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Abstract

We study a one-dimensional cross diffusion system with a free boundary modeling the Physical Vapor
Deposition. Using the flatness approach, we show several results of boundary controllability for this system
in spaces of Gevrey class functions. One of the main difficulties consists in the physical constraints on the
state and on the control. More precisely, the state corresponds to volume fractions of the n + 1 chemical
species and to the thickness of the film produced in the process, whereas the controls are the fluxes of the
chemical species. We obtain the local controllability in the case where we apply n+ 1 nonnegative controls
and a controllability result for large time in the case where we apply n controls without any sign constraints.
We also show in this last case that the controllability may fail for small times. We illustrate these results
with some numerical simulations.
Keywords: Control, flatness, cross diffusion, free boundary.

1 Introduction and statement of our results

We consider controllability properties of a cross diffusion system with moving boundaries that can model the
Physical Vapor Deposition (PVD) process involved in the fabrication of solar panels. Over a substrate, n + 1
chemical species are introduced in gaseous state and solidify to generate a film occupying a domain of the form
(0, e(t)) at time t > 0. We follow here the model considered in [1, 3]. For more information about the physical
process, we refer to [15].

We denote by uk the volume fraction of the species k ∈ {0, . . . , n} and by ϕk its flux. The physical conditions
on these quantities are

n∑
k=0

uk = 1, uk > 0 (0 6 k 6 n) (1.1)

and
ϕk > 0 (0 6 k 6 n). (1.2)

We have denoted by e(t) > 0 the thickness of the film at time t and its relation with the fluxes is

e(t) = e0 +

∫ t

0

n∑
k=0

ϕk(s) ds (t > 0). (1.3)

In what follows, the state variables of the system are e and

u := (u1, . . . , un)> ∈ Rn,
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since u0 can be obtained from u with the relation (1.1). We also set

ϕ := (ϕ1, . . . , ϕn)> ∈ Rn.

Then the model considered here is (see [3])
∂tu−A∂2xu= 0 t > 0, x ∈ (0, e(t)),
A∂xu(t, 0) = 0 t > 0,

A∂xu(t, e(t)) + e′(t)u(t, e(t)) = ϕ(t) t > 0,
u(0, x) = u0(x) x ∈ (0, e0).

(1.4)

To be more precise in the model considered in [1], the matrix A ∈ Mn(R) can depend on u. Here we assume
that A is independent of u, and invertible:

A ∈ GLn(R). (1.5)

The existence of solutions to the above system has been proven under some particular conditions on the func-
tion A(u) that give a gradient flow structure to (1.4) and permit to use the boundedness by entropy technique
(see [2, 6]). For an introduction to this method and to general cross diffusion systems, one can refer to the
book [7]. One can see (1.3)–(1.4) as a controlled system where the state is (e, u) and the controls are the
fluxes ϕk. To our knowledge, the only work dealing with the controllability of the above system is [3] where the
authors show the finite-time stabilization of the linearized system around some equilibrium states. Their result
is based on the backstepping method.

In our work, we use a different approach to control the system: the differential flatness. This method,
which comes from the finite-dimensional framework, has been successfully applied to several partial differential
equations: the heat equation [11,13], general parabolic equations [12], the Schrödinger equation [14], the linear
Korteweg–de Vries equation [10] and a class of semilinear heat equations [8]. The authors of the present paper
have used this method to show some controllability properties of another free boundary model, the Stefan
problem, in [4].

As for the Stefan problem, the difficulties to handle (1.3)–(1.4) are the free-boundary and the physical
restrictions that impose bounds on the solutions or on the controls. Here we want to use the controls ϕk to
pass from a stationary state to another with the restrictions (1.1) and (1.2). With these two constraints, we
obtain a local controllability result (Theorem 1.1). To go further, we also investigate the problem where (1.1) is
satisfied and where there is no sign constraints on the controls (Theorems 1.2 and 1.5). The set of “physically
reasonable” stationary states of (1.3)–(1.4) is

S :=

{
(e, u) ∈ Rn+1 ; e > 0, uk > 0 (1 6 k 6 n),

n∑
k=1

uk ∈ (0, 1)

}
. (1.6)

In order to state our mains results, we first recall the notion of Gevrey functions. A function f : R→ R is a
Gevrey function of order σ > 1 if it is C∞ and if for any compact subset K of R, there exist M,R ∈ R∗+ such
that its derivatives satisfy ∣∣∣f (`)(t)∣∣∣ 6M

`!σ

R`
(` ∈ N, t ∈ K).

Similarly, g : R2 → R is a Gevrey function of order (σ1, σ2) if it is C∞ and if for any compact subset K of R2,
there exist M,R1, R2 ∈ R∗+ such that∣∣∂`t∂kxg(t, x)

∣∣ 6M
`!σ1

R`1

k!σ2

Rk2
(`, k ∈ N, (t, x) ∈ K).

These definitions can be extended to vector-valued functions. The interest for such functions is due to the fact
that for any σ > 1, the function

θσ(t) :=


1 if t 6 0,

e−((1−t)−cσ )

e−((1−t)−cσ ) + e−(t−cσ )
if t ∈ (0, 1),

0 if t > 1,

(1.7)
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with cσ = (σ− 1)−1 is a Gevrey function of order σ (see, for instance [5, Appendix B]). More precisely one can
show the existence of M,R > 0 such that∣∣∣θ(i)σ (t)

∣∣∣ 6M
(i!)

σ

Ri
(i ∈ N, t ∈ R). (1.8)

For more information on the Gevrey functions, we can refer for instance to [16–18].
We are now in position to give the main results of this paper. The first main result states as follows:

Theorem 1.1. Assume (1.5), σ ∈ (1, 2), T > 0 and (e0, u0) ∈ S. Let us consider (e1, u1) ∈ S and assume that
e1 > e0 > 0. There exists ε > 0 such that if ∣∣u0 − u1∣∣ 6 ε, (1.9)

then there exist a control (ϕk)k∈{0,...,n} Gevrey of order σ satisfying (1.2) in (0, T ), and a solution (e, u) of

(1.3)–(1.4) such that e is Gevrey of order σ, u is Gevrey of order σ in time and 1 in space, (e(t), u(t, x)) ∈ S,
for every t ∈ [0, T ] and x ∈ (0, e(t)) and

e(T ) = e1, u(T, ·) = u1.

In the case where we do not consider the condition (1.2), we can control globally the system (1.3)–(1.4).
First we consider the case where ϕ0 ≡ 0, that is we have only n scalar controls ϕ1, . . . , ϕn acting on (1.3)–(1.4).
Our second main result is stated below:

Theorem 1.2. Assume (1.5) and σ ∈ (1, 2). Let us consider (e0, u0), (e1, u1) ∈ S with

e0

(
1−

n∑
k=1

u0k

)
= e1

(
1−

n∑
k=1

u1k

)
. (1.10)

Then there exists T0 > 0 such that for any T > T0, there exist a control (ϕk)k Gevrey of order σ with ϕ0 ≡ 0
and a solution (e, u) of (1.3)–(1.4) such that e is Gevrey of order σ, u is Gevrey of order σ in time and 1 in
space, (e(t), u(t, x)) ∈ S, for every t ∈ [0, T ] and x ∈ (0, e(t)), and

e(T ) = e1, u(T, ·) = u1.

Remark 1.3. The compatibility condition (1.10) is necessary if ϕ0 ≡ 0 and it will be justified by the Corol-
lary 2.2.

To complete Theorem 1.2, we show that for ϕ0 ≡ 0, there are cases where the problem is not controllable
for small times T > 0:

Proposition 1.4. Assume (1.5) and that A has a real eigenvalue. Then, there exist (e0, u0), (e1, u1) ∈ S
satisfying (1.10) and T0 > 0 such that if there exist a control (ϕk)k with ϕ0 ≡ 0 and a solution (e, u) of
(1.3)–(1.4) such that (e(t), u(t, x)) ∈ S, for every t ∈ [0, T ] and x ∈ (0, e(t)) and

e(T ) = e1, u(T, ·) = u1,

then
T > T0.

In the case where we use the n + 1 controls and where we do not consider the condition (1.2), then the
system is controllable for any time T > 0:

Theorem 1.5. Assume (1.5), σ ∈ (1, 2) and T > 0. Let us consider (e0, u0), (e1, u1) ∈ S. Then there exist a
control (ϕk)k∈{0,...,n} Gevrey of order σ and a solution (e, u) of (1.3)–(1.4) such that e is Gevrey of order σ, u

is Gevrey of order σ in time and 1 in space, (e(t), u(t, x)) ∈ S, t ∈ [0, T ] and x ∈ (0, e(t)) and

e(T ) = e1, u(T, ·) = u1.

The outline of the paper is the following: in Section 2, we give some preliminary results and recall the
flatness method that we use in our main results. Then we show these main results in Section 3. Finally, we
present some numerical illustrations of our results in Section 4.
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2 Preliminaries and the flatness method

2.1 Property of the system (1.4)

One of the difficulties to deal with our system is the boundary condition in (1.4):

A∂xu(t, e(t)) + e′(t)u(t, e(t)) = ϕ(t) (t > 0). (2.1)

We show that condition (2.1) can be written in different and more convenient ways:

Lemma 2.1. Assume u ∈ C∞(R+ × R+;Rn) satisfies{
∂tu− ∂2x(Au) = 0 (t > 0, x > 0),

A∂xu(t, 0) = 0 (t > 0),
(2.2)

and let set u0 := 1−
n∑
k=1

uk. Then (1.3), (2.1) are equivalent to

d

dt

∫ e(t)

0

uk(t, x) dx = ϕk(t) (0 6 k 6 n, t > 0), e(0) = e0. (2.3)

Proof. Using (2.2), we have that for k ∈ {1, . . . , n},

d

dt

∫ e(t)

0

uk(t, x) dx =

∫ e(t)

0

∂tuk(t, x) dx+ e′(t)uk(t, e(t)) = ∂x[Au(t, e(t))]k + e′(t)uk(t, e(t)). (2.4)

Then
d

dt

∫ e(t)

0

u0(t, x) dx =
d

dt

∫ e(t)

0

(
1−

n∑
k=1

uk(t, x)

)
dx = e′(t)−

n∑
k=1

d

dt

∫ e(t)

0

uk(t, x) dx. (2.5)

We can now show the equivalence: if (2.3) holds, then (2.4) yields (2.1) and (2.5) yields

e′(t) =

n∑
k=0

ϕk(t) (2.6)

which, combined with e(0) = e0, implies (1.3). Conversely, (1.3) implies e(0) = e0 and (2.6). Then (2.4)
and (2.1) yield

d

dt

∫ e(t)

0

uk(t, x) dx = ϕk(t)

for k ∈ {1, . . . , n} and the case k = 0 is obtained from (2.6) and from (2.5).

We deduce the following compatibility conditions for the reachable states if ϕ0 ≡ 0:

Corollary 2.2. Assume (e, u) is a smooth solution of (1.3)–(1.4) with ϕ0 ≡ 0. Then for any t > 0,∫ e(t)

0

(
1−

n∑
k=1

uk(t, x)

)
dx =

∫ e0

0

(
1−

n∑
k=1

u0k(x)

)
dx. (2.7)

Remark 2.3. This result justifies the condition (1.10) between the initial and the final conditions in Theo-
rem 1.2. Moreover, it can be used to obtain a numerical algorithm in the case where ϕ0 ≡ 0. This corresponds
to the result below.
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Corollary 2.4. Assume (e, u) is a smooth solution of (1.3)–(1.4) in [0, T ], with ϕ0 ≡ 0 and such that
(e(t), u(t, x)) ∈ S, for every t ∈ [0, T ] and x ∈ [0, e(t)]. Then for any t > 0, e is the solution of the Cauchy
problem

e′(t) =

∑n
k=1 (A∂xu)k (t, e(t))

1−
∑n
k=1 uk(t, e(t))

(t ∈ [0, T ]), e(0) = e0. (2.8)

Proof. Differentiating (2.7) with respect to time, we obtain that

e′(t)

(
1−

n∑
k=1

uk(t, e(t))

)
=

∫ e(t)

0

n∑
k=1

∂tuk(t, x) dx.

Then using the first two equations of (1.4), we deduce that

e′(t)

(
1−

n∑
k=1

uk(t, e(t))

)
=

n∑
k=1

(A∂xu)k(t, e(t)).

Using that
n∑
k=1

uk(t, e(t)) ∈ (0, 1),

we deduce the result.

Remark 2.5. The above result allows us to solve numerically (1.3)–(1.4) if ϕ0 ≡ 0. By the flatness method
described in the next section, we obtain a smooth solution of (2.2) that can be approximated through a truncation.
Then, we can solve (2.8) by a standard numerical method, provided that

∑n
k=1 uk < 1. Note that, with this

condition, the Cauchy problem (2.8) admits a unique local solution thanks to the Cauchy-Lipschitz theorem. In
the proof of Theorem 1.2, we use directly Corollary 2.2 instead of Corollary 2.4 to obtain the existence and
uniqueness of e.

2.2 The flatness approach

Theorems 1.1, 1.2 and 1.5 are based on the flatness approach. This strategy was introduced in [11] for the heat
equation, and we follow here the same strategy by searching the solution u of (1.4) in the form

u(t, x) :=

∞∑
i=0

x2i

(2i)!
A−iα(i)(t) ((t, x) ∈ R2), (2.9)

where α : R→ Rn is Gevrey of order σ ∈ (1, 2), i.e., there exist M1, R1 > 0 such that∣∣∣α(i)(t)
∣∣∣ 6M1

(i!)
σ

Ri1
(i ∈ N, t ∈ R). (2.10)

Here and in what follows, we use the notation | · | for the maximum norm of Rn. Formally, we see that for all
(t, x), we have the following relations

∂tu(t, x)−A∂2xu(t, x) =

∞∑
i=0

x2i

(2i)!
A−iα(i+1)(t)−

∞∑
i=1

x2i−2

(2i− 2)!
A−(i−1)α(i)(t) = 0,

∂xu(t, 0) = 0.

To justify the above property, we need to show that u given by (2.9), with α given later by (3.17), is well-defined
and is a Gevrey function. First, we set

fi(t, x) :=
x2i

(2i)!
A−iα(i)(t) ((t, x) ∈ R2, i ∈ N).
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If 2i < k, then ∂`t∂
k
xfi ≡ 0, and if 2i > k, then (2.10) yields

∣∣∂`t∂kxfi(t, x)
∣∣ 6M1

((`+ i)!)
σ

R`+i1

‖A−1‖i |x|
2i−k

(2i− k)!
, (2.11)

where here ‖ · ‖ denotes the matrix norm induced by the maximum norm in Rn. Using that (` + i)! 6 2`+i`!i!
and the Stirling formula, we deduce that u given by (2.9), with α satisfying (2.10), is well-defined. Furthermore,
for every r > 0, there exist M > 0 such that

∣∣∂`t∂kxu(t, x)
∣∣ 6M

(`!)σ

(R1/2σ)`
k!

rk
(`, k ∈ N, t > 0, |x| 6 r).

We have thus obtained the following result:

Proposition 2.6. Assume α satisfies (2.10). Then u given by (2.9) is Gevrey of class σ in time and 1 in space
and is a solution of (2.2).

3 Proof of the main results

3.1 Proof of Theorem 1.1

We consider u given by (2.9) with α given by

α(t) := θσ

(
t

T

)
u0 +

(
1− θσ

(
t

T

))
u1 ∈ Rn (t ∈ R), (3.1)

where θσ is defined by (1.7). We also set

e(t) :=
e1 − e0

T
t+ e0 (t ∈ [0, T ]). (3.2)

In particular,

e′(t) =
e1 − e0

T
> 0 and e0 6 e(t) 6 e1 (t ∈ [0, T ]).

Applying Proposition 2.6, we deduce the regularity of (e, u) and that (1.3)–(1.4) hold with the controls given by

ϕ(t) := A∂xu(t, e(t)) + e′(t)u(t, e(t)) and ϕ0(t) := e′(t)−
n∑
k=1

ϕk(t) (t > 0). (3.3)

Moreover, using the properties (1.7) of θσ, we also have

u(t, x) = u0 if t 6 0, u(t, x) = u1 if t > T. (3.4)

There exists d ∈ (0, 1) such that

d 6 min
k∈{1,...,n}

u0k and

n∑
k=1

u0k 6 1− d. (3.5)

Taking ε 6 d/2 in (1.9), we deduce from the above estimates and from (3.1) that

d

2
6 min
k∈{1,...,n}

αk and

n∑
k=1

αk 6 1− d

2
in (0, T ). (3.6)
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Now, we can write
n∑
k=1

uk(t, x) =

n∑
k=1

αk(t) +

∞∑
i=1

x2i

(2i)!

n∑
k=1

[
A−iα(i)(t)

]
k

(3.7)

and

uk(t, x) = αk(t) +

∞∑
i=1

x2i

(2i)!

[
A−iα(i)(t)

]
k

(1 6 k 6 n). (3.8)

Using (1.8) and (1.9), we have ∣∣∣α(i)(t)
∣∣∣ 6 εM

(i!)
σ

(RT )i
(i ∈ N∗, t ∈ R) (3.9)

and thus ∣∣∣∣∣
∞∑
i=1

x2i

(2i)!

[
A−iα(i)(t)

]
k

∣∣∣∣∣ 6Mε

∞∑
i=1

(
‖A−1‖(e1)2

RT

)i
(i!)σ

(2i)!
(t ∈ [0, T ], x ∈ [0, e(t)]). (3.10)

Taking ε small enough, we deduce that

d

4
6 min
k∈{1,...,n}

uk(t, x) and

n∑
k=1

uk(t, x) 6 1− d

4
(t ∈ [0, T ], x ∈ [0, e(t)]) . (3.11)

Finally, from (3.3) and (3.8), we have

ϕk(t) = e′(t)αk(t) +

∞∑
i=1

e(t)2i−1

(2i− 1)!

[
A−(i−1)α(i)(t)

]
k

+ e′(t)

∞∑
i=1

e(t)2i

(2i)!

[
A−iα(i)(t)

]
k

(t > 0, 1 6 k 6 n)

(3.12)
and

ϕ0(t) = e′(t)

(
1−

n∑
k=1

αk(t)

)
−
∞∑
i=1

e(t)2i−1

(2i− 1)!

n∑
k=1

[
A−(i−1)α(i)(t)

]
k
− e′(t)

∞∑
i=1

e(t)2i

(2i)!

n∑
k=1

[
A−iα(i)(t)

]
k

(t > 0).

(3.13)
The relations in (3.2) and (3.6) yield

e′(t)αk(t) >
e1 − e0

T

d

2
> 0, e′(t)

(
1−

n∑
k=1

αk(t)

)
>
e1 − e0

T

d

2
> 0 (t ∈ [0, T ]). (3.14)

On the other hand, for any k ∈ {1, . . . , n},∣∣∣∣∣
∞∑
i=1

e(t)2i−1

(2i− 1)!

[
A−(i−1)α(i)(t)

]
k

∣∣∣∣∣ 6Mε

∞∑
i=1

‖A−1‖i−1
(
e1
)2i−1

(RT )i
(i!)σ

(2i− 1)!
(t ∈ [0, T ]) (3.15)

and ∣∣∣∣∣
∞∑
i=1

e(t)2i

(2i)!

[
A−iα(i)

]
k

(t)

∣∣∣∣∣ 6Mε

∞∑
i=1

(
‖A−1‖(e1)2

RT

)i
(i!)σ

(2i)!
(t ∈ [0, T ]). (3.16)

Taking ε small enough, and combining (3.12)–(3.16), we deduce (1.2) in (0, T ).
This concludes the proof of Theorem 1.1.
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3.2 Proof of Theorem 1.2

We consider u given by (2.9) with α defined through the function θσ given in (1.7):

α(t) := θσ

(
t

T

)
u0 +

(
1− θσ

(
t

T

))
u1 ∈ Rn (t ∈ R). (3.17)

Using (1.8), we have ∣∣∣α(i)(t)
∣∣∣ 6M1

(i!)
σ

(RT )i
(i ∈ N∗, t ∈ R) (3.18)

Applying Proposition 2.6, we deduce the regularity of u, and that it satisfies (2.2), and

u(0, x) = u0, u(T, x) = u1 (x ∈ R).

Note that we have for (t, x) ∈ R2,

n∑
k=1

uk(t, x) =

n∑
k=1

αk(t) +

∞∑
i=1

x2i

(2i)!

n∑
k=1

[
A−iα(i)(t)

]
k

(3.19)

and

uk(t, x) = αk(t) +

∞∑
i=1

x2i

(2i)!

[
A−iα(i)(t)

]
k

(1 6 k 6 n). (3.20)

From (3.18), we deduce that if |x| 6 r and T > 1, then∣∣∣∣∣
∞∑
i=1

x2i

(2i)!

[
A−iα(i)(t)

]
k

∣∣∣∣∣ 6 f(r)

T
,

∣∣∣∣∣
∞∑
i=1

x2i

(2i)!

n∑
k=1

[
A−iα(i)(t)

]
k

∣∣∣∣∣ 6 nf(r)

T
, (3.21)

where

f(r) := M1

∞∑
i=1

(
r2‖A−1‖

R

)i
(i!)σ

(2i)!
<∞. (3.22)

Now, let us consider d ∈ (0, 1) such that

d 6 min
k∈{1,...,n}

u0k,

n∑
k=1

u0k 6 1− d, d 6 min
k∈{1,...,n}

u1k, and

n∑
k=1

u1k 6 1− d, (3.23)

Then, the above relations and (3.17) yield

d 6 min
k∈{1,...,n}

αk and

n∑
k=1

αk 6 1− d. (3.24)

We then set

r :=
2

d
e0

(
1−

n∑
k=1

u0k

)
> 0 (3.25)

and we consider T > 1 such that
nf(r)

T
6
d

2
.

Combining (3.19)–(3.21), (3.24) and the above relation, we deduce

d

2
6 min
k∈{1,...,n}

uk(t, x) and

n∑
k=1

uk(t, x) 6 1− d

2
(t > 0, |x| 6 r). (3.26)
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In particular, the function

U(t, x) :=

∫ x

0

(
1−

n∑
k=1

uk(t, y)

)
dy

is increasing in x ∈ [0, r], and satisfies U(t, 0) = 0, and, with (3.25),

U(t, r) > r
d

2
= e0

(
1−

n∑
k=1

u0k

)
.

Therefore, there exists a unique e(t) ∈ [0, r] such that∫ e(t)

0

(
1−

n∑
k=1

uk(t, x)

)
dx = e0

(
1−

n∑
k=1

u0k

)
.

One can check that U is Gevrey of order σ in time and 1 in space. Thus using the Implicit Gevrey map theorem
(see [18, Theorem 8.1]), we deduce that e is Gevrey of order σ. We have e(0) = e0 and if we set

ϕk(t) :=
d

dt

∫ e(t)

0

uk(t, x) dx (1 6 k 6 n, t > 0)

then we see that
d

dt

∫ e(t)

0

u0(t, x) dx = 0

and thus (2.3) holds and from Lemma 2.1, we deduce that (e, u) is a solution of (1.3)–(1.4). From (3.26) and
e(t) 6 r, we deduce that (e(t), u(t)) ∈ S for all t ∈ [0, T ].
This concludes the proof of Theorem 1.2.

3.3 Proof of Proposition 1.4

We now prove that the controllability of the system can fail for small times.
We denote by A> the transpose of A and by hypothesis, there exist a ∈ Rn, a 6= 0 and λ 6= 0 such that

A>a = λa.

Since a 6= 0, there exist u0, u1 ∈ Rn such that

u0 · a 6= u1 · a,

together with

min
k∈{1,...,n}

u0k > 0, min
k∈{1,...,n}

u1k > 0,

n∑
k=1

u0k < 1,

n∑
k=1

u1k < 1.

We also choose e0 > 0 and e1 > 0 such that (1.10) holds. Let us consider a control (ϕk)k with ϕ0 ≡ 0 and a
solution (e, u) of (1.3)–(1.4) satisfying (e(t), u(t, x)) ∈ S, for every t ∈ [0, T ] and x ∈ (0, e(t)), and

e(T ) = e1, u(T, x) = u1 (x ∈ (0, e1)).

We set

v := u · a+

n∑
k=1

|ak|, v0 := u0 · a+

n∑
k=1

|ak|, v1 := u1 · a+

n∑
k=1

|ak|
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and we have v0 6= v1 and v0, v1 > 0. Since (e(t), u(t, x)) ∈ S for all t ∈ [0, T ], we have v(t, x) > 0, for all (t, x).
From Corollary 2.2, we deduce

e(t) > L :=

∫ e0

0

(
1−

n∑
k=1

u0k(x)

)
dx > 0.

Taking the inner product of the first equation of (1.4) with a, and using the above results, we deduce that ∂tv − λ∂2xv = 0 in (0, T )× (0, L),
v(t, 0) > 0, v(t, L) > 0 t ∈ (0, T ),
v(0, x) = v0 > 0, v(T, x) = v1 > 0 x ∈ (0, L).

If λ > 0, we can apply [9, Theorem 2.1] to deduce the existence of T0(v0, v1, L, λ) > 0 such that

T > T0.

If λ < 0, we can perform the change of variable t 7→ T − t and apply [9, Theorem 2.1] to deduce the result.
This concludes the proof of Proposition 1.4.

3.4 Proof of Theorem 1.5

We end this section by the proof of the controllability result in arbitrarily small time, using n+1 controls which
are not subject to any sign constraint.

Using ϕ0, we can control e independently of u. More precisely, let us set

e(t) := e0θσ

(
3t

T

)
+ εT 1/2

(
θσ

(
1− 3t

T

)
− θσ

(
3− 3t

T

))
+ e1θσ

(
3− 3t

T

)
, (3.27)

with ε ∈ (0, 1) small enough that we specify later. We define u with (2.9) where α is defined through the
function θσ given in (1.7):

α(t) := θσ

(
3t

T
− 1

)
u0 +

(
1− θσ

(
3t

T
− 1

))
u1 ∈ Rn (t ∈ R). (3.28)

We have that α satisfies (3.18). Then, applying Proposition 2.6, we deduce the regularity of (e, u) and that it
satisfies (1.3)–(1.4) with the controls given by

ϕ(t) := A∂xu(t, e(t)) + e′(t)u(t, e(t)) and ϕ0(t) := e′(t)−
n∑
k=1

ϕk(t) (t > 0). (3.29)

Using the properties (1.7) of θσ, we also have

u(t, x) = u0 if t 6
T

3
, u(t, x) = u1 if t >

2T

3
, (3.30)

and

e(t) = e0 if t 6 0, e(t) = εT 1/2 if t ∈
(
T

3
,

2T

3

)
, e(t) = e1 if t > T (3.31)

and e(t) > min(e0, e1, εT 1/2) > 0 in the other intervals. It only remains to show that

0 < min
k∈{1,...,n}

uk(t, x) and

n∑
k=1

uk(t, x) < 1 (t ∈ (0, T ), x ∈ (0, e(t))). (3.32)
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Using (3.30), we deduce the above relations for t /∈
(
T
3 ,

2T
3

)
. If t ∈

(
T
3 ,

2T
3

)
, we use (2.9) to write (3.19), with

n∑
k=1

αk(t) = θσ

(
3t

T
− 1

) n∑
k=1

u0k +

(
1− θσ

(
3t

T
− 1

)) n∑
k=1

u1k ∈ (0, 1) (t ∈ (0, T )).

As in the proof of Theorem 1.2, we only need to estimate the sum in the right-hand side of (3.19): using (3.31),
e(t) = εT 1/2 and combining it with (3.18), we obtain∣∣∣∣∣

∞∑
i=1

x2i

(2i)!

n∑
k=1

[
A−iα(i)(t)

]
k

∣∣∣∣∣ 6M1nε
2
∞∑
i=1

(
‖A−1‖
R

)i
(i!)σ

(2i)!
(x ∈ (0, εT 1/2)). (3.33)

In particular, taking ε small enough, we conclude that

n∑
k=1

uk ∈ (0, 1)

(
t ∈
(
T

3
,

2T

3

)
, x ∈ (0, e(t))

)
.

The other relation in (3.32) is obtained similarly by taking ε possibly smaller.
This concludes the proof of Theorem 1.5.

4 Numerical illustrations

Within the flatness method, one can deduce naturally a numerical algorithm to approximate the solution
of (1.4). Assuming that the solution u is given by (2.9), where α : R → Rn is a Gevrey function of order
σ ∈ (1, 2) satisfying (2.10), one can approach u by its partial sums:

uN (t, x) :=

N∑
i=0

x2i

(2i)!
A−iα(i)(t) ((t, x) ∈ R2). (4.1)

The following result gives an estimate of the error between u and uN . The proof is standard, but we recall it
for completeness.

Lemma 4.1. Assume σ ∈ (1, 2), and let L > 0. There exists a constant C > 0 such that for any Gevrey
function α satisfying (2.10), there exists N0 ∈ N∗ such that for any N > N0, u and uN , given respectively
by (2.9) and (4.1), satisfy

‖u− uN‖L∞(R×[−L,L]) 6 CM1

√
N

lnN

(
L2
∥∥A−1∥∥
4R1

)N
1

(N !)
2−σ . (4.2)

Proof. From (2.10) and the Stirling formula, there exist a constant C > 0 and N0 ∈ N∗ such that for any L > 0,
x ∈ [−L,L] and i > N0, ∣∣∣∣ x2i(2i)!

A−iα(i)(t)

∣∣∣∣ 6 CM1

(
L2
∥∥A−1∥∥ e2−σ

4R1

)i
ii(σ−2)+

1
2 (σ−1). (4.3)

We thus set

K :=
L2
∥∥A−1∥∥ e2−σ

4R1
, g(y) := (2− σ)y ln y − σ − 1

2
ln y − y lnK

so that (4.3) can be written as ∣∣∣∣ x2i(2i)!
A−iα(i)(t)

∣∣∣∣ 6 CM1e
−g(i). (4.4)
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Using that σ ∈ (1, 2), we deduce that taking N0 large enough, we have

g′(y) > g′(N) >
2− σ

2
ln(N) > 0 (y > N > N0).

Therefore, we deduce from the above relation, together with (2.9), (4.1) and (4.4) that

‖u− uN‖L∞(R×[−L,L]) 6 CM1

∫ ∞
N

e−g(y) dy 6
CM1

ln(N)
e−g(N).

We conclude the proof of this lemma by using the Stirling formula.

We will now give different illustrations of our results. All the calculations are performed using Matlab.
For (t, x) ∈ R2, u(t, x) from (2.9) is approximated by (4.1). Thanks to the previous proposition, one does not
need to take N to be very large (most of the time, we use N = 100 nonetheless) one can observe in Figure 3a
that the convergence is fast. The derivatives of α are computed inductively as in the appendix of [14]. As θσ
from (1.7) converges pointwise to a Heaviside function when σ goes to 1 in order for the numerical computation
to go well and to avoid an explosion (see Figure 3b) one will benefit from taking σ close to 2 therefore, we chose
to work with σ = 2− 1

32 .

Remark 4.2. According to [3] (see also [1]) a matrix form which is of physical interest for this system is given
by A(u) = (Ai,j(u))i,j∈{1,...,n} withAi,i(u) =

∑
16k 6=i6n

(Ki,k −Kk,0)uk +Kk,0, for 1 6 i 6 n,

Ai,j(u) = −(Ki,j −Ki,0)ui, for 1 6 i 6= j 6 n,

where for every 0 6 i 6= j 6 n, Ki,j = Kj,i > 0.

All the computations are done with n = 4, and A = A(u0) constructed as in the previous remark with:

(Ki,j)i,j∈{1,...,n} =


∗ 2 2 5
2 ∗ 5 7
2 5 ∗ 3
5 7 3 ∗

 and (Ki,0)i∈{1,...,n} =


5
8
7
9

 .

4.1 Illustrations for Theorem 1.2.

For this part, we take,

e0 = 1/2, u0 =
1

10


1
2

2.5
1

 and u1 =
1

10


2.5
4.5
1

1.5

 . (4.5)

Recall that when ϕ0 is set to 0, u0, u1, e0 and e1 satisfy the compatibility condition (2.4). With the values
given in (4.5), this leads to

e1 = 7/2. (4.6)

Here, we compute e as the solution of the Cauchy problem given in Corollary 2.4 using the ode45 function
from Matlab by approximating u and ∂xu with truncated series as described before, ϕ and ϕ0 are then computed
from uN and e using (3.3). The result can be seen in Figures 1 and 2. In Figure 1a we can see that the
condition (1.10) is numerically verified (as e1 isn’t used in the algorithm that computes e), and in Figure 1b,
the fact that ϕ0 ≡ 0 is also numerically verified. In Figure 2 we give the graphs of u(t, ·) for different values of t
which allows us to see that the transition from u0 to u1 is quite smooth.
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In Figure 3a one can observe the fast convergence of ϕ1 with respect to N . In fact the control has numerically
converged for N = 4. Finally, in Figure 3b we illustrate the dependence of the control with respect to σ. We see
in particular the fact that for σ close to 1, the control becomes singular. In fact, at a given time T > 0, taking
σ close to 1 leads to a violation of the state constraints. Roughly speaking, the more σ is small the larger T
has to be. As example, the state constraint is still violated for σ = 1.3 and T = 100.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

e(
t)

e

(a) Graph of e.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

φ(
t)

φ0
φ1
φ2
φ3
φ4

(b) Graphs of the controls.

Figure 1: Numerical test with T = 4, N = 100 and σ = 2− 1
32 . The values of e0, u0 and u1 are given in (4.5).

4.2 Illustration of Theorem 1.5

To numerically illustrate Theorem 1.5, we take e0, u0, e1 and u1 as in the previous paragraph, i.e., they are
given by (4.5) and (4.6). Here, e is given by (3.27) and ϕ0, . . . , ϕn are obtained through (3.3). In (3.27), we
chose ε = 0.1, recall that this value has to be chosen small enough to ensure the state constraints on u.

Using ϕ0 we are able to control our system from the same steady states as in the previous case and with the
same parameters in arbitrarily small time (we take T = 0.25 for the numerical illustration). Recall that in the
n controls case a minimal time is required to ensure that

∑n
i=1 ui < 1, and this constraint is violated even for

T = 3 (when ϕ0 ≡ 0). On Figure 4, we have displayed the trajectory of e and the controls ϕ0, . . . , ϕ4.
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