assumptions such as
neglecting wave-current interactions. Figure 8, taken from Wang et al. (2022), illustrates
the results obtained using this method with a 4-year database of Sentinel-1A/B observa-
tions. A bias and RMSE of 0.18 m and 0.5 m were reported in this comparison, and a simi-
lar positive bias was found when the same approach was used but with the WW3 model as
the reference. Overall, the method allowed Wang et al. (2022) to propose an empirical cor-
rection on the estimation of the swell wave height from the Sentinel-1 SAR WM.
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Fig.8 Significant wave height of the swell part estimated from for S-1A/B against buoy data, with coloca-
tions based on the “fireworks technique.” The data set includes about 4 years of data (2016-2020)—From
Wang et al. 2022

Concerning methods that are not based on a spectral inversion technique, one can cite
the results of Stopa and Mouche (2017) who showed that their methods provide reason-
able accuracy on SWH, for conditions up to 13 m (bias less than 0.25 m, RMSE from
0.50 to 0.70 m depending on the control data set and number of input variables). Results
on the wave periods are also promising, although the authors mention that more work is
still necessary to improve the empirical model. According to Quach et al. (2021), SWH
was obtained from SAR Sentinel-1 observations with 0.3-m RMSE relative to independent
altimeter observations.

In parallel to the systematic validation of SAR wave products, experiments on assimilat-
ing SAR wave spectral parameters into numerical wave model show a positive impact on
the model output (see Sect. 3.1.1 and e.g., Abdalla et al. 2010; Aouf et al. 2012; Aouf et al.
2021).

2.2.4.3 Surface Current from SAR Synoptic maps of ocean surface wind, waves and cur-
rent from space are important inputs to better characterization and parameterization of
oceanic mesoscale and sub-mesoscale dynamics, as well as in support of advances in
ocean—atmosphere research and modeling activities (Bourassa et al. 2019). In coastal
ocean areas, the current is usually measured from in situ surface drifters (Lagrangian),
fixed moorings (Eulerian) using acoustic Doppler Current Profilers (ADCP) or land-
based High Frequency (HF) radar (see Ardhuin et al. 2009a; Rohrs et al. 2015). How-
ever, these measurements are irregular in space and time, with coverage only over a
limited area, yielding observation gaps. Spaceborne SAR missions such as TerraSAR-X
(Romeiser et al. 2010), Tandem-X (Romeiser et al. 2014), Envisat (Chapron et al. 2005;
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Johannessen et al. 2008) and Sentinel-1 (Moiseev et al. 2020a, b) have shown the capabil-
ity to provide measurements of the radial component of Lagrangian mean velocity vector.

The phase information in the ocean backscatter recorded with a SAR can be used
to obtain radial velocity, which has been shown to provide valuable information on the
near surface wind speed and ocean surface current. Two techniques are used to derive
the radial velocity from SAR measurements; the Along-Track Interferometry (ATI) and
the Doppler Centroid frequency (DC).

(1) Concept of Along-Track Interferometry (ATI)

The concept of the Along-Track Interferometry (ATI) technique is to measure the
received phase signal difference between two SAR observations of the same surface
shifted in space or time or both. The space or time shift is called the baseline. In ATI,
this is achieved by measuring the phase difference between two complex SAR images
(master (I,,) and slave (Ig)) acquired near simultaneously with a physical baseline sep-
arating the two antennas along track. In order to preserve coherency between these
two ocean images, the baseline or equivalently the time shift must be small, i.e.less
than 200 m or 0.03 s, respectively. For an ideal ATI system, the phase difference A¢ can
be achieved from the product of the two complex SAR images and expressed as:

Ap(x.1+ Ar) = arg {I,,(x, 1) I; (x.1 + Ar) }

Vs ®

where At is the time shift between observations of master and slave, f. is the Doppler fre-
quency, AV = V_— U is the relative velocity vector between satellite and moving scatterer,
B” is the along-track baseline, ZJ is the satellite velocity vector, U is the surface scatterer
velocity vector, ]fr is the radar wavenumber vector, and n = 1 for a bistatic case and n = 2
for a monostatic case. The first term on the right-hand side of the last line of Eq. (9) is the
orbit/attitude term (i.e., geometric), while the second term is the geophysical contribution
caused by the motion of scatterer on the surface. We shall later see that the geophysical
term consists of an artifact velocity of the imaging process, and a genuine velocity from the
Lagrangian mean surface current.

(2) Concept of Doppler Centroid Anomaly (DCA)

The concept of the Doppler Centroid Anomaly (DCA) technique is to estimate the
Doppler Centroid (DC) frequency from the azimuth spectra of a single-look complex
(SLC) SAR image (or from complex raw SAR data) (Bamler 1991; Engen and Johnsen
2015). For high-resolution DC estimates, it is recommended to use SLC data to avoid
biases caused by variations in intensity within the estimation area. The estimated DC
can be expressed as:

1 1

Joe= "k V -~k U+t () (10)
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where fé‘c‘“ is the contribution from the antenna electronic mispointing depending on the
off-boresight angle (f), while the two other terms on the right-hand side of Eq. (10) are
the same as for the ATI. The second term on the right-hand side of Eq. (10) is called the
Doppler Centroid Anomaly (DCA) and represents the geophysical contribution to the esti-
mated DC. As for the ATI, the geophysical term contains an artifact velocity caused by the
imaging process, and a genuine velocity from the Lagrangian mean surface current. In that
sense, the ATI and the DCA techniques measure the same geophysical quantity, but the
contributions from system effects differs in general. This has recently been demonstrated
by comparing Sentinel-1 and Tandem-X surface velocity measurements (Elyouncha et al.
2022).

(3) Surface Current Retrieval

Equations (9) and (10) show that the DC frequency, or the ATI phase recorded over the ocean,
differ from the values predicted by satellite orbit/attitude and antenna electronics. These differ-
ences in DC or ATI phase are a direct measure of the line-of-sight (radial) velocity of the mov-
ing scatterer on the ocean surface. They are thus sensitive to surface currents induced by wind
drift (Ekman), ocean waves (Stokes drift), tides (tidal) and ocean topography (geostrophic).
Unfortunately, to a first order, the geophysical DCA and ATI signals are both governed by an
artificial velocity (the so-called wind/wave DC bias), which in many cases obscures the under-
lying true Lagrangian mean surface current velocity.

Any retrieval of the underlying ocean surface current from DCA or ATI measurements
requires the prediction and removal of the wind/wave DC bias (Chapron et al. 2005) from the
geophysical signal. The most commonly used approach is to neglect any wind/wave/current
interaction and predict and remove the wind/wave DC bias from the measured DCA followed
by converting the residual DCA to a line-of-sight current velocity projected to ground range:

-7

Ver = m (fdca - cll)cfaS (QIO’HS;G)) an

where fé’cias is the wind/wave DC bias parameterized to show its dependency on wind, wave
and imaging geometry. There exist both physical-based models for f;’cias (Chapron et al.
2005; Johannessen et al. 2008; Romeiser and Thompson 2000; Pedersen et al. 2005; Said
et al. 2015; Mouche et al. 2008) and empirical ones (Mouche et al. 2012; Moiseev et al.
2020a b; Moiseev et al. 2022).

The model of Chapron et al. (2005) interprets the net velocity induced by the near-sur-
face wind as the mean line-of-sight velocity that the radar-detected scatter elements feel
when riding on the longer waves. As the scatter elements are tilted by longer waves, the
NRCS varies along the wave profiles due to modulation effects (tilt- and hydrodynamic),
leading to correlation with horizontal and vertical orbital velocities. These modulation
effects are elegantly formulated by expressing the wind/wave DC bias as:

bias ]&((usin@—wcos&i)ao(0i+A9i))

=% (2, (6,+ 20)) (2

where k, is the radar wavenumber, 1 and w are the horizontal and vertical velocities, o, is
the NRCS, 6; is the local radar beam incidence angle, A; represents the effect on 6; due
to local tilt induced by the longer waves and the brackets stand for mean values . We note
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Fig.9 Left: Simulated Doppler centroid anomaly (DCA) f;’cias (in Hz) as function of incidence angle for VV
(red) and HH (blue) polarizations. The wind speed is fixed at 5 m/s and the radar look direction is upwind.
The vertical bars reflect the variation in DCA with a change in wave age of 10%. Right: Simulated DCA as
function of wind speed for VV (red) and HH (blue) polarizations at an incidence angle of 33 degrees. The
radar look direction is supposed to be upwind

from Eq. (12) that the DCA model implicitly requires a backscatter (‘70) model. Several
backscattering models have been applied in the literature to support SAR Doppler analysis
(Johannessen et al. 2008; Romeiser and Thompson 2000; Said et al. 2015, Mouche et al.
2008). It is basically through the backscatter modulation that the polarization and inci-
dence angle dependencies enter into the expression for the wind/wave DC bias.

Despite the potential of SAR to measure ocean surface currents, there are limitations
and several challenges related to the utilization of DCA and ATI measurements such as:

The dynamic range of DCA is relatively small (+60Hz).

The DC contributions from antenna and satellite attitude/orbit are difficult to predict to
the required accuracy, and the signal may obscure the geophysical signal.

Accurate calibration of the DC and ATI signal is difficult for open ocean areas.

The ATI phase coherence limits the available range of along-track baseline (Zebker and
Villasenor 1992; Engen and Johnsen 2015).

e The DCA and the ATI are biased by the apparent velocity signal from surface waves
(the so-called wind/wave DC bias). This signal is often much larger than the mean
Lagrangian surface current signal.

e A geophysical model function (GMF) is required, which precisely describes the geo-
physical processes that contribute to the measured DCA or ATL

e The DCA from a mono-static SAR or the phase from an ATI system provides only a
line-of-sight component of the surface velocity field.

User requirements on the surface current are stringent, with a relative performance error
of 0.1 m/s and a dynamic range of 0.1-5 m/s at a resolution down to 5 km? (see require-
ments from WMOQ®). It is thus mandatory to have a good GMF to predict the wind/wave
DC bias, and very precise estimates of local wind vector and the sea state.

6 https://space.oscar.wmo.int/variables/view/ocean_surface_currents_vector.
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Fig. 10 Left: intensity image from the S1-B in the Interferometric Wide Mode acquired at south-west coast
of Norway; overlaid is the wind direction (black arrows). Right: Doppler centroid anomaly from the same
data take, showing the signature of the wind front on the left side of the image and the Norwegian Coastal
current in the lower right part of the image. The size of the image is 267 km X 166 km

The dependency of the DCA on the imaging geometry, polarization, wind field and sea
state are shown in Fig. 9. Figure 10 shows images of NRCS and DCA as measured by Sen-
tinel-1 in the interferometric wide swath mode with clear signatures of the wind/wave DC
bias and the underlying mean Lagrangian surface current.

2.2.4.4 Wind from SAR To date, the only official and operational ocean surface wind prod-
uct is part of the ESA/Copernicus Sentinel-1 C-band SAR product family. This Level 2 (L2)
ocean product also includes ocean waves (see 2.2.4.2) and radial surface velocity measure-
ments (see 2.2.4.3.2). All Sentinel-1 scenes acquired over the ocean are processed into the
Level-2 Ocean product and disseminated through the Copernicus hub.’

As defined, the only parameter used in the wind algorithm of ESA to inverse the SAR
signal into an ocean surface wind field is the measured NRCS in co-polarization (VV or
HH). In fact, this approach is directly derived from scatterometry (see Sect. 2.2.2) and
relies on GMF between the NRCS and surface wind speed and direction. However, the
SAR instruments and mission peculiarities are very different from those of scatterometers,
yielding other challenges in order estimate the two ocean wind vector components (speed
and direction). Existing SARs have one single antenna pointing in the satellite across-track
direction. This means that there is only one viewing angle per wind vector cell (WVC), i.e.,
one single NRCS measurement in co-polarization whereas the GMF depends both on the
wind speed and direction, leading to an under-constrained inverse problem. For operational
purposes, the usual approach is to use the wind direction from a NWP model to further
constrain the wind inversion. In the existing the L2 Ocean product, this method relies on a
Bayesian approach from Portabella et al. (2002) to merge the NRCS information computed
at 1 km and the wind vector from the NWP interpolated at 1 km. The cost function is thus:

2 2

o —GMF* (U,,, 8 UNWP _ Uy
J(Uy,0) = |2 (U0:0) ) el 10 (13)
Acp? AUNY?

With U%WP the a priori wind field associated to AUII\BWP error, and Aagp the NRCS error
(pp is the index for the SAR polarization condition).

7 see https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/data-products.
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The way forward is to derive the wind speed and direction from the radar-measured
quantities by adding constraints to the inversion scheme in order to minimize the use of
ancillary wind from NWP. To this aim, two families of approaches exist, based on the
idea that SAR provides much more information than just NRCS in co-polarization at
1 km resolution.

The first approach is to rely on the analysis of the NRCS at high resolution (tens
or hundreds of meters) to detect features aligned with the wind direction, and use
them instead of, or in conjunction with, the NWP information. Several methods have
been tested, including wavelet analysis (Du et al. 2002; Zechetto 2018], local gradi-
ents (Koch 2004; Zhou et al. 2017) and Fourier analysis (Gerling 1986). This approach
mainly assumes that rolls are organized in the marine atmospheric boundary layer
along with the wind direction. However, there have been several sets of evidence
showing that the rolls and the wind are not aligned. Moreover, there are situations
when they cannot be detected in the SAR image (Wang et al. 2020) and/or do not exist
in the marine atmospheric boundary layer, preventing any wind direction estimate. For
example, depending on the atmospheric stability, the dominant atmospheric signature
can be linked to convective cells (Stopa et al. 2022). Convolution neural networks have
also recently been used to capture the relationship between wind direction and textures
in the SAR image, possibly including patterns that are different and more complex than
streaky patterns of the roll signatures.

e The second approach is to rely on other radar parameters to constrain the wind inver-
sion. The proposed methods use one of the following information:

e Geophysical Doppler information in co-polarization: the geophysical Doppler anomaly
(see (2)) has a dominant component from the local sea-state at C-Band with a depend-
ency to the wind-sea direction complementary to the NRCS. Based on a GMF which
relates Doppler anomaly to wind speed and direction as a proxy for the local sea-state,
Mouche et al. (2012) demonstrated how the geophysical Doppler signature derived
from Envisat/ASAR helps to constrain the wind direction retrieval, leading to a more
realistic wind field in complex situations such as low-pressure systems or atmospheric
fronts. However, as explained in the previous section, the Doppler anomaly is also
impacted by other geophysical phenomena than just the local wind sea, such as the
underlying ocean surface current (Chapron et al. 2005) or waves (Moiseev et al. 2020a,
b) not in equilibrium with the surface wind. Taking into account the impact of such
phenomena on the Doppler anomaly is still an active domain of investigation.

e Normalized radar cross section in cross-polarization: the strong relationship between
the cross-polarization NRCS and the wind speed has been demonstrated with Radar-
SAT-2 with images acquired over buoys in quad-polarization by Vachon and Wolfe
(2011). In particular, the wind direction dependency was found to be weaker than in
co-polarization and the wind speed dependency stronger. This led Zhang and Perrie
(2012) to propose using this new cross-polarized channel for wind speed estimate in
Tropical Cyclones with Sentinel-1 and Radarsat-2 SAR. Mouche et al. (2017) further
suggested combining the two channels (co- and cross-polarized) to take advantage of
their complementary characteristics; the co-polarization NRCS being more efficient at
low wind speeds while the cross-polarization NRCS takes over for high wind speeds
when its signal-to-noise ratio becomes significant. This allowed the first estimate of
ocean surface wind speed from space at high resolution in the vortex of category-5 hur-
ricanes (Mouche et al. 2019).
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Fig. 11 a Surface Wind measurement field from SAR -Sentinel-1 observations on June 8th 2017, over the
Strait of Gibraltar. From ESA website https:/sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-
sar/product-types-processing-levels/level-2. b: density plot of SAR vs ECMWF reanalysis wind speed by
Sentinel 1A ESA L2 products in polarization VV and acquisition mode Interferometric Wide Swath from
June 1st 2022—June 24th 2022. Courtesy of Charles Peureux

e (Co-and-cross-phase coherence (CCPC): the relationship between the CCPC computed
from VV and VH channels and the wind direction has been presented by Zhang et al.
(2012) with Radarsat-2 and then further documented with respect to wind speed and
direction by Longepe et al. (2021). In particular, an odd and significant azimuthal mod-
ulation has been found, increasing with both wind speed and incidence angle. Trans-
lated into a GMF, this opens perspectives for including this new radar parameter in the
cost function to constrain the wind field retrieval.

e SAR image cross-spectrumof wind-driven waves : with the improved spatial resolution,
recent SAR such as Sentinel-1 can now detect short-scale wind-waves (in equilibrium
with the wind) signature. Li et al. 2019) proposed a method (called MACS for MeAn
Cross-Spectra) based on the filtering of SAR image cross-spectra in the range of wave-
lengths between 15 and 20 m allowing to capture both the radar cross-section variabil-
ity and its time evolution. Thanks to the contribution of intermediate waves, Li et al.
(2019) showed that this spectral information is sensitive to wind speed and direction. In
particular, the sign of the imaginary part of MACS (IMACS) is considered as a promis-
ing criterion to reduce the wind direction ambiguity in the inversion of high-resolution
wind fields from SAR imagery.

Performance and limitations

Figure 11a shows an example of wind field retrieval in a region of variable wind (Medi-
terranean Sea, Gulf of Gibraltar). Figure 11b shows a statistical comparison of winds
derived from the SAR of Sentinel-1A in the interferometric wide swath mode, against
winds from the ECMWF analysis, obtained over 24 days of June 2022. The bias is small
(~0.18 m/s) and the standard deviation slightly larger than that from scatterometer winds.
Note that performance is seasonal; typically, the mean bias oscillates around 0.1 m/s with
a=+0.25 m/s amplitude, and the root mean square difference oscillates around 1.6 m/s with
a=+0.2 m/s amplitude.
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2.2.5 Near-Nadir Scatterometry

2.2.5.1 History and Evolution The choice of a near-nadir looking real-aperture configura-
tion was proposed in the 1990s to measure directional spectra of ocean waves (Jackson
1981; Jackson et al. 1985a) as an alternative approach to that based on SAR-images. A
space-borne concept with one rotating antenna at near-nadir incidence was proposed by
Jackson et al. (1985a), but not implemented in space at that time. Later in the 2000s, the
same concept with a rotating antenna at 10° incidence was combined with a nadir measure-
ment (Hauser et al. 2001). Finally, this real-aperture rotating concept was selected for the
CFOSAT mission with the surface wave investigation and monitoring (SWIM) instrument
combining five off-nadir beams (around approximately 2°, 4°, 6° 8°, and 10° incidence) and
one nadir-beam. The novelty of this mission is also that it provides ocean measurements of
the significant wave height, the full directional wave spectra with wavelengths in the range
of about [30, 500] m and the associated dominant directions and wavelengths.

The same kind of geometry (near-nadir incidence, scanning geometry) with an addi-
tional Doppler capability was also proposed for the SKIM project proposed for the Earth
Explorer 10 mission (but not selected).

2.2.5.2 Principle of Wave Measurements The main idea is that at near-nadir incidence (typ-
ically around 8-10° from nadir), the normalized radar cross section is sensitive to the local
slopes of the sea surface, but almost insensitive to small-scale roughness effects produced
by the wind, and to hydrodynamic modulations resulting from interactions between short
and long waves. Hence, in absence of image degradation as encountered with SAR systems
(see Sect. 2.2.4.2), and thanks to the filtering induced by the choice of a large footprint in
azimuth (i.e., much larger than the typical scale of the long waves), the modulations of the
normalized radar cross section can be linearly related to the slope of the long-waves which
propagate along the look direction. The amplitude of these modulations is maximum when
the antenna looks in the direction aligned with the wave propagation direction. At angles
close to 8°-10° incidence this modulation is to the first order proportional to the slopes of the
long waves. This means that the wave slope spectra are linearly related to the signal modula-
tion spectra (after speckle correction and system response is taken into account). The 360°
azimuth scanning then enables a construction of the full directional spectrum.

Details on the theoretical basis of this concept can be found in Jackson (1981), Jackson
et al. (1985a, b). Hauser et al. (2017) presented the principle of wave spectra inversion in
the configuration of SWIM, whereas a first validation based on the initial data sets pro-
cessed from SWIM observations is discussed in Hauser et al. (2021).

2.2.5.3 Performance and Limitations Since CFOSAT is so recent, its performance still
needs to be evaluated in detail after accumulating a sufficient quantity of collocated obser-
vations; however, an initial evaluation of SWIM measurements is presented in Hauser et al.
(2021). For SWH from nadir, before any correction for cross-calibration with other missions,
the bias with respect to Jason-3 was found to be very small (Iess than 1 cm) with a standard
deviation of 0.35 m. As for the wave spectral parameters, Hauser et al. (2021) showed, using
a comparison to model data, that the best configuration of SWIM measurements is from
the 10° beam, as it minimizes the speckle effect and the possible non-homogeneities of the
backscatter coefficient within the footprint. For this 10° beam configuration, Haoyu et al.,
(2021) established that, compared to buoy observations, SWIM can provide the spectral
peaks of the main partitions with a RMSE of 0.9 s and 20° for the peak period (converted
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Fig. 13 Maps of a significant wave height and b Benjamin-Feir Index as estimated from the SWIM wave
spectra measurements—The parameters are estimated as averaged values of the month of September 2022.
Courtesy of E. Le Merle

from the peak wavelength) and peak direction, respectively. Ying et al. (2022) also show that
the mean omni-directional spectra derived from the 10° incidence beam of SWIM compare
very well with mean spectra from buoys, with a correlation coefficient above 0.90 for condi-
tions with significant wave height greater than 2 m in cases of swell and greater than 2.5 m in
cases of wind sea. In the other conditions, the reduction in correlation is attributed to weak
nonlinear effects due to range bunching (especially for observations from the 6° beam and
young wind sea) or to parasitic peaks at low wavenumbers due to the amplification of the
remaining speckle noise.

Figures 12 and 13 illustrate typical results obtained with SWIM. In Fig. 12 an example
of a directional wave spectrum is shown and compared to a spectrum obtained from collo-
cated buoy measurements. This case illustrates the capacity of SWIM observations to pro-
vide the directional properties of the ocean waves. Figure 13 shows an example of maps of
two parameters estimated from SWIM observations collected over 13 days: the significant
wave height and the Benjamin-Feir index (BFI, a parameter defined by Janssen and Bidlot
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2009 and Mori et al. 2011) to characterize the probability of occurrence of extreme waves).
The BFI combines three parameters, which have been estimated with the SWIM wave
spectra: the significant slope (ratio of significant wave height to dominant wavelength), the
directional spread and the peakedness of the wave spectra in the frequency domain. As
such, Fig. 13 presents the first map of BFI index ever derived from space-borne measure-
ments and shows the potential of these CFOSAT observations.

2.2.5.4 Surface Velocity Measurements Measurement of the centroid Doppler shift in the
back-scattered echoes of a SWIM-like instrument can also provide an estimate of near-
surface ocean velocities, as demonstrated with airborne observations by Marié et al. (2020).
As described for SAR systems in Sect. 2.2.4, these velocities are identical to, but noisier
than those provided by across-track interferometric systems that require more complex set-
ups (Romeiser et al. 2014). Compared to typical SAR systems, near-nadir incidence angles
are better suited for applying the Kirchoff approximation, and this gives a Doppler velocity
as the ratio of the mean slope velocity and an effective mean square slope that is a function
of the radar frequency (Nouguier et al. 2018). This means that the Doppler velocity is a
vector sum of a wave-induced Doppler that arises from the correlations of slopes and line-
of-sight velocities, and the near-surface current that comes into the dispersion relation of all
the waves that contribute to the slope spectrum. For average wind and wave conditions, the
magnitude of the wave-induced Doppler is of the order of 2.6 and 2.2 m/s for Ku- and Ka-
band respectively (Marié et al. 2020). Given the broad range of wavelengths that contribute
to the mean square slope, the current measurement, which is obtained by subtracting the
wave-induced Doppler from the measured Doppler velocity, is a convolution of the current
profile over the top two meters. A next-generation SWIM-like instrument with Doppler
measurements capability could therefore provide the projection of the near-surface current
on the measurement azimuth, with the current vector obtained by combining different azi-
muths (Ardhuin et al. 2019a). The current measurement is generally improved by measuring
waves as short as 30 m, hence resolving most of the spectral components that contribute to
the surface Stokes drift. Such a concept has been a focus for the global mapping of mes-
oscale currents and Stokes drift (ESA 2019).

2.2.6 Recent Trends and Perspectives

Satellites form an essential part of the global observing system to both measure and moni-
tor surface wind, waves and currents for scientific and operational applications, however
several important aspects still remain beyond the capability of today sensors. Moreover, a
number of grand challenges exist in integrating the knowledge acquired by earth observa-
tion into earth system models.

The first limitation of present satellite capability relates to temporal sampling. Contrary
to most ocean variables, winds and waves are rapidly evolving phenomena, where condi-
tions can change markedly in a matter of hours. While the global coverage, spatial resolu-
tion and accuracy of satellite observations offer satisfactory capability for the measure-
ment of waves, the temporal sampling of ocean winds remains inadequate. User surveys
frequently highlight requirements for hourly to sub-hourly observations (WMO?®) driven
by various operational and scientific imperatives (diurnal variability, hurricane dynamics,

8 https://space.oscar.wmo.int/variables/.
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mesoscale wind systems, NWP requirements, etc.). This need for more frequent wind
observations has stimulated the development of “New Space” solutions like GNSS-Reflec-
tometry, which exploits bi-statically reflected signals of opportunity from Global Navi-
gational Satellite Systems like GPS and Galileo to derive information about the Earth’s
surface. GNSS-R for ocean winds was successfully demonstrated on board the UK Tech-
DemoSat-1 mission (Foti et al. 2015; Unwin et al. 2016) and later with the NASA CYG-
NSS constellation (Ruf et al. 2018). Recent research revealed the critical importance of
GNSS-R calibration to account for instrument and platform effects linked to the bistatic
scattering geometry, platform attitude and spatial and temporal changes in GNSS direct
power levels (Hammond et al. 2020). Once calibrated, GNSS-Reflectometry can provide
valuable wind speed information (RMSE ~2 m/s for winds <20 m/s) with successful exam-
ples also of hurricane winds observed with TechDemoSat-1 (Foti et al. 2017) and CYG-
NSS (Said et al. 2021). GNSS-R is relevant also to Earth Observation applications such
as soil moisture, freeze—thaw state over permafrost, inundation and wetland mapping and
above-ground biomass that are the primary objectives of ESA’s second Scout mission,
HydroGNSS, due for launch in 2024 (Unwin et al. 2021). The use of navigation signals of
opportunity and multi-platform, multi-static, sensing to address multiple monitoring needs
presents GNSS-Reflectometry as a paradigm shift for Earth Observation.

The second limitation of present satellite capability relates to the growing recognition
of the fundamental role in the global Earth System of wind/wave/current interactions and
ocean surface dynamics at scales below 10 km (Lapeyre and Klein 2006; Lévy et al. 2012;
Klein et al. 2019; Villas Boas et al. 2019; D’Asaro et al. 2020). High-resolution satellite
images of sea surface temperature and ocean color reveal an abundance of ocean fronts,
vortices, swirls, and filaments at horizontal scales less than 10 km that permeate the global
ocean, especially near mesoscale jets and eddies, in coastal seas and close to sea ice mar-
gins. These sub-mesoscale phenomena are associated with intense vertical ocean veloci-
ties—orders of magnitude greater than average—that connect the turbulent air-sea bound-
ary layer and the ocean interior. Small scales also mediate exchanges between the land, the
ocean and the cryosphere, with intense and highly variable processes that support strong
interactions not just with the atmosphere, but also with coastlines, underwater bathymetry
or sea ice. These small-scale phenomena shape condition the pathways, dispersion and lat-
eral transports of terrestrial freshwater, nutrients, oil, plastics and other pollutants, which
are highly relevant to natural habitats, the economy and society. To date, single satellite
sensors cannot provide the comprehensive observations of surface winds, waves and cur-
rents needed to make progress. SEASTAR is a new mission concept based on three-beam
along-track SAR interferometry (Gommenginger et al. 2019) that proposes the delivery of
high-quality, high-resolution imaging of two-dimensional surface current and wind vec-
tor fields, as well as directional wave spectra to observe and quantify these fast-evolving
processes on daily to multi-annual scales, across different ocean conditions and latitudes,
in order to confront models and support research on submesoscale dynamics, vertical pro-
cesses and wind-current-wave interactions in coastal, shelf- and ice-covered seas.

In addition to the exploitation of satellite missions with a primary objective of ocean
monitoring, opportunities offered by other missions are being explored and new appli-
cations of these datasets proposed. For example, Kudryavstev et al. (2017a) show that
detailed information of surface ocean waves can be obtained from the Copernicus Senti-
nel-2 multi-spectral instrument (MSI) measurements. Although this mission is dedicated to
land surface mapping, in coastal regions MSI can provide the directional spectra of ocean
surface waves with a high spatial resolution under particular conditions (cloud-free areas,
and appropriate geometrical configuration between the sun, the sensor, and the ocean wave

@ Springer



1392 Surveys in Geophysics (2023) 44:1357-1446

field) based on modulations due to waves in the surface brightness data from optical multi-
channel images in the sun glitter area. This has been further exploited by Kudryavstev et al.
(2017b) with the analysis of wave transformation (wave/current interaction) in the Agulhas
current region. Using the information provided by the multi-channel configuration (obser-
vations of the same area separated in time by about 1 s), Yurovskaya et al. (2019) have also
demonstrated the potential of these Sentinel-2 observations to estimate the surface currents
at small scales without any assumption on the geostrophic nature of these currents. Another
interesting development is in the estimation of surface wave properties from the Ice, Cloud,
and land Elevation Satellite 2 (ICESat-2). Indeed, this satellite provides high-resolution
height estimates of the Earth’s surface from a photon counting LiDAR instrument onboard
that collects data over various surfaces including open ocean and marginal ice zones. Klotz
et al. (2020) show that under particular conditions (waves more or less aligned with the
satellite track), the estimate of dominant wavelength and significant wave height from the
analysis of height variations along the track is consistent with independent references from
buoys or model reanalysis.

2.2.7 Overview of the Sensor Capabilities and Satellite Missions

Each sensor type has its own capabilities and limitations in terms of parameter measure-
ment, coverage, resolution, sensitivity, and accuracy. In Tables 5, 6, and 7 an overview of
these characteristics for each sensor type and for wind (Table 5), waves (Table 6), and sur-
face current measurements (Table 7) is shown. Of course, these characteristics also depend
on the platform parameters (orbit, altitude, pointing accuracy, etc.) and sensor generation,
and are given below only for the typical configurations of the current satellite missions.

These tables also show that different types of sensors can complement each other to
overcome intrinsic limitations of each of them individually. However, these opportunities
are mostly obtained by using collocated observations from different satellite missions at
cross-over points, as the missions that carry several instruments are scarce. This is illus-
trated in Fig. 14 which presents the timeline of the main satellite missions launched since
1985 with an objective on wind, waves or current measurement.

Figure 14 shows that the current era is highly favorable for wind and wave measure-
ments, with at least 18 missions providing observations on wind and/or waves. This is
expected to increase over the coming years with the continuation of the European Commis-
sion Copernicus series, and EUMETSAT MetOp programs in particular.

3 Ocean Weather and Climate

Historically, weather forecasts were traditionally made by meteorologists based only on
an analysis of conventional observations, many of which were land-based. In recent dec-
ades, the development of satellite observations and the introduction of numerical weather
prediction (NWP) methods using data assimilation and atmospheric circulation models,
allowed weather prediction a few days ahead. Increasingly powerful computers continued
to allow the development of more sophisticated models, providing the basis of a so-called
quiet revolution in NWP, with the skill of forecasts improving by approximately one day
per decade, such that faithful forecasts for more than a week ahead have become feasible
(Bauer et al. 2015).
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Fig. 14 Timeline of the main satellite missions launched since 1985 delivering specific products on ocean
surface wind, and/or waves. The name of the mission or of the instrument (and mission in parenthesis) is
plotted in a chronologic way. The color of the segments and arrows refer to the radar altimeter missions
(yellow), wind scatterometer missions (green), SAR missions (pink), microwave radiometer missions (gray)
whereas the blue color is for multi-instrument missions which carry a combination of at least two of these
instrument types. This figure starting in 1985 does not mention the pioneer satellite dedicated to ocean-
ography Seasat, in operation for 3 months in 1978. It does not mention neither Nscat (on ADEOS) and
Rapidscat (on ISS) because there were in operations for less than 2 years. Different countries and agencies
are involved in the missions illustrated here: Canada (CSA), China (CNSA), Europe (ESA, EUMETSAT,
European Commission), France (CNES), India (CSIRO), USA (NASA/JPL, NOAA). See also Appendix 1.
More details on these missions can be found on http://database.eohandbook.com/

Numerical weather prediction (NWP) systems consist of complex numerical models
that represent the dynamics of the atmosphere, the physical processes, and interactions that
occur within it. Today, such systems also include other processes within the Earth system
influencing the weather, such as ocean and land processes. This is an ever-evolving area
of development, as ever more components are added to represent the interactions between
these different processes, with the aim of providing an ever more comprehensive repre-
sentation of the Earth system. In this context, the ocean surface is a particularly impor-
tant component of the Earth System, where the sea state, in particular, is determined by
the action of winds, with interaction of the waves with surface currents, and feedbacks
from waves and surface currents on both the atmosphere and the ocean (Janssen and Bidlot
2018; Breivik et al. 2015). The use of satellite-based observations of wind and waves in
predictive models is also essential for forecasting storm surges, which represent a major
risk in the coastal areas.

Due to its extensive monitoring capabilities, Earth Observation from space plays an
essential role in the initialization and improvement of these integrated Earth system mod-
els, which provide global fields of geophysical parameters required for climate change
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monitoring, generating future climate projections and for guiding adaptation and mitiga-
tion. The current abundance of global ocean Earth observation datasets, and its future com-
plement, are therefore very important for supporting the development of credible Earth
system models, through both data assimilation and verification.

3.1 Use of Satellite observations of Surface Wind and Waves for Weather Prediction
3.1.1 Data Assimilation for Numerical Weather Prediction

It is well-known that the skill of numerical weather prediction (NWP) systems generally
degrades with the forecast range due to error growth with time. The predictability of the
smallest scales is the least, while large scales are more predictable at the medium forecast
range.

It is the role of data assimilation methods in NWP to help in minimizing these short-
comings, by combining the latest set of observations with a short-range numerical predic-
tion to obtain an optimal estimate of the current state of the atmosphere and other compo-
nents of the Earth system, termed an analysis. This analysis is used as the initial conditions
for the next weather forecast. Accurate analyses are an essential component to good atmos-
pheric forecasts. Analyses of surface waves can also improve wave forecasts.

Observations are unevenly distributed both spatially and temporally, as well as being
subject to errors. As such, they do not provide a complete and accurate global representa-
tion of the state of the Earth system at a given point in time. However, a reasonable esti-
mate of that state can be obtained from a short-range forecast based on the previous analy-
sis and thus on previous observations. Data assimilation adjusts that forecast slightly, in a
physically consistent manner, as it attempts to match the latest observations as closely as
possible, taking into account uncertainties in the observations and the short-range forecast.

With the increase in powerful computers, more variables and finer spatial scales are
described by the models, so that more spatially dense observations are needed for their
initialization. Moreover, atmospheric dynamics dispersion relationships dictate that these
finer scales evolve faster than the larger scales, hence also putting more demanding con-
straints on the timeliness and temporal sampling requirements of the global observing sys-
tem (WMO”).

Different mathematical techniques can be used to combine Earth system observations
with short-range forecasts. There are two broad classes of data assimilation methods. The
first class consists of instantaneous assimilation (also called sequential assimilation) where
corrections are undertaken at a local scale and at one time step, such as optimum inter-
polation (OI). Sequential methods are characterized by their simplicity and low compu-
tational cost, which makes them very attractive in operational forecasting. However, the
corrections are not constrained to be consistent with the time evolution of the atmospheric
dynamics. The second class takes into account the time evolution and comprises both so-
called 4-D variational methods and the Kalman filter (KF) methods. For further informa-
tion and discussion of these different data assimilation techniques, their benefits and limi-
tations, the interested reader is referred to Lorenc et al. (2015). An intricate part of data
assimilation obviously relies on how the observations are used to inform (i.e., change) the
NWP model state. The NWP background error covariances play a crucial role in the spatial

% https://space.oscar.wmo.int/variables/.
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Fig. 15 Relative contribution of data assimilation to error reduction of a 24-h meteorological forecast with
the numerical model ARPEGE, operational configuration (Météo—France). The contribution of scatterome-
ter observations is shown in pink color (winds from ASCAT of MetOp-A and MetOp-C, HSCAT on HY-2B
and HY-2C, broadcasted by the EUMETSAT OSI SAF, used in this configuration). The metrics of error
reduction by data assimilation is the Forecast Sensitivity Observation Impact (FSOI), moist energy norm/
moist adjoint used—see Chambon et al. (2022), and Cardinali (2009) for details on this metrics. The figure
is plotted for the month of October 2022. Figure from http://www.meteo.fr/special/minisites/monitoring/
FSOi/index.html, with copyright authorization by Météo-France

and temporal filtering properties, i.e., to set the deterministic spatio-temporal scales of the
NWP model error (e.g., Mile et al. 2021). In addition, the estimated error variances and
observation density are critical in determining the balance of weights between modeled
and observed information, where too low a weight afforded to the observations minimizes
its impact on the analysis and forecast, whereas too high a weight afforded to the observa-
tions may result in spurious analysis noise due to overfitting, degrading the subsequent
model prediction (Stoffelen et al. 2020b).

3.1.1.1 Assimilation of Wind Observations In the tropics, and elsewhere on scales less than
approximately 500 km, 3D turbulence dictates the atmospheric dynamics, which implies
that wind observations are most effective for the initialization of these scales in terms of
forecast skill (Stoffelen et al. 2005). Moreover, ocean vector winds are essential inputs to
ocean wave, storm surge and ocean circulation forecasts.

Data assimilation formalisms provide a so-called “Best Linear Unbiased Estimate,”
implying that no local biases should exist between observations and model in NWP data
assimilation. However, Belmonte and Stoffelen (2019) and Fig. 2 suggest NWP model
wind biases may reach large values, depending on physical parameterization errors associ-
ated with the atmospheric boundary layer, moist convection and dynamical model closure
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and fluxes, among others. When large systematic errors exist, further optimization is rec-
ommended prior to using wind scatterometer data in global and regional models (Stoffelen
and Vogelzang 2021; Stoffelen et al. 2020b). Nevertheless, despite these shortcomings,
scatterometer winds do contribute substantially and beneficially to ocean and atmosphere
numerical weather prediction and analysis (e.g., Laloyaux et al. 2016; Stoffelen et al.
2013b; Isaksen and Stoffelen 2000; Stoffelen et al. 2015; Chambon et al. 2022). This is
illustrated by Fig. 15 which shows the contribution of satellite data assimilation (and in
particular assimilation of scatterometer observations) to error reduction in the atmospheric
forecast. Figure 15 is based on the “Forecast sensitivity observation impacts” (FSOI)
analysis method applied here on the estimated global moist energy of the atmosphere with
a moist adjoint technique (see Cardineli 2009; Chambon et al. 2022 for details on this
method) and estimated here from 24-h forecast fields of the French global atmospheric cir-
culation model ARPEGE for the month October 2022. It shows that scatterometer observa-
tions contribute to about 6% of the error reduction due to assimilation of satellite observa-
tions. Chambon et al. (2022) also mention that although the impact of scatterometer winds
is limited to low levels, it is kept at longer forecast ranges compared to other observations.
Furthermore, they provide unique observations of the ocean surface wind vector in certain
areas (particularly in the tropics and Southern hemisphere).

3.1.1.2 Assimilation of Altimeter Wave Height Observations The launch of the ERS-1 sat-
ellite in 1991, with the capability of near real-time dissemination of radar altimeter signifi-
cant wave height (SWH) observations, highlighted the potential for the operational assimila-
tion of such data. One of the earliest efforts to utilize this capability was the work done by
Lionello et al. (1992) who implemented the instantaneous sequential data assimilation tech-
nique known as optimum interpolation (OI) to assimilate altimeter SWH into the third-gen-
eration ocean WAve Model WAM (Wamdi group 1988). The OI sequential data assimilation
method is an attractive scheme for operational forecasting due to its low computational cost.
While this method was discarded in operational weather forecasting in favor of variational
analysis like 3D-Var and 4D-Var, Ol is still in use for operational wave data assimilation for
several reasons. Firstly, variational analysis requires the knowledge of the model adjoint and
the tangent linear version which are not available for the wave model in its final state (this
was explored for earlier versions of the WAM model like those of De las Heras et al. (1994)
and Hersbach (1998) but are not usable for the current model version). Secondly, the volume
of wave data to be assimilated is not substantial and so it remains compatible with an OI
scheme. Voorrips and de Valk (1997) compared the results of the variational approach with
an OI method and did not observe any particularly advantage for the more complex vari-
ational method (presumably because of not having optimally calibrated the tangent-linear
model). Even if there was an improvement with variational method, this improvement would
be absorbed by the necessary ad hoc assumptions made to distribute SWH analysis incre-
ments over the whole wave spectrum (see below).

Although the wave forecast skill depends on the numerical wave model itself, it is also
fundamentally determined by the quality of the driving wind field. Therefore, the use of
the wind as the control variable in the wave data assimilation scheme may present itself
as a strong candidate. This implies the adjustment of the wind field such that an optimal
agreement with the observations for SWH is obtained. This is achievable for the waves
generated by the local wind (wind waves) where updates to the wind field can be obtained
in the context of a single time step approach. However, in the case of swell, this approach
does not work because the swell was generated by remote storms hundreds or thousands
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of kilometers away and some time (e.g., few days ago). The assimilation of altimeter SWH
observations data represents an additional challenge because it only provides information
on the integral over the frequency and direction of the wave spectrum, whereas modern
wave models are based on a spectral description. Applying the assimilation method results
in a wave height correction (analysis increments) which must be translated to a correspond-
ing change in the local wave spectrum. For wind-waves, this is easily done by using the
evolution laws for wind-generated waves, as obtained from idealized model runs. However,
for swell, it is assumed that the mean wave steepness is invariant during the transformation,
which may be plausible, but in practice this assumption is hard to justify (Lionello et al.
1992; Greenslade 2001).

Presently, most global weather centers with wave modeling capabilities are using OI or
related schemes to assimilate significant wave height from several altimeters like Jason-3,
Sentinel-3 family and Sentinel-6. The SWH data provided by the radar altimeter (RA) mis-
sions are subject to quality control a quality control procedure to eliminate any erroneous,
inconsistent or suspicious observations. Footprint contamination by land, ice and slicks
results in erroneous altimeter measurements. The accepted RA data are then averaged
along the track to form super-observations (in a process referred to as “superobbing’) with
scales compatible with the model scales. This is important in order to prevent the intro-
duction of small-scale variability, which cannot be handled by the model that has rather
smooth fields. RA and model background (also called the first guess) SWH are merged in
the OI scheme to produce the SWH analysis increments. The corrections are then distrib-
uted over the whole wave spectrum based on the assumptions related to wind-sea (wind-
waves) and swell conditions.

Besides the operational assimilation of SWH in wave models based on the OI method,
several research studies have been undertaken to develop and test alternative methods. For
example, a multi-time Kalman Filter (KF) method was developed by Voorrips et al. (1999),
which allows for the provision of error statistics on the model variables. The KF propa-
gates a forecast error covariance matrix which gives further information on the model state.
However, such techniques require additional computational requirements, which then has
implications for the required number of model integrations. For wave data assimilation
systems, some simplifications are required to reduce the cost of such methods (Voorrips
1998).

The beneficial impact of the satellite altimeter SWH assimilation on the significant wave
height forecasts have also been shown to be substantial, particularly at short lead times,
and in the coastal regions (Saulter et al. 2020). The relatively short ‘system memory’ of the
wave data assimilation system suggests that wave data assimilation is best performed in a
rapidly cycling short-range forecast system, on the basis of timely satellite observations.

3.1.1.3 Assimilation of Spectral Information on Ocean Waves The wave mode of the syn-
thetic aperture radar (SAR) provides a wealth of information regarding the detailed descrip-
tion of the surface sea state with global coverage. Unfortunately, SAR is not able to sense
the whole spectrum of ocean waves, especially in the azimuthal direction and misses quite
a large range of short waves. However, the resolvable part of the spectrum (typically for
wavelengths longer than 200 m) can be very useful in a wide range of oceanic applications
including data assimilation in ocean wave models.

For the first time, the ERS-1 and -2 missions (launched in 1991 and 1995, respectively)
provided SAR spectra (Level 1b product) on a Near Real-Time and global ocean coverage
basis, thanks to their wave mode (WM) which provided spectra every 100 km along the
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Fig. 16 Mean Bias a, b and scatter index ¢, d between the MFWAM model SWH and altimeter SWH from
Jason-3, Saral and Sentinel-3A altimeters for the period July to December 2019. a and ¢ with assimilation
of SWIM observations (i.e., nadir SWH and spectral parameters) b and d: without assimilation. From Aouf
et al. 2022

track. The inversion of the SAR spectrum to the ocean wave spectrum before assimilation
was a challenge. The iterative MPI-M (Max Planck Institute for Meteorology) nonlinear
mapping scheme (Hasselmann and Hasselmann 1991; and Hasselmann et al. 1996) was
initially used to obtain the ocean wave spectra. With this method, in spite of the required
use of a first-guess from the wave model to initialize the inversion, the assimilation of SAR
WM Level 1b SAR spectra proved to be beneficial for wave forecasting (e.g., Abdalla et al.
2004, 2006).

ESA started to produce WM Level 2 ocean wave spectra from SARs onboard the ENVI-
SAT and Sentinel-1 family based on the method proposed by Chapron et al. (2001). This
method does not require a first-guess estimate for the inversion, thanks to the quasi-linear
approximation used. This is quite a noticeable evolution as the inversion of such observa-
tions before their assimilation is completely independent of the model results. However, it
was shown that careful quality control filtering is needed to eliminate erroneous and suspi-
cious data (Johnsen 2005; Aouf et al. 2006).

The implemented assimilation procedure itself is based on the assimilation of the
main parameters (energy, mean period and mean direction) of wave systems identified
from a partitioning scheme applied to the directional wave spectra (Hasselmann et al.
1997; Voorrips et al. 1997; Aouf et al. 2006). For this, the full spectrum is first divided
into several wave systems using a so-called “watershed” method (e.g., Hasselmann et al.
1997; Hanson and Phillips 2001). The scheme separates both the model and SAR direc-
tional wave spectra into a set of distinct wave systems. The different wave systems are
characterized by their total energy, mean frequency and mean propagation direction.
These integrated parameters of the partitioned systems are assimilated using a simple
Optimum interpolation (OI) scheme following a cross-assignment procedure to corre-
late the observed systems with the modeled first-guess (FG) ones. The analysis (AN)
integrated parameters obtained from the OI scheme are used to construct the AN spec-
tra by resizing and reshaping the FG spectra. Both Meteo-France and ECMWF have
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developed the assimilation schemes for the operational forecast system, assimilating
first SAR ENVISAT wave spectra, and have shown their positive impact in the predic-
tion (Aouf and Leféevre 2012). Today, Meteo-France operationally assimilates spectral
wave data from Sentinel-1 (SAR) and CFOSAT/SWIM (Real Aperture Radar). As dis-
cussed in Sect. 2.2.5.2, thanks to its real-aperture concept, SWIM can resolve dominant
wavelengths up to about 70 m, i.e., shorter than the 200-m cutoff limit of the SAR.
This is an interesting complement to SAR not only in terms of spatio-temporal sam-
pling but also for observations of short swell and wind wave situations (for significant
wave heights larger than about 1.8 m, see Sect. 2.2.5.2 and Hauser et al. 2021). In addi-
tion, the nadir looking beam (0° incidence angle) is used for producing SWH from the
altimetry signal. It was demonstrated by Aouf et al. (2019) and Aouf et al. (2021) that
assimilation of SWIM directional wave spectra has a positive impact on ocean wave
analysis and forecasts. With the current operational assimilation, the bias between the
SWH from the Meteo-France WAM (MFWAM) model and independent altimeter obser-
vations was shown to be reduced compared to a no assimilation case, particularly in the
Southern Ocean area (see Fig. 16a, b). The same conclusion was reached for the scat-
ter index (Fig. 16c¢, d), with a mean reduction of the scatter index of 15% in high and
mid-latitudes and of 22% in the tropics. Furthermore, it was shown that assimilation
of spectral information decreases the bias on the dominant period compared to buoy
observations (National Data Buoy Center -NDBC) by 0.01 s, and significantly decreases
the scatter index on the dominant period (compared to NDBC buoys): for example, for
cases with dominant periods larger than 10 s, the scatter index on the dominant period is
12.4% with assimilation of SWIM spectral information instead of 13.8% with assimila-
tion of SWIM SWH and 14.5% without assimilation. In a study focused on the South-
ern Ocean, Aouf et al. (2021) showed that in this region, where conditions of non-fully
developed wind seas are frequent, assimilation of wavelengths and directions in addition
to the SWH not only corrects the significant wave height from biases compared to SWH
from altimeter match-ups but also significantly corrects the wave age, and the dominant
wavelength predicted by the model. This study also showed that assimilation of direc-
tional information helps the model to control the transition between wind waves and
mature sea regimes. It was also revealed that assimilation of spectral information affects
the predicted atmospheric drag coefficient, dissipation of wave energy, and turbulence
intensity in the upper layer of the ocean. Therefore, assimilation of spectral parameters
is expected to substantially improve the descriptions of ocean/atmosphere coupling in
terms of both momentum and gas flux transfer which remain still poorly represented in
climate models.

3.1.1.4 Assimilation in Coupled Earth System Models Many operational systems use
separate data assimilation systems for the atmosphere, ocean, waves, and land surface
and sea ice. This will produce an inconsistent analysis as the data assimilation systems
are independent from each other. Coupled data assimilation aims to ensure the analysis
of different Earth system components is consistent. This can be achieved by allowing the
observations to influence the analysis in several Earth system components by changing
the initial conditions of each Earth system component in a way that is physically consist-
ent with the other components. The Earth system interactions between the atmosphere,
ocean and waves mean that continued advances in data assimilation and modeling of
winds, waves and currents will continue to deliver improvements in numerical weather
prediction as well as in wave and ocean predictions (see e.g., Laloyaux et al. 2016).
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3.1.2 Use of Satellite Observations to Validate or Improve Earth System Models

In addition to assimilation, space-borne observations are very useful for the validation
of Earth system models and in tuning their parameterizations.

As an example, thanks to the estimation of swell energy decay along its propagation
path obtained from SAR images (Ardhuin et al. 2009b, 2010), the source and dissipa-
tion terms of the wave energy balance equation have been recently updated in several
main wave prediction models (WW3, WAM). Wave observations from altimetry have
also recently been used to assess the spatial resolution required for an oceanic circula-
tion model coupled to a wave model for the purpose of reproducing the spatial gradients
of significant wave height across the current due to wave-current interactions (e.g., the
study on the Agulhas current by Marechal and Ardhuin 2021).

On the atmospheric side, it is known that global NWP model wind vector compo-
nents show a lack of natural wind variability (see comments in Table 2), particularly in
the meridional wind component variability (Belmonte and Stoffelen 2019). Conversely,
specific wind scatterometers (and in particular ASCAT) has the ability to measure the
extreme divergence and convergence associated with the updrafts and downdrafts in
tropical moist convection (Priftis et al. 2021), while a global NWP model does not show
these (King et al. 2022). Moist convection processes typically have a 30-min time scale
and cannot be traced by initialization in NWP over the ocean. Moreover, rain cells are
small in size. The collective effect of moist convection is therefore parameterized in
NWP models to capture the vertical exchanges of mass, momentum and energy. Another
source of small-scale exchanges over the ocean is furthermore associated with local
sea surface temperature gradients and can be detected by averaging wind differences
over a few days, since the mesoscale ocean conditions are stable, after blurring over a
scatterometer footprint. Such multi-day averaging will remove scatterometer and atmos-
pheric model wind differences due to the transient weather, but will highlight differ-
ences related to stationary ocean conditions. Such geographical biases may also appear
due to other systematic errors, for example, in the boundary layer parameterization
and dynamical model closure (e.g., atmospheric model diffusion operators); see Trin-
dade et al. (2020). The atmospheric model 10-m stress-equivalent wind errors do not
only appear at small scales, but also on larger scales as shown in Fig. 2 (Belmonte and
Stoffelen 2019). These errors are detrimental in Earth system modeling, as they cause
biases in ocean forcing, wave and storm surge prediction, and because they are associ-
ated with important modes of variability in the tropics and elsewhere, affecting air-sea
exchanges and hence earth system dynamics. For all these situations, satellite observa-
tions are very useful to better diagnose the limits of the models and further improve
their representation.

3.1.3 Storm Surge Forecasting

Besides winds and waves, storm surges are among the deadliest and most costly natu-
ral disasters, particularly impacting low-lying areas. Timely wind and surge information
and short update cycles can also be critical for the accurate prediction of storm surge
levels, such as for the large storm surge in Venice on November 2019. This surge was
severely under-predicted, in part due to not considering the most recent ASCAT winds
(Giesen et al. 2021). Therefore, numerical prediction of wind, waves and storm surge
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Fig. 17 Example early-warning map for large differences between scatterometer observations and wind vec-
tor short-range ECMWF wind forecasts, based on more than a decade of local monthly exceedance prob-
abilities. The largest differences are in yellow and orange. Based on this type of map, alerts can be activated
for nowcasting applications and on-the-fly as new scatterometer observations come in

are usually integrated, such that the improved winds obtained through data assimilation
of satellite observations are optimally exploited (e.g., Caires et al. 2018).

Coastal storm surge due to tropical cyclones can be particularly devastating in embay-
ments that are poorly protected against high water levels. Dullaart et al. (2020) use Earth
observation data to assess modeled tropical cyclones and subsequent storm surge fore-
casts. For Hurricane Irma, the modeled coastal storm surge height increased from 0.88 m
with the ECMWF ERA-Interim reanalysis wind and wave fields (Berrisford et al. 2011) to
2.68 m with the more recent ECMWF ERAS5 reanalysis (Hersbach et al. 2018), compared
to an observed surge height of 2.64 m, with the same authors finding that further increases
in model resolution results in a better representation of the wind fields and associated
storm surges, especially for small sized tropical cyclones. These recent and future advances
in storm modeling contribute to the accuracy of early-warning systems and coastal flood
hazard assessments at the global-scale. For climate research, extreme event trends will also
become more credible.

Storm surge models have been further improved on continental shelves by analyzing
a several decades of altimeter sea heights (Zijl et al. 2013), which have been exploited to
improve the surge model bottom friction and bathymetry.

3.1.4 Nowcasting

Due to the continuous improvements in NWP, the role of the weather forecaster continues
to evolve. Today, in nowcasting applications, observations acquired in near-real time are
used to monitor the forecast performance of NWP products. It is estimated that over a hun-
dred different satellite instruments contribute to the NWP forecast and therefore forecasters
cannot monitor all of the corresponding sensor data for detecting forecast errors. Instead,
local forecast errors are detected in real time by automated quality control tools, as satellite
observations are received in a timely manner. For example, Fig. 17 shows a global warning
chart of local areas where the short-range ECMWEF forecast is anomalously different from
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Fig. 18 Wind field from the ASCAT-B scatterometer (arrows with color scale) and from the ECMWF
numerical weather prediction model (green arrows) overlaid on the infrared satellite image (from meteoro-
logical satellite Himawari). The scatterometer and model winds are from 28 December 2019 21:48, while
the Infrared image is from 21:30 UTC. The scatterometer winds are colored according to the Beaufort scale
as shown with the color bar. The black arrows are plotted where the KNMI QC flag is raised (MLE > 18).
The colored dots give the value of the Maximum Likelihood Estimator (MLE), which indicates how well an
observation fits the GMF. High MLE values indicate high spatial wind variability in the wind vector cell,
wvC

the latest ASCAT scatterometer wind vector observations. Each tile in this map can be
used as the basis for providing an automated alert using the current instrument data and the
NWP forecast products.

3.1.5 Improving Characterization and Forecast of Extreme Events

Tropical cyclones (TCs), extra-tropical storms and polar lows have major impacts on dam-
age and human safety in coastal areas from extreme precipitation, extreme winds and storm
surge. TCs are of great concern because of both their frequency and impact. For example,
half of the 15 weather disasters of 2019 with over $1 billion of damage were related to
TCs.

TCs are often defined in terms of wind intensity and size, where size is usually specified
as the maximum radial extent of wind speed thresholds such as the maximum, 64-, 50-, and
34-knot winds (kt; 1 knot=0.514 m/s), and radius of maximum wind speed. The Dvorak
Technique (Dvorak 1984), a subjective analysis of infrared cloud patterns, forms the basis
of these wind intensity estimates and has been augmented in the Atlantic and sparingly
elsewhere with aircraft-based observations such as dropsondes and winds derived from
the airborne Stepped Frequency Microwave Radiometer (SFMR, Uhlhorn and Black 2003;
Uhlhorn et al. 2007; Klotz and Uhlhorn 2014; Sapp et al. 2019).

In addition, ocean surface wind field estimates from scatterometer algorithms (Polverari
et al. 2021; Stoffelen 1998; Figa-Saldafia et al. 2002; Misra et al. 2019) have been provid-
ing valuable wind observations in and around TCs since the early 2000s (Isaksen and Stof-
felen 2000; Brennan et al. 2009)- see Fig. 18. Performance of existing scatterometers is
curtailed by extreme winds (i.e., saturation above 70 kt) and Ku-band scatterometers also
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Fig. 19 Successive (time is evolving from left to right and from top to bottom) maps of surface wind speed
measurements provided by SMOS and SMAP L-band sensors during lifetime of Category 5 severe Tropical

Cyclone Harold in the South Pacific in April 2020
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Fig.20 Wind speed map obtained from a SAR image during the tropical cyclone Matmo (23rd TC of the
JTWC western North Pacific 2019 season) on 09 Sep 2018 12:12 UTC immediately prior to landfall near
Calcutta, India. Wind speed intensity in m s~! is given by the color bar

suffer from the presence of rain clouds that prevent reliable estimates of extreme winds.
Furthermore, since all these microwave sensors are on low-orbit platforms (i.e., polar
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Fig. 21 Intensity (kt) versus Time (month and day) estimated from the Dvorak method (light blue squares),
ASCAT (green squares), SMAP (orange squares), Sentinell SAR (purple square), along with Joint Typhoon
Warning Center intensity (black line) for Chanthu (19th TC of the 2021 western North Pacific season)

orbiters with limited swath), the frequency of passes over a given TC from a single satel-
lite is low. To begin to address operational needs, the individual scatterometers and radi-
ometers operating at any time must be used together in a so-called virtual constellation,
requiring a dedicated effort for intercalibration between wind products from these sensors
(CEOS'"%). At extreme wind speeds, brightness temperatures from microwave radiometers
and, in particular, those in L-band, are of particular interest because of their good sensi-
tivity even at very high winds. Therefore, algorithms have recently been developed using
L-Band and multi-band radiometers (see Sect. 2.2.1).

In recent years, the joint typhoon warning center JTWC) has been using SMAP and
SMOS data to aid with their analysis of surface winds and intensity and this information is
being saved on the automated tropical cyclone forecasting system (Sampson and Schrader
2000) for best track preparation. Figure 19 shows an example of the wind field evolution
during 8 days of the lifetime of the severe tropical cyclone Harold (South Pacific in 2020),
obtained thanks to a rather dense and coherent coverage with combined measurements
from SMOS and SMAP.

Detection of high surface wind intensity associated with small intense tropical cyclones
traditionally present challenges for radiometers and scatterometers due to resolution con-
straints (e.g., L-band derived winds have approximately 40 km footprints). New SAR
observations have demonstrated their capability to measure high winds near the centers of
even these very small intense TCs (Mouche et al. 2017). Thanks to their higher resolution
(about 50 m) combined with a dual-polarized mode (co- and cross-polarized channels),
SAR observations can provide wind speed estimates of up to 160 kt, and allow the detec-
tion of the local maximum winds in the eyewall belt (Fig. 20 and Combot et al. 2020),
including when adjacent to coastal areas. However, SAR measurements also suffer from
shortcomings in conditions of extreme rain (>80 mm h~!) that impact on the wind speed

10 https://ceos.org/ourwork/virtual-constellations/osvw/.
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estimates (Mouche et al. 2019), similarly to C-band scatterometers. Most importantly, the
number of SAR observations is limited. The SAR swath width is approximately 500 km
and scene acquisitions must be ordered 48 h in advance, which requires accurate TC fore-
casts to acquire a scene that includes a TC center. Since SAR wind speeds are new to oper-
ations, challenges also exist relating the high-resolution instantaneous wind speeds to the
one- and 10-min temporal average TC intensities used by the TC warning centers.

Recent improvements in the space-borne retrieval algorithms discussed above are
expected to be incorporated after detailed assessment, into operations by TC warning cent-
ers such as the Regional Specialized Meteorological Centers and the Joint Typhoon Warn-
ing Center JTWC) in Honolulu. An example of SAR products used in such operations is
discussed in Jackson et al. (2021).

Cross-calibration of winds from individual sensors and algorithms also remains a chal-
lenge. The usual approach is to use as reference in-situ wind speeds measured by drop-
sondes deployed from aircraft flights above the tropical cyclones. This in-situ reference
data has traditionally been applied to the airborne stepped frequency microwave radiometer
(SFMR, Uhlhorn and Black 2003; Uhlhorn et al. 2007; Klotz and Uhlhorn 2014; Sapp
et al. 2019), to Dvorak wind estimates (Dvorak 1984) and to most passive satellite ocean
winds. However, recent results indicate that these dropsonde wind measurements and in-
situ moored buoy observations are inconsistent in the overlapping range of 15-25 m s
(Polverari et al. 2022). Stoffelen et al. (2020a) further documents the inconsistencies
between extreme winds from passive radiometers and scatterometers and present a way
forward for the cross-calibration of space-borne sensors at different spatial resolutions.

Figure 21 illustrates both the potential and challenge of using wind speed estimates from
individual sensors and algorithms to estimate the intensity of the super-typhoon Chanthu,
which occurred in 2021 in the western North Pacific. Subjective intensity estimates from
the Dvorak technique (Dvorak 1984) are displayed along with intensity estimates based on
remotely sensed data. It is immediately apparent there can be large differences between the
subjective Dvorak analysis and the analysis from remotely sensed measurements. These
large differences can be seen in intensity estimates from the 40-km resolution L-Band sen-
sor SMAP, probably due to the limited coverage and resolution not fully adapted for this
small and intense TC. Also seen are the intensity estimates using ASCAT winds for inten-
sities under 70 kt (i.e., not during the maximum intensity). The single Sentinel-1 SAR pass
for this case was directly over the TC center and captured the small radius (<40 km) of
maximum wind and the high winds. Operational forecasters are learning how to use these
intensity estimates for their subjective real-time estimates (Knaff et al. 2021). To help with
this task, cross-calibration of space-borne products should be improved with a particular
interest on the radial extent of maximum wind at different thresholds (e.g., 64-, 50-, and
34-knot winds), taking into account that other parameters like wind intensity present more
challenges due to sampling or resolution.

New and future capabilities will help to develop more satellite-based tools for opera-
tional needs, and for collecting climatological datasets of extreme winds. Therefore, con-
tinued efforts are needed to strive for more frequent, timely, and accurate surface wind
estimates in extreme wind environments. The current generation of wind scatterometers,
SAR and L-band radiometers have already proved their utility, but new generation scat-
terometers will improve on the current suite. For example, the scatterometer of second gen-
eration planned by EUMETSAT (Stoffelen et al. 2017a) to be carried by MetOp-NG will
use, in addition to a co-polarization channel, the cross-polarization (HV) channel whose
signal does not saturate at high wind speeds.

@ Springer



Surveys in Geophysics (2023) 44:1357-1446 1409

3.2 Wind, Waves and Surface Current Observations as Key Factors of the Earth
System

The three essential climate variables of wind, waves and surface currents play different
roles in the Earth system, and are able to be characterized with very different degrees of
accuracy. From a general (large-scale) climate perspective, surface winds are probably the
most important variable as they are a leading contribution to air-sea fluxes of heat and
gases, with a direct impact on the Earth energy balance (Hansen et al. 2011).

This importance of wind, waves and currents is able to be described via that the air-sea
turbulent flux for any quantity X, as approximated with a bulk expression of the form:

Flux = pCy (X, X,) |Uoy — U| (14)

where p is the air density Cy is the “exchange coefficient” for any variable X, X, and X,
are the values of the variable X on either side of the interface, atmosphere or ocean, U,y
is the neutral wind at 10 m height, a horizontal vector, and U is the surface current vector.
This type of flux law is generally applicable to gases, momentum, sensible heat, and latent
heat (which is the evaporation flux times the specific latent heat for water vaporization). In
particular, the drag coefficient relates the wind speed to the momentum flux, also known as
“wind stress.” It is known that this drag coefficient increases with wind speed, at least for
winds between about 5 and 25 m/s, but that it is also modified by wave conditions (wave
age, and/or significant slope); see Drennan et al. (2003), Brumer et al. (2017), Zhao and Li
(2019) for reviews.

Overall, Eq. (14) indicates that ocean surface wind (or wind stress) is critical to
exchanges of heat, mass, and momentum and thus largely influence ocean mixing and
transport and by consequence, water mass formation (water with temperature, salinity and
density characteristics) and ocean circulation (Waugh et al. 2013).

Besides their contributions to the Cy exchange coefficients, waves are also important in
the way that they (among other effects):

e determine near-surface ocean mixing via breaking and Langmuir circulation (Noh et al.
2004; d’Asaro et al. 2014), which can bring a strong modification of air-sea fluxes by
changing the near-surface ocean properties,

e define the energy levels at the shoreline. Wave energy is a key element in extreme sea
levels and impacts on man-made infrastructure. The coastal wave climate is also a key
element in the nearshore habitability by marine species (Denny et al. 2004), and human
usage of coastal areas (Kamphuis et al. 2020), the dominant shaping agent of coastal
morphodynamics (Anthony 2015; Cox et al. 2020),

e interact with sea ice and icebergs, with complex interactions with different types of ice
that include the breakup of ice floes, the erosion of icebergs, and attenuation of waves
by floating ice (Liu and Mollo-Christensen 1988; Ardhuin et al. 2020).

Likewise, ocean currents have an explicit contribution to air-sea fluxes, since, as is seen
in Eq. (14), these depend on the displacement of the air relative to the surface motion. This
contribution, although limited because the wind speed is generally an order of magnitude
larger than the surface current, can be very important where currents are strong and the
wind is weak, such as along the Equator. Even where it is weak, this effect constitutes a
“current feedback” that is a dominant term in the work of the wind and the dynamics of
eddies (Dewar et al. 1987). Taking currents into account for estimating the air-sea flux is
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critical for predicting the ocean eddy kinetic energy and the path of western boundary cur-
rents (Renault et al. 2016a, 2016b).

Surface currents also influence the Earth system and its climate in two important ways:
firstly by transporting ocean properties—and the large-scale current properties are domi-
nant in that regard—and secondly by inducing the mixing of different water masses at the
surface and subsurface. Geostrophic currents are routinely estimated from measurements
of sea level anomalies using satellite altimeters (paper within the same special collection),
and a mean dynamic topography derived from a combination of satellite gravimetry and
in situ drifters (Mulet et al. 2021). Estimates of surface transport have used these geos-
trophic currents and estimates of wind-driven currents for a wide range of applications.
However, in some regions, such as the Equatorial Atlantic, the seasonal evolution of the
mixed layer heat content cannot be explained without vertical mixing (e.g., Foltz et al.
2019).

For mixing, all spatial and temporal scales are important, many of which are not yet
observed from space, in particular the near-inertial currents with periods of 12 h to a few
days (function of the latitude), and that dominate the surface current field in regions like
the north-east Pacific. These motions have typical spatial coherence scales of a few hun-
dred kilometers, making it possible to be mapped from space with a single Doppler scatter-
ometer with a swath width of 300 km or more (Ubelmann et al. 2021). Doppler scatterom-
eters have the potential to access the full surface current vector at scales larger than 10 km
(Rodriguez 2018; Ardhuin et al. 2019b), which can be extended down to 1 km with along-
track interferometry synthetic aperture radar (ATI-SAR), as proposed by Gommenginger
et al. (2019). Tracking wave dispersion from space in sequences of optical imagery can
also produce currents at a resolution of 1 km (e.g., Kudryavtsev et al. 2017a), and in prin-
ciple it should be able to produce estimates of vertical current shear that are important for
vertical mixing (Ardhuin et al. 2021).

The processes related to small spatial scale air-sea interaction and mixing are strongly
tied to gradients in the wind vector, which impact vertical motion in the ocean and atmos-
phere (Shi and Bourassa 2019) and therefore change the properties of the ocean and atmos-
pheric mixed layer, and in turn the large-scale air-sea interaction (O’Neill 2012; Shi and
Bourassa 2019) and weather (Parfitt et al. 2016).

In summary, all the above-mentioned processes couple two major dynamical com-
ponents of the Earth system, namely, the atmosphere and the ocean that are themselves
strongly linked to cryosphere and terrestrial processes.

In this context, one of the challenges for satellite observations is to provide turbulent
fluxes instead of state variables like wind, waves and currents. Although some advances
have been made in this sense, for example by providing stress-equivalent wind speed from
scatterometer observations, this objective remains challenging. One of the main issues is
the lack of in situ direct measurements of turbulent fluxes that are necessary to build and/or
assess the appropriate inversion methods.

Nevertheless, satellite observations are very useful when studying the interaction
between the atmosphere and the ocean. For example, based on the combination of a three-
way coupled ocean-wave-atmosphere modeling system for the Gulf Stream region, and
wind scatterometer measurements, Shi and Bourassa (2019) concluded that comparisons
between modeled equivalent neutral winds and satellite winds estimated from scatterom-
eter can be used to assess wind stress parameterizations and wind stress-related feedback in
coupled models.

Such data can also be used to study the interaction between waves and currents, which are
of interest not only because of their induced risk of rough conditions for operations at sea, but
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also because they greatly modify the ocean’s vertical and horizontal transport, particularly in
coastal regions, and hence may impact bio-productivity. Daniele, 2017) showed from model
studies verified against altimeter significant wave heights that current gradients can be the pri-
mary source of variability in significant wave heights at scales less than 200 km, including
important variations down to 10 km.

Satellite-based scatterometers can capture wind variability on the oceanographic mes-
oscale, but currently lack the spatial resolution to measure wind vector variability associ-
ated with sub-mesoscale processes. In contrast, SAR observations have the potential for such
small-scale studies. Although the possibility to detect, from SAR images, the surface mani-
festation of rolls in the atmospheric boundary layer, atmospheric fronts, convection-induced
downdrafts, and surface currents has been known since a long time (Fu and Holt 1982; Sikora
and Young 1995; Young and Sikora 2005), it is only recently that this potential has being
exploited in a systematic and quantitative way. For example, Wang et al. (2020) analyzed
atmospheric boundary layer rolls properties from 2 years of surface roughness imagettes from
the SAR of Sentinel-1A and 1B using an automated image classification. They could estimate
that rolls locally induce surface wind speed fluctuations of 8%. Based on the classification of
SAR image texture proposed by Wang et al. (2020), Stopa et al. (2022), showed how coherent
structures identified in the SAR imagettes of surface roughness can be used to get informa-
tion on the stratification of the marine boundary layer. From a 5-year data set, they related