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Introduction

Two-fluid flows involve two non-miscible fluids, which are therefore separated by a sharp interface, whose location is usually part of the problem unknowns to be determined. They take place in a large collection of fluid mechanics problems ranging from environmental and geophysical to industrial processing situations. Many numerical methods have been developed to deal with such problems, but their accuracy and computational efficiency mainly depend on their capabilities to deal with two key-points: i) the topological complexity of the interface(s) and its (their) potential changes in the course of time; ii) the material discontinuities across the interface(s) and their related velocity and pressure field discontinuities. Among many others, the Extended Finite Element Method (XFEM) is well suited to account for material discontinuities in an Eulerian framework. Indeed, it has emerged from Element-Free Galerkin Methods and inherited many of their techniques [START_REF] Belytschko | Element-free Galerkin Methods[END_REF]. It is designed to approximate discontinuous fields by supplementing the classical continuous polynomial approximations with extra discontinuous ones related to the known physical discontinuities. Four main features are meaningful to the computational efficiency of an XFEM implementation: (i) the interface representation, (ii) the chosen enrichment functions for strong and weak discontinuities, (iii) the numerical integration of weak integral forms in elements crossed by the interface and (iv) the way to reduce ill-conditionning that arises from localized tiny supports of enrichment functions.

In the framework of two-fluid flows, the pioneering work of Chessa and Belytschko [START_REF] Chessa | An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension[END_REF] acknowledged the Level Set Method [START_REF] Osher | Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Chang | A Level Set formulation of Eulerian interface capturing methods for incompressible fluid flows[END_REF][START_REF] Osher | Level Set methods: an overview and some recent results[END_REF] to be a very convenient way to represent the interface geometry in XFEM, whatever it is steady or time-dependent. Based on this statement most enrichment functions are nowadays based on the Level Set function, defined as the signed distance to the interface [START_REF] Chessa | An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension[END_REF]. Optimal convergence rates have been reported for strong pressure discontinuity problems (related to surface tension) with the sign enrichment function [START_REF] Cheng | XFEM with hanging nodes for two-phase incompressible flow[END_REF], meanwhile only sub-optimal convergence rates are experienced for continuous fields with discontinuous gradients (related to different densities and/or dynamical viscosities) with the abs enrichment function [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite element method[END_REF][START_REF] Chessa | On the construction of blending elements for local partition of unity enriched finite elements[END_REF]. The cure for the latter was to supplement blending elements (that have both enriched and non-enriched nodes) with a smoothed ridge enrichment function [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite element method[END_REF] or a linearly decreasing weight function [START_REF] Fries | A corrected XFEM approximation without problems in blending elements[END_REF], so that their enrichment functions are shifted to vanish at edge nodes [START_REF] Belytschko | Arbitrary discontinuities in finite elements[END_REF][START_REF] Moës | A computational approach to handle complex microstructure geometries[END_REF]. As an Eulerian approach the mesh does not coincide with the interface, so discontinuities in material properties lead to discontinuous integrands in crossed elements and Gauss quadratures no longer produce accurate results. To overcome this problem one splits crossed elements into homogeneous sub-domains on each side of the interface, so that integrands remain piecewise continuous [START_REF] Cheng | XFEM with hanging nodes for two-phase incompressible flow[END_REF]. In three dimensional problems such splittings are sometimes computationally cumbersome and tricky, resulting in either two-stage procedures [START_REF] Cheng | XFEM with hanging nodes for two-phase incompressible flow[END_REF][START_REF] Fries | The Extended/Generalized Finite Element Method: An overview of the method and its applications[END_REF] or one-stage ones [START_REF] Soghrati | 3D hierarchical interface-enriched finite element method: Implementation and applications[END_REF]. Such a splitting strategy into sub-domains with curved, higherorder edges [START_REF] Cheng | Higher-order xfem for curved strong and weak discontinuities[END_REF] or faces [START_REF] Fries | Higher-order meshing of implicit geometries-part i: Integration and interpolation in cut elements[END_REF] has recently pushed a step forward enabling to perform accurate numerical integrations with reduced numbers of quadrature points.

A recurrent XFEM issue is the potentially devastating ill-conditioning that arises in algebraic systems resulting from cut elements with large ratios of volumes on both sides of the interface [START_REF] Fries | The Extended/Generalized Finite Element Method: An overview of the method and its applications[END_REF]. Such ill-conditioning not only critically degrades the convergence rate of iterative solvers, but can also in extreme cases lead to completely erroneous results even with direct solvers. Several cures have been proposed, either changing the enrichment function itself [START_REF] Babuska | Stable generalized finite element method (SGFEM)[END_REF] or its nodal support, discarding enriched degrees of freedom associated with too tiny supports [START_REF] Reusken | Analysis of an extended pressure finite element space for two-phase incompressible flows[END_REF] or moving them to recover a better condition number of the algebraic system [START_REF] Choi | Simulation of the flow of a viscoelastic fluid around a stationary cylinder using an extended finite element method[END_REF]. Basic criteria related to degrees of freedom to be discarded have been analyzed with respect to convergence properties, condition numbers and iteration counts. It turns out that with these improvements the stable-XFEM [START_REF] Sauerland | The stable XFEM for two-phase flows[END_REF] outperforms standard XFEM.

Finally, when dealing with incompressible two-fluid flows one has also to address the velocity-pressure coupling as far as computational performance is invoked. In this respect, except the pioneering work of Chessa and Belytschko [START_REF] Chessa | An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension[END_REF], in which 2D axisymmetric two-fluid flows were computed with the projection method of Chorin [START_REF] Chorin | Numerical solution of the Navier-Stokes equation[END_REF], the most recent works quite exclusively refer to fully coupled mixed velocity-pressure formulations. The latter weak forms are usually discretized in space according to either equal-order linear approximations stabilized by SUPG/PSPG/LSIC [START_REF] Sauerland | The stable XFEM for two-phase flows[END_REF][START_REF] Fries | The intrinsic XFEM for two-fluid flows[END_REF][START_REF] Sauerland | The extended finite element method for two-phase and free-surface flows: A systematic study[END_REF] or classical P2-P1 Taylor-Hood Finite Elements [START_REF] Reusken | Analysis of an extended pressure finite element space for two-phase incompressible flows[END_REF][START_REF] Gross | An extended pressure finite element space for two-phase incompressible flows with surface tension[END_REF][START_REF] Bertakis | Validated simulation of droplet sedimentation with finite element and level-set methods[END_REF]. For large size 3D problems one of the main limitations of these fully coupled solution algorithms is either they only use low order approximations or become computationally expensive. Moreover, one cannot expect to achieve much more than second order accurate schemes in time and space for both velocity and pressure fields with classical approximations. A promising alternative should take advantage of state-of-the-art projection methods for which insight analyses have confirmed their potential to achieve high order convergence rates (up to fourth order in both time and space) with classical C 0 Lagrange polynomials [START_REF] Liu | Stable and accurate pressure approximation for unsteady incompressible viscous flow[END_REF].

So, on the way to evaluate how relevant and efficient it could be to solve two-fluid flows with such sophisticated but powerful projection algorithms, the purpose of the present paper is first to assess how state-of-the-art XFEM shifted enrichment functions perform in a projection algorithm framework we are familiar with [START_REF] Guermond | Calculation of incompressible viscous flows by an unconditionally stable projection fem[END_REF][START_REF] Rabier | Computation of free surface flows with a projection fem in a moving mesh framework[END_REF]. So, these XFEM enrichment functions have been implemented in our projection algorithm and then we have checked their capability to faithfully reproduce strong and weak discontinuities for pressure and velocity fields, respectively. Quantitative error analyses have been performed thanks to benchmarking against elementary test cases for which analytical solution can be derived. Our analyses focus on the following aspects: accuracy, convergence order and discontinuity quality across the interface for weak and strong discontinuities. The paper is organized as follows: section 2 presents our Eulerian model for incompressible two-fluid flows. It accounts for isothermal Navier-Stokes equations supplemented with closures at the interface, modeled by the Level-Set method. Section 3 describes the spatial discretization of weak forms in the framework of our projection algorithm. The main numerical integration techniques performed on two-fluid elements are presented in section 4. Representative test cases are presented in section 5 and the paper closes with a discussion on main difficulties encountered, solutions we have adopted to overcome them and few issues that still remain open questions beyond this work.

An Eulerian model for two-fluid flows

Let us consider a domain Ω in which takes place an incompressible two-fluid flow where the interface Γ defines two complementary material subdomains Ω 1 and Ω 2 of Ω (cf. fig. 1). The interface between the two fluids materializes surface tension forces (τ is the surface tension coefficient), along with the related discontinuity of pressure field (if non-90 zero interface curvature), as well as a discontinuity of the velocity gradient (if ρ 1 = ρ 2 or µ 1 = µ 2 or ∂τ ∂s = 0, s being the curvilinear abscissa along the interface).
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Figure 1: Mesh not-conforming to the interface in an Eulerian two-fluid flow framework.

Governing equations of fluid flow

In each subdomain Ω α (α = 1,2) the fluid flow is governed by the incompressible Navier-Stokes equations. Mass conservation equation and momentum read as follows for twofluid flows described in an Eulerian framework:

∂ρ α ∂t + ∇•(ρ α v α ) = 0. (2.1)
ρ α ∂ v α ∂t + v α • ∇ v α = ∇• σα +ρ α g, (2.2) 
where t denotes time, ρ α and µ α are density and dynamic viscosity of fluid α, assumed constants in each subdomain Ω α , g is the gravitational acceleration, p α and v α are pressure and velocity vector, respectively and σα is the Cauchy stress tensor defined by a Newtonian behavior:

σα = -p α Ī +2µ α εα , with εα = 1 2 ∇ v α +∇ T v α .
The closures at the interface are two-fold: on the one hand, velocity continuity is assumed for immiscible fluids and on the other hand, the macroscopic equilibrium of stress vector across the interface is induced by surface tension:

100 [ v] Γ(t) = 0 [ σ n] Γ(t) = τ χ n+ ∂τ ∂s t g , (2.3) 
where χ is the interface curvature, n is the normal vector to the interface (arbitrarily oriented from Ω 1 to Ω 2 ) and t g is the tangent vector along the interface. Finally, initial and boundary conditions, specific to each problem must be supplemented to close the problem.

Level Set description of the interface

The interface Γ between the two fluids is an an implicit surface in 3D (curve in 2D), defined as the zero-level of a Level Set function:

Φ( x,t) = 0,
where Φ( x,t) is the signed distance to the interface (figure 2). The domain Ω is divided into two subdomains Ω 1 and Ω 2 by the interface where the level set function changes sign, arbitrarily defined negative in the former and positive in the latter. The scalar function Φ is continuous in space and can be time dependent. If so, its time evolution is modeled by the pure advection equation of the Level Set method [START_REF] Chang | A Level Set formulation of Eulerian interface capturing methods for incompressible fluid flows[END_REF][START_REF] Osher | Level Set methods: an overview and some recent results[END_REF][START_REF] Sussman | A Level Set approach for computing solutions to incompressible two-phase flow[END_REF], which requires as any hyperbolic equation a stabilization technique to be solved by classical Bubnov-Galerkin Finite Element approximations:

∂Φ( x,t) ∂t + v α • ∇Φ( x,t) = 0.
(2.4)

Weak integral forms and fields approximations

The specificity of incompressible fluid flows stands in its peculiar velocity-pressure coupling, which is undertaken in the present work by the unconditionally stable projection algorithm [START_REF] Guermond | Calculation of incompressible viscous flows by an unconditionally stable projection fem[END_REF], later on extended to free-surface flows and open boundary conditions [START_REF] Rabier | Computation of free surface flows with a projection fem in a moving mesh framework[END_REF]. The resulting algorithm consists in solving iteratively the momentum and mass conservation equations in two steps: i) an advection-diffusion step, in which the velocity field is advanced in time by solving for the momentum equation with a provisional pressure field; ii) a projection step, in which the pressure field is updated so that 120 the velocity field will satisfy the incompressibility constraint at the end of the step.

Weak integral forms

The Finite Element Method is used to transform the governing equations into algebraic systems tractable on modern parallel computers. Its first step consists in building the weak integral forms of the problem, subsequently discretized in space by finite element approximations (classical and XFEM) and in time by first order finite difference scheme (backward Euler). The unconditionally stable projection algorithm, adapted to present two-fluid flow problems leads to the following three weak integral forms defined on material domains Ω α (α = 1,2):

Ω α ρ α v * -v t ∆t •δ v dΩ+ Ω α ρ α v * ∇ v * •δ v dΩ+2 Ω α µ α ε * : δ ε dΩ -Ω α ∇(2p t -p t-∆t ) δ v dΩ+ ∂Ω α σ n•δ v dΣ+ Ω α ρ α g e z •δ v dΩ = 0 Ω α ∇(p t+∆t -p t )• ∇δp dΩ+ 1 ∆t Ω α ρ α ( ∇• v * ) δp dΩ = 0 (3.1
)

Ω α Φ t+∆t -Φ t ∆t δΦ dΩ+ Ω α v• ∇Φ δΦ dΩ = 0 ∀ ( v * , v t ) ∈ U v , ∀ δ v ∈ W v , ∀ p ∈ U p , ∀ δp ∈ W p , ∀ Φ ∈ U Φ , ∀ δΦ ∈ W Φ
where U and W are appropriate functional spaces for trial and weighting functions, ∆t is 130 the time step and starred quantities are based one the intermediate velocity vector ( v * ), which is not required to satisfy the incompressibility constraint in the advection-diffusion step.

Spatial discretization of weak integral forms

The weak integral forms of eq. (3.1) are continuous in space, so one has next to approximate all variable fields in order to build algebraic systems to be solved on a computer. The physical domain Ω and its boundary ∂Ω are approximated by a mesh, which is not aligned with the interface Γ, so that some mesh elements are crossed by it. Therefore, one uses two different approximation spaces depending on the mesh element location with respect to the interface: the standard finite element basis for the continuous part of the 140 fields and XFEM enrichments for the discontinuous one (mesh elements crossed by the interface).

FEM approximations in single-fluid elements

For single-fluid elements (not crossed by the interface), velocity, pressure and Level Set fields are approximated with standard Finite Element basis functions (Bubnov-Galerkin approximations), using iso-parametric Lagrange elements (H 27 and H 8 hexahedral elements). Thus, the field approximations read:

• piecewise quadratic for the three velocity components and their weighting functions:

v( x,t) = 27 ∑ i=1 N H 27 i ( x) V i (t),
• piecewise linear for pressure and its weighting function:

p( x,t) = 8 ∑ i=1 N H 8 i ( x) P i (t),
• piecewise quadratic for Level Set and its weighting function: 

Φ( x,t) = 27 ∑ i=1 N H 27 i ( x) Φ i (t), (3.2 

XFEM approximations in two-fluid elements

On the other hand, two-fluid elements (crossed by the interface) are made-up of two subdomains with different material properties, which induce discontinuities across the interface in fields or in their gradients, as follows:

• the velocity field is continuous across Γ, but its normal gradient is discontinuous across the interface if it exists any contrast in material properties between fluids, cf. figure 3(a). This is referred to as weak discontinuities (kink in the field);

• the pressure field is discontinuous across Γ if surface tension exists and the interface has a nonzero curvature, as stated by eq. (2.3), cf. figure 3 To take into account these discontinuities, the continuous piece-wise polynomial approximations of standard FEM are enriched with additional discontinuous functions, which bear the required discontinuities. Hence, velocity and pressure fields along with their weighting functions are approximated as follows: -for pressure field enrichment, one selects the Sign(Φ( x,t)) function, which is discontinuous across the interface.

v( x,t) = 27 ∑ i=1 N H 27 i ( x) V i (t) + 8 ∑ j=1 N H 8 j ( x) ψ v ( x) W v j (t), (3.3 
Following previous XFEM works for incompressible fluid flow problems we have used the shifted enrichment functions, first introduced in [START_REF] Moës | A computational approach to handle complex microstructure geometries[END_REF], which vanish at edge nodes of element so that no additional contributions are introduced to adjacent elements which share these nodes (blending elements). This condition ensures that no special treatment is required for blending elements [START_REF] Chessa | On the construction of blending elements for local partition of unity enriched finite elements[END_REF]. For velocity field this condition is fulfilled by the following shifted enrichment [START_REF] Fries | The Extended/Generalized Finite Element Method: An overview of the method and its applications[END_REF]:

180 ψ v ( x,t) = |Φ( x,t)|- ∑ i=1 N H 8 i ( x)|Φ i (t)|, (3.5) 
and for pressure field the shifted enrichment reads [START_REF] Legay | Strong and weak arbitrary discontinuities in spectral finite elements[END_REF], [START_REF] Gross | An extended pressure finite element space for two-phase incompressible flows with surface tension[END_REF]:

ψ p ( x,t)=SignΦ( x,t)- 8 ∑ i=1 N H 8 i ( x) SignΦ i (t), (3.6) 
where Φ i (t) are nodal values of the Φ function at time t. These enrichment functions are depicted in fig. 4(a) and 4(b) for a planar interface. Additional degrees of freedom associated with enrichment contributions can be easily taken into account with an in-house finite element code. For two-fluid elements the global approach is the same as for single-fluid elements, provided one introduces a family of basis functions made-up of classical basis functions supplemented with enrichment ones. In the present case, the standard family of basis functions {N H 27 i=1,27 } is supplemented with the enrichment functions {N H 8 i=1,8 ψ}, in H 27 and H 8 finite elements, respectively.
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On the other hand, standard finite element approximation (3.2) is used in two-fluid elements for the Level Set function as this field is continuous over the whole computational domain Ω.

Resulting algebraic systems and solution algorithm

Appropriately inserting standard FEM approximations (3.2) and XFEM ones eq. (3.3)-(3.6) into the three weak integral forms (3.1) results in the three following algebraic systems: This Finite Element model has been implemented in the PETSc environment [START_REF] Balay | PETSc Web page[END_REF], which give us access to High Performance Computations on parallel computers. The al-gebraic system associated with the momentum advection-diffusion step is nonlinear, so it is iteratively solved at each time step of the solution algorithm by a Newton-Raphson algorithm using the SNES environment. On the other hand, algebraic systems associated with the pressure Poisson projection step and Level Set function are linear, so they are solved at each time step of the solution algorithm with the KSP routines. All linearized systems are solved with the Bi-Conjugate Gradient Stabilized iterative solver, preconditioned with Additive Schwartz Method, efficiently implemented in PETSc library.

([M v ]+∆t[K v (V * )])[V * ] = [M v ][V t ]+∆t[F v ], (3.7) [K p ][P] = [F p ], (3.8) ([M Φ ]+∆t[K Φ ])[Φ t+∆t ] = [M Φ ][Φ t ]. ( 3 

Specific computations in two-fluid elements

Numerical integration of various contributions from discretized weak integral forms (3.7) -(3.9) can be done by standard Gauss quadratures for one-fluid elements. But for twofluid elements the discontinuous XFEM approximations (3.3) of velocity and pressure fields lead to discontinuous integrands and Gauss quadrature over the entire two-fluid element no longer produces accurate results. Therefore, specific computations have to be implemented for two-fluid elements: prior to perform Gauss quadrature, one first splits two-fluid elements into two geometrical sub-domains conforming to the interface.

Splitting of two-fluid elements

Splitting of two-fluid elements is based on the location of intersecting points between the interface and element edges or faces. Owing to piece-wise quadratic approximation of the Level Set function (3.2), the searched intersecting points solve for the following second order equation in the parametric reference element:

Φ( ξ) = 27 ∑ i=1 N H 27 i ( ξ) Φ i = 0, with ξ j = ±1
whose coefficients depend on nodal values Φ i (t). This splitting is intrinsically related to the interface geometry, so to proceed efficiently specific implementations have been designed for the H 27 finite element considered, using ad-hoc strategies. Many intersecting cases have been managed and implemented with several partitioning techniques devoted to the most generic cases. The first one is based on an a priori splitting of the H 27 hexahedral reference element into a pre-selected patch of tetrahedra not conforming to the interface. We have implemented either a 5-tetrahedra-patch, cf. fig. 5(a), which leads to an asymmetric partition (firstly reported in [START_REF] Belytschko | Structured extended finite element methods for solids defined by implicit surfaces[END_REF]), or the symmetrical 24-tetrahedra-patch, cf. fig. 5(b). Obviously, only a subset of these first level tetrahedra are crossed by the interface requiring to split them into second level tetrahedra conforming to the interface. The outcome of such first level splitting of a hexahedron into preselected tetrahedra patches is to save time. First of all, it is done only once and for all on the reference element and secondly it highly reduces the breaking down complexity. Indeed, a tetrahedron splitting presents only two possible geometrical configurations: either into both one tetrahedron and one prism or into two prisms. In turn, the prisms are easily split into three tetrahedra. However, the asymmetric 5-tetrahedra-patch can generate some relative inaccuracy 240 in numerical integration compared to the symmetric one. The reason is that the finite element basis of tetrahedron is incomplete, so numerical integration errors spatially vary in the frame of reference of master element. Therefore, it turned out to be more efficient and accurate to split two-fluid elements with a second approach, which uses as many as possible hexahedral subdomains (cf fig. 6) and otherwise tetrahedra. This mixed splitting technique presents the best compromise between geometrical flexibility and computational accuracy and efficiency.

Computations of domain integrals

For two-fluid elements (crossed by the interface, Ω Γ e ), where integrands are discontinuous, special numerical integration is performed. According to procedures described in section 4.1 these elements are first split into geometrical sub-domains (denoted SD, made-up of tetrahedra or hexahedra), where all integrands are piece-wise continuous, cf. fig. 7. So, the element integral results in the sum on all sub-domains of quadratures performed on npg T integration points in the reference element T 0 associated with every split sub-domain SD:

I Ω Γ e = ∑ SD npg T ∑ pg=1 ω T pg f ξ T pg |J( ξ T pg )| |J SD ( a T pg )|,
where J is the jacobian of transformation from the hexahedral reference element to the physical one, J SD is the jacobian of transformation from T 0 to SD in Ω 0 , ξ T pg are coordinates of integration points a T pg of the reference element T 0 in the space of Ω 0 and ω T pg (a) Hexahedron split into 2 hexahedra. (b) Hexahedron split into mixed tetrahedra and hexahedra. are corresponding weights. The split procedure into homogenous sub-domains is only used for integration purpose, so it does not introduce any additional degrees of freedom. However, the price to pay is that it requires a higher number of integration points than single-fluid elements. Indeed, the weak form integral over two-fluid elements uses XFEM enrichment functions along with a second coordinate transformation jacobian J SD that both increase the polynomial degree of integrands.
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Computations of boundary integral along the interface

Boundary integrals that appear into the weak integral form (3.1) come generically from two boundary subsets: i) the external domain boundary ∂Ω (where Neumann boundary conditions are prescribed); ii) the interface Γ between the two material sub-domains Ω 1 and Ω 2 , where surface tension induces a momentum source term according to (2.3). The integral related to the latter reads:

I Γ = Γ τ χ( x Γ ) n( x Γ )+ ∂τ ∂s t g ( x Γ ) • δv( x Γ )dΣ. (4.1)
For an interface given as an implicit surface Φ( x Γ ) = 0, the unit normal vector to the interface (arbitrarily oriented from Ω 1 to Ω 2 ) is given by the normalized gradient of

Φ: n( x Γ ) = ∇Φ || ∇Φ||
. Direct integration of the first term appearing in the boundary integral (4.1) requires the computation of interface curvature χ, which involves second order derivatives of Φ with respect to global coordinates. So, it is more efficient and accurate to use alternate approaches that only relies on first order derivatives. In two dimensions the Frenet relationship expresses curvature as derivative of tangent vector t g (s) along the interface:

d t g ds (s) = χ(s) n(s), (4.2) 
Integrating by parts the related terms ends up with only first order derivatives:

I 2D Γ = - Γ τ t g • ∂ δv ∂s ds, (4.3) 
where s is the curvilinear abscissa along the interface. In three dimensions, despite it no longer exists any relation in the form of eq. (4.2), integration by parts can however be performed thanks to the Laplace-Beltrami differential [START_REF] Chessa | An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension[END_REF][START_REF] Demlov | An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces[END_REF] that similarly makes only first order derivatives to appear. Using the previous definition of the unit normal along the interface, it reads [START_REF] Fries | The intrinsic XFEM for two-fluid flows[END_REF][START_REF] Gross | An extended pressure finite element space for two-phase incompressible flows with surface tension[END_REF][START_REF] Gross | Finite element discretization error analysis of a surface tension force in two-phase incompressible flows[END_REF]:

I 3D Γ = - 3 ∑ i=1 Γ τ Ī -n Γ ⊗ n T Γ e i •∇ Γ δv i dΣ, (4.4) 
where e i is the i th unit vector of the cartesian frame, δv i is the i th component of the test function associated with the velocity vector.

Numerical results

The developed numerical model has been validated on several physical configurations that have analytic solutions, enabling us to evaluate the accuracy of our results. The first of such configurations is the gravitational two-fluid flow in a vertical channel, in which the interface is also vertical. The second configuration considered is a capillary two-fluid flow, in which surface tension induces a pressure discontinuity across the interface.

Discontinuity of velocity gradient across an interface

A steady gravitational two-fluid flow in a vertical channel with a vertical interface is one of the simplest configurations that brings into play a discontinuity of velocity gradient across the interface. Indeed, any contrast in material properties of the two fluids located on each side of the interface induces a discontinuity in the normal derivative to the inter-290 face of the velocity field (discontinuous velocity gradient). Planar and cylindrical shapes of the vertical interface have been considered to assess the capabilities of the developed numerical model.

Planar interface

For a parallelepiped vertical channel in which the interface is parallel to one pair of lateral walls, the steady-state analytic solution is obtained by integrating the related momentum equation (2.2), that reduces to a second order partial differential equation of the vertical velocity component in each fluid (w α ):

µ α ∂ 2 w α ∂x 2 + ∂ 2 w α ∂y 2 = ρ α g,
with no-slip boundary condition at vertical channel walls (w 1 (0)=w 2 (L)=0) and velocity continuity at the interface (w 1 (x I ) = w 2 (x I )), the interface being located at x I in the x direction. As the interface is planar (zero curvature) the stress vector is continuous across it, but if the two fluids have different material properties a discontinuity of the normal derivative of the velocity field takes place across the interface. Further simplifying the problem assuming an infinite channel width in the y direction, the 1D analytic solution 300 reads:

w 1 (x) = ρ 1 µ 1 g x 2 2 +C 11 x forx ∈ [0,x I ]; w 2 (x) = ρ 2 µ 2 g (x 2 -L 2 ) 2 +C 21 (x-L) forx ∈ [x I ,L];
(5.1)

C 21 =   µ 2 (2ρ 2 -ρ 1 )+µ 1 ρ 2 (2 L 2 x 2 I -1) 2µ 2 [µ 1 (x I -L)-µ 2 x I ]   gx 2 I ; C 11 = C 21 (1- L x I )+ ρ 2 µ 2 (1- L 2 x 2 I )- ρ 1 µ 1 g x I 2 .
This analytic solution eq. (5.1) is piece-wise quadratic, so it could be exactly represented by piece-wise Q 2 finite element approximations provided the mesh coincides with the interface, i.e., it exists only single-fluid elements. When this latter condition is no longer satisfied, i.e., it exists two-fluid elements, only approximate solutions are obtained with piece-wise Q 2 finite element approximations. Therefore, this basic gravitational two-fluid flow is one of the simplest configurations to assess the accuracy of our numerical model.

To start with, two salient ingredients of our numerical model (Gauss quadrature in two-fluid elements and appropriate enrichment of approximate fields) have been evaluated on a cubic domain [0,1] 3 , in which a vertical plane interface is located at x I = 0.5.

Fluid properties are set to ρ 1 = ρ 2 = 1/g, µ 1 = 1, µ 2 = 50 for densities and dynamic viscosities, respectively. At first, the computational domain is discretized with the minimal uniform mesh not conforming to the interface, made-up of only three H 27 finite elements in the x direction (two single-fluid elements apart from one two-fluid element) and only one element in the invariant y and z directions. The x-profiles of vertical velocity component are plotted for both standard FEM approximations (with split two-fluid element) in figure 8(a) and XFEM ones in figure 8(b) along with the analytic solution of eq. (5.1). Solely supplemented with a splitting of the two-fluid element the FEM approximations completely fail to reproduce the analytic solution in most of the computational domain, cf. fig 8(a). Indeed, piece-wise continuous polynomial approximation has no capability to deal with any discontinuity in velocity gradient within an element. Therefore, the stress balance across the interface located inside any two-fluid element cannot be satisfied. As a consequence, the velocity profile computed on such a coarse mesh significantly departs from the analytic solution. On the other hand, XFEM approximations accurately reproduce the discontinuity of velocity gradient across the interface, see figure 8(b). So, it is able to recover the parabolic analytic solution in the two single-fluid elements and it produces a very good approximation in the two-fluid element. In the latter, the analytic solution is piece-wise quadratic, whereas XFEM approximations are piece-wise cubic on each side of the interface (it results from the product of a linear part eq. (3.3) and a quadratic one eq. (3.5)). Uniformly refining the mesh in the x direction, while keeping one two-fluid element symmetrically crossed by the interface improves the accuracy of both computations. The root mean square error (RMSE) computed on all mesh nodes from various mesh resolutions are reported in table 1 for both FEM approximations (with split two-fluid element) and XFEM ones. For FEM computations, mesh refinement slowly improves accuracy, but the solution quality is desperately poor even for the finest mesh considered, for which the RMSE is only O(10 -4 ). On the other hand, for XFEM approximation the RMSE is impressively very good O(10 -9 ) from the coarsest minimal mesh (3×1×1) and slightly drops down to numerical accuracy O(10 -10 ) for the finest mesh considered. It turns out that mesh refinement provides an improvement mainly within the two-fluid element, since a very accurate solution is already achieved elsewhere in single-fluid elements even from the coarsest mesh.

H 27 mesh (N x ×1×1) h x = 1/N x RMSE FEM RMSE XFEM 3 
3.3333310 -1 7.5324410 -3 1.7812110 -9 5 2.0000010 -1 5.6057510 -3 1.7160310 -9 9

1.1111110 -1 3.5356510 -3 1.6556710 -9 51 1.9607810 -2 7.0369610 -4 2.6154310 -10 101 9.9010010 -3 3.5967110 -4 1.9232510 -10

Table 1: Gravitational two-fluid flow in a vertical parallelepiped channel with vertical plane interface located at

x I = 0.5, ρ 1 = ρ 2 = 1/g, µ 1 = 1, µ 2 = 50. Root mean square error (RMSE = 1 n ∑ n i=1 (w i -w ana i ) 2
, n stands for total mesh nodes) for FEM (with split two-fluid element) and XFEM approximations for various not conforming uniform mesh resolutions.

Once the accuracy of the developed XFEM model has been assessed, let us now investigate its capabilities to deal with arbitrarily high contrasts in material properties. Various ratios of dynamic viscosities have been considered and it turns out that the accuracy of the computed XFEM solution only decreases very slightly when increasing this ratio. For a one thousand ratio in dynamic viscosities the RMSE is only four times larger than that for a fifty ratio. The x-profiles of the vertical velocity component are plotted in figure 9(a) for µ 1 = 1, µ 2 = 1000, ρ 1 = ρ 2 = 1/g and in figure 9(b) for µ 1 = 1, µ 2 = 500, ρ 1 = 1/g, ρ 2 = 100ρ 1 , along with the corresponding analytic solutions. Astonishingly, the RMSE remains O(10 -9 ) whatever being the ratio in material properties and its related discontinuity in velocity gradient, despite our XFEM computations are performed on the minimal 3×1×1 H 27 not conforming uniform mesh. Many other tests were carried out for various interface locations, ratios in material properties and mesh resolutions. Among them, representative x-profiles of the vertical velocity component are depicted in figure 10 for an interface located at x I = 0.31, a ratio of dynamic viscosities of 100, two ratios of densities, but roughly ten times larger densities than in previous cases. Here again, the RMSE of our XFEM solutions are O(10 -9 ) for a 50×1×1 H 27 not conforming uniform mesh. 

µ 1 = 1, µ 2 = 500, ρ 1 = 1/g, ρ 2 = 100ρ 1 , RMSE = 7.9265610 -9 .
Figure 9: Gravitational two-fluid flow in a vertical parallelepiped channel with vertical plane interface located at x I = 0.5 for high contrasts in fluid properties. Vertical velocity plot: analytical solution (green solid line), XFEM solutions computed on a 3×1×1 H 27 not conforming uniform mesh (red dotted line).

Cylindrical interface

To further illustrate our model capabilities let us now consider gravitational two-fluid flows in a vertical channel of square cross section in which the interface is cylindrical and aligned with lateral walls. For symmetry reasons the computational domain represents only one quarter of the channel and a no-slip condition is prescribed at solid walls. The quarter domain is defined on [0,6] 3 and the cylindrical interface is set at radius r I = 3.8; fluid properties are set to ρ 1 =ρ 2 =1/g, µ 1 =1, µ 2 =500, for densities and dynamic viscosities, respectively and no surface tension (τ = 0) is assumed. The computational domain is at first discretized with a 6×6×3 H 27 uniform mesh and the corresponding iso-values of the vertical velocity component computed with our XFEM model are displayed in figure 11(a) along with its profile over a horizontal plane in figure 11(b). It turns out from this figure that the circular interface is poorly approximated on such a coarse cartesian mesh. Indeed, the Q 2 approximation of Level Set function cannot exactly represent such a circular interface, so the approximate solution quality of the velocity field directly depends on that of interface geometry approximation.

Therefore, sensitivity to mesh resolution is performed on a sequence of four cartesian meshes uniformly refined in horizontal directions (from 6×6×3 up to 48×48×3 H 27 , halving each time the mesh size). First of all, geometrical discretization error is plotted versus mesh size in figure 12 (red diamonds). It is defined as the relative error on computed volumes bounded by this cylindrical interface. Its related convergence order is q = 2.843, just a little below the formal one (q th = 3) of Q 2 approximation. This slightly sub-optimal convergence rate originates in unavoidable numerical errors associated with the splitting procedures of two-fluids elements (mandatory to achieve convenient quadratures of discretized weak forms). In a second stage the relative error on maximum vertical velocity component is also plotted versus mesh size in figure 12 (blue diamonds). Since this problem has no closed analytic solution, the reference solution has been obtained thanks to a Richardson extrapolation (RE) of standard FEM approximate solutions computed on meshes coinciding with the interface. Four of such meshes (successively refined from 863 up to 6904 H 27 single-fluid elements) have been built, so the stress balance across the interface is naturally satisfied by adjacent elements. From these four approximate solutions the Richardson extrapolation [START_REF] Nicolas | Benchmark solution for a three-dimensional mixed-convection flow, Part 1: Reference solutions[END_REF] of the maximum vertical velocity component is w RE max = -3.624022. The related relative error of our XFEM solu-390 tions with respect to this reference value leads to a convergence order of q = 4.063. It is noteworthy to mention that our XFEM implementation performs at a very good overall convergence order on this problem where interface geometry and weak discontinuity of velocity field are closely linked. It is all the more remarkable in such a stiff problem in which the high ratio in dynamic viscosities translates into a comparable ratio in relative error on velocity by that on approximate interface geometry.

The vertical velocity profiles of XFEM and conforming-to-interface FEM solutions are plotted versus a horizontal bisecting line in figure 13 for several mesh resolutions, together with the analytic solution of an approximated axisymmetric problem. The latter is defined by a cylindrical interface located at r I = 3.8 and an outer cylindrical solid wall, despite the actual problem is a square channel. Thus, the radius of outer cylinder is defined as the average value between inscribed and circumscribed circles to the square channel, i.e., r w = 3(1+ √ 2). A close inspection of this plot reveals that our XFEM so- lution computed on the 12×12×3 H 27 uniform mesh (blue dashed line) gives already an accurate solution, roughly superimposed to the reference solution (black stars). Further mesh refinements up to 48×48×3 (red dotted line) enable to get closer and closer to the reference solution, up to numerical accuracy. A close-up view in the vicinity of the two-fluid interface (r = r I ) confirms that the weak discontinuity in velocity gradient across the interface is properly accounted for, see figure 13(b). Therefore, the maximum vertical velocity component along the cylinder axis (r = 0) coincide for both our XFEM 410 solutions and the FEM reference one computed on a conforming-to-interface mesh, see figure 13(c). On the other hand, the analytical solution of the approximate axisymmetric problem (green solid line) slightly underestimates the reference solution, especially for low radius of higher velocity, meaning that the prescribed value for the outer solid wall should be adjusted to a slightly higher value than the average one taken at first glance.

*
To conclude this section dealing with discontinuities in velocity gradient across the interface, it turns out that all computations performed on these gravitational two-fluid flows in a vertical parallelepiped channels demonstrate that our XFEM implementation enables to get the right discontinuity of the normal derivative of velocity inside two-fluid elements, even for arbitrary high contrasts in fluid properties. Our implementation that 420 properly deals with the numerical integration of two-fluid elements along with appropriate enrichment of the velocity field produces very accurate results on astonishing coarse meshes. In proceeding that way the mesh size of two-fluid elements is no longer related to any contrast in fluid properties unlike in most averaging one-fluid models. So, accurate results can be achieved on relative coarse meshes, provided they faithfully approximate the interface shape in two-fluid elements by means of Q 2 finite element approximation of the Level Set function.

Discontinuity of pressure field across an interface

In the physical problems we are interested in one has to account at the macroscopic scale for surface tension that acts at two-fluid interfaces (τ = 0). This section is therefore devoted to assess the capabilities of the present Eulerian XFEM model to deal with discontinuity of stress vector across the interface. Let us consider a simple test case drawn from [START_REF] Gross | An extended pressure finite element space for two-phase incompressible flows with surface tension[END_REF] in which a surface force density acts at a planar interface, disjoining this way the pressure jump across the interface from any tricky curvature computations. This configuration is realized in a closed container filled with two liquids at rest, separated by a planar vertical interface where a uniform and constant force density acts in the direction normal to the interface, i.e. [ n σ n] Γ =T n . The latter produces a pressure jump across the interface whose magnitude is the applied force density itself ([p] Γ = T n ), since no fluid flow can develop in the considered incompressible limit. So, the analytical solution simply reduces to v = 0 in Ω, p 1 =0 in Ω 1 and p 2 = T n in Ω 2 , pinning pressure to zero at one point of the outer boundary of Ω 1 . This test case is computed in a unit cubic domain in which the interface is set at x I = 0.5 with a uniform force density of magnitude T n = 10 -3 . The fluid properties are arbitrarily set to ρ 1 =ρ 2 =1 and µ 1 =µ 2 =1, since they do not enter the problem solution in the zero gravity case considered here. The computational domain is at first discretized with the same minimal uniform mesh not conforming to the interface as in section 5.1.1, made-up of only three H 27 finite elements in the x direction and only one element in the invariant y and z directions. The x-profiles of the pressure field are plotted for three approximations and compared with the theoretical step function: i) the standard finite element approximations (with split two-fluid element, denoted FEM) in figure 14(a); ii) the XFEM ones with pressure enrichment drawn from [START_REF] Legay | Strong and weak arbitrary discontinuities in spectral finite elements[END_REF] (eq. (3.4) and (3.6), denoted XFEM 1 ) in figure 14(b); iii) the proposed pressure enrichment (eq. (3.4) and (5.2), denoted XFEM 2 ) in figure 14(c). It turns out that FEM and XFEM 1 approximations produce very similar piece-wise linear solutions, instead of the theoretical step function. This is the expected behavior for FEM, in which the pressure approximation is piece-wise linear inside elements and continuous from one to another, hence it has no way to account for any pressure jump. On the other hand, XFEM 1 has been designed to manage discontinuous pressure fields [START_REF] Gross | An extended pressure finite element space for two-phase incompressible flows with surface tension[END_REF][START_REF] Legay | Strong and weak arbitrary discontinuities in spectral finite elements[END_REF]. Surprisingly, in this basic test case it fails to reproduce the expected pressure jump across the interface and it does not improve noticeably the FEM solution quality. The XFEM 1 pressure profile depicted in figure 14(b) presents a too tiny jump across the interface aside large linear parts that have quasi identical slopes as the FEM solution. Consequently, both pressure approximations produce a pressure gradient inside the two-fluid element, which induces in turn a purely spurious fluid flow at steady state.

Therefore, this basic test case points out an unexpected failure of the XFEM 1 enrichment to model pressure jumps in the framework of our projection algorithm. Thus, this 

T n = 10 -3 , ρ 1 = ρ 2 = 1, µ 1 = µ 2 = 1.
Pressure profiles along the interface normal direction: analytical solution (green solid line), FEM and XFEM solutions computed on a 3×1×1 H 27 not conforming uniform mesh (red dotted lines).

disappointing result led us to design and evaluate alternate pressure enrichment functions. For this problem where the interface location only depends on one space dimension, the proposed enrichment function of eq. ( 5.2) outperforms the other tested ones. It reads:

ψ p ( ξ,t) = 1-ξ 2 SignΦ( ξ,t) (5.2) 
where ξ stands for the one dimensional coordinate along the normal direction to the interface in the parametric two-fluid element. The proposed XFEM 2 pressure approximation defined by eq. (3.4) and (5.2), depicted in figure 14(c), faithfully reproduces the pressure jump across the interface and furthermore computed pressures have an excellent accuracy at mesh nodes. However, owing to its piece-wise quadratic nature it nevertheless introduces numerical undershoot and overshoot within the two-fluid element on either side of the pressure jump. Interestingly, the enrichment locality prevents them to propagate outside the two-fluid element, unlike the oscillatory solution arising from both FEM and XFEM 1 approximations. These three approximations are convergent in spatial resolution, so refining the mesh size improves their accuracy. For FEM and XFEM 1 the pressure gradient becomes steeper and steeper in the two-fluid element, but the theoretical step-shape pressure discontinuity is only poorly approximated until very tiny mesh sizes are considered ( dp dx ∝ T n /h x ) leading to expansive computational costs in 3D. Moreover, pressure oscillations are bounded within up to three elements on either side of the interface. On the other hand, XFEM 2 much accurately approximates the step-shape analytical solution as the overshoot and undershoot become more and more narrow. Indeed, they only spread over inside the two-fluid element with constant height extrema. These features are illustrated in figure 15, where the pressure profiles computed on a 9×1×1 H 27 non conforming uniform mesh are plotted for the three related approximations. Quantitative results associated with mesh size refinement are reported in table 2 for the three con- sidered approximations and successively refined uniform mesh resolutions (made up of N x ×1×1 H 27 elements, h x = 1/N x , h y = h z = 1) not conforming to the interface. This table gathers the relative root mean square error (RMSE/T n ) of computed pressure fields, along with standard RMSE of velocity fields. As previously observed qualitatively, FEM and XFEM 1 have comparable overall solution qualities, same order of pressure errors (O(10 -2 ) on the finest mesh), despite XFEM 1 produces a three times less accurate velocity field (O(10 -8 ) on the finest mesh) than FEM. On the other hand, XFEM 2 produces an excellent solution accuracy, as from the coarsest mesh (O(10 -13 ) and O(10 -20 ), for pressure and velocity errors, respectively). This highly accurate pressure field solution computed at mesh nodes is the one expected from a nicely working XFEM approximation on such an academic problem. But the most outstanding feature of this pressure enrichment is that the resulting pressure field does not induce any spurious velocity field unlike the two other pressure approximations. Indeed, the computed pressure overshoot and undershoot arising on either side of the interface within the two-fluid element are perfectly antisymmetric with respect to the interface thanks to the chosen enrichment function of eq. (5.2). Therefore, they do not induce any artificial pressure gradient inside the two-fluid element, and results in a nicely welcome spurious-free velocity field. Several other test cases have been undertaken and it turns out that the proposed pressure approximation XFEM 2 provides a significant improvement with respect to XFEM 1 as it successfully catches the pressure discontinuity of any step function, regardless of the jump magnitude and mesh size of the two-fluid element. However, it is noteworthy that the introduced pressure enrichment function of eq. (5.2) was tailored for this one-dimensional interface configuration, but its generalization to any complex threedimensional cases is not straightforward.

Discussion

Several other three-dimensional two-fluid flow configurations involving both weak discontinuities (velocity gradient discontinuity) and strong ones (pressure field discontinuity) have been computed with the present XFEM implementation. From our experience it turns out that the three salient ingredients to get accurate computations are in our projection algorithm framework: i) select appropriate enrichment functions to model the desired discontinuity type for the physical problem considered; ii) perform appropriate numerical integrations; (iii) alleviate as much as possible ill-conditioning of the algebraic systems to be solved. Provided these three necessary conditions are simultaneously satisfied, then XFEM approximations enable to compute outstanding quality solutions regardless of discontinuity magnitude and mesh size of the two-fluid element, as far as the interface is accurately represented by Q 2 approximation of the Level Set function.

Appropriate enrichment functions

For velocity gradient discontinuity within two-fluid elements (weak discontinuity) the XFEM approximations drawn from the literature [START_REF] Moës | A computational approach to handle complex microstructure geometries[END_REF][START_REF] Legay | Strong and weak arbitrary discontinuities in spectral finite elements[END_REF], defined by eq. (3.3) and (3.5) and implemented in our 3D projection algorithm framework [START_REF] Rabier | Computation of free surface flows with a projection fem in a moving mesh framework[END_REF] performed impressively well on representative test cases considered, such as in section 5.1. On the other hand, as mentioned in section 5.2 we didn't succeed to get the expected pressure field discontinuity (strong discontinuity) with approximations drawn from [START_REF] Gross | An extended pressure finite element space for two-phase incompressible flows with surface tension[END_REF][START_REF] Legay | Strong and weak arbitrary discontinuities in spectral finite elements[END_REF], defined by eq. (3.4) and (3.6). It turns out that in the framework of our projection algorithm XFEM 1 approximations produce singular stiffness matrix of the Pressure Poisson Equation, eq. (3.8). Indeed, after close inspection thanks to extensive symbolic calculations, the determinant of the assembled stiffness matrix is analytically zero for the example considered in section 5.2, whatever the not conforming uniform mesh resolution and interface location within the two-fluid element. The related numerically discretized stiffness matrix has in turn a very close to singular determinant, resulting therefore in an awkward pressure solution. This explains why these XFEM 1 pressure approximations do not provide any improvement with respect of the standard FEM one, even degrading the velocity accuracy as reported in table 2. Similar pressure oscillations localized in the vicinity of the interface were also present in [START_REF] Gross | An extended pressure finite element space for two-phase incompressible flows with surface tension[END_REF] despite the authors considered highly refined meshes for this problem where the used approximations are supposed to represent the analytical solution. Fortunately, the quadratic pressure enrichment function of eq. (5.2) introduced in this paper (XFEM 2 approximations) solved the problem and produced the desired pressure jump across the interface. So, the proposed quadratic enrichment likely suggests that it should be selected in a different approximation space than the standard one, unlike XFEM 1 . But, it is also noteworthy to recall that in the framework of incompressible fluid flow problems one has to care about the stability of velocity-pressure coupling. Indeed, velocity and pressure approximation spaces are closely linked by the in f -sup (LBB) stability condition in the framework of the present projection algorithm. So, an XFEM pressure approximation should likely be appropriate to the related velocity-pressure coupling algorithm to lead to a reliable implementation.

Appropriate numerical integrations alleviating ill-conditioning

Once appropriate enrichment functions have been selected, it is of first concern to perform appropriate numerical integrations to compute accurate XFEM solutions. As detailed in section 4, numerical integrations performed in two-fluid elements importantly contribute to accuracy. First of all, state-of-the-art splitting procedures [START_REF] Cheng | XFEM with hanging nodes for two-phase incompressible flow[END_REF][START_REF] Soghrati | 3D hierarchical interface-enriched finite element method: Implementation and applications[END_REF][START_REF] Cheng | Higher-order xfem for curved strong and weak discontinuities[END_REF] have been implemented along with original ones promoting as far as possible the best accuracy/efficiency ratio, while preserving problem symmetries. Proceeding this way, one ends up with piece-wise continuous integrands over split sub-domains. Secondly, numerical quadratures performed on these sub-domains should be done according to the polynomial order of integrands, accounting for both enrichment function degree and the multi-stage transformation jacobian ones from various reference to physical spaces. Indeed, let us recall that accurate Gauss quadratures require npg points per space direction, with npg ≥ 2r-1, r being the polynomial order of the integrand. Moreover, the searched steady state solutions have been computed with a time marching procedure. For that purpose, the first order accurate backward Euler scheme implemented in our projection algorithm enabled us to quickly reach steady states. To achieve a good trade-off between CPU time and accuracy, the time step is selected according to two criteria: i) the physical diffusion time scale of the considered problem t di f f = L 2 ×max(ρ/µ) α , where L is the reference length scale; ii) the requested divergence error in the velocity field. The former characterizes how long transient takes for momentum to reach steady state, while the latter indicates how small the step time should be to run computations in which the divergence of velocity field does not exceed the prescribed tolerance.

Moreover, particular attention should be paid to ill-conditioning of algebraic systems resulting from XFEM approximations [START_REF] Fries | The Extended/Generalized Finite Element Method: An overview of the method and its applications[END_REF][START_REF] Reusken | Analysis of an extended pressure finite element space for two-phase incompressible flows[END_REF][START_REF] Sauerland | The stable XFEM for two-phase flows[END_REF]. Indeed, the condition number they produces can exceed by up to three orders of magnitude standard FEM one, as from first order hexahedral finite elements [START_REF] Sauerland | The stable XFEM for two-phase flows[END_REF], meanwhile this becomes even worse for present quadratic approximations. Not only ill-conditionning induces very low convergence rates with iterative solvers, but it also leads in extreme cases to inaccurate computations with direct solvers. Indeed, when it exists a huge scaling difference between algebraic system coefficients related to standard degrees of freedom compared to enriched ones, diagonal scaling slightly improves the conditioning, but does not prevent from inaccurate algebraic system solution. To overcome this problem, we have introduced a scaling coefficient associated with enrichment functions. A well chosen value ensures both good convergence and accurate discontinuity solution across the interface. The influence of this scaling coefficient on the solution accuracy is illustrated in figure 16 on the gravitational two-fluid flow example of section 5.1.1. In order to clearly bring to the fore its 590 effect, computations are performed on the same minimal not conforming to the interface uniform mesh with the MU MPS direct solver [START_REF] Amestoy | MUMPS Web page[END_REF] interfaced with the PETSc library [START_REF] Balay | PETSc Web page[END_REF]. For the considered material property contrast (ρ 1 = ρ 2 =1/g, µ 1 =1, µ 2 =50) and interface location (x I = 5 12 ) a roughly optimal value to get the best efficiency (requested accuracy and lowest computational cost) is S coe f = 100, see figure 16(a). Departing away from this optimal value not only degrades the computation accuracy, as depicted in figure 16(b) for various scaling coefficients ranging on four orders of magnitude, but can ultimately lead to numerical divergence of the projection algorithm. Obviously, the interface location within the two-fluid element also influences the optimal value of the scaling coefficient. Indeed, computing with the same scaling coefficients as previously but for an interface 600 located at x I = 7 12 produces here again unacceptable solutions, see figure 16(c). Therefore, based on these results the scaling coefficient used in our computations has been adaptively related to both physical and geometrical considerations, unlike in [START_REF] Sauerland | The stable XFEM for two-phase flows[END_REF] where only the latter was accounted for. On the one hand it accounts for the physical problem discontinuity (material property contrast for the discontinuity of velocity gradient, surface tension for pressure discontinuity, etc.), and on the other hand it also accounts for the interface configuration within two-fluid elements throughout the resulting volume ratio. where P α is the material property of fluid α involved in the physical problem discontinuity. This scaling coefficient enabled us to get close to optimal values in the considered test cases. However, further analysis is obviously required to extend it to more complex geometrical configurations.

Conclusion

The developed XFEM implementation aims at computing in the framework of a projection algorithm incompressible two-fluid flows with arbitrary high contrasts in material properties in 3D configurations. This model features a classical shift enrichment function drawn from the literature to account for velocity gradient discontinuities across the interface (weak discontinuity). On the other hand, for the pressure discontinuity across the interface (strong discontinuity) the related enrichment function drawn from the literature produces an analytically zero determinant in the stiffness matrix associated with the Pressure Poisson Equation involved in our projection algorithm. Therefore, we have been led to introduce a new quadratic enrichment function which satisfactorily overcomes the problem. Moreover, to achieve accurate numerical integrations for arbitrary high contrasts in material properties, a splitting of two-fluid elements is performed prior to any numerical integrations. Proceeding this way enables us to perform accurate numerical integrations with Gauss quadratures on piece-wise continuous integrand over each subdomain. Finally, an ad-hoc scaling coefficient that accounts for both physical and geometrical considerations has been introduced to alleviate ill-conditioning inherent to classical XFEM approximations. Various validations have been carried out on flow configurations for which analytic solutions are available and for all of them very good solution accuracy has been achieved. It is noteworthy that provided the considered approximations are able to represent the problem solution, this implementation enables to compute high quality solutions regardless of discontinuity magnitude (arbitrary high contrast in material properties) and mesh size of the two-fluid element, as far as the interface is accurately represented by Q 2 approximation of the Level Set function. Moreover, we have shown for the first time that in these cases very accurate solutions are obtained even on coarse meshes, as from the minimal mesh not conforming to the interface. The present XFEM implementation in the framework of a projection algorithm is efficient to deal with the specificity of two-fluid flow problems. Satisfactory high convergence order of the velocity field (q ≈4) have been obtained with respect to basic one-fluid models that introduce average material properties in two-fluid elements, resulting in typical low convergence orders (q ≈ 1/2). From our point of view, this XFEM feature is definitely a decisive advantage to efficiently deal with 3D incompressible two-fluid flows configurations with arbitrary high contrasts in material properties. Some further work should definitely to be done to better understand in which way the classical sign enrichment function results in a singular algebraic system of Pressure Poisson Equation associated with the considered projection algorithm. However, we expect the present work to contribute in some way to efficiently solve large size 3D incompressible two-fluid flows in the framework of state-of-the-art projection algorithms that implement XFEM approximations.
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 2 Figure 2: Interface defined as the zero-level of the Level Set function.
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 3 Figure 3: Considered discontinuities of velocity and pressure fields across the interface Γ.

  (a) Enrichment with normal gradient discontinuity across the interface Γ. (b) Enrichment with jump across the interface Γ.
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 4 Figure 4: Shifted enrichment functions that vanish at element edge nodes.

(a) 5

 5 tetrahedra patch. (b) 24 tetrahedra patch.

Figure 5 :

 5 Figure 5: First level splitting of a hexahedron into preselected tetrahedra patches.
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 6 Figure 6: Hexahedron splitting into conforming to the interface sub-domains.

Figure 7 :

 7 Figure 7: Sketch of domain integration procedure in two-fluid element (quadrature points are only displayed in the upper-left sub-domain).

  FEM (split two-fluid element).
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 8 Figure 8: Gravitational two-fluid flow in a vertical parallelepiped channel with vertical plane interface located at x I = 0.5, ρ 1 = ρ 2 = 1/g, µ 1 = 1, µ 2 = 50. Vertical velocity plot: analytical solution (green solid line), computed solutions on 3×1×1 H 27 not conforming uniform mesh (red dotted line).

  µ 1 = 1, µ 2 = 1000, ρ 1 = ρ 2 = 1/g, RMSE = 7.8287710 -9 .

µ 1 = 1 , µ 2 =

 112 100, ρ 1 = 1, ρ 2 = 1000, RMSE = 2.5291410 -9 . Close-up of velocity profile (a) in the interface vicinity.

µ 1 = 1 , µ 2 =

 112 100, ρ 1 = 1, ρ 2 = 100, RMSE = 4.7656510 -9 . Close-up of velocity profile (c) in the interface vicinity.
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 10 Figure 10: Gravitational two-fluid flow in a vertical parallelepiped channel with vertical plane interface located at x I = 0.31 for high contrasts in fluid properties. Vertical velocity plot: analytical solution (green solid line), XFEM solutions computed on a 50×1×1 H 27 not conforming uniform mesh (red dotted line).

  (a) Iso-values of vertical velocity component. (b) Vertical velocity profile over a horizontal plane.
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 1112 Figure 11: Gravitational two-fluid flow in a vertical parallelepiped channel with vertical circular interface located at r I = 3.8, µ 1 = 1, µ 2 = 500, ρ 1 = ρ 2 = 1/g and τ = 0. XFEM solution of the vertical velocity component computed on a 6×6×3 H 27 cartesian uniform mesh.

  *************************************** Close-up in the vicinity of r I . Close-up in the vicinity of r=0.

Figure 13 :

 13 Figure13: Gravitational two-fluid flow in a vertical channel of square cross section with a vertical circular interface located at r I =3.8; µ 1 =1, µ 2 =500, ρ 1 =ρ 2 =1/g and τ =0. Plot of vertical velocity component along bisecting line: XFEM solutions computed on 12×12×3 H 27 (blue dashed line) and 48×48×3 (red dotted line) cartesian uniform meshes; FEM solution computed on a 6904 H 27 conforming-to-interface mesh (black stars); analytical solution of approximate axisymmetric problem (solid green line).

Figure 14 :

 14 Figure 14: Uniform force density acting at a planar interface in a cubic container filled with liquids: interface located at x I = 0.5,T n = 10 -3 , ρ 1 = ρ 2 = 1, µ 1 = µ 2 = 1.Pressure profiles along the interface normal direction: analytical solution (green solid line), FEM and XFEM solutions computed on a 3×1×1 H 27 not conforming uniform mesh (red dotted lines).

Figure 15 :

 15 Figure15: Uniform force density acting at a planar interface in a cubic container filled with liquids: interface located at x I =0.5, T n =10 -3 , ρ 1 =ρ 2 =1, µ 1 =µ 2 =1. Pressure profiles in the normal direction to the interface: analytical solution (green solid line), FEM and XFEM solutions computed on a 9×1×1 H 27 not conforming uniform mesh (red dotted line).

Figure 16 :

 16 Figure 16: Gravitational two-fluid flow in a vertical parallelepiped channel with vertical plane interface, ρ 1= ρ 2 = 1/g, µ 1 = 1, µ 2 = 50.Vertical velocity plot: analytical solution (green solid line), computed solutions on 3×1×1 H 27 non conforming uniform mesh for various scaling coefficients, dotted lines: S coe f = 100 (red); 1 (purple); 0.5 (orange); 0.01 (blue).

  8, µ 1 =1, µ 2 =500, ρ 1 =ρ 2 =1/g, τ =0. Relative error in computed volumes bounded by the cylindrical interface (red diamonds) and relative error on maximum vertical velocity component (blue diamonds) versus mesh size, computed on four cartesian uniform meshes successively refined (from 6×6×3 up to 48×48×3 H 27 ).

Table 2 :

 2 Uniform force density acting at a planar interface in a cubic container filled with liquids: interface located at x I = 0.5,T n = 10 -3 , ρ 1 = ρ 2 = 1, µ 1 = µ 2 = 1.Relative root mean square error (RMSE/T n ) for the pressure field, standard RMSE for the velocity field, computed for FEM (with split two-fluid element), standard (eq. (3.4) and (3.6)) and proposed (eq. (3.4) and (5.2)) XFEM approximations for various not conforming uniform mesh resolutions.
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