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Abstract
This review paper reports on the state-of-the-art concerning observations of surface winds, 
waves, and currents from space and their use for scientific research and subsequent applica-
tions. The development of observations of sea state parameters from space dates back to 
the 1970s, with a significant increase in the number and diversity of space missions since 
the 1990s. Sensors used to monitor the sea-state parameters from space are mainly based 
on microwave techniques. They are either specifically designed to monitor surface param-
eters or are used for their abilities to provide opportunistic measurements complementary 
to their primary purpose. The principles on which is based on the estimation of the sea 
surface parameters are first described, including the performance and limitations of each 
method. Numerous examples and references on the use of these observations for scientific 
and operational applications are then given. The richness and diversity of these applica-
tions are linked to the importance of knowledge of the sea state in many fields. Firstly, 
surface wind, waves, and currents are significant factors influencing exchanges at the air/
sea interface, impacting oceanic and atmospheric boundary layers, contributing to sea level 
rise at the coasts, and interacting with the sea-ice formation or destruction in the polar 
zones. Secondly, ocean surface currents combined with wind- and wave- induced drift con-
tribute to the transport of heat, salt, and pollutants. Waves and surface currents also impact 
sediment transport and erosion in coastal areas. For operational applications, observations 
of surface parameters are necessary on the one hand to constrain the numerical solutions 
of predictive models (numerical wave, oceanic, or atmospheric models), and on the other 
hand to validate their results. In turn, these predictive models are used to guarantee safe, 
efficient, and successful offshore operations, including the commercial shipping and energy 
sector, as well as tourism and coastal activities. Long-time series of global sea-state obser-
vations are also becoming increasingly important to analyze the impact of climate change 
on our environment. All these aspects are recalled in the article, relating to both historical 
and contemporary activities in these fields.

Keywords Remote sensing · Satellite · Ocean · Atmosphere · Surface wind · Surface 
waves · Surface current
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Article Highlights

• The different techniques and satellite missions to monitor winds, waves and currents at 
the ocean surface from space are described

• Sea-state observations from space are widely used in operational meteorology, as well 
as for research on ocean, atmosphere and climate processes

• Sea-state observations from space are also actively used by the offshore industry, as 
well as in coastal zone management

1 Introduction

Surface winds, waves, and currents are the evident manifestation at the ocean surface of the 
atmospheric and oceanic thermodynamic ‘engine effect.’ However, in return, the processes 
affected by surface wind, waves, and current are numerous (Cavaleri et  al. 2012). This 
includes momentum, heat and gas fluxes (e.g.,  CO2) at the air/sea interface, turbulence, and 
vertical mixing in the ocean and atmospheric boundary layers, production of spray in the 
atmosphere, and sea-ice evolution. When wind-generated waves in the open ocean arrive 
at the coast, their properties are modified by the bathymetry and the near surface currents. 
Several parameters, including surface wind and waves, contribute to a water level increase 
at the coast during storm events. In addition, waves and currents are major factors in sedi-
ment transport and coastal erosion. At high latitudes, the sea-ice evolution is impacted by 
wind, waves, and currents (Stopa et al. 2018). The ocean surface currents combined with 
the drift induced by wind-generated waves contribute to the transport of heat, salt and pol-
lutants (Ardhuin et al. 2018). For all these reasons, observations of surface wind, waves, 
and currents are needed by the research and operational communities to better understand 
and quantify these interactions and represent them in numerical models.

In the operational application domain, the monitoring and modeling of wind, waves, 
and currents (as well as ocean temperature, productivity, and bathymetry) are required 
to promote more safe, efficient, and successful operations at sea and mitigate adverse 
impacts on navigation, exploration, tourism, and coastal communities. Nowadays, forecast-
ers mainly rely on numerical models based on prognostic equations. The accuracy of the 
wind and wave forecasts has impressively increased in the last 20 or 30 years (The WISE 
group report 2007), as a result of improved modeling and initialization by observations in 
so-called data assimilation procedures. Hence, observations of surface parameters remain 
necessary on one hand to constrain the numerical solutions of the models, and on the other 
hand to further improve their physical parameterizations and to validate them. Addition-
ally, more observations are needed to progress in the characterization, understanding and 
modeling of the evolution of extreme events (severe storms, tropical cyclones).

To simulate the evolution of atmosphere ocean and at seasonal to inter-annual scales, 
beyond simply coupling numerical atmospheric and oceanic circulation models, it is now 
recognized that it is important to take into account the role of waves (Babanin et al. 2009; 
Breivik et al. 2015) and surface currents (Brivoal 2021) because they impact the energy 
exchanges at the ocean/atmosphere interface and thus the ocean/atmosphere coupling.

In the domain of ocean surface parameters, several “essential climate variables” (ECVs) 
have been identified by the international community (program GCOS/WMO—Global Cli-
mate Observing System from the World Meteorological Organization). This includes the 
surface wind stress (strongly related to wind speed, but also to surface waves and current), 
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the sea-state (with main focus on the significant wave height until now), and the sea surface 
current. To account for this need, both European and US agencies support the creation and 
curation of long time series of homogenous observations. In particular, the European space 
agency (ESA) has implemented the “climate change initiative” (CCI) to support re-pro-
cessing of satellite data for generating long time series of inter-calibrated and homogenized 
parameters (Dodet et al. 2020; https:// clima te. esa. int/ fr/ proje cts/ sea- state/).

These statistics are essential to many applications in the maritime industries (comprising 
sectors as broad as energy, health, leisure, minerals, and transport)—such as offshore fish-
eries, hydrocarbons / renewables and shipping—on which the future welfare and prosperity 
of humankind depends (OECD report 2016, OECD is the Organization for Economic Co-
operation and Development). At the same time, government agencies and coastal managers 
tackling the pressures of human activity in environmentally sensitive and highly urbanized 
near-shore areas require information on related changes and hazards—such as coastal ero-
sion, pollutant dispersal, and water safety which are highly dependent on wind, waves and 
current conditions.

To properly understand the opportunity presented by observations of wind, waves and 
currents from space, it is useful to consider the relative advantages and disadvantages of 
these satellite-based sampling methods compared to those obtained from traditional ocean-
ographic measurements, for example those collected from platforms such as buoys or ships. 
An excellent discussion of these differences is presented in Srokosz et  al. (1995). Addi-
tional, more recent, reviews on instrumentation and methods employed for the sampling 
of metocean parameters are provided by Ardhuin et al. (2019c), Villas Bôas et al. (2019), 
and Röhrs et al. (2021). In summary, traditional oceanographic measurements are typically 
obtained from moored or static instruments that record a time series at a single point or, at 
best, along a single profile. These data often have a very high temporal resolution, but offer 
little or no information about the spatial variability of the parameters and processes being 
sampled and studied. Alternatively, ships (or, increasingly, autonomous equivalents such 
as gliders) and drifters may be used to survey the ocean, to characterize both surface and 
sub-surface dynamics. However, these measurements are either on a relatively local scale 
or global with sparse coverage, and their analysis is further compounded by an acute con-
fusion of temporal and spatial signals.

Compared to conventional in-situ methods, remote sensing techniques from space allow 
observations of wind, waves and currents to be mapped over much larger regions, in a near-
synoptic manner. Despite their spatial sampling capabilities, satellites have limited tempo-
ral sampling, due to a limited number of satellites and their chosen orbits. Also, consistent 
with all data that is based on the detection of energy reflected or emitted from the Earth 
as electromagnetic radiation, these techniques are restricted to only sampling the ocean 
surface (or the inference of sub-surface properties derived from it) owing to the small pen-
etration depths in water of the wavelengths at which they operate. For some instruments 
that operate in the visible and infrared part of the spectrum, the prevailing weather condi-
tions (e.g., presence of clouds or rain) can also adversely affect the propagation of signals. 
These perhaps present the greatest challenges of remote sensing, but—depending on the 
exact specification requirements—this is confined to only a subset of the available tech-
niques for the measurement of wind, wave, and currents data from space, and far exceeded 
by the upside of unique datasets with global high-density coverage, that are unable to be 
obtained any other way. Furthermore, since the archives from multiple long duration sat-
ellite missions are now over 30  years for some parameters, these offer the potential for 
retrieval of observations when no in-situ data were available. Among other uses, this is 
important for the sampling of extreme events, since these instruments continue to collect 

https://climate.esa.int/fr/projects/sea-state/
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data in conditions for which traditional platforms (e.g., buoys or ships) are damaged or fail 
to operate; although such measurements can be difficult to calibrate and/or validate owing 
to lack of alternatives to compare.

In the following, Sect. 2 presents an overview of the different space-based techniques 
currently used for measuring surface wind, waves and currents from space. This includes 
a summary of the main principles of measurements from space-borne instruments (micro-
wave radiometers, wind scatterometer, radar altimeter, synthetic aperture radar, near-nadir 
scatterometry), illustrated with results. Section 3 presents how these observations are used 
for operational forecasts, for coupled ocean/atmosphere studies, and illustrates the particu-
lar case of extreme events. Section 4 discusses the utility of these observations for marine 
and coastal applications. Finally, Sect.5 concludes this review.

2  On the Different Techniques Used from Space

2.1  The Physical Background on the Ocean Surface Microwave Remote Sensing

The most common approach to measurement of sea-state characteristics from space, in 
terms of surface wind, waves, and currents is based on microwave sensors (Gade and Stof-
felen 2019). The first (main) reason for this is the ability of the electromagnetic waves in this 
domain (typically 1–35 GHz) to propagate through the atmosphere even in presence of clouds 
and precipitation, without too much degradation by these phenomena. The second reason is 
the good sensitivity of the signal intensity received by these sensors to the surface geometry, 
directly related to the surface roughness generated by wind and waves. Surface current meas-
urements from space additionally uses, the sensitivity of the received signals to the kinematics 
of the ocean surface that impacts the temporal and phase properties of the received signal.

Two categories of microwave systems are distinguished. The first category termed 
“active,” is based on the emission and reception of the return electromagnetic signal by the 
same system. The sensors under this category are named “RaDAR” (radio detection and 
ranging). With the development of the global navigation system satellites, the principle 
of radar systems is also used from space to estimate surface parameters with a bi-static 
approach (emission and reception from two different locations). In the second category, 
termed “passive,” sensors do not emit any electromagnetic waves but receive the natural 
radiation from the Earth’s environment (and in particular from the ocean surface). These 
are named “microwave radiometers.”

Since World War II, when radar was operationally used for the first time, the microwave 
domain was divided into different bands of frequency (or wavelength). Table 1 shows the 
bands used for the measurements of ocean surface parameters from space, with their cor-
responding range of frequency and wavelength according to the standard designation of 
IEEE (Institute of Electrical and Electronics Engineers).

In the microwave domain, the electromagnetic waves that strike the ocean surface either 
from a natural source (the sun) or from a radar system are reflected by the surface, while 
because of the dielectric nature of the water their penetration in the water under the sur-
face remains very limited in depth (typically over 1/10 of the electromagnetic wavelength). 
Therefore, the characteristics of the signal received by a satellite microwave sensor depends 
largely on the scattering mechanism induced by the rough oceanic surface (see below). In 
the case of passive measurements, additional parameters like surface temperature, emissiv-
ity, and atmospheric attenuation also contribute to the received signal (English et al. 2020).
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The main quantities estimated from the electric field detected by the sensor receiver are 
the normalized radar cross section (NRCS, also note noted TB) for an active sensor, and the 
brightness temperature for a passive sensor (noted TB). They both characterize the intensity 
of the electromagnetic field detected by the receiver.

The normalized radar cross section characterizes the averaged backscattering strength of 
the targets distributed over the illuminated area. In principle, it is defined as the effective 
area that intercepts the transmitted radar power and then scatters that power isotropically 
back to the radar receiver. In practice, it is estimated from the radar equation which gives 
the relation between the transmitted and the received power:

where Pr and Pt are the received and transmitted powers respectively, � the electromagnetic 
wavelength, G the antenna gain, �0 the normalized radar cross section, R the radial dis-
tance, and x and y refer to coordinates at the surface. In most applications over the ocean, 
the assumption is made that �0 is constant within each resolution cell of the radar so that 
it can be extracted from the integral and estimated by inverting Eq. (1) for each resolution 
cell.

The brightness temperature TB of the ocean is expressed as the product of the ocean 
physical temperature Ts and its emissivity ε (when neglecting atmospheric effects).

where the emissivity � depends upon sea surface temperature, surface roughness, presence 
of foam, and on sensor parameters (frequency, polarization, looking angle). When looking 
from space, TB is also impacted by attenuation and scattering of the electromagnetic wave 
by the atmosphere, mainly due to the presence of water vapor and liquid water (clouds and 
rain). This effect is much more important at high frequencies (X-K bands) than at low fre-
quencies (C-S- L band).

Another important parameter eventually measured by a microwave system is the phase 
of the electromagnetic field, which, in the case of the ocean surface, is affected by the Dop-
pler shift generated by the intrinsic motions of the surface scatters.

For both active and passive sensors, measurements performed under multiple polariza-
tions are often chosen, as this helps to separate different surface effects contributing to the 
backscatter (see below) and make the inversion of geophysical variables more accurate. 
The most common configuration for TB is to use horizontal H and vertical V polarizations. 
For radar systems which look away from the nadir direction (typically at incidences larger 

(1)Pr(R) =
Pt�

2

(4�)
3 ∬

G2(x, y)�0(x, y)

R4
dxdy

(2)TB = �Ts

Table 1  Microwave bands used 
for ocean remote sensing

Name of the radar band Frequency Wavelength

L 1–2 GHz 15.0–30.0 cm
S 2–4 GHz 7.50–15.0 cm
C 4–8 GHz 3.75–7.50 cm
X 8–12 GHz 2.50–3.75 cm
Ku 12–18 GHz 1.67–2.5 cm
K 18–27 GHz 1.11–1.67 cm
Ka 27–40 GHz 0.75–1.11 cm
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than 25–35° with respect to nadir), it is common to use dual polarizations (HH- horizon-
tally emitted and received polarizations and VV-vertically emitted and received polariza-
tions), or even three to four polarization configurations in certain cases (HH, VV, HV, and/
or VH).

For a given electromagnetic wavelength, the normalized radar cross section and the 
brightness temperature depend on the polarization, the surface scattering mechanisms, the 
geometry of illumination/reception, and eventually on perturbing effects by the atmosphere.

Due to the geometry of the scattering elements at the surface, the �0 at intermediate 
incidence angles (typically 25–70° from nadir) are the strongest in VV polarization while 
HH �0 are up to an order of magnitude (− 10 dB) weaker (see Fig. 1), and appear more sen-
sitive to second-order scattering processes, initiated at ocean wave breaking events. VH or 
HV polarization measurements are again an order of magnitude weaker than HH measure-
ments at intermediate incidence angles. However, due to their sensitivity to foam coverage 
as a result of wave breaking, VH measurements, just like passive radiometers, are very 
suitable for hurricane wind measurements (Stoffelen et al. 2020a).

The theory of electromagnetic wave scattering from a rough surface has been exten-
sively described in the past in textbooks or papers such as Beekmann and Spizzichino 
(1963), Ishimaru (1978), Ulaby and Long (2015). Classical reviews of scattering from the 
ocean surface are described by Valenzuela (1978), Stewart (1984), Geernaert and Plant 
(1990); (1990) and Martin (2014), with only the main concepts summarized below.

It is common to distinguish two types of scattering mechanisms at the surface, namely 
the specular (or quasi-specular reflection) and diffuse (or Bragg) scattering.

Specular reflection, associated with a presence of wave facets at the surface oriented 
perpendicular to the incident electromagnetic waves, results in scattering in a specular 
direction (like optical rays with a mirror). This type of mechanism is dominant when the 
incident waves are close to the vertical, because slopes at the surface are usually small 
(typically less than 10–15%). In this case, the mathematical solution for the normalized 
radar cross section �0 results from the Kirchhoff tangent plane approximation of the 
Maxwell equations (valid when all dimensions of the rough surface are large compared 
to the electromagnetic wavelength). These electromagnetic equations are then simplified 
by using either a specular point approach or a correlation function approach—see for 
example Brown (1990). In both cases, under the assumption that the surface curvature 

Fig. 1  Example of C-band micro-
wave ocean response (normalized 
radar cross section as a function 
of incidence angle) in VV, HH 
and VH polarization from a 
physically-based model. Stars 
are VV verification data from 
the empirical CMOD7 model. 
Adapted from Fois (2015)
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radius is large compared to the electromagnetic wavelength, the following expression is 
obtained for �0 in a monostatic case (Barrick 1968; Brown 1990):

where � is the incidence angle with respect to the vertical, � the Fresnel reflection coef-
ficient at normal incidence, p

(
�x, �y

)
 the joint probability density function evaluated at the 

specular point slopes, and �x, �y are the slopes in and perpendicular to the radar look direc-
tions, respectively. As the probability density (pdf) of surface slopes is dominated by the 
presence of short waves (typically from a few centimeters to a few meters in wavelength) 
which respond quickly to the wind, �0 is related to the slope pdf of the wind-generated 
waves and hence to the wind. This principle is used by radar altimeter systems to meas-
ure wind speed, and by near-nadir scatterometer systems to estimate properties of the long 
tilting waves on which shorter waves serve as specular facets (see below). Estimation of 
wind speed from GNSS (Global Navigation Satellite System) is also based on this specular 
theory.

The other main type of scattering mechanism, which is dominant in non-specular 
conditions (i.e., for incidence angles larger than typically 15° from the vertical) is a 
resonant mechanism (Rice 1951; Valenzuela 1978), commonly called Bragg scatter-
ing. The mathematical approximate solutions for the scattered field and for �0 assume 
that the standard deviation of surface heights is small compared to the wavelength. For 
the normalized radar cross section in monostatic configuration, the Bragg solution is 
expressed as (Valenzuela 1978; Plant 1990):

where p and q denote transmitting and receiving polarizations (vertical-V or horizontal-H), 
kr is electromagnetic wavenumber ( kr =

2�

�r
 where �r is the electromagnetic wavelength), 

S
(
2kr sin �, 0

)
 the two-dimensional wave height density spectrum estimated at the resonant 

Bragg wavenumber in the radar look direction, and gpq the reflection coefficient. This latter 
is a function of the local incidence and of the complex dielectric constant -see Valenzuela 
(1978) or Donelan and Pierson (1987) for details.

At the ocean surface, waves of many scales co-exist, typically from very short waves 
(a few millimeters in wavelengths to several hundred of meters). Furthermore, the 
short waves which generate the Bragg scattering typically overlay longer waves, and 
are slightly modified by the latter through hydrodynamic processes, as well as by the 
atmospheric flow and wind input (Mastenbroek 1996). Therefore, in fact, the physical 
description of the backscatter at moderate incidence is more complex than that given by 
Eq.  (4). Many theoretical works have been devoted in the past to the proposal of ana-
lytical approximations of the exact solution of the Maxwell equations, accounting for 
the multi-scale nature of the ocean surface (e.g., see Elfouhaily and Guérin 2004; Fois 
2015), but we will not enter into more details here.

It is sufficient at this stage to state that the sensitivity of microwave sensors at medium 
incidence to short Bragg waves is the principle used by so-called “wind scatterometers” to 
measure the surface wind. Wind scatterometers are radar systems functioning at centimeter 
wavelengths and looking at typical incidence from 20 to 60° with respect to nadir. In these 
conditions, as a first approximation, the sensitivity to the wind speed of the scatterometer 
measurement is due to the sensitivity to wind speed of the wind-generated capillary-gravity 

(3)�0(�) =
��2p

(
�x, �y

)

cos4 (�)

(4)�0pq(�) = 16�k4
r
cos4 �

|||gpq(�)
|||
2

S
(
2kr sin �, 0

)
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waves that serve as Bragg scatterers (Eq. (4)). Furthermore, the development of these short 
waves is not isotropic: the wave height density spectrum is maximal along the wind-direc-
tion and minimal in the cross-wind direction. This fact is used in wind scatterometry to 
estimate both wind speed and wind direction from the radar signals (see Sect. 2.2.2).

Measurements from microwave radiometers are also based on the same principles but in 
this case, the instrument receives the natural emission from all incidences, and therefore all 
the above-mentioned mechanisms are combined.

Of course, the above presentation is necessarily a simplified view of the main scattering 
mechanisms. In fact, there is generally a combination of effects with, in particular, long 
ocean waves of small slopes (typically over 10 m in wavelength) tilting the short wind-gen-
erated waves and therefore adding a specular effect into the signals scattered at small and 
medium incidence. In addition, when the sea-state is extreme, specular points due to break-
ing waves may affect the return power (see, e.g., Phillips 1988; Ericson et al. 1999). From 
theoretical considerations, it has also been proposed that the polarization ratio can be used 
as a proxy of the breaking occurrence (Kudryavtsev et al. 2003; Yurovsky et al. 2021).

Because the full physical description is rather complex with substantial uncertainty 
in some key physical parameterizations (e.g., of wave spectra), in many applications, the 
inversion of the measured signals is performed by using empirical Geophysical Model 
Functions (GMFs), which relate the �0 (or TB) values in different configurations (inci-
dence, polarization, azimuth look angle) to the geophysical parameters to be retrieved. This 
approach is used in wind scatterometry in particular. The most recent GMFs are expressed 
as a function of the so-called stress-equivalent 10-m wind vector and of the sea surface 
temperature (de Kloe et al. 2017; Stoffelen et al. 2017b; Wang et al. 2017) and result in 
very accurate ocean surface wind vector retrievals (e.g., Vogelzang and Stoffelen 2021).

2.2  Space‑Borne Instruments, Satellite Missions, and Examples of Results1

2.2.1  Microwave Radiometers

2.2.1.1 History and  Evolution Originally, microwave radiometers were developed for 
measuring parameters such as water vapor, liquid water, temperature, ozone content in the 
atmosphere of the Earth as well as of other planets. However, it was realized since the 
mid-1960s that in frequency bands not attenuated by the atmosphere, their measurements 
are also sensitive to the roughness of the ocean surface. It was also realized that a combi-
nation of different electromagnetic frequencies (typically from 5 to 90 GHz) and polariza-
tion of the received signal was useful to separate atmospheric effects from surface effects. 
The first wind speed maps provided at the global scale were obtained from observations at 
10.7 GHz of the Scanning Multi-Channel Microwave Radiometer (SMMR) on the Seasat 
satellite launched in 1978 (Njoku and Swanson 1983). Since then, this approach has been 
extended to other frequencies or combinations of frequencies (usually in C and X-bands) 
and used operationally from various series of satellites. A well-known example is the series 
of the Defense Meteorological Satellite Program (DMSP) that carry the scanning radiom-
eter SSM/I (Special Sensor Microwave Imager, see Hollinger 1991) or its successor SSMIS. 
Despite some limitations, particularly in regions affected by rain (see below), such observa-

1 See Appendix 1 for the list of instruments and missions cited in this paper. The list includes the acronym 
definition, agencies responsible of the instruments and period of operation.
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tions of wind speed from radiometer measurements are now systematically used in opera-
tional meteorological forecasting systems.

Since the 2000s, new types of microwave radiometers at lower frequencies (L-Band) 
have been specifically designed to measure the sea-surface salinity and the soil moisture 
over the continents, such as those on the SMOS and SMAP satellites (Kerr et al. 2010; 
Entekhabi et al. 2010; Boutin et al., this issue). However, it was shown that the bright-
ness temperature in L-Band allows also to estimate the surface wind speed with a good 
accuracy, and indeed with a much better performance in rain or high wind conditions 
than that for higher frequency radiometers (see below).

2.2.1.2 Principles of measurement The microwave emission from the ocean surface is used 
to estimate the ocean surface wind, based on the fact that the wind locally generates surface 
waves and whitecaps, which contribute to the modification of the surface emissivity from 
the perfectly flat sea surface value.

The sea surface emissivity contrast Δe induced by the rough and foamy sea surface is 
expressed as the sum of two terms (Stogryn 1972):

where f, p, and θ are the receiving electromagnetic frequency, polarization, and incidence 
angle of the measuring radiometer, respectively, ϕ is the azimuth angle referenced to the 
wind direction, F(U10) is the fraction of sea surface area covered by whitecaps at 10 m 
height, U10 is the wind speed at 10-m height, and eB

foam,p
 is the emissivity of typical sea-

foam layers. The roughness contribution to surface emission Δerough, p is formulated as an 
integral of the directional surface wave spectrum S(k,ϕ) multiplied by an electromagnetic 
weighting function gp specifying the thermal emission contribution of each wave num-
ber-directional surface wave component 

(
k′,�′

)
 (Yueh et al. 1994a,b; Johnson and Zhang 

1999):

where k is the wave number and �sw is sea water relative permittivity. Because the ocean 
surface becomes rougher and foamier with increasing wind speed, a potential technique 
became available for the global monitoring of surface winds from Earth orbiting radi-
ometers. The signal of the low microwave frequency (L- to X-bands) radiometers show 
no sign of saturation or sensitivity loss even in extreme winds. The reason for this is that 
the low microwave frequency emission from the wind roughened ocean surfaces keeps 
increasing approximately linearly with wind speed (Nordberg et  al. 1971; Monahan and 
O’Muircheartaigh 1980; Anguelova 2002; Reul and Chapron 2003; Hwang et al. 2019a, b), 
and does not saturate, even at wind speeds above hurricane force, i.e., 64 kt/32  ms−1 (Reul 
et al. 2012, 2016; Yueh et al. 2013; Meissner et al. 2014, 2017; Fore et al. 2016).

The rough sea surface emission Δerough,p can also be expressed as a function of U10 and 
of the relative azimuthal direction following:

In Eq. (7), the wind direction dependence of the sea surface brightness temperature is 
in the 1st and 2nd terms of the Fourier series expansion ( Δe1,p , Δe2,p ). It is induced by 
sea surface anisotropic features (sea surface slope, root mean square height of the small 
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gravity-capillary waves). Laboratory, tower-based, aircraft, and satellite measurements 
(Bespalova et  al. 1982; Kunkee and Gasiewski 1997; Trokhimovski et  al. 2003; Yueh 
et al. 1995) have demonstrated that the wind direction impacts all Stokes parameters of sea 
surface (the Stokes parameters characterize the polarization state of the electromagnetic 
signal). However, the sensitivity of vertically and horizontally polarized brightness tem-
peratures to cloud liquid water and atmospheric water vapor at X- and C-band result in the 
inability to measure the wind direction with a sufficient accuracy from space, as the signal 
is relatively small with respect to the amplitudes of errors made in the atmospheric correc-
tions, particularly in rainy conditions. The 3rd (S3) and 4th (S4) Stokes parameters are less 
sensitive to cloud liquid water and atmospheric water vapor at these frequencies, and are 
therefore more suitable for wind direction retrieval (Yueh et al. 1995, 2006; Laursen and 
Skou 2001; Piepmeier and Gasiewski 2001; Lahtinen et al. 2003). This principle is used for 
the wind direction retrieval from WindSat and SMAP sensors (Meissner and Wentz 2009).

2.2.1.3 Performance and Limitations In rain-free conditions, radiometers operated at fre-
quencies in the bands from C- to Ku provide accurate estimates of the surface wind speed 
(RMS error with buoys < 1 m/s). However, it is difficult to measure surface wind speeds in 
the presence of precipitation with radiometers that operate at frequencies above 10 GHz 
(Meissner and Wentz 2009). The atmospheric attenuation by rain droplets increases with 
increasing frequency (Wentz 2005) and therefore results in a smaller wind signal at the 
top of the atmosphere. Moreover, it is difficult to model the rain attenuation accurately. 
This results in large errors for the retrieved wind speeds in the presence of rain if algo-
rithms developed in rain-free conditions are used. It has been shown that this problem can 
be mitigated to a great extent if the sensor has a combination of multiple low-frequency 
channels, as demonstrated for the airborne step frequency microwave radiometer (SFMR, 
4–8 GHz), where a multi-frequency C-band channel combination is needed to correct for 
the rain effect and in turn to retrieve the surface wind speed (Klotz and Uhlhorn 2014). For 
satellite radiometers (e.g., AMSR-E, WindSat and AMSR-2), it is possible to find combi-
nations of the C-band and X-band channels that minimize the rain impact and allow the 
retrieval of wind speeds in rain conditions (Meissner and Wentz 2009, 2012; Zabolotskikh 
et  al. 2016). Based on this principle, all-weather wind algorithms have been developed 
for AMSR-E, WindSat and AMSR-2 instruments (see Meissner and Wentz 2012; Shibata 
2006). These all-weather wind algorithms need to be trained using match-ups between the 
measured radiometer brightness temperature TB and a reliable true surface wind speed; as 
described below, surface winds estimated recently from L-band radiometers can be used for 
this purpose (Meissner et al. 2021). Therefore, currently, the major limiting factor of the C- 
and X-band radiometers to measure winds are the rain impact and the relatively low spatial 
resolution (~ 50–60 km) of these sensors. In many cases, this does not allow the resolving of 
wind structure close to coastlines, around the eye of a tropical cyclone, or for small/compact 
weather systems (e.g., polar lows).

The recent availability of spaceborne L-band radiometers operating at 1.4 GHz, such 
as the soil moisture and ocean salinity (SMOS, Kerr et  al. 2010) and the soil moisture 
active passive (SMAP), see Entekhabi et  al. 2010. Offers new opportunities to measure 
surface wind, particularly in stormy and rainy conditions. These L-band radiometers 
have a distinct advantage over most other passive microwave instruments: due to the use 
of a long wavelength (21 cm), they are mostly unaffected by rain or frozen precipitation 
(Wentz 2005; Reul et al. 2012). For wind speeds below 30 kt/15   ms−1, the performance 
of L-band radiometers to measure scalar wind speeds is typically ~ 2–3 m/s; not as good 
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as that of higher frequency radiometers (i.e., GMI, AMSR-2, WindSat) or scatterometers 
(QuikSCAT, ASCAT, RapidScat, ScatSat) due to larger radiometer noise and lower sensi-
tivity. It should be noted that the wind speed retrieval of L-band radiometer relies on ocean 
surface salinity as external ancillary input. In some locations, this ancillary input can be 
inaccurate, for example in highly dynamical ocean regions such as freshwater river plumes 
(e.g., Amazon, Congo, Gulf of Bengal and Mississippi), which can result in increased wind 
speed uncertainty in these areas. For extreme winds, algorithms for SMOS and SMAP 
have been trained and/or tested using aircraft-based wind speed data from SFMR. Despite 
the capabilities of this methodology, it is important to acknowledge that there is still a 
scarcity of reliable in-situ wind measurements in major hurricanes with winds exceeding 
100 kt/50  ms−1, which makes it challenging to train/validate the L-band models or emis-
sivity GMFs. There are many examples of how SMAP and SMOS wind speeds are help-
ful for both intensity and wind radii estimates (Reul et al. 2012, 2016, 2017; Yueh et al. 
2013; Meissner et al. 2014, 2017; Fore et al. 2016) and real-time data are helping tropical 
cyclone (TC) forecasts as well as adding quality information to historical records. Similar 
to C- and X-band radiometers, the low spatial resolution (~ 40–50 km) of currently orbiting 
L-band radiometers imposes a limitation on how close to the coast accurate ocean wind 
speed measurements can be performed and on the resolution of high wind speed gradients 
in the inner core of tropical cyclones. For the SMOS case, root mean square differences 
with other collocated wind speeds from other sensors (SMAP, WindSat, AMSR-2, SSMI) 
increase from ~ 2.5 m/s for open ocean scenes to ~ 5 m/s when the distance to the coast is 
less than ~ 250 km. However, combined data from SMOS and SMAP do provide new, inde-
pendent and very regular estimates of the gale force (R34), damaging (R50), and destruc-
tive (R64) wind radii for each given storm, as well as estimates of intensity at ~ 40–50 km 
resolution (Reul et al. 2017; Meissner et al. 2017; Fore et al. 2018).

2.2.2  Wind Scatterometers

2.2.2.1 History and Evolution Wind scatterometers are radar systems specifically designed 
for measuring the ocean surface wind vector.

The first wind scatterometer entered space in 1978 on-board the Seasat satellite (Born 
et  al. 1979), and demonstrated the feasibility of measuring the ocean wind vector from 
space. Further NASA instruments were flown on the Japanese spacecraft ADEOS-I and 
ADEOS-II. Meanwhile, ESA launched the ERS satellites in the 1990s, resulting in the first 
operational application of scatterometer-derived winds in Numerical Weather Prediction 
(Stoffelen and Wagner 2013) and hurricane forecasting (Isaksen and Stoffelen 2000), after 
developing the necessary calibration, empirical Geophysical Model Functions, retrieval, 
wind direction ambiguity removal, quality assessment and monitoring tools (Stoffelen 
1998). Subsequent missions followed, providing operational continuity in the 2000s, for 
example by QuikSCAT, three ASCAT instruments on the MetOp platform from EUMET-
SAT (European Organization for the Exploitation of Meteorological Satellites), Rap-
idScat on the International Space Station (ISS), the O-SCAT instruments on the ScatSat 
and OceanSat Indian platforms, as well as the Chinese HY2 series, and CFOSAT scatter-
ometers (Stoffelen et al. 2019). More recently, the virtual scatterometer constellation was 
extended in 2021 with HY2-D, and WindRad, to be joined soon by the OceanSat-3 scatter-
ometer. A detailed description of the evolution and performance of scatterometer systems 
since the 1990s, can be found in Bourassa et al. (2019).
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2.2.2.2 Principles of Measurement As mentioned in Sect. 2.1, the principle of measure-
ment of wind scatterometers relies on the sensitivity of the normalized radar cross section 
to the wind speed and wind direction at medium incidences (typically 20–60° from nadir). 
In this configuration, the radar return is governed by the presence of short capillary-gravity 
waves generated by the local wind with a very short response time (a few milliseconds). 
As the wave height density spectrum is not isotropic (higher short waves in the along-wind 
than in the cross-wind directions), multiple observations over a diversity of incidence and/or 
azimuths angles are used to estimate both wind speed and wind direction in a Wind Vector 
Cell (WVC) from the same system.

To achieve this, the current space-borne wind scatterometers are based on either a mul-
tiple fixed fan-beam geometry, like ASCAT on MetOp (Figa et al. 2002), or on a rotating 
pencil-beam geometry with limited incidence angles, like QuikSCAT (Spencer et al. 2000). 
The wind scatterometers from CFOSAT (Lin et al. 2019) and WindRAD (Tsai et al. 2000) 
combines both concepts with a rotating fan-beam geometry.

2.2.2.3 Performance and Limitations Advanced relative calibration methods with accura-
cies better than 2% (Belmonte Rivas et al. 2017) provide an excellent basis for the develop-
ment of accurate GMFs and retrieval codes. Furthermore, the availability of plentiful col-
locations of different scatterometer types, subsequently allows scatterometer intercalibration 
and refined wind processing algorithms that produce consistent geophysical products (Wang 
et al. 2020; Xu and Stoffelen 2020, 2021). Processing codes for all scatterometer types are 
made available by the Ocean and Sea Ice service-Satellite Application facilities (EUMET-
SAT OSI-SAF2) and associated data sets are accessible from different data centers, e.g., in 
Europe at EUMETSAT OSI SAF,3 and the Copernicus Marine Service.4

A general method, called triple collocation, was first developed to estimate statis-
tical errors on winds from scatterometer, in-situ and numerical weather prediction 
(NWP), all at the same time. In combination with studies on 3D atmospheric turbu-
lence spectra and horizontal wind variances, the spatial representation of the collo-
cated measurements has been evaluated and an error analysis on the measurement scale 
of the scatterometer winds (20–50 km, depending on application) has been performed. 
Recently, due to the abundance of scatterometers, quadruple collocation studies have 
also become available (Vogelzang and Stoffelen 2021). Table 2 illustrates these recent 
results and shows the standard deviations of the wind component errors for moored 
buoys, ASCAT-A, ScatSat, and collocated NWP of the European Centre for Medium 
Range Weather Forecast (ECMWF).

Whereas local buoy 10-min-mean measurements are typically very accurate 
(0.1–1 m s typically), they do not cover the 25-km Wave Vector Cells (WVCs). There-
fore, the error standard deviations in Table 2 mainly constitute the natural wind com-
ponent variability within a 25-km size WVC. Due to their excellent calibration, moored 
buoy stress-equivalent 10-m winds are used as the absolute calibration reference for 
scatterometer and atmospheric model winds. The relatively high wind variability in 
a WVC also determines the quality of the wind retrieval, as different geometric views 
are consolidated in the retrieval process. For ASCAT, three views are collocated before 

2 https:// nwp- saf. eumet sat. int/ site/ softw are/ scatt erome ter/.
3 https:// osi- saf. eumet sat. int/ produ cts/ wind- produ cts.
4 https:// marine. coper nicus. eu/ about/ produ cers/ wind- tac.

https://nwp-saf.eumetsat.int/site/software/scatterometer/
https://osi-saf.eumetsat.int/products/wind-products
https://marine.copernicus.eu/about/producers/wind-tac
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wind retrieval and its spatial footprints can be well aligned with advanced processing 
methods, hence reducing the retrieval noise (Vogelzang and Stoffelen 2017). Rotat-
ing Ku-band scatterometers have less simple sampling properties, but can benefit from 
image resolution-enhancement techniques, in particular over sea ice and land surfaces 
(Long 2017). Unsurprisingly, the scatterometer wind retrieval residual, called maxi-
mum likelihood estimator (MLE) error, is a measure of the local inconsistency of the 
backscatter views and hence related to the local wind variability (Lin et al. 2015).

Whereas natural variability determines the buoy errors, the global NWP model 
wind component errors in Table 2 are determined by a lack of natural wind variabil-
ity (Belmonte and Stoffelen 2019). Conversely, ASCAT has the ability to measure the 
extreme divergence and convergence associated with the updrafts and downdrafts in 
tropical moist convection, while a global NWP model does not show these (King et al. 
2022). Some of this lack of variability is furthermore associated with the local sea 
surface temperature gradients and can be corrected by averaging wind differences over 
a few days. Such averaging will remove scatterometer and atmospheric model wind 
differences due to the transient weather, but will show differences that are related to 
stationary ocean conditions and due to other systematic errors in the boundary layer 
parameterization and dynamical model closure (e.g., diffusion operators; see Trindade 
et  al. 2020). The atmospheric model 10-m stress-equivalent wind errors do not only 
appear on small scales, but also on larger scales as depicted in Fig. 2 (Belmonte and 
Stoffelen 2019).

2.2.3  Radar Altimeters

Spaceborne altimeters are active microwave radars pointing vertically down at the Earth’s 
surface (nadir incidence). As the name suggests, the original purpose of altimeters is to 
measure the altitude of the satellite i.e., the distance between the satellite and the Earth’s 
surface. Over the oceans, this provides valuable measurements of Sea Surface Height (see 
Morrow et al. 2023; this issue) from which information is derived about geostrophic cur-
rents and sea level. With its unique capability to observe ocean circulation and sea level on 
global, regional and local scales, satellite altimetry has revolutionized modern oceanogra-
phy and is now a cornerstone of the global ocean observing system.

Table 2  Triple collocation error standard deviations for the u (zonal) and v (meridional) wind vector com-
ponents (in  ms−1) for buoy (b), ASCAT-A (A), ScatSat (S) and ECMWF (E) collocations on the scatter-
ometer spatial scale (~ 25 km). The bottom row provides the spread in the results (in  ms−1) for the different 
triple collocation results ((c) AGU, Vogelzang and Stoffelen 2021)

Subset Buoy ASCAT-A ScatSat ECMWF

σ_u σ_v σ_u σ_v σ_u σ_v σ_u σ_v

bAS 1.03 1.12 0.41 0.49 0.78 0.65 – –
bAE 1.06 1.15 0.34 0.41 – – 0.94 1.03
bSE 1.09 1.21 – – 0.72 0.59 0.92 1.03
ASE – – 0.43 0.49 0.76 0.65 0.90 0.98
2σ 0.04 0.04 0.02 0.02 0.03 0.02 0.04 0.04
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Together with SSH, satellite altimeters also provide high-quality measurements of Sig-
nificant Wave Height (SWH) and wind speed  (U10), typically referenced to 10 m above the 
sea surface. Altimeter SWH and  U10 have become important satellite observations in their 
own right, bringing important wind and wave monitoring capability that is particularly rel-
evant for the assimilation in and validation of operational ocean forecasting systems.

Altimeter SWH and  U10 also play an essential role in the estimation of the ranging error in 
altimeter SSH measurements introduced by ocean surface waves, a correction known as sea 
state bias (SSB) (Srokosz 1986; Gommenginger et al. 2003; Tran et al. 2010; Ablain et al. 
2019; Guérou et al. 2022). Today, SSB is still one of the largest contributions to the altimeter 
SSH error budget (Masters et al. 2012; Cheng et al. 2019), the only altimeter correction to 
have seen little progress in recent decades. Therefore, accurate and consistent measurements 
of altimeter SWH and  U10 also underpin our ability to accurately observe sea level variability 
and climate trends. In this chapter we are interested in the altimeter SWH and  U10 parameters.

2.2.3.1 History and Evolution Satellite altimetry first emerged in the mid-late 1970s and 
the early success of SEASAT (1978) was followed by a succession of satellite altimeter mis-
sions that now form a quasi-continuous time series dating back to 1985 (GEOSAT; Dobson 
et al. 1987; Carter et al. 1992) comprising the ERS-1/Envisat series, the Topex/Jason series 
(Lambin et al. 2010; Escudier et al. 2017) and today’s Copernicus sentinels (Donlon et al. 
2021; The International Altimetry Team 2021).

Fig. 2  Mean differences between ASCAT-A and ERA5 reanalysis for the meridional stress-equivalent 10-m 
winds after ocean current correction during 2016. From Belmonte and Stoffelen (2019)
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In April 2010, ESA launched Cryosat-2 as its ice mission, motivated by the need to 
measure sea ice thickness with greater accuracy in polar regions and observe changes in 
the Greenland and Antarctica ice sheets (Laxon et  al. 2013). Cryosat-2 carried the first 
altimeter with synthetic aperture radar (SAR) and Interferometric (SARIn) capability 
(Wingham et  al. 2004). The SAR altimetry mode, also known as delay Doppler altime-
try (Raney 1998) uses higher Pulse repetition frequency than low-resolution mode (LRM) 
instruments and unfocused along-track SAR processing to achieve greater precision (lower 
noise) and finer along-track resolution over leads in sea ice covered oceans (e.g., Arctic). 
Cryosat-2 was the first spaceborne altimeter to provide SAR mode data over a few ocean 
regions and these data proved essential to demonstrate, in-orbit, the benefits of SAR mode 
altimetry over water surfaces (Phalippou and Enjolras 2007; Gommenginger et al. 2011, 
2013). SAR altimetry has now been adopted as the default operating mode on all altimeter 
missions from Copernicus Sentinel-3 Surface topography mission and Sentinel-6 Michael 
freilich onwards (Donlon et al. 2021).

In 2022, satellite altimetry is expected to take another leap forward with the launch of 
the surface water and ocean topography mission (SWOT), a collaboration between the 
USA and France with contributions from Canada and the United Kingdom. The SWOT 
payload will use across-track SAR interferometry to provide high-resolution 2D observa-
tions of water levels over two off-nadir 60 km swaths on either side of the satellite ground-
track, accompanied by observations at nadir from a conventional pulse-limited nadir altim-
eter (Rodriguez et al. 2018; Morrow et al. 2019). SWOT has applications to both hydrology 
(for inland water) and oceanography (for fine-scale ocean topography), but its capabilities 
for ocean wind and sea state observing remain to be determined.

2.2.3.2 Principles of  Measurement Nadir-pointing altimeters transmit short pulses of 
microwave energy toward the Earth’s surface, whence they are reflected back toward the 
instrument. The timing and temporal evolution of the reflected power measured by the 
receiver conveys when and how the microwave energy hits, spreads and reflects off the water 
surface. The temporal shape of the received echo is known as the delay waveform. Up to the 
launch of Cryosat‐2 in April 2010, all altimeter missions carried pulse-limited instruments, 
whereby the received waveforms are formed by incoherent integration of uncorrelated ech-
oes originating from within the (pulse-limited) footprint as it moves along-track with the 
satellite. Pulse-limited altimeters have traditionally operated at Ku-band (13.6 GHz) and 
achieve a footprint 1–10 km in diameter (increasing with significant wave height) thanks 
to short high-energy pulses (chirps) produced with an elaborate pulse-compression tech-
nique involving linear frequency modulation. One exception is SARAL/AltiKa, an India/
France altimeter mission also operating in pulse-limited mode but at Ka-band (35 GHz) that 
reported remarkable improvements in along-track resolution and error reduction (Verron 
et al. 2018). This mode of operation is variously known as ‘pulse-limited,’ ‘conventional’ or 
‘low-resolution mode’ (LRM) altimetry.

The principles used to retrieve the geophysical ocean parameters from the reflected ech-
oes are detailed in many references among which the interested reader is referred to, as 
the book by Ulaby and Long (2015), or the chapter by Chelton et al. in Fu and Cazenave 
(2011). Geophysical information about the water surface is contained in the timing and the 
shape of the waveforms. Figure 3 shows examples of typical altimeter waveforms obtained 
in LRM and SAR mode over the ocean for average sea state conditions (SWH = 2 m). Note 
that, for the same sea state, SAR waveforms are naturally narrower and peakier than LRM 
as a result of unfocused SAR processing.
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The geophysical ocean parameters are retrieved by fitting the waveforms with a para-
metric analytical or numerical model, a process known as ’retracking.’ For LRM, wave-
forms are traditionally fitted with the Brown–Hayne model (Brown 1977; Hayne 1980; 
Tokmakian et  al. 1994; Thibaut et  al. 2010; Zaron and DeCarvalho 2016), a well-estab-
lished analytical model based on theoretical scattering principles. The analytical SAMOSA 
formulation (Ray et  al. 2015) is the equivalent physically-based model to simulate SAR 
ocean waveforms. SAMOSA is currently the baseline model in the operational Coperni-
cus Sentinel-3 ground-processor, although many other analytical, numerical and empirical 
methods are still being actively investigated (e.g., Boy et  al. 2016; Dinardo et  al. 2018, 
2021).

Sea surface height (SSH) is derived from the echo arrival time, which indicates the 
distance traveled by the pulse from the radar to the surface and back. Significant wave 
height (SWH) is derived from the slope of the leading edge (LRM) or the width of the 
echo (altimeter SAR mode). Finally, wind speed  (U10) is related to the maximum reflected 
power which relates to the normalized radar cross section at normal incidence ( �0).

When SSH and SWH are parameters of the fitted models, these are direct outputs of 
the waveform fitting process. However, for wind speed,  U10 has to be inferred from the 
retrieved backscatter coefficient �0 . Wind speed estimates are based on Eq.  (3) com-
bined with the assumption that the slope pdf is characterized by a Gaussian function. 
The variance parameter of the slope pdf is known as the mean square slope (mss) of 
the surface, which is supported by the ocean waves generated by the wind. However, in 
practice, wind retrieval relies on empirical algorithms that relate the measured �0 to the 
wind speed, built either through match-ups between altimeter �0 and independent wind 
data (Witter and Chelton 1991; Gommenginger et  al. 2002; Gourrion et  al. 2002) or 
with look-up tables tuned against the output from numerical weather prediction (NWP) 
models (Abdalla 2012). In some cases, wind speed algorithms attempt to account for the 
mss also having second-order dependencies on sea state, resulting in multi-parameter 
inversions that usually invoke altimeter significant wave height (Gourrion et  al. 2002; 
Lillibridge et al. 2014).

2.2.3.3 Performance and Limitations Much like the principles used to retrieve the geo-
physical ocean parameters from the reflected echoes themselves, the evaluation of altim-

Fig. 3  Typical ocean type altimeter waveforms (received power versus range distance) for average sea state 
conditions (significant wave height of about 2 m). a in the Low-Resolution Mode (LRM); b Synthetic aper-
ture radar mode (SAR). The blue lines are the raw measurement, the solid green lines are fitted waveforms 
(from Gommenginger et al. 2013)



Surveys in Geophysics 

1 3

eter SWH and  U10 observations is detailed in many publications. Validation typically 
involves altimeter match-ups with buoys, weather stations and platforms or other satel-
lites. Comparisons with numerical model output are also common. Evaluation against 
independent ground-truth is generally considered the gold standard, but results are sensi-
tive to methodological choices and the quality and quantity of fiducial data. In situ wind 
and wave observations are globally sparse, mostly sited within 50 km of land and almost 
exclusively in the North Hemisphere. Ensuring that in situ point measurements are repre-
sentative of wind and wave conditions sampled by the satellite has led to the practice of 
constructing match-up datasets with maximum separation criteria of 50 km and 30 min 
between satellite and in situ data. Accordingly, the uncertainties (root mean square error, 
RMSE) of altimeters operating in LRM are of the order of 0.2 m for significant wave 
height and 1.0 m/s for wind speed (Table 3).

SAR mode altimetry brings considerable advantages over LRM in terms of improved 
precision (noise) in 1 Hz along-track SWH (~ 1.5fold reduction) and finer along-track 
spatial resolution (~ 300  m), resulting in particular in useful improvements in coastal 
regions (Gommenginger et  al. 2011; Fenoglio-Marc et  al. 2015; Boy et  al. 2016; 
Abdalla et al. 2018). Figure 4 shows two altimeter SWH tracks across atolls in the Cen-
tral Pacific by Jason-2 LRM (blue) and Cryosat-2 SAR mode (cyan). While SAR mode 
presents visibly reduced along-track noise in SWH and quasi-continuous records up to 
1 km of land, LRM is characterized by large anomalies and data loss within 10–20 km 
of land that is typical of Ku-band pulse-limited altimeters (Benveniste et al. 2019). In 
the last decade, major efforts in coastal altimetry have significantly improved the quan-
tity and quality of LRM altimeter data near land (Deng and Featherstone 2006; Cipollini 
et al. 2010, 2017; Vignudelli et al. 2011; Birol et al. 2021) including now for sea state 
(Passaro et al. 2014; Schlembach et al. 2020). 

In the open ocean, LRM SWH can show along-track variability on scales less than 
200 km, with important variations down to 10 km, that are associated with small-scale 
ocean currents (Ardhuin et  al. 2017). The uncertainty in LRM SWH can be consider-
ably reduced by introducing de-noising techniques (Quilfen and Chapron 2019; Dodet 
et  al. 2020). The finer along-track resolution of SAR mode altimetry makes it prone 
to additional sensitivities to small-scale ocean phenomena, notably long-period waves 
when these propagate in the direction of altimeter tracks (Aouf and Phalippou 2015; 
Moreau et al. 2018; Rieu et al. 2021). Impacts on SAR SWH includes biases (~ 0.2 m) in 
swell conditions and increased 1 Hz SWH noise that also depends on the period of long 
waves. New processing and sampling continue to be proposed to mitigate these effects 
and reduce the risk of contamination of the long-term high-quality sea surface topogra-
phy record (Moreau et al. 2021; Buchhaupt et al. 2021; Egido et al. 2021).

2.2.4  SAR Imagery

2.2.4.1 History and Evolution The first Synthetic aperture radar (SAR) system launched 
in space for scientific applications was that carried by the Seasat (NASA) to monitor the 
Earth’s surface on global scales at high resolution. In addition to a radar altimeter, a wind 
scatterometer and a microwave radiometer, a visible and infrared radiometer, Seasat carried 
an L-band SAR. Unfortunately, the mission lasted for only 100 days. However, many of the 
now existing operational SAR ocean applications (ship detection, sea-ice detection, ocean 
wave measurements and ocean wind speed) have been demonstrated with Seasat data (Fu 
and Holt 1982). The launch of ERS-1 (C-band) satellite by ESA in 1991 initiated the provi-
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sion of operational services in Europe, with routine and global acquisition of imagettes over 
the open ocean used for measuring and assimilating 2D swell spectra. Since then, numerous 
spaceborne SARs have been orbiting the Earth, operating in C-, X- and L-bands. The imag-
ing capacity of SAR systems and the processing capabilities have increased substantially 
since 1978. The increased transmitted bandwidth has improved the spatial resolution down 
to meters, and the phased array antenna technology has increased the extent of coverage up 
to 400 km swath width. Consequently, present SAR systems are very flexible in terms of 
spatial resolution, polarization, swath width and operation modes. In comparison to other 
systems presented here, the SAR missions cannot provide continuous acquisitions due to 
on-board memory and down-link capacities, and the acquisition modes are exclusive. These 
limitations imply a strategy to organize the acquisition planning and solve the potential con-
flicts with respect to the mission priorities (i.e., targeted applications).

To date, SAR images collected from space over the ocean are routinely used to esti-
mate the spectral properties of ocean waves, the surface velocity, or the surface wind. 
For each of these applications, the measurement principles and performances are 
described here below.

2.2.4.2 Surface Ocean Waves from SAR 

(1) Principles of Measurement

The SAR is a two-dimensional imaging system that can produce images of the ocean 
surface with a high spatial resolution. In the range direction (across-track), the sampling of 
the backscattered signal is achieved by using the frequency modulation of the chirped radar 

Fig. 4  Altimeter transects across Palliser islands atolls in French Polynesia the Central Pacific showing the 
significant wave height measured by the Jason-2 Low-Resolution Mode altimeter (cyan) and the Cryosat-2 
altimeter operating in SAR mode (red). Note the anomalous spikes and data loss at the water-land interfaces 
with LRM compared to the continuous records obtained in SAR mode
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signal, with the resolution in distance controlled by the frequency bandwidth. In the other 
direction (azimuth i.e., along-track direction), successive echoes acquired by the antenna 
over the same ocean scene are separated by their Doppler shift.

In the highest resolution mode (typical resolution at the surface of about 10  m), this 
acquisition is usually carried out in the so-called wave mode (WM) which combines a high 
resolution, small sized image (typical size of 10 × 10 or 20 × 20 km), and non-continuous 
sampling (every 100–200 km along the track)- the exact configuration depending on the 
mission.

The principles of wave spectra estimation from SAR observations are as follows.
Close to the range direction (across-track), the wave imaging process is the same as 

for a real aperture radar (RAR). Over the ocean, it is characterized by the modulation in 
backscatter due to the long wave induced varying surface tilt (local relative orientation) 
and straining (local roughness modulation). In that sense, the imaging of ocean waves 
by a very high-resolution radar instrument (SAR, RAR) is commonly described on the 
basis of a two-scale model: waves shorter than the resolution cell mostly contribute to 
the composite Bragg resonant backscattering mechanism, as they ride on a weakly ran-
dom sea of much longer waves. The short waves (waves within the resolution cell) are 
only described through their statistical average properties (elevation and slope variances, 
elevation spectrum amplitude and directionality). These directly contribute to the wind-
dependent mean radar cross section over the scene. The shortest components are usually 
wind-generated waves that overlay more deterministic modulating longer waves to pro-
duce measurable local contrasts. These observed spatial modulations of the backscatter 
intensity, �o

(
x
)
 are supposed to be linear and small compared to the mean radar cross 

section, �o:

where �
(
x
)
= ∫

(
z
(
k
)
⋅ e

j
(
k⋅r−�|k|⋅t

)

+ c.c.

)
dk is the surface elevation caused by the long 

waves, T  is the modulation transfer function, and �|k| is the deep-water dispersion rela-
tion. The second term in the square brackets is the modulation of radar cross section 
which results from different factors contributing to the formation and/or the degradation 
of satellite SAR ocean wave images. Details on these imaging processes are given in 
Appendix 2. In the spaceborne configuration, the most important ones are those due to 
long-wave-induced varying surface tilt (tilt modulation), straining of short waves along 
long wave profiles (hydrodynamic modulation) and velocity bunching caused by the 
apparent shift in location due to scatterer motion on the surface. Depending on the motion 
scatter statistics, the velocity bunching mechanism is either a constructive or destructive 
imaging process so that it induces important nonlinearities between the image backscatter 
modulations and the wave slopes. This nonlinearity is characterized in the spectral domain 
by a cutoff in wavelength in the azimuth direction (along-track), which can be estimated 
from the image itself (see Appendix 2). This azimuth cutoff is governed by both the satel-
lite R∕V  ratio (R being the distance and V the speed of the satellite), and the sea state and 
wind conditions. For typical spaceborne missions like Sentinel-1, the global average azi-
muth cutoff wavelength is around 220 m. In many cases, this limits the detectability of the 
wind-sea spectrum.
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Hasselmann and Hasselmann (1991) and Krogstad (1992) proposed closed form expres-
sions of the ocean-to-SAR spectral transform to relate the 2D Fourier transform of the SAR 
image to the 2D ocean wave spectrum. Different inversion algorithms were then devel-
oped (Engen et al. 1994; Hasselmann et al. 1996; Engen et al. 2000; Mastenbroek and de 
Valk 2000; Schulz-Stellenfleth 2005; Collard et al. 2005; Shao et al. 2015). Because of the 
nonlinear relationship between SAR spectra and wave spectra, such retrieval algorithms 
attempted to reconstruct the a priori ocean wave spectrum (first-guess estimation) by mini-
mizing the difference between the theoretical SAR image spectra and the satellite observed 
SAR image spectra.

Breakthroughs were further introduced by Krogstad (1992) and Engen and Johnsen 
(1995) for the inversion of SAR images in wave spectra, with two innovations: (1) a way to 
separate the nonlinear and linear parts in the spectral domain and to approximate the non-
linear part with a filter function that can be estimated from the image itself (see Appendix 
2), (2) a way to apply the inversion on image cross-spectra between two SAR single-look 
images (looking at the same ocean surface) instead of considering the Fourier transform of 
multi-look images. The advantage of this new method is first that it does not rely on a first 
guess estimate of the wave spectra as previously, and then that inversion applied on cross-
spectra enables to minimize the speckle contribution and to remove the 180° ambiguity in 
the wave propagation direction.

This is the approach implemented in both the ASAR Envisat Wave Mode Level 2 and 
the Sentinel-1 WV Level 2 processors, where the nonlinear part of the Modulation Transfer 
Function (MTF) is estimated from a look-up table as a function of wind speed, wind direc-
tion and wave age (see Sentinel-1 Ocean swell wave spectra—OSW algorithm definition5).

In Fig.  5 are shown examples of SAR image cross-spectra simulated using the equa-
tions given in Appendix 2 for a given ocean wave spectra synthesized for a wind speed of 
8.6 m/s at an angle of 45 degrees to the radar line-of-sight.

An example of the Sentinel-1B image cross-spectra and the derived SAR wave spectra 
is shown in Fig. 6.

To overcome the complex physical relationship between SAR images and wave spec-
tra, several authors have proposed wave parameter estimation methods without explicit 
retrieval of wave spectra, but based on empirical models using either conventional multi-
parameter least-square fit methods (Schulz-Stellenfleth et  al. 2007) or neural network 
approaches (Stopa and Mouche 2017). Schultz-Stellenfleth et  al. (2007) estimated 22 
coefficients of a quadratic model function to estimate the significant wave height, mean 
period, and wave height associated with different spectral bands and wave power. These 22 
parameters of the SAR image include the radar normalized cross section, the image vari-
ance, and 20 parameters computed from the SAR image variance spectrum using a set of 
orthonormal functions. Following this approach, Li et al. (2011) extended the method to 
analyze ENVISAT data and Romeiser et al. (2015) employed a similar method to estimate 
wave parameters from RADARSAT observations in tropical cyclones. Pleskachevsky et al. 
(2016, 2019) and Shao et al. (2015) developed parametric models which empirically relate 
SWH to both spectral and statistical properties of the image; mostly focusing on analysis of 
large-sized images in coastal zones from either the TerraSAR-X mission or from Sentinel-1 
in wide swath mode.

5 https:// senti nel. esa. int/ docum ents/ 247904/ 47662 26/ S1- TN- MDA- 52- 7445_ Senti nel-1% 20Lev el% 201% 
20Det ailed% 20Alg orithm% 20Defi niti on_ v2-4. pdf/ 83624 863- 6429- cfb8- 2371- 5c5ca 82907 b8.

https://sentinel.esa.int/documents/247904/4766226/S1-TN-MDA-52-7445_Sentinel-1%20Level%201%20Detailed%20Algorithm%20Definition_v2-4.pdf/83624863-6429-cfb8-2371-5c5ca82907b8
https://sentinel.esa.int/documents/247904/4766226/S1-TN-MDA-52-7445_Sentinel-1%20Level%201%20Detailed%20Algorithm%20Definition_v2-4.pdf/83624863-6429-cfb8-2371-5c5ca82907b8
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Stopa and Mouche (2017) extended the idea of Schulz-Stellenfleth et al. (2007) by using 
a neural network method to empirically relate SAR image properties to SWH and wave 
periods. The neural network was trained using collocated data generated from the Wave-
Watch III (WW3) numerical model (Ardhuin et al. 2010) and independently verified with 
observations from altimeters and buoys. They tested two approaches on Sentinel-1A ima-
gettes; in the first one, they decompose the shape of the image spectrum into orthogonal 
components, similar to what was proposed by Schultz-Stellenfleth et al. (2007). In the other 
one, they proposed the simplification of the parametric model by reducing the number of 
input parameters to 6 (normalized radar cross-section azimuth cutoff, normalized variance, 
skewness, peak wave length, and peak direction of the SAR image). A refinement of the 
first approach of Stopa and Mouche (2017) was also proposed by Quach et al. (2021) who 
used a neural network trained using altimeter SWH data. In an approach which is much 
more blind, a convolutional neural network was used by Sihan et al. (2020) to establish an 
empirical relationship between the SAR image (expressed as normalized radar cross) and 
SWH without needing to calculate feature parameters from SAR images.

All these methods currently remain at a relatively low (research) technology readiness 
level and do not replace the spectral inversion algorithms currently used by the Senti-
nel-1 SAR processing center to deliver operational products. However, the algorithm of 
Stopa and Mouche (2017) is implemented in the latest version of the Sentinel-1 Level 2 
processor.

Fig. 5  Upper left: SAR image cross-spectra, |||P
(
k
)||| . Upper right: Nonlinear part of SAR image cross-spec-

tra, 
||||
P����

(
k

)||||
≡ ||||

P

(
k

)
− P����

(
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)||||
 . Lower left: Quasi-linear part of SAR image cross-spectra, 
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k

)||||
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Lower right: Ocean wave spectra, S
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 . See Appendix 2 for the definition of the different terms
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(2) Performance and Limitations

Starting with the ERS-1 mission, and continuing with the ENVISAT mission, as well as 
now with the Sentinel-1 missions, wave spectra are operationally provided over the open 
ocean thanks to imagettes collected with the so-called Wave Mode (called WM for ERS 
and ENVISAT or WV for Sentinel-1). With the Sentinel-1 mission, the so-called Stripmap 
mode is also compatible with the estimation of wave spectra.

For these missions, the wave spectra are estimated as explained above, using the quasi-
linear inversion of image cross-spectra, combined with an empirical parameterization of 
the nonlinear term. Extensive geophysical validation of these ocean wave spectra has been 
performed from the Envisat ASAR WM instrument and currently from the Sentinel-1 WV 
instrument (Hadjuch et al. 2021). Considering the wave spectra within the spectral domain 
resolved by the SAR, the overall performance of the mean wave spectral parameters is 
listed in Table 4 for the two swaths of Sentinel-1 WV mode, where the reference is taken 
from hindcasts from WW3. Further validation of wave parameters based on cross-assign-
ment of wave partitions between SAR wave spectra and WW3 spectra can be found in the 
ESA annual report (Hajduch et al., 2021).

The scatterplots of effective SWH (i.e., significant wave height computed within the 
spectral domain resolved by the SAR) between Sentinel-1B and WW3 are shown in Fig. 7 
for the two swaths of WV mode.

Fig. 6  Upper left: Observed SAR (Sentinel 1-B) image cross-spectra—real part, ℜ
{
PSAR

}
 . Upper right: 

Observed SAR image cross-spectra—imaginary part, ℑ
{
PSAR

}
 . Lower left: Retrieved SAR ocean wave 

spectra, S . Lower right: Collocated Wave Watch III (WW3) model wave spectra. See Appendix 2 for details
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Because systematic SAR acquisition in a specific wave mode is mainly switched-on 
away from the coastal zone, results on the assessment of SAR wave spectra or wave param-
eters based on in situ buoy observations are relatively scarce. However, using the method 
initially developed by Collard et  al. (2009), Wang et  al. (2022) were able to assess the 
significant wave height of the swell part with buoy data. This research was undertaken 
using the so-called “fireworks technique,” which consists of propagating the swell proper-
ties extracted from the SAR spectra back toward the swell generating zone (gathering all 
the swell measurements originating from the same storm event) and then forward in time 
along their propagation path, until swell reaches the coast. This method allows a significant 
increase in the spatial and temporal collocations with in situ reference data. However, it is 
limited to assessing swell wave heights and relies on some physical assumptions such as 
neglecting wave-current interactions. Figure 8, taken from Wang et al. (2022), illustrates 
the results obtained using this method with a 4-year database of Sentinel-1A/B observa-
tions. A bias and RMSE of 0.18 m and 0.5 m were reported in this comparison, and a simi-
lar positive bias was found when the same approach was used but with the WW3 model as 
the reference. Overall, the method allowed Wang et al. (2022) to propose an empirical cor-
rection on the estimation of the swell wave height from the Sentinel-1 SAR WM.

Table 4  Performance of 
Sentinel-1b WV ocean wave 
spectra parameters with respect 
to WaveWatchIII

Number of spectra is 25  K globally distributed, and time period is 
one month. The parameters are computed within the spectral domain 
resolved by the SAR for both Sentinel-1 and WW3

Wave spectra parameter Bias RMSE Mean Swath

Significant wave height −0.03 m 0.4 m 1.5 m wv1
Mean wave period 0.7 s 0.8 s 10 s wv1
Mean wave direction −0.7° 39° – wv1
Significant wave height 0.1 cm 0.5 m 1.5 m wv2
Mean wave period 0.6 s 0.9 s 10 s wv2
Mean wave direction 0.7° 35° – wv2

Fig. 7  Scatterplot of effective significant wave height obtained from Sentinel-1b WV wave spectra versus 
that obtained from the WAVEWATCH III numerical wave model. Left: Swath WV1, Right: Swath WV2. 
These histograms were obtained from one month of global data (January 2021)
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Concerning methods that are not based on a spectral inversion technique, one can cite 
the results of Stopa and Mouche (2017) who showed that their methods provide reason-
able accuracy on SWH, for conditions up to 13  m (bias less than 0.25  m, RMSE from 
0.50 to 0.70 m depending on the control data set and number of input variables). Results 
on the wave periods are also promising, although the authors mention that more work is 
still necessary to improve the empirical model. According to Quach et  al. (2021), SWH 
was obtained from SAR Sentinel-1 observations with 0.3-m RMSE relative to independent 
altimeter observations.

In parallel to the systematic validation of SAR wave products, experiments on assimilat-
ing SAR wave spectral parameters into numerical wave model show a positive impact on 
the model output (see Sect. 3.1.1 and e.g., Abdalla et al. 2010; Aouf et al. 2012; Aouf et al. 
2021).

2.2.4.3 Surface Current from SAR Synoptic maps of ocean surface wind, waves and cur-
rent from space are important inputs to better characterization and parameterization of 
oceanic mesoscale and sub-mesoscale dynamics, as well as in support of advances in 
ocean–atmosphere research and modeling activities (Bourassa et  al. 2019). In coastal 
ocean areas, the current is usually measured from in situ surface drifters (Lagrangian), 
fixed moorings (Eulerian) using acoustic Doppler Current Profilers (ADCP) or land-
based High Frequency (HF) radar (see Ardhuin et al. 2009a; Röhrs et al. 2015). How-
ever, these measurements are irregular in space and time, with coverage only over a 
limited area, yielding observation gaps. Spaceborne SAR missions such as TerraSAR-X 
(Romeiser et al. 2010), Tandem-X (Romeiser et al. 2014), Envisat (Chapron et al. 2005; 

Fig. 8  Significant wave height of the swell part estimated from for S-1A/B against buoy data, with coloca-
tions based on the “fireworks technique.” The data set includes about 4 years of data (2016–2020)—From 
Wang et al. 2022
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Johannessen et al. 2008) and Sentinel-1 (Moiseev et al. 2020a, b) have shown the capabil-
ity to provide measurements of the radial component of Lagrangian mean velocity vector.

The phase information in the ocean backscatter recorded with a SAR can be used 
to obtain radial velocity, which has been shown to provide valuable information on the 
near surface wind speed and ocean surface current. Two techniques are used to derive 
the radial velocity from SAR measurements; the Along-Track Interferometry (ATI) and 
the Doppler Centroid frequency (DC).

(1) Concept of Along-Track Interferometry (ATI)

The concept of the Along-Track Interferometry (ATI) technique is to measure the 
received phase signal difference between two SAR observations of the same surface 
shifted in space or time or both. The space or time shift is called the baseline. In ATI, 
this is achieved by measuring the phase difference between two complex SAR images 
(master (IM) and slave (IS)) acquired near simultaneously with a physical baseline sep-
arating the two antennas along track. In order to preserve coherency between these 
two ocean images, the baseline or equivalently the time shift must be small,  i.e. less 
than  200 m or 0.03 s, respectively. For an ideal ATI system, the phase difference Δ� can 
be achieved from the product of the two complex SAR images and expressed as:

where Δt is the time shift between observations of master and slave, fdc is the Doppler fre-
quency, ΔV = V

s
− U is the relative velocity vector between satellite and moving scatterer, 

B∥ is the along-track baseline, V
s
 is the satellite velocity vector, U is the surface scatterer 

velocity vector, k
r
 is the radar wavenumber vector, and n = 1 for a bistatic case and n = 2 

for a monostatic case. The first term on the right-hand side of the last line of Eq. (9) is the 
orbit/attitude term (i.e., geometric), while the second term is the geophysical contribution 
caused by the motion of scatterer on the surface. We shall later see that the geophysical 
term consists of an artifact velocity of the imaging process, and a genuine velocity from the 
Lagrangian mean surface current.

(2) Concept of Doppler Centroid Anomaly (DCA)

The concept of the Doppler Centroid Anomaly (DCA) technique is to estimate the 
Doppler Centroid (DC) frequency from the azimuth spectra of a single-look complex 
(SLC) SAR image (or from complex raw SAR data) (Bamler 1991; Engen and Johnsen 
2015). For high-resolution DC estimates, it is recommended to use SLC data to avoid 
biases caused by variations in intensity within the estimation area. The estimated DC 
can be expressed as:

(9)
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where f ant
dc

 is the contribution from the antenna electronic mispointing depending on the 
off-boresight angle ( � ), while the two other terms on the right-hand side of Eq.  (10) are 
the same as for the ATI. The second term on the right-hand side of Eq. (10) is called the 
Doppler Centroid Anomaly (DCA) and represents the geophysical contribution to the esti-
mated DC. As for the ATI, the geophysical term contains an artifact velocity caused by the 
imaging process, and a genuine velocity from the Lagrangian mean surface current. In that 
sense, the ATI and the DCA techniques measure the same geophysical quantity, but the 
contributions from system effects differs in general. This has recently been demonstrated 
by comparing Sentinel-1 and Tandem-X surface velocity measurements (Elyouncha et al. 
2022).

(3) Surface Current Retrieval

Equations (9) and (10) show that the DC frequency, or the ATI phase recorded over the ocean, 
differ from the values predicted by satellite orbit/attitude and antenna electronics. These differ-
ences in DC or ATI phase are a direct measure of the line-of-sight (radial) velocity of the mov-
ing scatterer on the ocean surface. They are thus sensitive to surface currents induced by wind 
drift (Ekman), ocean waves (Stokes drift), tides (tidal) and ocean topography (geostrophic). 
Unfortunately, to a first order, the geophysical DCA and ATI signals are both governed by an 
artificial velocity (the so-called wind/wave DC bias), which in many cases obscures the under-
lying true Lagrangian mean surface current velocity.

Any retrieval of the underlying ocean surface current from DCA or ATI measurements 
requires the prediction and removal of the wind/wave DC bias (Chapron et al. 2005) from the 
geophysical signal. The most commonly used approach is to neglect any wind/wave/current 
interaction and predict and remove the wind/wave DC bias from the measured DCA followed 
by converting the residual DCA to a line-of-sight current velocity projected to ground range:

where f bias
dc

 is the wind/wave DC bias parameterized to show its dependency on wind, wave 
and imaging geometry. There exist both physical-based models for f bias

dc
 (Chapron et  al. 

2005; Johannessen et al. 2008; Romeiser and Thompson 2000; Pedersen et al. 2005; Said 
et al. 2015; Mouche et al. 2008) and empirical ones (Mouche et al. 2012; Moiseev et al. 
2020a b; Moiseev et al. 2022).

The model of Chapron et al. (2005) interprets the net velocity induced by the near-sur-
face wind as the mean line-of-sight velocity that the radar-detected scatter elements feel 
when riding on the longer waves. As the scatter elements are tilted by longer waves, the 
NRCS varies along the wave profiles due to modulation effects (tilt- and hydrodynamic), 
leading to correlation with horizontal and vertical orbital velocities. These modulation 
effects are elegantly formulated by expressing the wind/wave DC bias as:

where kr is the radar wavenumber, u and w are the horizontal and vertical velocities, �o is 
the NRCS, �i is the local radar beam incidence angle, Δ�i represents the effect on �i due 
to local tilt induced by the longer waves and the brackets stand for mean values . We note 
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from Eq.  (12) that the DCA model implicitly requires a backscatter 
(
�o
)
 model. Several 

backscattering models have been applied in the literature to support SAR Doppler analysis 
(Johannessen et al. 2008; Romeiser and Thompson 2000; Said et al. 2015, Mouche et al. 
2008). It is basically through the backscatter modulation that the polarization and inci-
dence angle dependencies enter into the expression for the wind/wave DC bias.

Despite the potential of SAR to measure ocean surface currents, there are limitations 
and several challenges related to the utilization of DCA and ATI measurements such as:

• The dynamic range of DCA is relatively small ( ±60Hz).
• The DC contributions from antenna and satellite attitude/orbit are difficult to predict to 

the required accuracy, and the signal may obscure the geophysical signal.
• Accurate calibration of the DC and ATI signal is difficult for open ocean areas.
• The ATI phase coherence limits the available range of along-track baseline (Zebker and 

Villasenor 1992; Engen and Johnsen 2015).
• The DCA and the ATI are biased by the apparent velocity signal from surface waves 

(the so-called wind/wave DC bias). This signal is often much larger than the mean 
Lagrangian surface current signal.

• A geophysical model function (GMF) is required, which precisely describes the geo-
physical processes that contribute to the measured DCA or ATI.

• The DCA from a mono-static SAR or the phase from an ATI system provides only a 
line-of-sight component of the surface velocity field.

User requirements on the surface current are stringent, with a relative performance error 
of 0.1 m/s and a dynamic range of 0.1–5 m/s at a resolution down to 5  km2 (see require-
ments from WMO6). It is thus mandatory to have a good GMF to predict the wind/wave 
DC bias, and very precise estimates of local wind vector and the sea state.

Fig. 9  Left: Simulated Doppler centroid anomaly (DCA) f bias
dc

 (in Hz) as function of incidence angle for VV 
(red) and HH (blue) polarizations. The wind speed is fixed at 5 m/s and the radar look direction is upwind. 
The vertical bars reflect the variation in DCA with a change in wave age of 10%. Right: Simulated DCA as 
function of wind speed for VV (red) and HH (blue) polarizations at an incidence angle of 33 degrees. The 
radar look direction is supposed to be upwind

6 https:// space. oscar. wmo. int/ varia bles/ view/ ocean_ surfa ce_ curre nts_ vector.

https://space.oscar.wmo.int/variables/view/ocean_surface_currents_vector
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The dependency of the DCA on the imaging geometry, polarization, wind field and sea 
state are shown in Fig. 9. Figure 10 shows images of NRCS and DCA as measured by Sen-
tinel-1 in the interferometric wide swath mode with clear signatures of the wind/wave DC 
bias and the underlying mean Lagrangian surface current.

2.2.4.4 Wind from SAR To date, the only official and operational ocean surface wind prod-
uct is part of the ESA/Copernicus Sentinel-1 C-band SAR product family. This Level 2 (L2) 
ocean product also includes ocean waves (see 2.2.4.2) and radial surface velocity measure-
ments (see 2.2.4.3.2). All Sentinel-1 scenes acquired over the ocean are processed into the 
Level-2 Ocean product and disseminated through the Copernicus hub.7

As defined, the only parameter used in the wind algorithm of ESA to inverse the SAR 
signal into an ocean surface wind field is the measured NRCS in co-polarization (VV or 
HH). In fact, this approach is directly derived from scatterometry (see Sect.  2.2.2) and 
relies on GMF between the NRCS and surface wind speed and direction. However, the 
SAR instruments and mission peculiarities are very different from those of scatterometers, 
yielding other challenges in order estimate the two ocean wind vector components (speed 
and direction). Existing SARs have one single antenna pointing in the satellite across-track 
direction. This means that there is only one viewing angle per wind vector cell (WVC), i.e., 
one single NRCS measurement in co-polarization whereas the GMF depends both on the 
wind speed and direction, leading to an under-constrained inverse problem. For operational 
purposes, the usual approach is to use the wind direction from a NWP model to further 
constrain the wind inversion. In the existing the L2 Ocean product, this method relies on a 
Bayesian approach from Portabella et al. (2002) to merge the NRCS information computed 
at 1 km and the wind vector from the NWP interpolated at 1 km. The cost function is thus:

With UNWP

10
 the a priori wind field associated to ΔUNWP

10
 error, and Δ�pp

0
 the NRCS error 

(pp is the index for the SAR polarization condition).

(13)J
(
U10, �

)
=

[
�
pp

0
− GMFpp

⋅⋅
(
U10, �

)

Δ�
pp

0

]2

+

[
UNWP

10
− U10

ΔUNWP
10

]2

Fig. 10  Left: intensity image from the S1-B in the Interferometric Wide Mode acquired at south-west coast 
of Norway; overlaid is the wind direction (black arrows). Right: Doppler centroid anomaly from the same 
data take, showing the signature of the wind front on the left side of the image and the Norwegian Coastal 
current in the lower right part of the image. The size of the image is 267 km × 166 km

7 see https:// senti nels. coper nicus. eu/ web/ senti nel/ missi ons/ senti nel-1/ data- produ cts.

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/data-products
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The way forward is to derive the wind speed and direction from the radar-measured 
quantities by adding constraints to the inversion scheme in order to minimize the use of 
ancillary wind from NWP. To this aim, two families of approaches exist, based on the 
idea that SAR provides much more information than just NRCS in co-polarization at 
1 km resolution.

The first approach is to rely on the analysis of the NRCS at high resolution (tens 
or hundreds of meters) to detect features aligned with the wind direction, and use 
them instead of, or in conjunction with, the NWP information. Several methods have 
been tested, including wavelet analysis (Du et  al. 2002; Zechetto 2018], local gradi-
ents (Koch 2004; Zhou et al. 2017) and Fourier analysis (Gerling 1986). This approach 
mainly assumes that rolls are organized in the marine atmospheric boundary layer 
along with the wind direction. However, there have been several sets of evidence 
showing that the rolls and the wind are not aligned. Moreover, there are situations 
when they cannot be detected in the SAR image (Wang et al. 2020) and/or do not exist 
in the marine atmospheric boundary layer, preventing any wind direction estimate. For 
example, depending on the atmospheric stability, the dominant atmospheric signature 
can be linked to convective cells (Stopa et al. 2022). Convolution neural networks have 
also recently been used to capture the relationship between wind direction and textures 
in the SAR image, possibly including patterns that are different and more complex than 
streaky patterns of the roll signatures.

• The second approach is to rely on other radar parameters to constrain the wind inver-
sion. The proposed methods use one of the following information:

• Geophysical Doppler information in co-polarization: the geophysical Doppler anomaly 
(see (2)) has a dominant component from the local sea-state at C-Band with a depend-
ency to the wind-sea direction complementary to the NRCS. Based on a GMF which 
relates Doppler anomaly to wind speed and direction as a proxy for the local sea-state, 
Mouche et  al. (2012) demonstrated how the geophysical Doppler signature derived 
from Envisat/ASAR helps to constrain the wind direction retrieval, leading to a more 
realistic wind field in complex situations such as low-pressure systems or atmospheric 
fronts. However, as explained in the previous section, the Doppler anomaly is also 
impacted by other geophysical phenomena than just the local wind sea, such as the 
underlying ocean surface current (Chapron et al. 2005) or waves (Moiseev et al. 2020a, 
b) not in equilibrium with the surface wind. Taking into account the impact of such 
phenomena on the Doppler anomaly is still an active domain of investigation.

• Normalized radar cross section in cross-polarization: the strong relationship between 
the cross-polarization NRCS and the wind speed has been demonstrated with Radar-
SAT-2 with images acquired over buoys in quad-polarization by Vachon and Wolfe 
(2011). In particular, the wind direction dependency was found to be weaker than in 
co-polarization and the wind speed dependency stronger. This led Zhang and Perrie 
(2012) to propose using this new cross-polarized channel for wind speed estimate in 
Tropical Cyclones with Sentinel-1 and Radarsat-2 SAR. Mouche et al. (2017) further 
suggested combining the two channels (co- and cross-polarized) to take advantage of 
their complementary characteristics; the co-polarization NRCS being more efficient at 
low wind speeds while the cross-polarization NRCS takes over for high wind speeds 
when its signal-to-noise ratio becomes significant. This allowed the first estimate of 
ocean surface wind speed from space at high resolution in the vortex of category-5 hur-
ricanes (Mouche et al. 2019).



Surveys in Geophysics 

1 3

• Co-and-cross-phase coherence (CCPC): the relationship between the CCPC computed 
from VV and VH channels and the wind direction has been presented by Zhang et al. 
(2012) with Radarsat-2 and then further documented with respect to wind speed and 
direction by Longepe et al. (2021). In particular, an odd and significant azimuthal mod-
ulation has been found, increasing with both wind speed and incidence angle. Trans-
lated into a GMF, this opens perspectives for including this new radar parameter in the 
cost function to constrain the wind field retrieval.

• SAR image cross-spectrumof wind-driven waves : with the improved spatial resolution, 
recent SAR such as Sentinel-1 can now detect short-scale wind-waves (in equilibrium 
with the wind) signature. Li et al. 2019) proposed a method (called MACS for MeAn 
Cross-Spectra) based on the filtering of SAR image cross-spectra in the range of wave-
lengths between 15 and 20 m allowing to capture both the radar cross-section variabil-
ity and its time evolution. Thanks to the contribution of intermediate waves, Li et al. 
(2019) showed that this spectral information is sensitive to wind speed and direction. In 
particular, the sign of the imaginary part of MACS (IMACS) is considered as a promis-
ing criterion to reduce the wind direction ambiguity in the inversion of high-resolution 
wind fields from SAR imagery.

Performance and limitations
Figure 11a shows an example of wind field retrieval in a region of variable wind (Medi-

terranean Sea, Gulf of Gibraltar). Figure  11b shows a statistical comparison of winds 
derived from the SAR of Sentinel-1A in the interferometric wide swath mode, against 
winds from the ECMWF analysis, obtained over 24 days of June 2022. The bias is small 
(~ 0.18 m/s) and the standard deviation slightly larger than that from scatterometer winds. 
Note that performance is seasonal; typically, the mean bias oscillates around 0.1 m/s with 
a ± 0.25 m/s amplitude, and the root mean square difference oscillates around 1.6 m/s with 
a ± 0.2 m/s amplitude.

Fig. 11  a Surface Wind measurement field from SAR -Sentinel-1 observations on June 8th 2017, over the 
Strait of Gibraltar. From ESA website https:// senti nels. coper nicus. eu/ web/ senti nel/ user- guides/ senti nel-1- 
sar/ produ ct- types- proce ssing- levels/ level-2. b: density plot of SAR vs ECMWF reanalysis wind speed by 
Sentinel 1A ESA L2 products in polarization VV and acquisition mode Interferometric Wide Swath from 
June 1st 2022–June 24th 2022. Courtesy of Charles Peureux

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-2
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-2


 Surveys in Geophysics

1 3

2.2.5  Near‑Nadir Scatterometry

2.2.5.1 History and Evolution The choice of a near-nadir looking real-aperture configura-
tion was proposed in the 1990s to measure directional spectra of ocean waves (Jackson 
1981; Jackson et  al. 1985a) as an alternative approach to that based on SAR-images. A 
space-borne concept with one rotating antenna at near-nadir incidence was proposed by 
Jackson et al. (1985a), but not implemented in space at that time. Later in the 2000s, the 
same concept with a rotating antenna at 10° incidence was combined with a nadir measure-
ment (Hauser et al. 2001). Finally, this real-aperture rotating concept was selected for the 
CFOSAT mission with the surface wave investigation and monitoring (SWIM) instrument 
combining five off-nadir beams (around approximately 2°, 4°, 6° 8°, and 10° incidence) and 
one nadir-beam. The novelty of this mission is also that it provides ocean measurements of 
the significant wave height, the full directional wave spectra with wavelengths in the range 
of about [30, 500] m and the associated dominant directions and wavelengths.

The same kind of geometry (near-nadir incidence, scanning geometry) with an addi-
tional Doppler capability was also proposed for the SKIM project proposed for the Earth 
Explorer 10 mission (but not selected).

2.2.5.2 Principle of Wave Measurements The main idea is that at near-nadir incidence (typ-
ically around 8–10° from nadir), the normalized radar cross section is sensitive to the local 
slopes of the sea surface, but almost insensitive to small-scale roughness effects produced 
by the wind, and to hydrodynamic modulations resulting from interactions between short 
and long waves. Hence, in absence of image degradation as encountered with SAR systems 
(see Sect. 2.2.4.2), and thanks to the filtering induced by the choice of a large footprint in 
azimuth (i.e., much larger than the typical scale of the long waves), the modulations of the 
normalized radar cross section can be linearly related to the slope of the long-waves which 
propagate along the look direction. The amplitude of these modulations is maximum when 
the antenna looks in the direction aligned with the wave propagation direction. At angles 
close to 8°-10° incidence this modulation is to the first order proportional to the slopes of the 
long waves. This means that the wave slope spectra are linearly related to the signal modula-
tion spectra (after speckle correction and system response is taken into account). The 360° 
azimuth scanning then enables a construction of the full directional spectrum.

Details on the theoretical basis of this concept can be found in Jackson (1981), Jackson 
et al. (1985a, b). Hauser et al. (2017) presented the principle of wave spectra inversion in 
the configuration of SWIM, whereas a first validation based on the initial data sets pro-
cessed from SWIM observations is discussed in Hauser et al. (2021).

2.2.5.3 Performance and  Limitations Since CFOSAT is so recent, its performance still 
needs to be evaluated in detail after accumulating a sufficient quantity of collocated obser-
vations; however, an initial evaluation of SWIM measurements is presented in Hauser et al. 
(2021). For SWH from nadir, before any correction for cross-calibration with other missions, 
the bias with respect to Jason-3 was found to be very small (less than 1 cm) with a standard 
deviation of 0.35 m. As for the wave spectral parameters, Hauser et al. (2021) showed, using 
a comparison to model data, that the best configuration of SWIM measurements is from 
the 10° beam, as it minimizes the speckle effect and the possible non-homogeneities of the 
backscatter coefficient within the footprint. For this 10° beam configuration, Haoyu et al., 
(2021) established that, compared to buoy observations, SWIM can provide the spectral 
peaks of the main partitions with a RMSE of 0.9 s and 20° for the peak period (converted 
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from the peak wavelength) and peak direction, respectively. Ying et al. (2022) also show that 
the mean omni-directional spectra derived from the 10° incidence beam of SWIM compare 
very well with mean spectra from buoys, with a correlation coefficient above 0.90 for condi-
tions with significant wave height greater than 2 m in cases of swell and greater than 2.5 m in 
cases of wind sea. In the other conditions, the reduction in correlation is attributed to weak 
nonlinear effects due to range bunching (especially for observations from the 6° beam and 
young wind sea) or to parasitic peaks at low wavenumbers due to the amplification of the 
remaining speckle noise.

Figures 12 and 13 illustrate typical results obtained with SWIM. In Fig. 12 an example 
of a directional wave spectrum is shown and compared to a spectrum obtained from collo-
cated buoy measurements. This case illustrates the capacity of SWIM observations to pro-
vide the directional properties of the ocean waves. Figure 13 shows an example of maps of 
two parameters estimated from SWIM observations collected over 13 days: the significant 
wave height and the Benjamin-Feir index (BFI, a parameter defined by Janssen and Bidlot 

Fig. 12  Example of a 2D wave slope spectra (energy density as a function of the wave number of the waves 
in a polar plot representation) obtained from SWIM a compared to a spectrum estimated from a collocated 
Spotter buoy b. The data set was obtained in the Bay of Biscay on February 28th, 2021. In (a)-left plot- the 
180° ambiguity in the propagation direction is not removed. This case corresponds to mixed sea conditions 
with swell and wind sea propagating in opposite directions. The significant wave height is of about 2.1 m. 
The contours in Fig. 12 a display the wave spectrum partitions extracted from the SWIM data (first partition 
with white contours, second partition with red contours)

Fig. 13  Maps of a significant wave height and b Benjamin-Feir Index as estimated from the SWIM wave 
spectra measurements—The parameters are estimated as averaged values of the month of September 2022. 
Courtesy of E. Le Merle
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2009 and Mori et al. 2011) to characterize the probability of occurrence of extreme waves). 
The BFI combines three parameters, which have been estimated with the SWIM wave 
spectra: the significant slope (ratio of significant wave height to dominant wavelength), the 
directional spread and the peakedness of the wave spectra in the frequency domain. As 
such, Fig. 13 presents the first map of BFI index ever derived from space-borne measure-
ments and shows the potential of these CFOSAT observations. 

2.2.5.4 Surface Velocity Measurements Measurement of the centroid Doppler shift in the 
back-scattered echoes of a SWIM-like instrument can also provide an estimate of near-
surface ocean velocities, as demonstrated with airborne observations by Marié et al. (2020). 
As described for SAR systems in Sect. 2.2.4, these velocities are identical to, but noisier 
than those provided by across-track interferometric systems that require more complex set-
ups (Romeiser et al. 2014). Compared to typical SAR systems, near-nadir incidence angles 
are better suited for applying the Kirchoff approximation, and this gives a Doppler velocity 
as the ratio of the mean slope velocity and an effective mean square slope that is a function 
of the radar frequency (Nouguier et al. 2018). This means that the Doppler velocity is a 
vector sum of a wave-induced Doppler that arises from the correlations of slopes and line-
of-sight velocities, and the near-surface current that comes into the dispersion relation of all 
the waves that contribute to the slope spectrum. For average wind and wave conditions, the 
magnitude of the wave-induced Doppler is of the order of 2.6 and 2.2 m/s for Ku- and Ka- 
band respectively (Marié et al. 2020). Given the broad range of wavelengths that contribute 
to the mean square slope, the current measurement, which is obtained by subtracting the 
wave-induced Doppler from the measured Doppler velocity, is a convolution of the current 
profile over the top two meters. A next-generation SWIM-like instrument with Doppler 
measurements capability could therefore provide the projection of the near-surface current 
on the measurement azimuth, with the current vector obtained by combining different azi-
muths (Ardhuin et al. 2019a). The current measurement is generally improved by measuring 
waves as short as 30 m, hence resolving most of the spectral components that contribute to 
the surface Stokes drift. Such a concept has been a focus for the global mapping of mes-
oscale currents and Stokes drift (ESA 2019).

2.2.6  Recent Trends and Perspectives

Satellites form an essential part of the global observing system to both measure and moni-
tor surface wind, waves and currents for scientific and operational applications, however 
several important aspects still remain beyond the capability of today sensors. Moreover, a 
number of grand challenges exist in integrating the knowledge acquired by earth observa-
tion into earth system models.

The first limitation of present satellite capability relates to temporal sampling. Contrary 
to most ocean variables, winds and waves are rapidly evolving phenomena, where condi-
tions can change markedly in a matter of hours. While the global coverage, spatial resolu-
tion and accuracy of satellite observations offer satisfactory capability for the measure-
ment of waves, the temporal sampling of ocean winds remains inadequate. User surveys 
frequently highlight requirements for hourly to sub-hourly observations (WMO8) driven 
by various operational and scientific imperatives (diurnal variability, hurricane dynamics, 

8 https:// space. oscar. wmo. int/ varia bles/.

https://space.oscar.wmo.int/variables/
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mesoscale wind systems, NWP requirements, etc.). This need for more frequent wind 
observations has stimulated the development of “New Space” solutions like GNSS-Reflec-
tometry, which exploits bi-statically reflected signals of opportunity from Global Navi-
gational Satellite Systems like GPS and Galileo to derive information about the Earth’s 
surface. GNSS-R for ocean winds was successfully demonstrated on board the UK Tech-
DemoSat-1 mission (Foti et al. 2015; Unwin et al. 2016) and later with the NASA CYG-
NSS constellation (Ruf et  al. 2018). Recent research revealed the critical importance of 
GNSS-R calibration to account for instrument and platform effects linked to the bistatic 
scattering geometry, platform attitude and spatial and temporal changes in GNSS direct 
power levels (Hammond et al. 2020). Once calibrated, GNSS-Reflectometry can provide 
valuable wind speed information (RMSE ~ 2 m/s for winds < 20 m/s) with successful exam-
ples also of hurricane winds observed with TechDemoSat-1 (Foti et al. 2017) and CYG-
NSS (Saïd et al. 2021). GNSS-R is relevant also to Earth Observation applications such 
as soil moisture, freeze–thaw state over permafrost, inundation and wetland mapping and 
above-ground biomass that are the primary objectives of ESA’s second Scout mission, 
HydroGNSS, due for launch in 2024 (Unwin et al. 2021). The use of navigation signals of 
opportunity and multi-platform, multi-static, sensing to address multiple monitoring needs 
presents GNSS-Reflectometry as a paradigm shift for Earth Observation.

The second limitation of present satellite capability relates to the growing recognition 
of the fundamental role in the global Earth System of wind/wave/current interactions and 
ocean surface dynamics at scales below 10 km (Lapeyre and Klein 2006; Lévy et al. 2012; 
Klein et al. 2019; Villas Bôas et al. 2019; D’Asaro et al. 2020). High-resolution satellite 
images of sea surface temperature and ocean color reveal an abundance of ocean fronts, 
vortices, swirls, and filaments at horizontal scales less than 10 km that permeate the global 
ocean, especially near mesoscale jets and eddies, in coastal seas and close to sea ice mar-
gins. These sub-mesoscale phenomena are associated with intense vertical ocean veloci-
ties—orders of magnitude greater than average—that connect the turbulent air-sea bound-
ary layer and the ocean interior. Small scales also mediate exchanges between the land, the 
ocean and the cryosphere, with intense and highly variable processes that support strong 
interactions not just with the atmosphere, but also with coastlines, underwater bathymetry 
or sea ice. These small-scale phenomena shape condition the pathways, dispersion and lat-
eral transports of terrestrial freshwater, nutrients, oil, plastics and other pollutants, which 
are highly relevant to natural habitats, the economy and society. To date, single satellite 
sensors cannot provide the comprehensive observations of surface winds, waves and cur-
rents needed to make progress. SEASTAR is a new mission concept based on three-beam 
along-track SAR interferometry (Gommenginger et al. 2019) that proposes the delivery of 
high-quality, high-resolution imaging of two-dimensional surface current and wind vec-
tor fields, as well as directional wave spectra to observe and quantify these fast-evolving 
processes on daily to multi-annual scales, across different ocean conditions and latitudes, 
in order to confront models and support research on submesoscale dynamics, vertical pro-
cesses and wind-current-wave interactions in coastal, shelf- and ice-covered seas.

In addition to the exploitation of satellite missions with a primary objective of ocean 
monitoring, opportunities offered by other missions are being explored and new appli-
cations of these datasets proposed. For example, Kudryavstev et  al. (2017a) show that 
detailed information of surface ocean waves can be obtained from the Copernicus Senti-
nel-2 multi-spectral instrument (MSI) measurements. Although this mission is dedicated to 
land surface mapping, in coastal regions MSI can provide the directional spectra of ocean 
surface waves with a high spatial resolution under particular conditions (cloud-free areas, 
and appropriate geometrical configuration between the sun, the sensor, and the ocean wave 
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field) based on modulations due to waves in the surface brightness data from optical multi-
channel images in the sun glitter area. This has been further exploited by Kudryavstev et al. 
(2017b) with the analysis of wave transformation (wave/current interaction) in the Agulhas 
current region. Using the information provided by the multi-channel configuration (obser-
vations of the same area separated in time by about 1 s), Yurovskaya et al. (2019) have also 
demonstrated the potential of these Sentinel-2 observations to estimate the surface currents 
at small scales without any assumption on the geostrophic nature of these currents. Another 
interesting development is in the estimation of surface wave properties from the Ice, Cloud, 
and land Elevation Satellite 2 (ICESat‐2). Indeed, this satellite provides high‐resolution 
height estimates of the Earth’s surface from a photon counting LiDAR instrument onboard 
that collects data over various surfaces including open ocean and marginal ice zones. Klotz 
et  al. (2020) show that under particular conditions (waves more or less aligned with the 
satellite track), the estimate of dominant wavelength and significant wave height from the 
analysis of height variations along the track is consistent with independent references from 
buoys or model reanalysis.

2.2.7  Overview of the Sensor Capabilities and Satellite Missions

Each sensor type has its own capabilities and limitations in terms of parameter measure-
ment, coverage, resolution, sensitivity, and accuracy. In Tables 5, 6, and 7 an overview of 
these characteristics for each sensor type and for wind (Table 5), waves (Table 6), and sur-
face current measurements (Table 7) is shown. Of course, these characteristics also depend 
on the platform parameters (orbit, altitude, pointing accuracy, etc.) and sensor generation, 
and are given below only for the typical configurations of the current satellite missions.  

These tables also show that different types of sensors can complement each other to 
overcome intrinsic limitations of each of them individually. However, these opportunities 
are mostly obtained by using collocated observations from different satellite missions at 
cross-over points, as the missions that carry several instruments are scarce. This is illus-
trated in Fig. 14 which presents the timeline of the main satellite missions launched since 
1985 with an objective on wind, waves or current measurement.

Figure 14 shows that the current era is highly favorable for wind and wave measure-
ments, with at least 18 missions providing observations on wind and/or waves. This is 
expected to increase over the coming years with the continuation of the European Commis-
sion Copernicus series, and EUMETSAT MetOp programs in particular.

3  Ocean Weather and Climate

Historically, weather forecasts were traditionally made by meteorologists based only on 
an analysis of conventional observations, many of which were land-based. In recent dec-
ades, the development of satellite observations and the introduction of numerical weather 
prediction (NWP) methods using data assimilation and atmospheric circulation models, 
allowed weather prediction a few days ahead. Increasingly powerful computers continued 
to allow the development of more sophisticated models, providing the basis of a so-called 
quiet revolution in NWP, with the skill of forecasts improving by approximately one day 
per decade, such that faithful forecasts for more than a week ahead have become feasible 
(Bauer et al. 2015).
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Numerical weather prediction (NWP) systems consist of complex numerical models 
that represent the dynamics of the atmosphere, the physical processes, and interactions that 
occur within it. Today, such systems also include other processes within the Earth system 
influencing the weather, such as ocean and land processes. This is an ever-evolving area 
of development, as ever more components are added to represent the interactions between 
these different processes, with the aim of providing an ever more comprehensive repre-
sentation of the Earth system. In this context, the ocean surface is a particularly impor-
tant component of the Earth System, where the sea state, in particular, is determined by 
the action of winds, with interaction of the waves with surface currents, and feedbacks 
from waves and surface currents on both the atmosphere and the ocean (Janssen and Bidlot 
2018; Breivik et al. 2015). The use of satellite-based observations of wind and waves in 
predictive models is also essential for forecasting storm surges, which represent a major 
risk in the coastal areas.

Due to its extensive monitoring capabilities, Earth Observation from space plays an 
essential role in the initialization and improvement of these integrated Earth system mod-
els, which provide global fields of geophysical parameters required for climate change 

Fig. 14  Timeline of the main satellite missions launched since 1985 delivering specific products on ocean 
surface wind, and/or waves. The name of the mission or of the instrument (and mission in parenthesis) is 
plotted in a chronologic way. The color of the segments and arrows refer to the radar altimeter missions 
(yellow), wind scatterometer missions (green), SAR missions (pink), microwave radiometer missions (gray) 
whereas the blue color is for multi-instrument missions which carry a combination of at least two of these 
instrument types. This figure starting in 1985 does not mention the pioneer satellite dedicated to ocean-
ography Seasat, in operation for 3  months in 1978. It does not mention neither Nscat (on ADEOS) and 
Rapidscat (on ISS) because there were in operations for less than 2 years. Different countries and agencies 
are involved in the missions illustrated here: Canada (CSA), China (CNSA), Europe (ESA, EUMETSAT, 
European Commission), France (CNES), India (CSIRO), USA (NASA/JPL, NOAA). See also Appendix 1. 
More details on these missions can be found on http:// datab ase. eohan dbook. com/

http://database.eohandbook.com/
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monitoring, generating future climate projections and for guiding adaptation and mitiga-
tion. The current abundance of global ocean Earth observation datasets, and its future com-
plement, are therefore very important for supporting the development of credible Earth 
system models, through both data assimilation and verification.

3.1  Use of Satellite observations of Surface Wind and Waves for Weather Prediction

3.1.1  Data Assimilation for Numerical Weather Prediction

It is well-known that the skill of numerical weather prediction (NWP) systems generally 
degrades with the forecast range due to error growth with time. The predictability of the 
smallest scales is the least, while large scales are more predictable at the medium forecast 
range.

It is the role of data assimilation methods in NWP to help in minimizing these short-
comings, by combining the latest set of observations with a short-range numerical predic-
tion to obtain an optimal estimate of the current state of the atmosphere and other compo-
nents of the Earth system, termed an analysis. This analysis is used as the initial conditions 
for the next weather forecast. Accurate analyses are an essential component to good atmos-
pheric forecasts. Analyses of surface waves can also improve wave forecasts.

Observations are unevenly distributed both spatially and temporally, as well as being 
subject to errors. As such, they do not provide a complete and accurate global representa-
tion of the state of the Earth system at a given point in time. However, a reasonable esti-
mate of that state can be obtained from a short-range forecast based on the previous analy-
sis and thus on previous observations. Data assimilation adjusts that forecast slightly, in a 
physically consistent manner, as it attempts to match the latest observations as closely as 
possible, taking into account uncertainties in the observations and the short-range forecast.

With the increase in powerful computers, more variables and finer spatial scales are 
described by the models, so that more spatially dense observations are needed for their 
initialization. Moreover, atmospheric dynamics dispersion relationships dictate that these 
finer scales evolve faster than the larger scales, hence also putting more demanding con-
straints on the timeliness and temporal sampling requirements of the global observing sys-
tem (WMO9).

Different mathematical techniques can be used to combine Earth system observations 
with short-range forecasts. There are two broad classes of data assimilation methods. The 
first class consists of instantaneous assimilation (also called sequential assimilation) where 
corrections are undertaken at a local scale and at one time step, such as optimum inter-
polation (OI). Sequential methods are characterized by their simplicity and low compu-
tational cost, which makes them very attractive in operational forecasting. However, the 
corrections are not constrained to be consistent with the time evolution of the atmospheric 
dynamics. The second class takes into account the time evolution and comprises both so-
called 4-D variational methods and the Kalman filter (KF) methods. For further informa-
tion and discussion of these different data assimilation techniques, their benefits and limi-
tations, the interested reader is referred to Lorenc et al. (2015). An intricate part of data 
assimilation obviously relies on how the observations are used to inform (i.e., change) the 
NWP model state. The NWP background error covariances play a crucial role in the spatial 

9 https:// space. oscar. wmo. int/ varia bles/.

https://space.oscar.wmo.int/variables/


 Surveys in Geophysics

1 3

and temporal filtering properties, i.e., to set the deterministic spatio-temporal scales of the 
NWP model error (e.g., Mile et al. 2021). In addition, the estimated error variances and 
observation density are critical in determining the balance of weights between modeled 
and observed information, where too low a weight afforded to the observations minimizes 
its impact on the analysis and forecast, whereas too high a weight afforded to the observa-
tions may result in spurious analysis noise due to overfitting, degrading the subsequent 
model prediction (Stoffelen et al. 2020b).

3.1.1.1 Assimilation of Wind Observations In the tropics, and elsewhere on scales less than 
approximately 500 km, 3D turbulence dictates the atmospheric dynamics, which implies 
that wind observations are most effective for the initialization of these scales in terms of 
forecast skill (Stoffelen et al. 2005). Moreover, ocean vector winds are essential inputs to 
ocean wave, storm surge and ocean circulation forecasts.

Data assimilation formalisms provide a so-called “Best Linear Unbiased Estimate,” 
implying that no local biases should exist between observations and model in NWP data 
assimilation. However, Belmonte and Stoffelen (2019) and Fig.  2 suggest NWP model 
wind biases may reach large values, depending on physical parameterization errors associ-
ated with the atmospheric boundary layer, moist convection and dynamical model closure 

Fig. 15  Relative contribution of data assimilation to error reduction of a 24-h meteorological forecast with 
the numerical model ARPEGE, operational configuration (Météo–France). The contribution of scatterome-
ter observations is shown in pink color (winds from ASCAT of MetOp-A and MetOp-C, HSCAT on HY-2B 
and HY-2C, broadcasted by the EUMETSAT OSI SAF, used in this configuration). The metrics of error 
reduction by data assimilation is the Forecast Sensitivity Observation Impact (FSOI), moist energy norm/
moist adjoint used—see Chambon et al. (2022), and Cardinali (2009) for details on this metrics. The figure 
is plotted for the month of October 2022. Figure from http:// www. meteo. fr/ speci al/ minis ites/ monit oring/ 
FSOi/ index. html, with copyright authorization by Météo-France

http://www.meteo.fr/special/minisites/monitoring/FSOi/index.html
http://www.meteo.fr/special/minisites/monitoring/FSOi/index.html
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and fluxes, among others. When large systematic errors exist, further optimization is rec-
ommended prior to using wind scatterometer data in global and regional models (Stoffelen 
and Vogelzang 2021; Stoffelen et  al. 2020b). Nevertheless, despite these shortcomings, 
scatterometer winds do contribute substantially and beneficially to ocean and atmosphere 
numerical weather prediction and analysis (e.g., Laloyaux et  al. 2016; Stoffelen et  al. 
2013b; Isaksen and Stoffelen 2000; Stoffelen et  al. 2015; Chambon et  al. 2022). This is 
illustrated by Fig.  15 which shows the contribution of satellite data assimilation (and in 
particular assimilation of scatterometer observations) to error reduction in the atmospheric 
forecast. Figure  15 is based on the “Forecast sensitivity observation impacts” (FSOI) 
analysis method applied here on the estimated global moist energy of the atmosphere with 
a moist adjoint technique (see Cardineli 2009; Chambon et  al. 2022 for details on this 
method) and estimated here from 24-h forecast fields of the French global atmospheric cir-
culation model ARPEGE for the month October 2022. It shows that scatterometer observa-
tions contribute to about 6% of the error reduction due to assimilation of satellite observa-
tions. Chambon et al. (2022) also mention that although the impact of scatterometer winds 
is limited to low levels, it is kept at longer forecast ranges compared to other observations. 
Furthermore, they provide unique observations of the ocean surface wind vector in certain 
areas (particularly in the tropics and Southern hemisphere).

3.1.1.2 Assimilation of Altimeter Wave Height Observations The launch of the ERS-1 sat-
ellite in 1991, with the capability of near real-time dissemination of radar altimeter signifi-
cant wave height (SWH) observations, highlighted the potential for the operational assimila-
tion of such data. One of the earliest efforts to utilize this capability was the work done by 
Lionello et al. (1992) who implemented the instantaneous sequential data assimilation tech-
nique known as optimum interpolation (OI) to assimilate altimeter SWH into the third-gen-
eration ocean WAve Model WAM (Wamdi group 1988). The OI sequential data assimilation 
method is an attractive scheme for operational forecasting due to its low computational cost. 
While this method was discarded in operational weather forecasting in favor of variational 
analysis like 3D-Var and 4D-Var, OI is still in use for operational wave data assimilation for 
several reasons. Firstly, variational analysis requires the knowledge of the model adjoint and 
the tangent linear version which are not available for the wave model in its final state (this 
was explored for earlier versions of the WAM model like those of De las Heras et al. (1994) 
and Hersbach (1998) but are not usable for the current model version). Secondly, the volume 
of wave data to be assimilated is not substantial and so it remains compatible with an OI 
scheme. Voorrips and de Valk (1997) compared the results of the variational approach with 
an OI method and did not observe any particularly advantage for the more complex vari-
ational method (presumably because of not having optimally calibrated the tangent-linear 
model). Even if there was an improvement with variational method, this improvement would 
be absorbed by the necessary ad hoc assumptions made to distribute SWH analysis incre-
ments over the whole wave spectrum (see below).

Although the wave forecast skill depends on the numerical wave model itself, it is also 
fundamentally determined by the quality of the driving wind field. Therefore, the use of 
the wind as the control variable in the wave data assimilation scheme may present itself 
as a strong candidate. This implies the adjustment of the wind field such that an optimal 
agreement with the observations for SWH is obtained. This is achievable for the waves 
generated by the local wind (wind waves) where updates to the wind field can be obtained 
in the context of a single time step approach. However, in the case of swell, this approach 
does not work because the swell was generated by remote storms hundreds or thousands 
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of kilometers away and some time (e.g., few days ago). The assimilation of altimeter SWH 
observations data represents an additional challenge because it only provides information 
on the integral over the frequency and direction of the wave spectrum, whereas modern 
wave models are based on a spectral description. Applying the assimilation method results 
in a wave height correction (analysis increments) which must be translated to a correspond-
ing change in the local wave spectrum. For wind-waves, this is easily done by using the 
evolution laws for wind-generated waves, as obtained from idealized model runs. However, 
for swell, it is assumed that the mean wave steepness is invariant during the transformation, 
which may be plausible, but in practice this assumption is hard to justify (Lionello et al. 
1992; Greenslade 2001).

Presently, most global weather centers with wave modeling capabilities are using OI or 
related schemes to assimilate significant wave height from several altimeters like Jason-3, 
Sentinel-3 family and Sentinel-6. The SWH data provided by the radar altimeter (RA) mis-
sions are subject to quality control a quality control procedure to eliminate any erroneous, 
inconsistent or suspicious observations. Footprint contamination by land, ice and slicks 
results in erroneous altimeter measurements. The accepted RA data are then averaged 
along the track to form super-observations (in a process referred to as “superobbing”) with 
scales compatible with the model scales. This is important in order to prevent the intro-
duction of small-scale variability, which cannot be handled by the model that has rather 
smooth fields. RA and model background (also called the first guess) SWH are merged in 
the OI scheme to produce the SWH analysis increments. The corrections are then distrib-
uted over the whole wave spectrum based on the assumptions related to wind-sea (wind-
waves) and swell conditions.

Besides the operational assimilation of SWH in wave models based on the OI method, 
several research studies have been undertaken to develop and test alternative methods. For 
example, a multi-time Kalman Filter (KF) method was developed by Voorrips et al. (1999), 
which allows for the provision of error statistics on the model variables. The KF propa-
gates a forecast error covariance matrix which gives further information on the model state. 
However, such techniques require additional computational requirements, which then has 
implications for the required number of model integrations. For wave data assimilation 
systems, some simplifications are required to reduce the cost of such methods (Voorrips 
1998).

The beneficial impact of the satellite altimeter SWH assimilation on the significant wave 
height forecasts have also been shown to be substantial, particularly at short lead times, 
and in the coastal regions (Saulter et al. 2020). The relatively short ‘system memory’ of the 
wave data assimilation system suggests that wave data assimilation is best performed in a 
rapidly cycling short-range forecast system, on the basis of timely satellite observations.

3.1.1.3 Assimilation of Spectral Information on Ocean Waves The wave mode of the syn-
thetic aperture radar (SAR) provides a wealth of information regarding the detailed descrip-
tion of the surface sea state with global coverage. Unfortunately, SAR is not able to sense 
the whole spectrum of ocean waves, especially in the azimuthal direction and misses quite 
a large range of short waves. However, the resolvable part of the spectrum (typically for 
wavelengths longer than 200 m) can be very useful in a wide range of oceanic applications 
including data assimilation in ocean wave models.

For the first time, the ERS-1 and -2 missions (launched in 1991 and 1995, respectively) 
provided SAR spectra (Level 1b product) on a Near Real-Time and global ocean coverage 
basis, thanks to their wave mode (WM) which provided spectra every 100 km along the 
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track. The inversion of the SAR spectrum to the ocean wave spectrum before assimilation 
was a challenge. The iterative MPI-M (Max Planck Institute for Meteorology) nonlinear 
mapping scheme (Hasselmann and Hasselmann 1991; and Hasselmann et  al. 1996) was 
initially used to obtain the ocean wave spectra. With this method, in spite of the required 
use of a first-guess from the wave model to initialize the inversion, the assimilation of SAR 
WM Level 1b SAR spectra proved to be beneficial for wave forecasting (e.g., Abdalla et al. 
2004, 2006).

ESA started to produce WM Level 2 ocean wave spectra from SARs onboard the ENVI-
SAT and Sentinel-1 family based on the method proposed by Chapron et al. (2001). This 
method does not require a first-guess estimate for the inversion, thanks to the quasi-linear 
approximation used. This is quite a noticeable evolution as the inversion of such observa-
tions before their assimilation is completely independent of the model results. However, it 
was shown that careful quality control filtering is needed to eliminate erroneous and suspi-
cious data (Johnsen 2005; Aouf et al. 2006).

The implemented assimilation procedure itself is based on the assimilation of the 
main parameters (energy, mean period and mean direction) of wave systems identified 
from a partitioning scheme applied to the directional wave spectra (Hasselmann et  al. 
1997; Voorrips et al. 1997; Aouf et al. 2006). For this, the full spectrum is first divided 
into several wave systems using a so-called “watershed” method (e.g., Hasselmann et al. 
1997; Hanson and Phillips 2001). The scheme separates both the model and SAR direc-
tional wave spectra into a set of distinct wave systems. The different wave systems are 
characterized by their total energy, mean frequency and mean propagation direction. 
These integrated parameters of the partitioned systems are assimilated using a simple 
Optimum interpolation (OI) scheme following a cross-assignment procedure to corre-
late the observed systems with the modeled first-guess (FG) ones. The analysis (AN) 
integrated parameters obtained from the OI scheme are used to construct the AN spec-
tra by resizing and reshaping the FG spectra. Both Meteo-France and ECMWF have 

Fig. 16  Mean Bias a, b and scatter index c, d between the MFWAM model SWH and altimeter SWH from 
Jason-3, Saral and Sentinel-3A altimeters for the period July to December 2019. a and c with assimilation 
of SWIM observations (i.e., nadir SWH and spectral parameters) b and d: without assimilation. From Aouf 
et al. 2022
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developed the assimilation schemes for the operational forecast system, assimilating 
first SAR ENVISAT wave spectra, and have shown their positive impact in the predic-
tion (Aouf and Lefèvre 2012). Today, Meteo-France operationally assimilates spectral 
wave data from Sentinel-1 (SAR) and CFOSAT/SWIM (Real Aperture Radar). As dis-
cussed in Sect. 2.2.5.2, thanks to its real-aperture concept, SWIM can resolve dominant 
wavelengths up to about 70  m, i.e., shorter than the 200-m cutoff limit of the SAR. 
This is an interesting complement to SAR not only in terms of spatio-temporal sam-
pling but also for observations of short swell and wind wave situations (for significant 
wave heights larger than about 1.8 m, see Sect. 2.2.5.2 and Hauser et al. 2021). In addi-
tion, the nadir looking beam (0° incidence angle) is used for producing SWH from the 
altimetry signal. It was demonstrated by Aouf et al. (2019) and Aouf et al. (2021) that 
assimilation of SWIM directional wave spectra has a positive impact on ocean wave 
analysis and forecasts. With the current operational assimilation, the bias between the 
SWH from the Meteo-France WAM (MFWAM) model and independent altimeter obser-
vations was shown to be reduced compared to a no assimilation case, particularly in the 
Southern Ocean area (see Fig. 16a, b). The same conclusion was reached for the scat-
ter index (Fig. 16c, d), with a mean reduction of the scatter index of 15% in high and 
mid-latitudes and of 22% in the tropics. Furthermore, it was shown that assimilation 
of spectral information decreases the bias on the dominant period compared to buoy 
observations (National Data Buoy Center -NDBC) by 0.01 s, and significantly decreases 
the scatter index on the dominant period (compared to NDBC buoys): for example, for 
cases with dominant periods larger than 10 s, the scatter index on the dominant period is 
12.4% with assimilation of SWIM spectral information instead of 13.8% with assimila-
tion of SWIM SWH and 14.5% without assimilation. In a study focused on the South-
ern Ocean, Aouf et al. (2021) showed that in this region, where conditions of non-fully 
developed wind seas are frequent, assimilation of wavelengths and directions in addition 
to the SWH not only corrects the significant wave height from biases compared to SWH 
from altimeter match-ups but also significantly corrects the wave age, and the dominant 
wavelength predicted by the model. This study also showed that assimilation of direc-
tional information helps the model to control the transition between wind waves and 
mature sea regimes. It was also revealed that assimilation of spectral information affects 
the predicted atmospheric drag coefficient, dissipation of wave energy, and turbulence 
intensity in the upper layer of the ocean. Therefore, assimilation of spectral parameters 
is expected to substantially improve the descriptions of ocean/atmosphere coupling in 
terms of both momentum and gas flux transfer which remain still poorly represented in 
climate models.

3.1.1.4 Assimilation in  Coupled Earth System Models Many operational systems use 
separate data assimilation systems for the atmosphere, ocean, waves, and land surface 
and sea ice. This will produce an inconsistent analysis as the data assimilation systems 
are independent from each other. Coupled data assimilation aims to ensure the analysis 
of different Earth system components is consistent. This can be achieved by allowing the 
observations to influence the analysis in several Earth system components by changing 
the initial conditions of each Earth system component in a way that is physically consist-
ent with the other components. The Earth system interactions between the atmosphere, 
ocean and waves mean that continued advances in data assimilation and modeling of 
winds, waves and currents will continue to deliver improvements in numerical weather 
prediction as well as in wave and ocean predictions (see e.g., Laloyaux et al. 2016).
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3.1.2  Use of Satellite Observations to Validate or Improve Earth System Models

In addition to assimilation, space-borne observations are very useful for the validation 
of Earth system models and in tuning their parameterizations.

As an example, thanks to the estimation of swell energy decay along its propagation 
path obtained from SAR images (Ardhuin et al. 2009b, 2010), the source and dissipa-
tion terms of the wave energy balance equation have been recently updated in several 
main wave prediction models (WW3, WAM). Wave observations from altimetry have 
also recently been used to assess the spatial resolution required for an oceanic circula-
tion model coupled to a wave model for the purpose of reproducing the spatial gradients 
of significant wave height across the current due to wave-current interactions (e.g., the 
study on the Agulhas current by Marechal and Ardhuin 2021).

On the atmospheric side, it is known that global NWP model wind vector compo-
nents show a lack of natural wind variability (see comments in Table 2), particularly in 
the meridional wind component variability (Belmonte and Stoffelen 2019). Conversely, 
specific wind scatterometers (and in particular ASCAT) has the ability to measure the 
extreme divergence and convergence associated with the updrafts and downdrafts in 
tropical moist convection (Priftis et al. 2021), while a global NWP model does not show 
these (King et al. 2022). Moist convection processes typically have a 30-min time scale 
and cannot be traced by initialization in NWP over the ocean. Moreover, rain cells are 
small in size. The collective effect of moist convection is therefore parameterized in 
NWP models to capture the vertical exchanges of mass, momentum and energy. Another 
source of small-scale exchanges over the ocean is furthermore associated with local 
sea surface temperature gradients and can be detected by averaging wind differences 
over a few days, since the mesoscale ocean conditions are stable, after blurring over a 
scatterometer footprint. Such multi-day averaging will remove scatterometer and atmos-
pheric model wind differences due to the transient weather, but will highlight differ-
ences related to stationary ocean conditions. Such geographical biases may also appear 
due to other systematic errors, for example, in the boundary layer parameterization 
and dynamical model closure (e.g., atmospheric model diffusion operators); see Trin-
dade et  al. (2020). The atmospheric model 10-m stress-equivalent wind errors do not 
only appear at small scales, but also on larger scales as shown in Fig. 2 (Belmonte and 
Stoffelen 2019). These errors are detrimental in Earth system modeling, as they cause 
biases in ocean forcing, wave and storm surge prediction, and because they are associ-
ated with important modes of variability in the tropics and elsewhere, affecting air-sea 
exchanges and hence earth system dynamics. For all these situations, satellite observa-
tions are very useful to better diagnose the limits of the models and further improve 
their representation.

3.1.3  Storm Surge Forecasting

Besides winds and waves, storm surges are among the deadliest and most costly natu-
ral disasters, particularly impacting low-lying areas. Timely wind and surge information 
and short update cycles can also be critical for the accurate prediction of storm surge 
levels, such as for the large storm surge in Venice on November 2019. This surge was 
severely under-predicted, in part due to not considering the most recent ASCAT winds 
(Giesen et  al. 2021). Therefore, numerical prediction of wind, waves and storm surge 
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are usually integrated, such that the improved winds obtained through data assimilation 
of satellite observations are optimally exploited (e.g., Caires et al. 2018).

Coastal storm surge due to tropical cyclones can be particularly devastating in embay-
ments that are poorly protected against high water levels. Dullaart et al. (2020) use Earth 
observation data to assess modeled tropical cyclones and subsequent storm surge fore-
casts. For Hurricane Irma, the modeled coastal storm surge height increased from 0.88 m 
with the ECMWF ERA-Interim reanalysis wind and wave fields (Berrisford et al. 2011) to 
2.68 m with the more recent ECMWF ERA5 reanalysis (Hersbach et al. 2018), compared 
to an observed surge height of 2.64 m, with the same authors finding that further increases 
in model resolution results in a better representation of the wind fields and associated 
storm surges, especially for small sized tropical cyclones. These recent and future advances 
in storm modeling contribute to the accuracy of early-warning systems and coastal flood 
hazard assessments at the global-scale. For climate research, extreme event trends will also 
become more credible.

Storm surge models have been further improved on continental shelves by analyzing 
a several decades of altimeter sea heights (Zijl et al. 2013), which have been exploited to 
improve the surge model bottom friction and bathymetry.

3.1.4  Nowcasting

Due to the continuous improvements in NWP, the role of the weather forecaster continues 
to evolve. Today, in nowcasting applications, observations acquired in near-real time are 
used to monitor the forecast performance of NWP products. It is estimated that over a hun-
dred different satellite instruments contribute to the NWP forecast and therefore forecasters 
cannot monitor all of the corresponding sensor data for detecting forecast errors. Instead, 
local forecast errors are detected in real time by automated quality control tools, as satellite 
observations are received in a timely manner. For example, Fig. 17 shows a global warning 
chart of local areas where the short-range ECMWF forecast is anomalously different from 

Fig. 17  Example early-warning map for large differences between scatterometer observations and wind vec-
tor short-range ECMWF wind forecasts, based on more than a decade of local monthly exceedance prob-
abilities. The largest differences are in yellow and orange. Based on this type of map, alerts can be activated 
for nowcasting applications and on-the-fly as new scatterometer observations come in



Surveys in Geophysics 

1 3

the latest ASCAT scatterometer wind vector observations. Each tile in this map can be 
used as the basis for providing an automated alert using the current instrument data and the 
NWP forecast products.

3.1.5  Improving Characterization and Forecast of Extreme Events

Tropical cyclones (TCs), extra-tropical storms and polar lows have major impacts on dam-
age and human safety in coastal areas from extreme precipitation, extreme winds and storm 
surge. TCs are of great concern because of both their frequency and impact. For example, 
half of the 15 weather disasters of 2019 with over $1 billion of damage were related to 
TCs.

TCs are often defined in terms of wind intensity and size, where size is usually specified 
as the maximum radial extent of wind speed thresholds such as the maximum, 64-, 50-, and 
34-knot winds (kt; 1 knot = 0.514 m/s), and radius of maximum wind speed. The Dvorak 
Technique (Dvorak 1984), a subjective analysis of infrared cloud patterns, forms the basis 
of these wind intensity estimates and has been augmented in the Atlantic and sparingly 
elsewhere with aircraft-based observations such as dropsondes and winds derived from 
the airborne Stepped Frequency Microwave Radiometer (SFMR, Uhlhorn and Black 2003; 
Uhlhorn et al. 2007; Klotz and Uhlhorn 2014; Sapp et al. 2019).

In addition, ocean surface wind field estimates from scatterometer algorithms (Polverari 
et al. 2021; Stoffelen 1998; Figa-Saldaña et al. 2002; Misra et al. 2019) have been provid-
ing valuable wind observations in and around TCs since the early 2000s (Isaksen and Stof-
felen 2000; Brennan et  al. 2009)- see Fig.  18. Performance of existing scatterometers is 
curtailed by extreme winds (i.e., saturation above 70 kt) and Ku-band scatterometers also 

Fig. 18  Wind field from the ASCAT-B scatterometer (arrows with color scale) and from the ECMWF 
numerical weather prediction model (green arrows) overlaid on the infrared satellite image (from meteoro-
logical satellite Himawari). The scatterometer and model winds are from 28 December 2019 21:48, while 
the Infrared image is from 21:30 UTC. The scatterometer winds are colored according to the Beaufort scale 
as shown with the color bar. The black arrows are plotted where the KNMI QC flag is raised (MLE > 18). 
The colored dots give the value of the Maximum Likelihood Estimator (MLE), which indicates how well an 
observation fits the GMF. High MLE values indicate high spatial wind variability in the wind vector cell, 
WVC
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suffer from the presence of rain clouds that prevent reliable estimates of extreme winds. 
Furthermore, since all these microwave sensors are on low-orbit platforms (i.e., polar 

Fig. 19  Successive (time is evolving from left to right and from top to bottom) maps of surface wind speed 
measurements provided by SMOS and SMAP L-band sensors during lifetime of Category 5 severe Tropical 
Cyclone Harold in the South Pacific in April 2020

Fig. 20  Wind speed map obtained from a SAR image during the tropical cyclone Matmo (23rd TC of the 
JTWC western North Pacific 2019 season) on 09 Sep 2018 12:12 UTC immediately prior to landfall near 
Calcutta, India. Wind speed intensity in m  s−1 is given by the color bar
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orbiters with limited swath), the frequency of passes over a given TC from a single satel-
lite is low. To begin to address operational needs, the individual scatterometers and radi-
ometers operating at any time must be used together in a so-called virtual constellation, 
requiring a dedicated effort for intercalibration between wind products from these sensors 
(CEOS10). At extreme wind speeds, brightness temperatures from microwave radiometers 
and, in particular, those in L-band, are of particular interest because of their good sensi-
tivity even at very high winds. Therefore, algorithms have recently been developed using 
L-Band and multi-band radiometers (see Sect. 2.2.1).

In recent years, the joint typhoon warning center (JTWC) has been using SMAP and 
SMOS data to aid with their analysis of surface winds and intensity and this information is 
being saved on the automated tropical cyclone forecasting system (Sampson and Schrader 
2000) for best track preparation. Figure 19 shows an example of the wind field evolution 
during 8 days of the lifetime of the severe tropical cyclone Harold (South Pacific in 2020), 
obtained thanks to a rather dense and coherent coverage with combined measurements 
from SMOS and SMAP.

Detection of high surface wind intensity associated with small intense tropical cyclones 
traditionally present challenges for radiometers and scatterometers due to resolution con-
straints (e.g., L-band derived winds have approximately 40  km footprints). New SAR 
observations have demonstrated their capability to measure high winds near the centers of 
even these very small intense TCs (Mouche et al. 2017). Thanks to their higher resolution 
(about 50  m) combined with a dual-polarized mode (co- and cross-polarized channels), 
SAR observations can provide wind speed estimates of up to 160 kt, and allow the detec-
tion of the local maximum winds in the eyewall belt (Fig.  20 and Combot et  al. 2020), 
including when adjacent to coastal areas. However, SAR measurements also suffer from 
shortcomings in conditions of extreme rain (> 80 mm  h−1) that impact on the wind speed 

Fig. 21  Intensity (kt) versus Time (month and day) estimated from the Dvorak method (light blue squares), 
ASCAT (green squares), SMAP (orange squares), Sentinel1 SAR (purple square), along with Joint Typhoon 
Warning Center intensity (black line) for Chanthu (19th TC of the 2021 western North Pacific season)

10 https:// ceos. org/ ourwo rk/ virtu al- const ellat ions/ osvw/.

https://ceos.org/ourwork/virtual-constellations/osvw/
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estimates (Mouche et al. 2019), similarly to C-band scatterometers. Most importantly, the 
number of SAR observations is limited. The SAR swath width is approximately 500 km 
and scene acquisitions must be ordered 48 h in advance, which requires accurate TC fore-
casts to acquire a scene that includes a TC center. Since SAR wind speeds are new to oper-
ations, challenges also exist relating the high-resolution instantaneous wind speeds to the 
one- and 10-min temporal average TC intensities used by the TC warning centers.

Recent improvements in the space-borne retrieval algorithms discussed above are 
expected to be incorporated after detailed assessment, into operations by TC warning cent-
ers such as the Regional Specialized Meteorological Centers and the Joint Typhoon Warn-
ing Center (JTWC) in Honolulu. An example of SAR products used in such operations is 
discussed in Jackson et al. (2021).

Cross-calibration of winds from individual sensors and algorithms also remains a chal-
lenge. The usual approach is to use as reference in-situ wind speeds measured by drop-
sondes deployed from aircraft flights above the tropical cyclones. This in-situ reference 
data has traditionally been applied to the airborne stepped frequency microwave radiometer 
(SFMR, Uhlhorn and Black 2003; Uhlhorn et  al. 2007; Klotz and Uhlhorn 2014; Sapp 
et al. 2019), to Dvorak wind estimates (Dvorak 1984) and to most passive satellite ocean 
winds. However, recent results indicate that these dropsonde wind measurements and in-
situ moored buoy observations are inconsistent in the overlapping range of 15–25 m   s−1 
(Polverari et  al. 2022). Stoffelen et  al. (2020a) further documents the inconsistencies 
between extreme winds from passive radiometers and scatterometers and present a way 
forward for the cross-calibration of space-borne sensors at different spatial resolutions.

Figure 21 illustrates both the potential and challenge of using wind speed estimates from 
individual sensors and algorithms to estimate the intensity of the super-typhoon Chanthu, 
which occurred in 2021 in the western North Pacific. Subjective intensity estimates from 
the Dvorak technique (Dvorak 1984) are displayed along with intensity estimates based on 
remotely sensed data. It is immediately apparent there can be large differences between the 
subjective Dvorak analysis and the analysis from remotely sensed measurements. These 
large differences can be seen in intensity estimates from the 40-km resolution L-Band sen-
sor SMAP, probably due to the limited coverage and resolution not fully adapted for this 
small and intense TC. Also seen are the intensity estimates using ASCAT winds for inten-
sities under 70 kt (i.e., not during the maximum intensity). The single Sentinel-1 SAR pass 
for this case was directly over the TC center and captured the small radius (< 40 km) of 
maximum wind and the high winds. Operational forecasters are learning how to use these 
intensity estimates for their subjective real-time estimates (Knaff et al. 2021). To help with 
this task, cross-calibration of space-borne products should be improved with a particular 
interest on the radial extent of maximum wind at different thresholds (e.g., 64-, 50-, and 
34-knot winds), taking into account that other parameters like wind intensity present more 
challenges due to sampling or resolution.

New and future capabilities will help to develop more satellite-based tools for opera-
tional needs, and for collecting climatological datasets of extreme winds. Therefore, con-
tinued efforts are needed to strive for more frequent, timely, and accurate surface wind 
estimates in extreme wind environments. The current generation of wind scatterometers, 
SAR and L-band radiometers have already proved their utility, but new generation scat-
terometers will improve on the current suite. For example, the scatterometer of second gen-
eration planned by EUMETSAT (Stoffelen et al. 2017a) to be carried by MetOp-NG will 
use, in addition to a co-polarization channel, the cross-polarization (HV) channel whose 
signal does not saturate at high wind speeds.
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3.2  Wind, Waves and Surface Current Observations as Key Factors of the Earth 
System

The three essential climate variables of wind, waves and surface currents play different 
roles in the Earth system, and are able to be characterized with very different degrees of 
accuracy. From a general (large-scale) climate perspective, surface winds are probably the 
most important variable as they are a leading contribution to air-sea fluxes of heat and 
gases, with a direct impact on the Earth energy balance (Hansen et al. 2011).

This importance of wind, waves and currents is able to be described via that the air-sea 
turbulent flux for any quantity X, as approximated with a bulk expression of the form:

where ρ is the air density CX is the “exchange coefficient” for any variable X, Xa and Xo 
are the values of the variable X on either side of the interface, atmosphere or ocean, U10N 
is the neutral wind at 10 m height, a horizontal vector, and U is the surface current vector. 
This type of flux law is generally applicable to gases, momentum, sensible heat, and latent 
heat (which is the evaporation flux times the specific latent heat for water vaporization). In 
particular, the drag coefficient relates the wind speed to the momentum flux, also known as 
“wind stress.” It is known that this drag coefficient increases with wind speed, at least for 
winds between about 5 and 25 m/s, but that it is also modified by wave conditions (wave 
age, and/or significant slope); see Drennan et al. (2003), Brumer et al. (2017), Zhao and Li 
(2019) for reviews.

Overall, Eq.  (14) indicates that ocean surface wind (or wind stress) is critical to 
exchanges of heat, mass, and momentum and thus largely influence ocean mixing and 
transport and by consequence, water mass formation (water with temperature, salinity and 
density characteristics) and ocean circulation (Waugh et al. 2013).

Besides their contributions to the CX exchange coefficients, waves are also important in 
the way that they (among other effects):

• determine near-surface ocean mixing via breaking and Langmuir circulation (Noh et al. 
2004; d’Asaro et al. 2014), which can bring a strong modification of air-sea fluxes by 
changing the near-surface ocean properties,

• define the energy levels at the shoreline. Wave energy is a key element in extreme sea 
levels and impacts on man-made infrastructure. The coastal wave climate is also a key 
element in the nearshore habitability by marine species (Denny et al. 2004), and human 
usage of coastal areas (Kamphuis et al. 2020), the dominant shaping agent of coastal 
morphodynamics (Anthony 2015; Cox et al. 2020),

• interact with sea ice and icebergs, with complex interactions with different types of ice 
that include the breakup of ice floes, the erosion of icebergs, and attenuation of waves 
by floating ice (Liu and Mollo-Christensen 1988; Ardhuin et al. 2020).

Likewise, ocean currents have an explicit contribution to air-sea fluxes, since, as is seen 
in Eq. (14), these depend on the displacement of the air relative to the surface motion. This 
contribution, although limited because the wind speed is generally an order of magnitude 
larger than the surface current, can be very important where currents are strong and the 
wind is weak, such as along the Equator. Even where it is weak, this effect constitutes a 
“current feedback” that is a dominant term in the work of the wind and the dynamics of 
eddies (Dewar et al. 1987). Taking currents into account for estimating the air-sea flux is 

(14)Flux = �CX

(
Xa−Xo

) ||U10N − U||
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critical for predicting the ocean eddy kinetic energy and the path of western boundary cur-
rents (Renault et al. 2016a, 2016b).

Surface currents also influence the Earth system and its climate in two important ways: 
firstly by transporting ocean properties—and the large-scale current properties are domi-
nant in that regard—and secondly by inducing the mixing of different water masses at the 
surface and subsurface. Geostrophic currents are routinely estimated from measurements 
of sea level anomalies using satellite altimeters (paper within the same special collection), 
and a mean dynamic topography derived from a combination of satellite gravimetry and 
in  situ drifters (Mulet et  al. 2021). Estimates of surface transport have used these geos-
trophic currents and estimates of wind-driven currents for a wide range of applications. 
However, in some regions, such as the Equatorial Atlantic, the seasonal evolution of the 
mixed layer heat content cannot be explained without vertical mixing (e.g., Foltz et  al. 
2019).

For mixing, all spatial and temporal scales are important, many of which are not yet 
observed from space, in particular the near-inertial currents with periods of 12 h to a few 
days (function of the latitude), and that dominate the surface current field in regions like 
the north-east Pacific. These motions have typical spatial coherence scales of a few hun-
dred kilometers, making it possible to be mapped from space with a single Doppler scatter-
ometer with a swath width of 300 km or more (Ubelmann et al. 2021). Doppler scatterom-
eters have the potential to access the full surface current vector at scales larger than 10 km 
(Rodriguez 2018; Ardhuin et al. 2019b), which can be extended down to 1 km with along-
track interferometry synthetic aperture radar (ATI-SAR), as proposed by Gommenginger 
et  al. (2019). Tracking wave dispersion from space in sequences of optical imagery can 
also produce currents at a resolution of 1 km (e.g., Kudryavtsev et al. 2017a), and in prin-
ciple it should be able to produce estimates of vertical current shear that are important for 
vertical mixing (Ardhuin et al. 2021).

The processes related to small spatial scale air-sea interaction and mixing are strongly 
tied to gradients in the wind vector, which impact vertical motion in the ocean and atmos-
phere (Shi and Bourassa 2019) and therefore change the properties of the ocean and atmos-
pheric mixed layer, and in turn the large-scale air-sea interaction (O’Neill 2012; Shi and 
Bourassa 2019) and weather (Parfitt et al. 2016).

In summary, all the above-mentioned processes couple two major dynamical com-
ponents of the Earth system, namely, the atmosphere and the ocean that are themselves 
strongly linked to cryosphere and terrestrial processes.

In this context, one of the challenges for satellite observations is to provide turbulent 
fluxes instead of state variables like wind, waves and currents. Although some advances 
have been made in this sense, for example by providing stress-equivalent wind speed from 
scatterometer observations, this objective remains challenging. One of the main issues is 
the lack of in situ direct measurements of turbulent fluxes that are necessary to build and/or 
assess the appropriate inversion methods.

Nevertheless, satellite observations are very useful when studying the interaction 
between the atmosphere and the ocean. For example, based on the combination of a three-
way coupled ocean-wave-atmosphere modeling system for the Gulf Stream region, and 
wind scatterometer measurements, Shi and Bourassa (2019) concluded that comparisons 
between modeled equivalent neutral winds and satellite winds estimated from scatterom-
eter can be used to assess wind stress parameterizations and wind stress-related feedback in 
coupled models.

Such data can also be used to study the interaction between waves and currents, which are 
of interest not only because of their induced risk of rough conditions for operations at sea, but 
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also because they greatly modify the ocean’s vertical and horizontal transport, particularly in 
coastal regions, and hence may impact bio-productivity. Daniele, 2017) showed from model 
studies verified against altimeter significant wave heights that current gradients can be the pri-
mary source of variability in significant wave heights at scales less than 200 km, including 
important variations down to 10 km.

Satellite-based scatterometers can capture wind variability on the oceanographic mes-
oscale, but currently lack the spatial resolution to measure wind vector variability associ-
ated with sub-mesoscale processes. In contrast, SAR observations have the potential for such 
small-scale studies. Although the possibility to detect, from SAR images, the surface mani-
festation of rolls in the atmospheric boundary layer, atmospheric fronts, convection-induced 
downdrafts, and surface currents has been known since a long time (Fu and Holt 1982; Sikora 
and Young 1995; Young and Sikora 2005), it is only recently that this potential has being 
exploited in a systematic and quantitative way. For example, Wang et  al. (2020) analyzed 
atmospheric boundary layer rolls properties from 2 years of surface roughness imagettes from 
the SAR of Sentinel-1A and 1B using an automated image classification. They could estimate 
that rolls locally induce surface wind speed fluctuations of 8%. Based on the classification of 
SAR image texture proposed by Wang et al. (2020), Stopa et al. (2022), showed how coherent 
structures identified in the SAR imagettes of surface roughness can be used to get informa-
tion on the stratification of the marine boundary layer. From a 5-year data set, they related the 
occurrence of shallow convective cells or wind streaks to the stratification state of the marine 
boundary layer, characterized by the bulk Richardson number. Ayet et al. (2021) illustrated 
how high-resolution images of ocean surface roughness as provided by SAR, combined with 
theoretical and high-resolution numerical models, can provide physical insights into the air-
sea interactions happening in intense ocean frontal regions. It is anticipated that these small-
scale variations winds (identified as roughness modification in the SAR images) are important 
for ocean biological and chemical processes (Bourassa et al. 2019), and that observations of 
winds at small-scales can be very useful for improving our understanding and management of 
ocean resources. All these studies pave the way toward a more systematic use of SAR observa-
tions to characterize the marine boundary layer, in close interaction with the ocean surface and 
subsurface.

Ocean winds, and in particular coastal winds, follow a diurnal cycle and furthermore, mes-
oscale wind phenomena in the atmosphere have an evolution lifetime of only a few hours, 
implying a need for 3-hourly global wind coverage for meteorological forecasting applica-
tions. Such data is needed to observe the coupling of coastal winds and currents described 
above. Presently, despite several scatterometers in space, a gap still exists in the temporal sam-
pling (between 0:00 and 5:30 Local Solar Time (LST) and 12:00 and 17:30 LST). In addi-
tion, not all scatterometer missions deliver the required timeliness for regional NWP and now-
casting applications. This is a subject of ongoing attention in the international meteorological 
community.

It is therefore evident that high spatial and temporal resolution satellite observations aid in 
characterizing processes, such as air-sea exchanges of energy, momentum and gases. We are 
presently at a stage where, to go beyond case studies on this topic, researchers are developing 
methodologies and analyses based on large sets of observations from a diversity of sensors 
and combining them with numerical approaches.
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3.3  Contribution of Satellite Observations for Evaluating Trends and Variability 
of Surface Wind and Wave Parameters

While climate is changing rapidly, it is important to evaluate long-term trends and vari-
ability of a large number of parameters characterizing our planet, including surface wind 
and waves, which play an important role in the air/sea exchanges (and in turn, the climate 
evolution), contribute to the rapid modification of the polar region, and impact the wave 
and storm surge intensity in coastal regions.

The description of the wave climate is also critical information for a wide range of 
applications, including ocean and coastal engineering. Indeed, the design of any ship, off-
shore platform or coastal infrastructure (harbor, shipping terminal, coastal defenses against 
flooding, etc.) is based on the properties (height of waves, drag and inertial forces, impact 
forces, scouring potential, etc.) of events that may occur during the lifetime of the asset. 
Including safety margins, it means that the design can be based on the expected maximum 
wave height that occurs with a return period of 50 years, 100 years, or, for some sectors of 
the Dutch coast 10,000 years. Given the large interannual variability of maximum wave 
heights and winds, in particular in the tropics due to tropical cyclones, a 100-year return 
value for a wave height can be more than 30% higher than a 10-year return value, and long-
time series are necessary to obtain necessary climatology of extreme events.

Of course, the modest length of satellite records cannot be the only source of informa-
tion for studies on trends and variability: we only have 35 years or so for scatterometers 
and altimeters, a little less for SARs, and just data since 2018 for SWIM on CFOSAT. In 
particular, for most of the ocean, estimated trends are still impossible to separate from the 
interannual variability (Dobrynin et al. 2015). However, satellite observations are almost 
unique in providing a global verification of atmospheric and sea state models, in particu-
lar in the open ocean. These satellite observations can be used either for model bias cor-
rections, based on remotely sensed wind speeds (Trindade et al. 2020) and wave heights 
(e.g., Caires and Sterl 2005) and/or use in the assimilation scheme of the reanalysis. The 
resultant fields are then able to be used to monitor the atmospheric and oceanic trends 
and variability over several decades (up to a century), with the same version of the atmos-
pheric or oceanic model, including the same assimilation scheme of the available observa-
tions. In this context, satellites are a source of extensive and detailed measurements over 
long periods, provided that they can generate well-calibrated and homogeneous series of 
observations.

Important efforts have been deployed in recent years to reprocess and reanalyze long 
series of satellite wave observations (Dodet et al. 2020; Ribal and Young 2019; Timmer-
mans et al. 2020) with a twofold objective: (1) reducing the noise of sea state parameters, 
and combining seamlessly different satellite sensors (standard and high-resolution altime-
ters, scatterometers, Synthetic Aperture Radars), (2) proving multi-decadal statistical series 
of both wind-sea and swell and analyzing the trends and variability in relation with large 
scale climate patterns, such as El Niño. The main results obtained in the last 10 years on 
the analysis of long time series of wind or waves observations are summarized below.

A first analysis of trends in wind speed and wave height estimated from altimeter data was 
carried out by Young et al. (2012). This study based on a 20-year data set evidenced some con-
tradictions between the trends found in the 100-year return period of wind speed and that of 
significant wave height. It showed that longer-duration data sets were required to make more 
definite conclusions. Following these first attempts, important efforts have been deployed 
for producing cross-calibrated and validated (against in situ measurements) significant wave 
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heights based on multi-satellite missions over the multi-decadal history of the altimeter era 
(Ribal and Young 2020; Dodet et al. 2020).

Although such time series are still short for some of the climatological analyses, this is an 
important step forward in the use of satellite data for climatological applications. However, 
Timmermans et al. (2020) showed that estimating robust trends and variability in the signifi-
cant wave height from these data remains a challenge: using four climatology data records, 
including the two satellite datasets mentioned above (Dodet et  al. 2020; Ribal and Young 
2020), they highlighted differences in the magnitude and distribution of the changes, demon-
strating the need for further progress in the calibration and quality control of altimeter data, as 
well as on qualification of long time series of buoy data. Estimation of bias between different 
sets of observations and random errors for each type of observation also need to be carefully 
evaluated before these data are used for climate assessments (Dodet et al. 2022).

More generally, one must still be cautious in the interpretation of mean trends of mean 
and extreme values of surface wind and waves. On the one hand, as shown by Meucci et al. 
(2019), reanalyses may lead to spurious trends of the mean values due to the assimilation of an 
increasing number of observations over time. On the other hand, the global sampling by satel-
lite observations is not homogeneous with time (more observations at the present time than 
in the 90 s) and not always compatible with the model sampling, at least for altimeter obser-
vations. Haoyu et al. (2020) showed in particular that the 90th and 99th percentiles of wind 
speed and wave height monthly distributions from altimeter observations are significantly 
underestimated compared to their counterpart from the ERA5 reanalysis, when the sampling 
of satellite data is taken into account. This issue is however slightly attenuated when analyz-
ing annual extreme values of oceanic wind speed and wave height. Young and Ribal (2022) 
also show that the trends in significant wave height estimated from a multi-mission dataset 
are sensitive to the method of data intercalibration (altimeter versus buoys or altimeter versus 
altimeter).

For trends in wind speed estimated from scatterometer, Stoffelen et al. (2015) used col-
location results to verify the accuracy of global climate trends from scatterometer, buoys and 
NWP models. They concluded that the global buoy network is insufficient to determine global 
trends to an accuracy of 0.1 m/s per decade (as recommended by GCOS11), while scatterom-
eters are generally stable and able to provide such accuracy. Several groups have subsequently 
developed methodologies to assess the consistency multi-mission observations of winds from 
different scatterometer missions (Verhoef et al. 2017; Belmonte and Stoffelen 2019; Ribal and 
Young 2020) or from a combination of scatterometer and radiometer missions (Wentz et al. 
2017; Ricciardulli et al. 2021), but there is not yet a common approach used at the interna-
tional level to reprocess all the available satellite-based wind data sets.

Differences in instrumental corrections, processing, calibration and quality control still 
remain important sources of uncertainty in the trends in wind speed and wave height obtained 
with different satellite products. Given the high level of precision required to draw conclusions 
on climatological trends of wind speed and wave height on a global or regional scale, there are 
not yet definitive conclusions on this subject nor on the physical processes that could explain 
such trends.

11 https:// gcos. wmo. int/ en/ essen tial- clima te- varia bles/ surfa ce- wind

https://gcos.wmo.int/en/essential-climate-variables/surface-wind
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4  Ocean and Coastal Applications

4.1  Context of Ocean and Coastal Applications

Containing over 97% of its water, and covering over 70% of its surface, the ocean is 
essential to supporting and sustaining life on Earth. It influences our weather and our 
climate (Schmitt 2018), is important for the provision of food and bio-resources (Naylor 
and Burke 2005), and integrates an economy (comprising sectors as broad as energy,  
health, leisure, minerals and transport) on which the future welfare and prosperity of 
humankind depends (OECD report 2016). Understanding ocean dynamics is therefore 
essential to many industries—such as shipping, hydrocarbons / renewables and fisher-
ies—whose interests include monitoring and the modeling of wind, waves, and currents 
(as well as other variables) to promote more safe, efficient and successful operations 
and mitigate adverse impacts on navigation, exploration and coastal communities. At 
the same time, government agencies and coastal managers tackling the pressures of 
human activity in environmentally sensitive and highly urbanized nearshore areas also 
require information on related changes and hazards—such as coastal erosion, pollutant 
dispersal and water safety—to inform their own decision-making. Since most, if not all, 
of these requirements can be met by remote sensing techniques (McCarthy et al. 2017; 
Melet et al. 2020), and both the cost and the availability of satellite data has improved 
in recent years, measurements of wind, waves, winds and current obtained from space-
borne assets are increasingly being incorporated in applications by users keen to draw 
on their benefits, often with high-density global coverage, collected in a near-synoptic 
manner.

As with any application, the choice of the optimum type of satellite data to use must be 
informed by the aim of the work, and the particular parameters and processes needing to be 
sampled and studied. This is typically dependent on a set of considerations, for example:

• The specification requirements of the application—for example, if needing optical 
or microwave measurements, the spectral wavebands/frequency bands of interest, as 
well as the spatial and temporal resolution of the data;

• The availability, cost and coverage of the data;
• The lead time from order to delivery of the data;
• The level of processing undertaken on the data;

Often, this decision is a compromise between multiple aspects, such as:

• Temporal resolution—the repeat orbit pattern determines the frequency that areas of 
ocean can be surveyed by an individual satellite, and sensors that measure a wide swath 
rather than just at nadir typically support more regular broad-scale monitoring. Very 
high spatial resolution satellites can often be tasked quickly, and pointed from several 
orbits, to increase temporal resolution, but this is a trade-off against cost;

• Spatial resolution—the correlation length scales of the parameter of interest and its 
associated variability are important for establishing suitability, with these also influ-
enced by instrument design and revisit time;

• Spectral resolution—the demands of different spectral wavebands/frequency bands 
affect the specific features able to be detected, and sensors with higher spectral reso-
lution typically have lower spatial resolution;
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• Cost—higher resolution data is typically more expensive than lower resolution data, 
and the cost of more highly processed datasets are similarly more expensive than less 
highly processed ones;

• Expertise—The benefit of cheaper, less processed, data must be balanced with the 
greater time and knowledge requirement from the user alongside, potentially, the need 
to handle greater data volumes versus being supplied with analysis ready data.

For further information and discussion, the interested reader is referred to Lavender and 
Lavender (2016).

It has been acknowledged earlier in this paper (Sect. 3.1) that much of the benefit of 
data from satellites lies in its direct use within numerical weather and climate reanalysis/
prediction models—for example, in terms of data assimilation, post-processing or verifica-
tion. Example applications for specific ocean and coastal use cases, as well as example 
derived products and services, and discussion of future needs for these types of informa-
tion are described in detail in the following parts.

4.2  Offshore Industry

Satellite measurements of ocean wind, waves and currents are employed across a range of 
applications in the offshore industry, often as one component in integrated metocean infor-
mation systems (Smith 2006). Here, the use of the term ‘metocean’ acknowledges the role 
of both meteorology and oceanography in supporting operational planning for the maritime 
transport and energy sector, which are responsible for driving much of the real-time appli-
cations of Earth observation (EO) data (Le Traon et  al. 2015). However, understanding 
changing climate conditions is also becoming increasingly important, with long time series 
satellite datasets complementing the use of in-situ measurements and numerical modeling 
for the prediction of extreme event occurrence (Takbash et al. 2019).

Of fundamental importance to offshore applications are the data to enable:

• Ship routing and voyage planning (e.g., Davidson et al. 2009)
• Supporting critical and complex weather-sensitive activities such as cable-laying, pipe-

laying, or movement of exceptional loads (e.g., Steele et al. 2021)
• Site selection, as well as the design, installation, operations/maintenance and decom-

missioning of offshore platforms, including hydrocarbons and renewables (e.g., 
Medina-Lopez et al. 2021)

• Management of production from fixed and floating platforms (e.g., Aird 2018)
• Compliance and insurance (e.g., DNV-GL AS 201812)
• Safety of port infrastructure (e.g., Steele et al. 2019)

Since 80%, by volume, of all international trade in goods is carried by sea (UNCTD 
2021), with 11 billion tons transported each year by a fleet of 62,100 vessels (UK Gov-
ernment 2021), routing and safety remain priority applications. For these vessels, operat-
ing on passages with more exposure to heavy weather, including trans-ocean routes, the 
safe and efficient progress of these vessels is necessarily dependent on accurate, real-time 
sea state information with high spatial and temporal resolution. Extreme winds and waves 

12 https:// issuu. com/ dnvgl/ docs/ dnv_ gl_ annual_ report_ 2018.

https://issuu.com/dnvgl/docs/dnv_gl_annual_report_2018
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can directly impact on stability (particularly in combination with adverse currents), result-
ing in an average of 1,382 cargo containers being lost each year—with catastrophic events 
accounting for half of these losses (see the World Shipping Council13). At the same time, 
high sea state can indirectly impact the well-being and effectiveness of the crew. Mitigat-
ing the impact of adverse conditions demands effective ship routing to avoid the worst of 
the weather, while also potentially benefiting from advantageous surface currents to either 
increase speed or decrease fuel consumption on passage. Of course, the extent to which 
conditions may be described as excessive depends on the type of vessel and the mode of 
its operations—with those engaging in heavy lifting or subsea installation activities need-
ing to adhere to strict operational weather limits. As these limits are typically very low 
(e.g., winds less than 15 knots or waves less than 2.5 m significant height, Hs), and the cost 
of unplanned termination very high (e.g., millions of dollars for aborting a subsea cable 
or pipeline installation), accurate metocean information (including wind, waves and cur-
rents) is essential (Cotton et al. 2000; Steele et al. 2021). This is particularly true of vessels 
reliant on dynamic positioning, such as when undertaking drilling, diving or craning, as 

Fig. 22  Analysis of satellite altimeter significant wave height Hs data along an example, the Rotterdam–Tri-
este, route. Top left: mean of log(Hs) for winter. Top right: Estimated 10% Hs quantile for winter. Bottom: 
10% quantile from a log-normal model reconstructed from data. From Cotton et al. (2000)

13 https:// www. world shipp ing. org/ news/ world- shipp ing- counc il- conta iners- lost- at- sea- report- 2022- update- 
publi shed.

https://www.worldshipping.org/news/world-shipping-council-containers-lost-at-sea-report-2022-update-published
https://www.worldshipping.org/news/world-shipping-council-containers-lost-at-sea-report-2022-update-published
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these operations are sensitive to directional swells and strong currents. Meteorological and 
oceanographic information supporting these operations mainly relies on numerical predic-
tions, the majority of which assimilate spaceborne data (see Sect. 3.1); for example, wind 
assimilated in atmospheric models which are used to force the wave prediction, or sig-
nificant wave height (as well as, recently, directions and wavelengths of dominant swells) 
assimilated directly. Today, ocean models assimilate the geostrophic component of currents 
derived from altimeter missions, but not surface current estimated without assumption on 
geostrophy. With the development of spaceborne projects dedicated to a direct estimate of 
surface current, this may come in the future. Although models forced by observations are 
essential in this domain, several demonstrator applications also choose to directly use sat-
ellite-based ocean wave data. Cotton et al. (2000) illustrated the interest of this approach; 
for example, in ship design, assessing post-event damage or describing the wave climate 
along specific shipping routes (see Fig. 22). Providing a long time series of wave param-
eters from space is also important in this domain to evaluate the probability of the most 
extreme conditions in a changing climate era (see Sect. 3.3).

As with the global reliance on shipping, provision of energy is also critical to our mod-
ern economy. Although a sector traditionally focused on hydrocarbon extraction (i.e., sub-
sea oil and gas), the power and scale of the world’s ocean also make the offshore environ-
ment attractive for renewable electricity generation directly: energy from the movement 
of the ocean waters (from waves and tidal currents) can be converted via the use of under-
water turbines and other devices, while, as on land, wind can be harnessed over the open 
sea—often with a higher generation potential (Kaldelis and Kapsali 2013). In terms of 
applications, these generation cases share many similarities with their oil and gas equiv-
alents, including benefitting from the experience of offshore exploration and production 
moving to deeper waters (a much more hostile weather environment), requiring the use of 
floating platforms tethered to the seabed. For both the hydrocarbon and renewable industry, 
accurate metocean information (including winds, waves and currents) is essential across all 
stages of the project life cycle; from site selection, design/certification, installation, opera-
tion/maintenance to eventual decommissioning (ORSIG 2018):

• Statistics on sea state are necessary for engineering design. These are in the form of 
values of the return period (e.g., 1 yr, 10 yr, 50 yr, 100 yr) for relevant variables, and 
can be estimated by fitting statistical models to climate information derived from model 
reanalysis or satellite data (mainly significant wave height for this latter).

• For floating platforms that have an increased sensitivity to waves and currents, it is 
important to quantify the dynamic response of the structure to the environment, and so 
characterizing additional components, such as the full wave energy spectra, is needed. 
This information is derived from model reanalysis data (which generally use satellite 
data for assimilation and/or validation);

• Localized and high-resolution nowcasting and forecasting of metocean conditions is 
critical during installation, operations/maintenance and decommissioning. Again, this 
information is derived from model data (but may use satellite data for assimilation/vali-
dation), however, there is also a requirement for supplementing long-term knowledge of 
expected workable conditions (e.g., ‘weather windows’ or ‘downtime’ analysis) to sup-
port operational planning.

To maximize the relative advantages of available data types, offshore industry operators 
typically prefer a single source of information that integrates several original inputs. Con-
sequently, the contribution of EO data varies between use cases, albeit these are usually 
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biased toward the earlier stages of the project life cycle. At present, the main benefit of 
satellite data is seen as being the capability to provide long timeseries with global coverage 
under all conditions, with the need for high spatial and temporal resolution data being met 
by models. In addition, Stevens et al. (2021) suggest further potential for these data in:

• Improving temporal consistency of reanalysis datasets;
• Reducing the swell-related uncertainty in global models;
• Supporting the validation of wave energy resource modeling, using shoreward along-

track data;
• Verifying the spectral shape for early validation of deep-water modeling for floating 

structures;

Acknowledging that wind, waves and currents are often only part of the broader deci-
sion-making context for both the maritime and offshore industry, augmenting these data 
with additional complementary space-borne information (e.g., sea ice, sea-level etc.; 
Ranchin et  al. 2020) obtained from optical (visible and thermal radiometry) and radar 
(SAR imaging and along-track altimetry, scatterometry) technologies have the potential 
for amplifying the benefit to users; particularly when data from satellites is integrated into 

Fig. 23  Maps of bathymetry for an study site in Western Europe (Aveiro site, northwestern Portugal) from 
a situ measurements, b SAR-images using the Pereira et al. (2019) method. The size of the studied domain 
is about 17 km in latitude (vertical axis) and 6 km in longitude (x-axis). Bathymetry contours are given 
every 1 m and range between 13 and 32 m. From: Salameh et al. (2019)
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downstream products by combining with in-situ measurements, as well as physical, bio-
logical or socio-economic models to complement situational awareness.

4.3  Coastal Zone Management

The coastal zone represents the transition between the terrestrial and marine environments 
(Melet et  al. 2020), in which the global human population, and therefore activities, are 
disproportionately concentrated (Small and Nicholls 2003; McGrannahan et  al. 2007; 
Neumann et al. 2015). As such, these areas offer important services of societal, economic 
and biological value (Martinez et al. 2007) that, in the context of the projected increases 
in coastal population over the coming years, make measurements of variables affecting 
coastal hazards by space-borne assets an increasingly essential component of effective 
coastal management.

Mitigating the costly impact of flooding or loss of critical infrastructure demands accu-
rate information about the dynamic state of the coast (e.g., sediment volume or shoreline 
position) to enable appropriate decisions regarding resilience and protection to be made 
accordingly (Davidson et al. 2007; Steele et al. 2019), with high spatial and temporal meas-
urements of bathymetry typically a prerequisite to monitoring and modeling associated 
coastal changes (Holman et  al. 2013; Melet et  al. 2020). Traditional techniques such as 
land-based, ship-based and airborne surveys offer very accurate measurements of bathym-
etry (e.g., up to a few centimeters). However, such methods are best suited to relatively 
small areas and are constrained by logistical challenges and high cost (Salameh et  al. 
2019). In contrast, space-borne techniques offer an often convenient and cost-effective 
approach to collecting continuous near-synoptic measurements of bathymetry, particularly 
in hazardous or remote regions where the revisit time of the satellites allows storm impacts 
to be rapidly sampled, quantified and assessed on individual event timescales (enabling 
appropriate interventions to be enacted). While it is true that retrieval methods from such 
instruments were often based on radiative transfer modeling approaches applied to optical 
images, satellite observations from SAR or optical satellites are increasingly being used to 
estimate bathymetry relying on the inversion of the dispersion relation resulting from linear 
wave theory (e.g., Poupardin et al. 2016; Bergsma et al. 2019; Almar et al. 2019), or on 
surface features induced by interaction with bottom topography (e.g., Alpers and Hennings 
1984). Figure 23 presents the bathymetry estimated by Salameh et al. (2019) from analyz-
ing the wave transformation with depth from Sentinel-1 SAR images, using the method 
of Pereira et al. (2019). The relative error of the water depth compared to in situ measure-
ments was estimated by Salameh et al. (2019) to be between 6 and 10% for water depths 
between 15 and 30 m. Similarly, exploiting the specificity of Sentinel-2, with two images 
acquired quasi-simultaneously in different spectral bands, De Michele et al. (2021) devel-
oped a method for estimating bathymetry based on the joint measurement of ocean wave 
celerity and wavelength, while Najar et  al. (2022) recently extended this method with a 
machine learning approach based on both color information and wave kinematics as inputs 
to the deep learning model. Such data have a direct application in coastal vessel navigation, 
with the evolution of bathymetric contours identified from these EO information also able 
to be used to quantify trends in coastal variability directly (e.g., Luijendijk et al. 2018), or 
assimilated in coastal models (e.g., Davidson et al. 2019).

Wind and sea-state observations also have an important role in characterizing and mod-
eling potential vulnerability, in particular due to storm surge effects (Dukhovskoy and 
Morey 2011; Duncan et al. 2019).
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Experts in satellite data are continuing to develop methods that will increase the accu-
racy, resolution or repetition of wind/wave measurements/products in the coastal zone. A 
spatial resolution of 500 m for the wind and waves seems to be reachable from SAR and/or 
altimetry. They will also extend the number of variables that can be derived from space, in 
particular providing surface current maps from SAR (Gommenginger et al. 2019; Moiseev 
et al. 2022). Over the coming years, Turner et al. (2021) confidently anticipated the com-
bined benefits of global coverage, access to an archive of routine and repeated measure-
ments that already span several decades, and the opportunities for automated and “always 
on” monitoring of present conditions will further drive a substantial uptake in use of satel-
lite data for coastal applications. Although not yet quite matching the accuracy of land-
based and ship-based sensors, the continued improvement in spatial and temporal reso-
lution of space-borne instruments promises significant potential for providing additional 
information and insights to inform coastal management, with advances in algorithms 
(including machine learning, e.g., Danilo and Melgani 2019; Sagawa et al. 2019) and the 
development of techniques that shift our capabilities from ‘simple’ individual snapshots of 
the bathymetry toward seamless three-dimensional monitoring of the complete, evolving, 
coastal zone (e.g., Bergsma et al. 2021) particularly exciting in this respect (Turner et al. 
2021).

Of course, issues of resilience and protection are not only relevant to the built envi-
ronment, but also to the management of the health of the coastal ecosystem underpinning 
the blue economy, as well as the safety of the communities whose livelihood and leisure 
largely depend on it (Rayner et al. 2019). Of fundamental importance to coastal applica-
tions are the data to support trajectory modeling in studies of transport of plankton, fish 
eggs and larvae to aid stock assessment (e.g., Röhrs et al. 2014); pollutant dispersion such 
as marine litter (e.g., van Sebille et al. 2020); oil spill tracking to assist clean-up operations 
(e.g., Jones et al. 2016); as well as the planning of search and rescue missions (e.g., Breivik 
et al. 2013), among others. Such use cases need near real-time information on surface cur-
rents and surface winds—often, in addition, waves—to properly account for the advection 
and modification of particles within their leeway drift predictions. EO information is either 
able to be processed and used as forcing for Lagrangian simulations directly, or assimilated 
in coastal models to predict the fate of these objects. As with all remote sensing opportuni-
ties, the increasing prevalence of large constellations of satellites promises a significant 
potential for providing new data.

The augmentation of wind, wave and current measurements with additional comple-
mentary space-borne information (e.g., ocean color, temperature, communications; Melet 
et  al. 2020)—such as that used for the monitoring of the broader non-metocean aspects 
affecting water quality monitoring (e.g., Chawla et al. 2020), pollutant (e.g., Viatte et al. 
2020) and oil spill detection (e.g., Fingas and Brown 2018) as well as search & rescue tar-
get identification (e.g., Kanjir et al. 2018)—are essential to realizing truly integrated (and 
data-driven) approaches to effective coastal management. A cross-sectional view on the 
use of space observations to monitor and study coastal areas, estuaries and deltas is pre-
sented by Laignel et al. (2023). in this special issue.

4.4  Future Prospects

In terms of both offshore industry and coastal zone management applications, it is possible 
to identify a several unifying priorities for the use of EO and satellite data:
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• Maintaining the existing observational timeseries. Users have highlighted that a pri-
mary benefit offered by satellite data is the long (and consistent) time series that exists, 
with the potential to also support the application of new techniques that make use 
of third-party signals not originally designed for the purpose for which they can be 
employed.

• Providing higher spatial / temporal resolution data. Users commonly identify a need for 
higher resolution data, in space and time, which represents a challenge for EO acqui-
sition, even with the increased number of satellite altimeter and SAR missions now 
operating. For example, Ardhuin et al. (2019c) specified the following requirements for 
global to regional wave climate data: 3-hourly measurements; 25 km resolution, uncer-
tainty in SWH of 10 cm / 5% and long-term stability in SWH of 5 cm/decade. This 
is difficult for along-track measuring sensors, but new missions with swath measuring 
capability (CFOSAT, SWOT) should offer improvements.

• Development of instrumentation/techniques to support emerging / evolving require-
ments, such as the provision of full wave energy spectra in engineering applications.

• Augmentation with a range of measured and modeled oceanographic data, which needs 
to be interoperable and translatable to derive relevant metrics to support simple multi-
variate decision-making by non-experts; for example through integration with metocean 
information systems.

5  Conclusions

In this paper we have presented how satellites provide essential observations of wind, 
waves and surface currents in three domains: (1) monitoring and modelling the atmos-
pheric and oceanic conditions at a global scale, (2) to contribute to research studies on the 
coupled atmosphere/ocean system, and on evaluation of the impact of climate change, (3) 
to support applications dedicated to users of the open and coastal ocean. With more than 
30 years of satellite missions defined to measure wind, waves and currents at the ocean 
surface, most space-borne sensors and inversion methods can be considered as mature. 
However, progress is still expected in several domains thanks to interesting advances in 
instrumental concepts. For example, a better characterization of extreme events like tropi-
cal cyclones will be possible in the future thanks to the choice of polarimetry diversity on 
future wind scatterometers (with cross-polarization the most sensitive to high wind) and 
to a more systematic use of low-frequency microwave radiometer measurements. A better 
characterization of the air/sea exchanges will also be possible with missions which will 
simultaneously provide measurements of wind, wave surface currents (projects WacM-
Odysea in the USA, Rodriguez et al. 2019), Seastar in Europe, Gommenginger et al. 2019) 
and eventually combined with other important parameters of the air/sea exchanges like the 
sea-surface temperature (Harmony project in Europe, López-Dekker et al. 2019). In par-
allel, the development of new inversion methods applied to the most recent altimeter or 
synthetic aperture radar missions, will allow better spatial resolution of sea-state param-
eters, which will benefit the characterization of non-homogenous conditions (coastal zones 
including, e.g., coral reef islands, fronts, eddies, marginal ice zone, etc.) and the associated 
need to protect the fragile environments under the pressure of climate change. It must also 
be recalled here that new perspectives are sometimes opened by new techniques applied to 
remotely-sensed observations not originally designed for the purpose for which they were 
defined. For example, the GNSS constellation of satellites primarily used for navigation, 
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are generating signals that are reflected off the sea surface (radio occultation and scatter-
ometry) can be related to sea state. Multi-band optical images acquired quasi-instantane-
ously, such as on the Sentinel-2 mission, also offer promises opportunities for providing 
more systematic details on wave evolution and/or bathymetry. Lidar measurements defined 
for sea-ice monitoring can provide interesting by-products on waves. Finally, the develop-
ment of new services based on a wide-open access to a long archive of satellite products 
(e.g., the Copernicus Marine Service, see Le Traon et al. 2019) will continue to facilitate 
the use of these observations for a wide range of applications either in research or oriented 
toward the blue economy.

Appendix 1: List of sensors and satellite missions mentioned in this 
paper

In the Table of this Appendix, we provide the list of sensors and satellite missions men-
tioned in the paper and include the name of agencies responsible of the sensors, as well as 
the period of measurements.

More details can be found in the data base maintained by the CEOS (Committee on 
Earth Observation Satellites) (http:// datab ase. eohan dbook. com/).

Platform Acronym Instruments mentioned 
in the text

instrument agency, 
country

Start/end Dates

ADEOS-I
ADEOS-II
(Advanced Earth 

Observing Satellites)

NSCAT (NASA Scat-
terometers)

Quikscat

USA 1996–1997
2002–2003

Aqua AMSR-E (Advanced 
Microwave Scanning 
Radiometer EOS)

NASA (USA) and JAXA 
(Japan)

In operation since 2002

CFOSAT
(China France Oceanog-

raphy SATellite)

SWIM (Surface Waves 
Investigation and 
Monitoring)

SCAT (Scatterometer)

CNES (France) and 
CNSA (China)

In operation since 2018

Coriolis Windsat DoD (USA) 2003–2020
Cryosat-2 SIRAL (SAR Inter-

ferometer Radar 
Altimeter)

ESA (Europe) In operation since 2010

CYGNSS DDMI (Delay Doppler 
Mapping Instrument)

NASA & NOAA (USA) In operation since 2016

DMSP, (Defense Mete-
orological Satellite)- 
satellite series F

SSM/I Special Sensor 
Microwave Imager on 
F-8 to F-15

SSM/IS Special Sensor 
Microwave-Imager / 
Sounder on F16–F19

NOAA and DoD (USA) Successive satellites in 
operation since 1987

Envisat ASAR (Advanced SAR)
Radar altimeter

ESA 2002–2012

ERS-1/2
(European Remote Sens-

ing Satellites -1/2)

SAR, altimeter ESA 1991–2000

http://database.eohandbook.com/
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Platform Acronym Instruments mentioned 
in the text

instrument agency, 
country

Start/end Dates

FY3-E, FY3-H, FY3-I WindRAD (Wind 
Radar)

CNSA (China) In operation since 2021

GCOM
(Global Change Obser-

vation Mission-Water)

AMSR2 (Advanced 
Microwave Scanning 
Radiometer 2)

JAXA (Japan) In operation since 2012

GFO (Geosat Follow-
on)

Radar altimeter NASA (USA) 1998–2008

GPM (Global Precipita-
tion mission)

GMI (GMP Microwave 
imager)

NASA (USA) In operation since 2014

Harmony Passive Synthetic Aper-
ture Radar

ESA (Europe) Launch expected in 2029

HY2 ALT (Radar Altimeter)
SCAT (Scatterometer)

CNSA (China) In operation since 2021

HydroGNSS GNSS Reflectometer ESA (Europe), UKSA 
(UK)

Launch expected in 2024

Icesat-2
(Ice, Cloud, and land 

Elevation Satellite 2)

ATLAS (Advanced 
Topographic Laser 
Altimeter System)

NASA (USA) In operation since 2018

ISS (International space 
station)

RapidScat NASA (USA) 2014–2016

Jason 1 to 3 Altimeters
POSEIDON -2 (Jason-

1), POSEIDON-3 
(Jason-2), POSEI-
DON-3B (Jason-3)

CNES (France) Jason 1: 2011–2013
Jason 2: 2008–2019
Jason 3: in operation since 

2016

Metop A-B-C ASCAT (Advanced 
Scatterometer)

EUMETSAT, ESA 
(Europe)

Metop-A: 2006–2021
Metop-B: In operation 

since 2012
Metop-C: In operation 

since 2018
Oceansat-2
Oceansat-3

Scatterometer ISRO (India) In operation since 2009
In operation since 2022

QuikSCAT Seawinds scatterometer NASA (USA) 1999–2018
RADARSAT- 1
RADARSAT-2

Synthetic Aperture 
Radar

CSA (Canada) 1994–2013
In operation since 2007

SARAL AltiKa (Ka-band Altim-
eter)

CNES (France) In operation, since 2013

Scatsat-1 Scatsat-1 ISRO (India) 2016–201
Seasat SAR, altimeter, Scat-

terometers
Radiometer SMMR 

(Scanning Multi-
Channel Microwave 
Radiometer)

NASA (USA) 1978- 1978

Seastar SAR (squinted along-
track interferometry)

ESA (Europe) Under study for an Earth 
Explorer satellite (Phase 
0)

Sentinel-1 (A-B-C-D..) SAR ESA (Europe) Series started in 2014
Sentinel-2 (A-B-C-D…) Optical multi-spectral 

Instrument
ESA (Europe) Series started in 2015

Sentinel-3 (1-B-C-D..) SAR radar altimeter 
(SRAL)

ESA (Europe) Series started in 2016
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Platform Acronym Instruments mentioned 
in the text

instrument agency, 
country

Start/end Dates

Sentinel-6 Michael 
Freilich (A-B)

Poseidon-4 SAR Radar 
Altimeter

ESA (Europe) & CNES 
(France)

Operational since 2020

SKIM Doppler near-nadir inci-
dence scatterometer

ESA (Europe) Abandoned (proposed 
as an Earth Explorer 
satellite)

SMAP
Soil Moisture Active 

Passive

L-Band Radiometer NASA (USA) & CSA 
(Canada)

Operational since 2015

SMOS
Soil Moisture and Ocean 

Salinity

Microwave Imaging 
Radiometer using 
Aperture Synthesis 
(MIRAS)

ESA (Europe) Operational since 2009

SWOT
Surface Water Ocean 

Topography

Ka-band Radar INter-
ferometer (KaRIN)—
Interferometric 
altimeter

NASA (USA) and 
CNES (France)

Launch planned in 2023

Tandem-X SAR DLR (Germany) In operation since 2010
TerraSAR-X SAR DLR (Germany) In operation since 2007
Topex Altimeters (Topex and 

Poseidon-1)
NASA (USA) and 

CNES (France)
1992–2006

Appendix 2: Principles of wave estimation from SAR images

Effects and properties that contribute to the formation and/or the degradation of satellite 
SAR ocean wave images are summarized here-below:

• Tilt modulation variation in backscatter due to the local modification of the relative 
incidence angle by long wave slopes. The longer waves locally modify the exact plane 
of incidence, producing a local change in cross section (following the geometrical char-
acteristics of the instrument).

• Hydrodynamic modulation variation in backscatter due to the non-uniform distribution 
of scatterers (i.e., short waves) along a long wave profile. Existing parameterizations of 
this phenomenon are still subject of on-going active research efforts and usually follow 
weakly nonlinear theory solutions (Alpers et al. 1981; Alpers and Hasselmann 1978; 
Hasselmann and Hasselmann 1991). Because the radar cross section at medium inci-
dence (typically 10–25°) is not very sensitive to the short waves, the hydrodynamic 
effect on the signal modulation can be generally neglected for observations at these 
incidence angles.

• Constructive azimuth velocity bunching deterministic misregistrations in the azimuth 
direction, associated with long wave orbital motions, leading to an apparent construc-
tive redistribution of the backscatter intensity along the azimuth direction.

• Destructive azimuth velocity bunching random misregistrations in the azimuth direc-
tion, associated with long wave orbital motions, leading to possible significant degrada-
tion in the azimuth resolution, leading to distortions of the resulting SAR ocean image 
spectra (nonlinear relationship between SAR image spectra and ocean wave spectra).

• Range elevation bunching misregistrations associated with long wave slope variations. 
When the angle of incidence is smaller than the slope of the waves (i.e., for incidence 
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angles of a few degrees, depending on sea-state) the iso-range plane of the radar signal 
may cut the rough surface at multiple points, like a long surfboard in choppy seas. This 
induces misregistrations which are proportional to the surface elevation and depend on 
the nominal instrument incidence angle. However, it is acknowledged that this range 
bunching effect can be neglected for observations at incidence angles larger than about 
10° (Jackson 1981).

• Acceleration smearing smearing in the SAR image associated with relative scatterer 
velocity changes during the SAR integration time.

• Azimuth smearing reduced along-track resolution associated with both the unresolved 
random scatter motions and the limited scatter lifetime during the SAR integration time 
(finite scene coherence time).

• Speckle multiplicative noise in the SAR images due to the coherent processing. Its sta-
tistical characteristics will depend upon the chosen look summation technique. The 
inter-correlation (cross-spectral) technique will help to almost entirely remove the 
speckle distribution in the spectral domain.

• System transfer function point target response characteristics that lead to varying sensi-
tivity over the spectral domain.

The tilt 
(
T tilt
m

)
 , the hydrodynamic 

(
Thydr

)
 and the range elevation bunching 

(
T rb

)
 are the 

dominant processes contributing to the Real Aperture Modulation (RAR) function TRAR
m

:

Applying the Bragg approximation for the short waves on a two-scale scattering model, 
based on a geometric optical solution for a perfect conducting surface: the linear backscat-
ter RAR modulation transfer function (MTF) can be separated into two parts, one geo-
metrical MTF caused by surface tilting and one MTF caused by hydrodynamic interac-
tions. Under this assumption, the right-hand side terms of (Eq. 15) can be expressed as a 
function of radar parameters (incidence, polarization), surface parameters (wavenumber of 
the tilting waves), and relaxation rate of the Bragg waves (Alpers et al. 1981; Alpers and 
Hasselmann 1978; Hasselmann and Hasselmann 1991).

An alternative semi-parametric model of the RAR MTF has been proposed to retrieve 
ocean wave spectra from SAR images (see Johnsen et al. (2022)). It makes use of an empir-
ical GMF function (the so-called CMOD GMF) to relate the �m observations to wind speed 
(Stoffelen et al. 1997; 2017a). This technique is sought to avoid uncertainty associated with 
the use of a pure-Bragg scattering model, and offers an efficient alternative for C-band 
SAR data. In this model, the RAR MTF amplitude is proportional to the local derivative of 
relative cross section along the long wave phase, and explicitly dependent on the wind field 
through the CMOD function:

where k
r
 is the radar wavenumber vector, kx its component along the range-direction, � is 

the radar beam incidence, and �m is the CMOD radar cross-section model function.
To complete the SAR imaging mechanism, the induced Doppler shifts, mainly asso-

ciated with the longer wave orbital velocity field, must be considered as a very crucial 
mapping process. This is the velocity bunching mechanism. The motion effect strongly 
influences the SAR imaging mechanism by affecting the complex backscatter signals. 

(15)TRAR
m

= T tilt
m

+ Thydr + T rb

(16)TRAR
m

(
k
)
=

1

�m

��m

��
⋅

{
ikx +

k2
x

||k||
tan �

}
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Doppler shifts associated with the longer wave orbital velocities can also potentially 
contribute to an additional constructive modulation mechanism (Alpers et al. 1981). In 
such a case, the so-called velocity bunching mechanism may help to image swell wave 
components in the along-track direction. This constructive mechanism is especially effi-
cient under low wind conditions (relatively deterministic phase component redistribu-
tion). The velocity bunching effect is controlled by the range-to-velocity ratio and the 
relative radial component of the scatterers’ velocity. The corresponding azimuth posi-
tion shift of the scatterer is given as (Alpers and Rufenach 1981):

where R is the range distance from satellite to target, V  is the satellite velocity, Ur is the 
orbital velocity of the target projected into the radar look direction. The velocity bunching 
mechanism is fully controlled by the non-dimensional azimuth wavenumber, 
ky ≡ ky��y�y (0)

1∕2 , where ��y�y is the covariance function of the azimuth shift �y , and ky is the 
wavenumber component in azimuth direction (Krogstad 1992). In the case of small to 
moderate ky , the imaging is constructive and the velocity bunching MTF can be written as 
(Alpers et al. 1981):

A breakthrough in understanding SAR ocean wave imaging was achieved with the 
paper by Hasselmann and Hasselmann (1991) introducing a closed form expression 
relating the underlying 2D ocean wave spectra to the 2D SAR image spectra, taking 
into account both real aperture and velocity bunching mechanisms. This closed form 
expression was denoted “the ocean-to-SAR spectral transform.” This derivation was 
later elegantly reformulated by Krogstad (1992), and used to study the nonlinearity of 
the SAR wave imaging process. Finally, the next breakthrough was achieved when the 
formalism of Krogstad (1992) was extended by Engen and Johnsen (1995) to provide a 
closed form of the ocean-to-SAR cross-spectral transform. This work, which takes 
into account the entire wave phase velocity field is also of fundamental importance 
in the SAR measurements, as earlier shown on airborne SAR imagery by Vachon and 
Raney (1991). Engen and Johnsen (1995) defined the cross-spectra between two inten-
sity-detected looks as:

where I(1)
(
k,

�

2

)
 and I(2)

(
k,−

�

2

)
 are the Fourier transforms of the two intensity detected 

look images, and � is the look separation time. Even for the short integration time 
( � = 0.8s ) of standard spaceborne SAR stripmap modes, a significant phase shift 

(
�|k| ⋅ �

)
 

is achieved for the long wavelengths of the spectra.
The ocean-to-SAR cross-spectra formalism enables, on the one hand, the elimina-

tion of the speckle noise contribution (Engen and Johnsen 1995) and, on the other hand, 
the removal of the 180° directional ambiguity of the imaged harmonic wave compo-
nents. Such a crucial breakthrough concerning the potential use of cross-spectral analy-
sis between SAR individual looks is now commonly adopted to improve the analysis of 

(17)�y =
R

V
Ur

(18)Tvel
(
k
)
=

R

V
�|k|

{
kx
||k||

sin � + i cos �

}

(19)PSAR

�
k, �

�
=

1

⟨I(1) ⋅ I(2)⟩
⟨I(1)

�
k,

�

2

�
⋅ I(2)
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2
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SAR ocean wave data. The methodology shows that the exact propagation direction of 
swell systems is achieved for 90% of the measurements (as long as the signal-to-noise 
ratio is sufficiently high). Such a methodology has been fully validated, was applied to 
the Envisat ASAR Wave Mode (WM) and now also to the Copernicus Sentinel-1 WV 
mode imagettes.

The general expression of the ocean-to-SAR cross-spectral transform can be written as 
(Engen and Johnsen 1995):

where �II is the covariance function of the RAR image, and � is the inter look-separation 
time.

From (20), a simplified quasi-linear version can be derived as:

where T
(
k
)
 is the total SAR MTF written as:

The nonlinearity of the velocity bunching is manifested as an exponential azimuth cut-
off (the exponential term of Eq. (21)), causing a strong filtering of the azimuth wave com-
ponents. The azimuth cutoff is related to the azimuth Doppler shift covariance, which can 
be written in terms of the underlying wave spectra S

(
k
)
 as:

As indicated by Eqs. (17) and (18), the azimuth cutoff is governed by the satellite R∕V  
ratio and the sea state (or alternatively the wind speed).

Subsequent to the development of the ocean-to-SAR spectral transforms, different inver-
sion algorithms were developed (Engen et al. 1994; Hasselmann et al. 1996; Engen et al. 
2000; Mastenbroek and de Valk 2000; Schulz-Stellenfleth 2005; Collard et al. 2005; Shao 
et al. 2015). Such retrieval algorithms generally attempt to reconstruct the a priori ocean 
wave spectrum by minimizing the difference between the theoretical SAR image spectra 
of Eq. (19) and the satellite observed SAR image spectra of Eq. (22). However, as a conse-
quence of the exact derivative of the nonlinear transform being too cumbersome compute, 
most of these inversion schemes ignore the complete nonlinear mapping or represent it 
through a stochastic model (Schulz-Stellenfleth 2005).

Alternatively, it is possible to derive the wave spectra directly from the quasi-linear 
transform (see Eq. (21)). This requires that the azimuth cutoff be well estimated and that 
the nonlinearity of the SAR image spectra is removed from the observed SAR image cross-
spectra. This nonlinearity is driven by the wind field and can be predicted simply by taking 
the difference between the full and the quasi-linear transform, Pnlin = P − Pqlin . This is the 
approach implemented in both the ASAR Envisat Wave Mode Level 2 and the Sentinel-1 
WV Level 2 processors, where the Pnlin is provided in a look-up table as a function of wind 
speed, wind direction, and wave age.

(20)P
(
k, �

)
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1

(2�)2
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y
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