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Turbulence and inertial effects in a porous bed:
DNS and flow analysis

By X. He†, S. Apte†, K. Schneider‡, B. Kadoch‡ AND M. Farge¶

Direct numerical simulation (DNS) of pore-scale turbulence is performed in a unit cell
of a face-centered cubic lattice at three different pore Reynolds numbers (300, 500 and
1000). Eulerian statistics of mean and fluctuating velocity field, turbulent kinetic energy
(TKE) budget, and single and two-point correlations are obtained to quantify the ef-
fect of confinement on turbulence in porous media. Large acceleration and deceleration
regions in the flow field yield negative TKE production and flow features similar to a jet-
impingement-like flow. The flow field is also analyzed using angular Lagrangian statistics
(Bos et al. 2015) of fluid particles to study the temporal evolution of the direction change
and its asymptotic behavior, the latter being hypothesized to be dependent on the pore
geometry. A stochastic Monte Carlo-based model is developed to provide a reasonable
prediction of this asymptotic curvature angle. The Eulerian and Lagrangian correlations
are used to characterize pore-scale dispersion.

1. Introduction

Packed bed reactors are routinely used for synthesis of basic chemicals and interme-
diates in the chemical and process industries. Random packing of porous media is one
of the arrangements used in practice that exhibit typical flow Reynolds number on the
order of 1000 or more. This results in inertial effects and turbulence within pore space
which, together with resultant dispersion properties, plays a critical role in the transport
of reactants and products to and from active reaction sites. Contrary to conventional
thought about low-speed fluid flow in porous media, the inertial contribution to the flow
field is often important in applications, and the inertial terms can dramatically change
the topology of the flow field (such as formation of jets, vortexes, dead zones, etc. within
pores). However, the mechanisms of how inertial and turbulent flows affect the large-scale
friction factor are poorly understood (Hlushkou & Tallarek 2006).
Furthermore, nearly all theoretical studies of dispersion in porous media have been

on the condition of either (i) Stokes flow (which neglects the influence of inertial con-
tributions completely), or (ii) inertial flow without any turbulence effects. Researchers
typically rely on established empirical correlations for predicting transport and dispersive
properties of flow in fixed beds and ultimately in reactor design (Andrigo et al. 2000;
Eigenberger 1992). Development of Reynolds-averaged Navier Stokes (RANS) models for
flow at the pore-scale level has been attempted by numerous researchers (for instance in
Lemos & Pedras (2001); Pearson& Tardy (2002)). For example, the RANS k−ǫmodel has
been derived by time averaging the volume-averaged extended Darcy-Forchheimer model
equations (Antohe & Lage 1997), or by volume averaging the time-averaged Reynolds-
averaged equation (Masuoka & Takatsu 1996; Nakayama & Kuwahara 1999; Suga 2016),
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Figure 1. (a) Geometry of face-centered porous unit cell, (b) same as (a) except some beads
are removed so that the flow region inside of unit cell can be observed.

or by the double-decomposition technique developed based on exchangeability of volume-
time or time-volume averaging (Pedras & Lemos 2001). In these models, extra terms re-
quiring closure are obtained by conducting numerical experiments on simple geometries
such as a periodic array of rods and by using standard turbulence closure techniques
based on a gradient diffusion hypothesis. However, these models lack validation with
experimental or DNS data. A majority of these models predict non-zero Reynolds stress
for laminar flows (Pope 2000), making them inconsistent for applications over the full
range of Re from laminar to turbulent flows.
For high Re flows through porous media, several fundamental questions related to the

structure and characteristics of turbulence remain. There is currently seldom PIV or DNS
data on pore-scale flow characterization. In particular, measurement of shear stresses,
the spectrum of turbulent kinetic energy, the characteristics of near-wall flow structures,
inertial structures (such as jets and wakes), and velocity correlation functions (Patil &
Liburdy (2013) studied this but on a two-dimensional domain using PIV measurements)
would be useful quantities to measure in porous media. Currently, only global macroscopic
parameters (pressure drop, longitudinal dispersion) have been measured; some empirical
correlations exist for these quantities (Ergun 1952; Dixon & Cresswell 1986; Gunn 1987;
Wen & Fan 1975).
To answer the remaining questions and overcome the drawbacks of the current mod-

els, direct numerical simulation is performed in this work. The spatio-temporal velocity
and pressure data are used to analyze Eulerian and Lagrangian correlations. Detailed
Lagrangian analysis of the curvature angle is performed to study the influence of bed
confinement on turbulence statistics. Section 2 provides the details of the porous scale
geometry, simulation parameters and numerical approach. Section 3 presents some key
results on Eulerian statistics and correlations. Lagrangian correlations together with
curvature angle statistics and a stochastic model are described in Section 4. Finally, a
summary of the results is given in Section 5.

2. Computational geometry and simulation parameters

A porous face-centered cubic (FCC) unit cell (Figure 1) is used in this work. It has a
half sphere entering at each face of the cube, and a quarter sphere at each corner. The
face-centered cubic arrangement results in the lowest possible porosity (φ), the ratio of
the void volume (Vvoid) to the total volume (Vtotal), equal to 0.26. Due to the extreme
compactness, the flow through the unit cell experiences rapid expansion and contraction,
where the turbulence effects are intensified.
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Figure 2. Iso-surface of swirling strength λci = 0.25λmax
ci at (a) Rep = 300, (b) Rep = 500 and

(c) Rep = 1000.

Hill & Koch (2002) studied the same geometry using the lattice-Boltzmann method
for flows up to Rep = 300, and pore Reynolds number (Rep) is defined with the adoption
of porosity as

Rep =
UintDB

ν

φ

1− φ
, (2.1)

where, Uint is the interstitial velocity of flow in porous media, DB the bead diameter, and
ν the kinematic viscosity of fluid. In this work, the flow at three pore Reynolds numbers
(Rep = 300, 500 and 1000) is simulated using direct numerical simulation, ranging from
unsteady inertial to turbulent regions. A periodic boundary condition is specified at all
faces. According to Hill & Koch (2002), the flow is driven by pressure gradient, which
can be written in the form of a body force

F = 365 + 10.9 Rep (27 < Rep < 216) . (2.2)

F = 462 + 9.85 Rep (Rep ≥ 216) . (2.3)

A fictitious domain method developed by Apte et al. (2008) is applied to confront
the challenge of the complex packed-bed geometry. Uniform Cartesian grids are used in
the entire simulation domain, including both fluid and solid phases. An additional body
force is imposed on the solid part to enforce the rigid body motion and satisfy the no-slip
boundary condition. The absence of highly skewed unstructured mesh at the bead surface
is likely to accelerate the convergence and lower the uncertainty (Justin & Apte 2013).
The following governing equations are solved over the entire domain, including the region
within the solid bed, and a rigidity constraint force, f , is applied that is non-zero only in
the solid region.

∇ · u = 0 (2.4)

ργ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p+ µγ∇
2u+ ργg + f , (2.5)

where u is the velocity vector (with components given by u = (ux, uy, uz)), ργ the fluid
density, µγ the fluid viscosity, p the pressure, and g the gravitational acceleration.

3. Eulerian statistics and discussion

In order to answer some fundamental questions about inertial and turbulent flow in
packed beds, such as how the local pore velocity structure affects the turbulent inten-
sity, homogeneity and isotropicity, what the dominant mechanisms are for turbulent
kinetic energy production, dissipation and diffusion, time-averaged turbulent kinetic en-
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Center
line

Figure 3. Contour of normalized TKE distribution on the center slice of the unit cell for (a)
Rep = 300, (b) Rep = 500 and (c) Rep = 1000.

ergy (TKE) distribution are collected, TKE budgets are calculated explicitly, as well as
the local swirling strength λci (Zhou et al. 1998).

3.1. Vortical structure visualization

To determine how the flow structures are influenced by the local mean velocity field,
the local swirling strength λci is computed to visualize the vortical structures at three
different Reynolds numbers. It is calculated as the imaginary part of the complex conju-
gate eigenvalue of the velocity gradient tensor. Isosurfaces for 25% of the local maximum
value of λci are used to visualize local swirling structures. In Figure 2, it is observed
that the size of vortices in the streamwise direction is becoming smaller with higher Rep,
implying that at a fully turbulent region, the flow is less correlated in the specific direc-
tion compared to that in an unsteady inertial region. This observation is consistent with
the theory that the integral length scale will decrease with increasing Rep in turbulent
flows. In the spanwise directions, similar trend is observed, but it is not as pronounced.
Moreover, in each Reynolds number case, the size and connectivity of vortices located at
distinct parts of unit cell are quite different, suggesting the presence of high anisotrop-
icity. Thus, a visualization of the anisotropy Reynolds stress tensor is required in future
analyses.

3.2. TKE and its budgets

The time-averaged TKE distribution on the center slice of the unit cell (see Figure 1(b))
is shown in Figure 3. The contours are normalized by Uint

2, where Uint is the intersti-
tial velocity. It can be observed that the turbulent intensity is increasing with higher
Rep, and TKE is distributed in a specific pattern in the center pore region for all three
Reynolds numbers. To better understand the mechanism of TKE transport in pore-scale,
production, dissipation and all the other terms in the TKE transport equation are ex-
plicitly calculated (Pope 2000). Because there is no homogeneous direction in the porous
geometry, the budgets along the center line are plotted for Rep = 500 (Figure 3(b)). All
the budget terms are distinguished in Figure 4(a), except the local unsteady term, which
is zero for stationary flows.
Several conclusions can be drawn from Figure 4(a) that are described in what follows.

The first conclusion is that negative production (solid line with filled circle) is obtained
near the entrance and exit of the center pore region. In most situations, the production
term should remain positive, implying that the mean flow is supporting turbulence.
However, if the production becomes negative, the energy transport process is reversed.
Turbulence is actually providing energy and feeding the mean flow. Such a phenomenon
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Pii

Figure 4. (a) TKE budget of Rep = 500 along the center line and (b) normal components of
production term.

is rare, and it cannot be reproduced using any types of RANS models with the same
geometry.

The mechanism of negative production at near wall regions can be explained in Fig-
ure 4(b). Along the center line, normal components of production, Pii, are dominant. In
the negative production regions, the spanwise components, P22 and P33, become negative
while the streamwise component, P11, is positive. Production is defined as the negative
product of Reynolds stress ui

′uk
′ multiplied by the mean strain rate ∂ui

∂xk

, where the nor-

mal components of Reynolds stress ui
′2 are always positive. Hence the sign is decided by

the mean strain rate ∂ui

∂xi
.

The exit region is discussed first, as it is easier to explain. As shown in Figures 1(b)
and 3, after the flow enters the center pore, it will first accelerate and then decelerate
due to the complex confinement. After it travels across the major part of the pore, some
part of the flow will hit the bead surface, similar to an impinging jet, and then merge
with the rest and exit the pore through the crevices. During this process, the flow is
accelerating in the spanwise directions, while decelerating in the streamwise directions.
As a result, the mean strain rate in y and z directions becomes positive, but negative
in the x direction. Together with the positive normal Reynolds stress, the production
term now can be decomposed completely. To summarize, the sum of negative production
in the spanwise directions outnumbers that in the streamwise direction, which causes
the net production to be negative near the center pore exit region. Nishino et al. (1996)
reported that, where a particle-tracking velocimetry (PTV) experiment was carried out
for an impinging jet, negative production was also observed near the stagnation zone
similar to what has been described here.

As for the entrance region, the mechanism is similar except that there is no jet im-
pingement. The flow goes into the pore through the cleavages on the sides of the unit
cell and merges at the initial part of the center pore. That is to say, it is accelerating
in the spanwise directions too. But in the streamwise direction, the scenario becomes
complicated. A recirculation zone near the crest is created by the merging flow, which
leads to the negative mean strain rate in x direction.

The second conclusion is that the turbulent transport term (dash-dotted line) is large
over most of the pore region. This is quite different from what is obtained in turbulent
channel flows, where the turbulent transport term only becomes substantial in the near-
wall region. According to Figure 3, a large amount of TKE is generated and distributed
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all over the pore. Moreover, it is redistributed by Reynolds stress working with fluctuating
velocity.
Lastly, the third conclusion is that production is not equal to dissipation (dashed line

with unfilled triangle) in most of the flow domain, which means that most of turbulence
in porous media is not at equilibrium state. This implies that RANS models, all based
on the gradient-diffusion hypothesis, may be unable to predict accurate solutions in such
circumstances.

4. Angular multiscale statistics and a stochastic model

The porous geometric effects on the flow structures have received much attention
recently (Bos et al. 2015; Uth et al. 2016). Angular multiscale statistics of fluid particle
trajectories (Bos et al. 2015) are obtained to quantify the effect of confinement on the flow.
Following a fluid particle in the Lagrangian frame, an angle, Θ, formed by consecutive
particle locations (see Figure 5(a)), is related to the curvature of the fluid particle paths.
To calculate this angle, three equal-time span points along the trajectory are used, and
Θ is defined as the angle between two position vectors constructed consecutively by these
three points using the following equation,

cos
[

Θ(t, τ)
]

=
δX(x(t0), t, τ) · δX(x(t0), t+ τ, τ)

|δX(x(t0), t, τ)||δX(x(t0), t+ τ, τ)|
, (4.1)

where δX = X(x0, t)−X(x0, t− τ) is the spatial increment and X(x0, t) is the position
of a fluid particle at time t, which is initially injected at x0. The cosine of the angle
describes the directional change with time lag and thus characterizes the multiscale
feature of turbulent flows. As discussed in Bos et al. (2015), at short time spans, the
curvature angle is linearly proportional to the time lag, with the constant proportionality
dependent on the curvature of the trajectory. At large time spans, it has been shown in
isotropic turbulence that the mean curvature angle approaches π/2 indicating that all
directions are equally probable in the asymptotic limit. At intermediate times, an inertial
range is observed, especially for high Re. It is hypothesized that this time evolution of the
curvature angle may be modified in the presence of wall confinement, owing to the limited
directions that a fluid particle can traverse. The asymptotic angle in such geometries may
help quantify the effect of confinement and may be related to the porosity of the bed.

4.1. Particle tracking and curvature angle calculation

Each tracer particle is injected at the center of a control volume at t0. The initial La-
grangian tracer locationX(xcv, t0) is the same as xcv, the center coordinates of the control
volume which contains the tracer. In the following, X0 is used to represent X(xcv, t0)
for simplicity. The fluid velocity ucv(t0) at corresponding xcv is used as particle velocity
v(X0, t0) at the first time step to advance tracers. After the initial time step, particle
velocity v(X0, ti) is calculated using linear interpolation of the Eulerian velocity field
u(ti) to the particle location, and a RK4 scheme is implemented to advance the tracer
locations. In this study, 10,000 particles are randomly released at the same time and
tracked to collect the trajectories. The lifetime of each tracer is about 10 times the La-
grangian integral time scale, which ensures that the multiscale features could be captured
in the post-processing analysis. This procedure is repeated 10 times to get a sufficiently
large number of trajectories. Results of the curvature angle variation for Rep = 1000 are
obtained and discussed later.
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R

Figure 5. (a) Definition of curvature angle and (b) schematic of a block in a stochastic model.

4.2. A stochastic model

A Monte Carlo-based stochastic model to predict the long time behavior of the curvature
angle is developed and its prediction is compared with the asymptotic value obtained from
the Lagrangian particle tracking. It is hypothesized that this long time behavior of the
curvature angle is dependent on the pore geometry. Mask functions (or filter functions),
containing all possible angles ranging from 0 to π, represented by three points in a
sphere (Figure 5(b)) are randomly placed and tested inside of the unit cell. Only those
combinations are kept for which all three points lie within the fluid domain and the
position vectors constructed by them also locate entirely within the fluid domain (and do
not cross the solid region). This procedure is repeated to obtain a large sample (100,000
samples). The cosine of the angle is recorded for each valid realization and the mean
value is calculated. Also, mask functions with different radii are checked to estimate the
dimension influence on the mean angle. The algorithm can be summarized in two steps:

cos(θ) =
−→
AO ·

−−→
OB/(|

−→
AO| · |

−−→
OB|) . (4.2)

(i) In order to simplify the filtering process, the sample blocks in a unit sphere need
to be constructed first. Three points A, B and O (Figure 5(b)) are used to compose one
pair of block, where A and B are on the surface of the sphere of the same radius R, while
O is the center. Sufficiently large numbers of blocks are built in the sphere, so that each
represents a unique combination of three points, but not necessarily a unique angle θ
(Figure 5(b) and Eq 4.2). That is to say, different pairs of blocks could have the same
angle. (Here θ is used as angles calculated by the stochastic model, in contrast to Θ,
the curvature angle obtained from particle trajectories.) Consequently, it is critical to
make each angle have the same probability in all blocks. The easiest way to build such a
combination is to first find a list of points uniformly distributed on the sphere surface.
Then, simply pair these points as A and B. At the same time, cosine of θ is calculated
according to Eq 4.2. Finally, all the paired blocks and corresponding angles are stored.
(ii) The saved blocks are then used as filter functions placed inside the porous unit

cell. The size of the filter function is adjusted by multiplying the coordinates of the
blocks by a factor between 0 and 1. To determine whether one block is valid or not, two
conditions must be satisfied. One is that all three points are inside the fluid domain. This
is checked by calculating the minimum distance from each point to all bead centers. If
the minimum distance of any three points is less than the radius of the bead, the pair of
blocks is invalid. The other condition is that the blocks do not cross any solid regions.
A multi-step geometric check is conducted to accommodate such requirements. On the
periodic boundaries, periodicity is enforced in checking the spherical blocks.
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Figure 6. Ensemble averaged curvature angle Θ as a function of time lag ∆τ calculated from
trajectories of fluid particle evolving with (a) total velocity and (b) fluctuating velocity only.

4.3. Results and Discussion

The mean curvature angle 〈Θ〉 is plotted against the time lag ∆τ in a log-log scale in
Figure 6. In order to assess the effect of mean flow on the curvature angle, especially on
the asymptotic value, calculations are performed by advancing the fluid particles with
total instantaneous velocity (Figure 6(a)) as well as by using just the fluctuating velocity
where the mean was removed (Figure 6(b)). For both figures, the presence of two power
laws is evident. In the short time span, a linear relationship is obtained; while in the
inertial region, Θ is estimated to be correlated with ∆τ1/2. And the inertial region is
bounded by the kolmogorov time scale and integral time scale. The origins of these two
power laws are discussed in Bos et al. (2015). Figure 6(a) shows that, at large times, the
mean curvature angle increases, reaches a maximum of 0.9 radian and then decreases
again. An asymptotic value is not observed as conjectured earlier, resulting from the
strong mean flow effect. The mean flow stretches the trajectories in certain directions,
reducing the possibilities for particles to go to other directions. The curvature angle
obtained from tracking particles using only the fluctuations in fluid velocity, however,
does provide an asymptotic value of 1.72 radian. This value is larger than π/2, a value
obtained for isotropic turbulence and is a result of the flow confinement due to porous
structure.
Figure 7 shows the evolution of mean angle θ computed from the stochastic model for

different radii, R, of mask functions, where R is normalized with the hydraulic diame-
ter Dh of the porous media. It is seen that the mean angle starts with π/2 for low R,
indicating that all directions are equally likely for small radius of the masking function.
θ increases with increasing R, reaches a first maximum at R

Dh

= 1, then decreases and
again reaches a maximum for R equal to the length of the unit cell. The physical meaning
of these two maxima is being investigated; however, it shows that with increasing R, all
directions are not equally likely, owing to the influence of porous geometry. Nevertheless,
it is seen that for large R, the mean angle approaches 1.724 radian, which is very close to
the asymptotic value obtained at large times for particles advanced by fluctuating fluid
velocity only, as shown in Figure 6(b). The reason for this is that the stochastic model
does not consider the directionality of the mean flow. As a result, it is only geometri-
cally dependent. Hence, matching of the asymptotic angle obtained from the fluctuation
velocity field is to be expected. That this value is different from π/2, as observed in
isotropic turbulence, indicates the effect of porous geometry used in the study. Further
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Figure 7. Averaged curvature angle θ as a function of mask function radius R normalized by
hydraulic diameter.

modifications of the stochastic model are necessary to predict the long time behavior of
the curvature angle when mean flow is also considered.

5. Summary and conclusion

A fully resolved direct numerical simulation was performed on a face-centered porous
unit cell using a Cartesian grid-based fictitious domain method. In order to better un-
derstand the multiscale feature of fluid flow in pore-scale, both Eulerian and Lagrangian
statistics were computed. For this porous arrangement with very low porosity, a large
acceleration and deceleration flow was obtained. Negative production of turbulent kinetic
energy was found both at the entrance and exit regions of the center pore, which mainly
comes from the spanwise acceleration and streamwise deceleration of the mean flow. The
time evolution of mean curvature angle obtained from the Lagrangian tracer trajectories
was calculated and a Monte Carlo-based stochastic model was developed to predict the
mean asymptotic curvature angle at large time spans. The asymptotic mean curvature
angle obtained from trajectories of particles evolving with fluctuation velocity was accu-
rately predicted by the stochastic model. Further modifications to the stochastic model
are needed to account for the influence of the mean flow.
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