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Abstract

In this course, we present the principal parts of the time series analy-
sis. First, stationary processes and trends in times series are introduced.
Then we consider the linear regression models for which we study the
main problems such that point estimation, the construction of confi-
dence intervals, hypothesis testing, and forecasting. In addition, big
data models and the main methods for their analysis are presented.
Finally, we introduce the autoregressive and moving average autore-
gressive processes (ARMA) and study their basic properties, including
the problem of forecasting.
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1 Times series and stochastic processes

A sequence of random variables (yj)j≥1 is called a stochastic process en discrete
time. A stochastic process is called strictly stationary if for any k ≥ 1 the
joint distribution of the random variables yj, yj−1, . . . , yj−k+1 is the same for

all n > k, i.e. for any bounded Rk → R functions h

Eh(yj, . . . , yj−k+1) = Eh(yk, . . . , y1) .

Moreover, sometime we will use a weak stationary or covariance-stationary
process, i.e. process (yj)j≥1 for which Eyj and Ey2

j
are constant and for some

R→ R function g the auto covariation

Eyj yl = g(j − l) for any j, l .

A weak stationary process (εj)−∞<j<∞ is called a white noise if E εj = 0,
E ε2

j
= σ2 and Eεiεj = 0 for any i 6= j. In the sequel we will use the well

known Wold’s decomposition or the Wold representation theorem (see, for
example, in [1]).

Theorem 1.1. Any weak stationary process (yj)j≥1 with E yj = µ can be
represented as

yj = µ+
∞∑
j=0

blεj−l , (1.1)

where the coefficients (bj)j≥0 are such that bj = 1 and
∑

j≥1
b2
j
< ∞ and

(εl)−∞<l<∞

A stochastic process in discrete time (yj)j≥1 is called time series if it can be
represented as

yj = f(j) + ξj , (1.2)

where f(·) is non random function and (ξj)j≥1 is a stochastic weak stationary
process with E ξj = 0 . The function f is called trend and the process (ξj)j≥1

is called the stochastic part of the time series (1.2).
If f(·) has the polynomial form, then it is called polynomial trend, i.e.

f(x) =

p∑
i=1

ai x
i−1 , (1.3)

where a1, . . . , ap are the polynomial coefficients. Usually, we consider the time
series (1.2) on the finite interval, i.e. 1 ≤ j ≤ n with n > p. The more
comfortable form for the polynomial trend if we replace in (1.3) the power
functions ti with the orthogonal polynomials φ1, . . . ,Θp, i.e. such that for any
l 6= i
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n∑
j=1

φl(j)φi(j) = 0 . (1.4)

For example, for p = 3 we can take φ1 ≡ 1, φ2(x) = x− (n+ 1)/2 and

φ3(x) = x2 − (n+ 1)x+
(n+ 1)(n+ 2)

6
.

Generally, we can represent the orthogonal polynomials as

φj(x) =

j∑
i=1

γix
i−1

and therefore, the trend (1.4) can be represented as

f(x) =

p∑
j=1

θj φj(x) , (1.5)

where the coefficients ai = γi
∑p

l=i
θl. Moreover, if the function f(·) has a

trigonometric form, then it is called trigonometric or cycle trend, i.e.

f(x) = a0 +
m∑
i=1

(ai cos(ωix) + bi sin(ωix) , (1.6)

where a0, . . . , am and b1, . . . ,bm are coefficients and ωi are frequencies. Of
course we consider the case when the number of the parameters p = 2m+1 < n.
To obtain the property (1.2) one can take, for example,

ωi =
πi

n
.

To this end, first we chose the trigonometric basis (φj)j≥ 1 in L2[0, 1], i.e.

φ1 ≡ 1 , φj(x) =
√

2 Trj

(
2π[j/2]

n
x

)
, j ≥ 2 , (1.7)

where the function Trj(t) = cos(t) for even j and Trj(t) = sin(x) for odd j.
Using these functions we can represent the trend (1.6) as

f(x) =

p∑
j=1

θj φj(x) , (1.8)

where a0 = θ1, ai = θ2i and bi = θ2i+1 for 1 ≤ i ≤ p.
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There exist non linear over parameters forms for the trend functions f(x, θ)
(see, for example, [3] and the references therein). For example, hyperbolic
regression

f(x, θ) =
1

θ1 + θ2x
and θ = (θ1, θ2) ,

exponential regression

f(x, θ) = θ1 e
θ2x and θ = (θ1, θ2) .

In clinical trials is used the logistics regression (see, e.g. [6])

f(x, θ) = θ1 + (θ2 − θ1)
xθ4

xθ4 + θ3

and θ = (θ1, θ2, θ3, θ4) .

The main goal of the time series analysis is to develop statistical identi-
fication and forecasting methods for the different models of the time series
(1.2).

Exercises

1. To show that anu sequence of independent identically distributed random
variable, i.i.d. random variables (yj)j≥1 form a strictly stationary process.

2. Let (ξj)j≥1 be i.i.d. sequence then for any fixed integer m ≥ 1 and
Rm → R function g. Now for any n ≥ m we set

yj = g(ξj, . . . , ξj−m+1) . (1.9)

To show that the process (yj)j≥m is stationary.

3. To check that any strict square integrated stationary process is a weak
stationary process.
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2 Scalar regression analysis

First, we consider the scalar linear regression model, i.e.

yj = θxj + εj , 1 ≤ j ≤ n , (2.1)

where θ is unknown parameter, (xj)1≤j≤n are non random regression variables
and (εj)1≤j≤n is unobservable white noise, i.e. Eεj = 0 and E ε2

j
= σ2 for any

1 ≤ j ≤ n and E εjεl = 0 for j 6= l.
The identification problem for the model (2.1) is to estimate the parameter

θ on, the basis of the observations (yj)1≤j≤n. To this end we will use the Least
Square Estimator (LSE) method according to which one needs to minimize
over unknown parameter the integral noise intensity, i.e.

n∑
j=1

(yj − θxj)2 → min
θ∈R

. (2.2)

Therefore, if
n∑
j=1

x2
j
> 0 (2.3)

then we obtain immediately that least square estimator is

θ̂n =

∑n

j=1
yjxj∑n

j=1
x2
j

. (2.4)

From the model (2.1) it is easy to deduce that

θ̂n = θ +

∑n

j=1
xjεj∑n

j=1
x2
j

.

Therefore,

E θ̂n = θ +

∑n

j=1
xjE εj∑n

j=1
x2
j

= 0

and, moreover, the mean square estimation accuracy in this case can be cal-
culated as

V(θ̂n) = E (θ̂n − θ)2 =
E
(∑n

j=1
xjεj

)2

(∑n

j=1
x2
j

)2 =
σ2∑n

j=1
x2
j

. (2.5)

From this we can obtain immediately the necessary and sufficient condition
for the convergence in L2 as n→∞.
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Proposition 2.1. The least square estimator (2.4) tends to θ in in L2 if and
only if

lim
n→∞

n∑
l=1

x2
l

= +∞ . (2.6)

For this estimator one can show the following theorem.

Theorem 2.1. (Gauss - Markov) The least square estimator (2.5) is the best
estimator in the class of all linear unbiased estimators of the non zero parame-
ter θ in the model (2.1) with the condition (2.3) in the means square accuracy
sense

E (θ̃n − θ)2 ≥ E (θ̂n − θ)2 , (2.7)

where θ̃n is an arbitrary linear estimator, i.e. an estimator of the form

θ̃n =
n∑
j=1

gjyj

and (gj)1≤j≤n are non random coefficients.

Proof. Indeed, note that for unbiased estimators we have

θ = E θ̃n =
n∑
j=1

gjE yj = θ
n∑
j=1

gjxj ,

i.e.
∑n

j=1
gjxj = 1. Using here the Cauchy Bunyakovsky Schwarz we get

1 =

 n∑
j=1

gjxj

2

≤
n∑
j=1

g2
j

n∑
j=1

x2
j
.

Therefore,

E (θ̃n − θ)2 = E

 n∑
j=1

gjεj

2

= σ2

n∑
j=1

g2
j
≥ σ2∑n

j=1
x2
j

.

Now, the property (2.5) implies directly (2.7). Hence Theorem 2.1.
Note now, that the estimation accuracy (2.5) depend on the coefficient σ2.
Therefore, if it is unknown, then the estimation accuracy is unknown as well.
To estimate it we use the model estimation defined as

ŷj = θ̂n xj . (2.8)
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Therefore, in this case the deviation is given as

ε̂j = yj − ŷj = (θ − θ̂n)xj + εj

and, therefore,

n∑
j=1

ε̂2
j

=
n∑
j=1

ε2
j
−

(∑n

j=1
xjεj

)2∑n

j=1
x2
j

. (2.9)

It is clear that

E
n∑
j=1

ε̂2
j

= (n− 1)σ2 .

Therefore, for any n > 1

σ̂n =
1

n− 1

n∑
j=1

ε̂2
j

(2.10)

is unbiased estimator for the variance σ2.
Using the estimator (2.5), we estimate now estimation accuracy (2.5) as

V̂(θ̂n) =
σ̂n∑n

j=1
x2
j

. (2.11)

Now a natural question arises, what happens if we replace the unknown nor-
malized coefficient in (2.13) with the known coefficient (2.11), i.e. the question
now is the following: is it possible to calculate the distribution of the fraction

Υn =
θ̂n − θ√
V̂(θ̂n)

. (2.12)

To study this question one needs to add the condition that the noise variables
(εj)1≤j≤n in the regression model (2.1) are i.i.d. Gaussian with the parameters
(0, σ2). It is clear that in this case the estimator (2.4) is Gaussian

θ̂n ∼ N
(
θ ,V(θ̂n)

)
,

i.e. for any n > 1

θ̂n − θ√
V(θ̂n)

∼ N (0 , 1) . (2.13)

To study the fraction (2.12) we need the following definition.
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Definition 2.1. A positive random variable ζ is said to be a random variable
distributed according to the X 2

p
law with p degree of liberty if for any measurable

set A ⊆ R
P(ζ ∈ A) =

∫
A

ρp(u)du

where

ρp(u) =
up/2−1 e−u/2

2pΓ(p/2)
1{u≥0} , (2.14)

and Γ(v) =
∫ +∞

0
tv−1e−tdt for v > 0

In the sequel we will use the following property.

Proposition 2.2. If ξ1, . . . , ξp are i.i.d. (0, 1) Gaussian random variables then
the sum

∑p

j=1
ξ2
j

has the Xp distribution.

Using this definition we will show the following property.

Proposition 2.3. For the Gaussian regression model (2.1) with the condition
(2.3) and n > 1 the random variable

γn =

∑n

j=1
ε̂2
j

σ2
∼ X 2

n−1
.

Proof. First we set

ξ = (ξ1, . . . , ξn)
′

and ξi =
ε

σ
. (2.15)

Here the prime ′ denotes the transposition. It is clear that for the Gaussian
model (2.1) the vector ξ is Gaussian in Rn with the parameters (0, In), where In
is identity matrix of the order n. Now, using the vector (2.15) and the property
(2.9), we can represent the random variable γn as the following quadratic form

γn = ξ
′

(In −A) ξ and A = (ai,j)1≤i,j≤n , (2.16)

where the elements

ai,j = gi gj and gi =
xi√∑n

ι=1
x2
ι

. (2.17)

Taking into account that
∑n

j=1
g2
j

= 1, we can obtain that the matrix A is

idempotent, i.e. A2 = A. This means that the eigenvalues either 1 or 0.
Moreover, note that

trA =
n∑
j=1

aj,j =
n∑
j=1

g2
j

= 1 ,
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i.e. the matrix A has n − 1 eigenvalues 0 and one 1. Therefore, there exists
an orthogonal n× n matrix Q, i.e. Q′Q = In, such that

In −A = Q′JnQ and Jn = diag(1, . . . , 1, 0) =


1 . . . 0 0

0
. . . 0 0

0 . . . 1 0
0 . . . 0 0

 . (2.18)

Thus, using this in (2.16) we can write that

γn = η′Jnη with η = (η1, . . . , ηn)′ = Q ξ . (2.19)

Note here, that η is a gaussian vector in Rn with the parameters (0, In), i.e.
η1, . . . , ηn are i.i.d. random (0, 1) gaussian random variables, i.e. γn can be
represented as

γn =
n−1∑
j=1

η2
j
,

i.e. in view of the exercise 2 the random variable γn has χn−1 distribution.
Hence Proposition 2.3.

Definition 2.2. A random variable ζ is said to be a random variable dis-
tributed according to the Student law with p ≥ 1 freedom degrees, denoted as
τp, if for any measurable set A ⊂ R

P(ζ ∈ A) =

∫
A

ρ∗
p
(u)du ,

where

ρ∗
p
(x) =

Γ
(
p−1

2

)
Γ
(
p
2

) 1

(pπ)1/2

1(
1 + x2

p

)p+1
2

. (2.20)

To study the distribution of the fraction (2.12) we will use the following prop-
erty.

Proposition 2.4. Let U and γ be two independent random variables dis-
tributed as N (0, 1) and X 2

p
respectively. Then the random variable

U√
γ/p

∼ τp ,

i.e. follows the Student law with p degree of liberty.

Now we can calculate the distribution for the random variable (2.12).
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Proposition 2.5. For the Gaussian regression model (2.1) with the condition
(2.3) and n > 1 the random variable

Υn =
θ̂n − θ√
V̂(θ̂n)

∼ τn−1 ,

i.e. has the Student distribution with n− 1 freedom degrees.

Proof. First note that we can represent the random variable (2.12) as

Υn =
U√

γn/(n− 1)
, (2.21)

where

U =
θ̂n − θ√
V(θ̂n)

and γn =

∑n

j=1
ε̂2
j

σ2
.

Note that the covariances

E (θ̂n − θ)ε̂j = −xjE (θ̂n − θ)2 + E (θ̂n − θ)εj =
−σ2xj + σ2xj∑n

i=1
x2
i

= 0 .

Therefore, taking into account that the random variables θ̂n and (ε̂j)1≤j≤n are

Gaussian, the last property means that the estimator θ̂n is independent of the
sequence (ε̂j)1≤j≤n and, therefore, in (2.21) the random variables U and γn
are independent. So, Propositions 2.3 and 2.4 imply the desired result. Hence
Proposition 2.5.

2.1 Coefficient testing

For the Gaussian model (2.1) we consider the following hypothesis testing
problem

H0 : θ = 0 and H1 : θ 6= 0 . (2.22)

We set a threshold 0 < α < 1. This means, that if, for example, α = 0, 05
then this means that the risk of wrongly rejecting H0 is 5%. In the context of
this problem we call test function any statistics

ϕ : Rn × Rn → {0, 1} .

The observation in this case is z = (y1 . . . yn, x1 . . . xn). The probability
P (ϕ = 1 |H0) to reject the hypothesis H0 while it is true is called the er-
ror of the first kind. Moreover, the probability P (ϕ = 0 |H1) to accept the
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hypothesis H0 while it is false is the error of the second kind. The power of
the test is by definition 1−P (ϕ = 0 |H1). We know that under the condition
(2.3) for n > 1

θ̂n − θ√
V̂(θ̂n)

∼ τn−1 .

So if θ = 0 then
θ̂n√

V̂(θ̂n)
∼ τn−1 .

We construct the test as

ϕ =


0 , if |θ̂n| ≤ zα

√
V̂(θ̂n) ,

1 , if |θ̂n| > zα

√
V̂(θ̂n)

(2.23)

(we accept the hypothesis H0 if ϕ = 0, we refuse it if ϕ = 1) where zα > 0
is the quantile of the threshold 1 − α for the absolute value of the Student
distribution, i.e.

P
(
|τn−1| ≤ zα

)
= 1− α .

It is clear, that for this test function

P (ϕ = 1 |H0 ) = P

 |θ̂n|√
V̂(θ̂n)

> zα

∣∣∣∣H0


= P

(
|τn−1| > zα

)
= α .

In addition, to study the second kind error.

Proposition 2.6. Assume that the condition (2.6) holds. Then the second
kind error for the test (2.23) goes to zero as n→∞.

Proof. First, note, that

P (ϕ = 0 |H1) = P

(
|θ̂n|√
V̂(θ̂n)

≤ zα | θ 6= 0

)

≤ P

 |θ|√
V̂(θ̂n)

≤ zα +
|θ̂n − θ|√

V̂(θ̂n)

 .
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Moreover, for any fixed N ≥ 1 we can estimate this error as

P (ϕ = 0 |H1) ≤ P

(
|θ| ≤ (zα +N) ·

√
V̂(θ̂n

)
+ P

 |θ̂n − θ|√
V̂(θ)

> N


= P

(
V̂(θ̂n) >

(θ)2

(zα +N)2

)
+ P(|τn−1| > N) .

Taking here into account that under the condition (2.6) the term V̂(θ̂n) → 0
in probability as n→∞, we find that for any N > 1

lim sup
n→∞

P (ϕ = 0|H1) ≤ lim sup
n→∞

P
(
|τn−1| > N

)
.

Let now (ηj)j≥1 be i.i.d. (0, 1) gaussian random variables and U be also (0, 1)
gaussian random variable independent of the sequence (ηj)j≥1 . Then in view
of Propositions 2.2 and 2.4 for any n > 1 and N > 1

P
(
|τn−1| > N

)
= P

|U | > N

√√√√ 1

n− 1

n−1∑
j=1

η2
j

 .

Therefore, taking into account the large numbers law, we get that

lim sup
n→∞

P
(
|τn−1| > N

)
≤ P (|U | > N/2) .

tending here N →∞ we obtain that

lim
n→∞

P(ϕ = 0 |H1) = 0 .

Hence Proposition 2.6.

2.2 Confidence interval estimation

Now we remind that a confidence interval of a threshold 0 < α < 1 is a random
interval Ĵθ = [θ∗, θ

∗], where θ∗ and θ∗ are random variables such as

P (θ ∈ Ĵθ) = P(θ∗ ≤ θ ≤ θ∗) = 1− α .

We know that for any n > 1

θ̂n − θ√
V̂(θ̂n)

∼ τn−1 .
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We define the confidence interval for θ as

Ĵθ =

[
θ̂n − zα

√
V̂(θ̂n) , θ̂n + zα

√
V̂(θ̂n)

]
, (2.24)

where zα > 0 is 1− α quantile for the Student distribution, i.e.

P
(
|τn−1| ≤ zα

)
= 1− α . (2.25)

It should be noted, that asymptotically, if
∑n

j=1
x2
j
→ ∞ as n → the length

2zα

√
V̂(θ̂n) tend to zero.

2.3 Forescasting problem

Let us consider now the forecasting problem for the Gaussian model (2.1),
i.e. we consider the estimation problem for the yn+l for some fixed l ≥ 1
on the basis of the observations y1, . . . , yn, i.e. on the basis of the σ - field
Fn = σ{y1, . . . , yn}.

Proposition 2.7. For any l ≥ 1 the conditional expectation y
n+l

= E(yn+l|Fn)
is the best forecasting for yn+l in L2(Ω,Fn,P), i.e.

inf
ς∈L2(Ω,Fn,P)

E(ς − yn+l)
2 = E(y

n+l
− yn+l)

2 . (2.26)

Proof. Indeed, using the properties of the conditional expectations, we get
that for any ς ∈ L2(Ω,Fn,P)

E (ς − yn+l)
2 = E (y

n+l
− yn+l)

2 + E (ς − yn+l)
2 .

This implies the property (2.26), i.e. hence Proposition 2.7.
To this end we use the following estimation

ŷn+l = θ̂n xn+l . (2.27)

From the model (2.1) we can obtain that the deviation from the value yn+l is
given as

ŷn+l − yn+l = (θ̂n − θ)xn+l − εn+l . (2.28)

It is easy to obtain that E(ŷn+l − yn+l) = 0 and the forecasting variance

V(ŷn+l) = E(ŷn+l − yn+l)
2 = σ2

(
1 +

x2
n+l∑n

ι=1
x2
ι

)
. (2.29)

13



Now, taking into account that the random variables θ̂n and εn+l are indepen-
dent, we can conclude that

ŷn+l − yn+l ∼ N (0,V(ŷn+l)) .

Moreover, using the estimator (2.10), we set

V̂(ŷn+l) = σ̂n

(
1 +

x2
n+l∑n

ι=1
x2
ι

)
. (2.30)

Proposition 2.8. For the Gaussian regression model (2.1) with the condition
(2.3) and n > 1 the normalized forecasting accuracy

ŷn+l − yn+l√
V̂(ŷn+l)

(2.31)

has Student’s law with n− 1 degree of liberty.

Proof. First note, that

V̂(ŷn+l)

V(ŷn+l)
=
σ̂n
σ2

=
γn

n− 1
,

where the random variable γn is given in (2.21). Therefore, the fraction (2.31)
can be represented as

ŷn+l − yn+l

V̂(ŷn+l)
=

U√
γn/(n− 1)

,

where

U =
ŷn+l − yn+l√

V(ŷn+l)
∼ N (0, 1) .

Now the desired result follows directly from Propositions 2.3 and 2.4.
It is clear that using this property we can define the α confidential interval for
the forecasting as

Ĵy,l = [ŷ∗ , ŷ
∗] , (2.32)

where

ŷ∗ = ŷn+l − zα
√

V̂(ŷn+l) , ŷ∗ = ŷn+l + zα

√
V̂(ŷn+l) .

and zα is α - quantile defined in (2.25).

Exercises
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1. To check if for the model (2.1) with xj = sin(2πj/n) the least square

estimator θ̂n converges to θ or not in L2 as n→∞.

2. Show that if there exists n for which the condition (2.3) holds, then the
estimator (2.10) converges to σ2 in probability as n→∞.

3. Show Proposition 2.2.

4. Show Proposition 2.4.

3 Multivariate regression analysis

In this section we consider the multivariate regression model defined as

yj = θ1xj1 + . . .+ θpxj,p + εj , 1 ≤ j ≤ n , (3.1)

where θ = (θ1, . . . , θp)
′ ∈ Rp are parameters of the model, (εj)1≤j≤n is un-

observable white noise, i.e. Eεj = 0 and E ε2
j

= σ2 for any 1 ≤ j ≤ n and
E εjεl = 0 for j 6= l.
We can represent this model in the matrix form

y1 = θ1x1,1 + . . .+ θpx1,p +ε1
... . . .

...
yn = θ1xn,1 + . . .+ θpxn,p +εn .

Setting here

Y =

y1
...
yn

 , X =

x1,1 . . . x1,p
...

...
...

xn,1 . . . xn,p

 and ε =

ε1
...
εn

 ,

we get the equation in space Rn

Y = X θ + ε . (3.2)

The problem is to estimate the vector θ in Rp on the basis of the observations
Y et X.We apply the method of least squares which consists in minimizing the
sum of the squares of the errors:

L(θ) = ‖ε‖2 = ‖Y −Xθ‖2 → min
θ∈Rp

. (3.3)

15



To minimize this function over θ, we differentiate the function L(θ) on θ. To
do this we represent the design matrix X as

X =

X̃
′
1

...

X̃ ′
n

 and X̃j =

xj,1...
xj,p

 . (3.4)

Using this representation we can obtain that

L(θ) = ‖Y ‖2 − 2Y ′X θ + ‖X θ‖2

=
n∑
j=1

y2
j
− 2

n∑
j=1

yjX̃
′
j
θ +

n∑
j=1

(X̃ ′
j
θ)2 .

So, for any 1 ≤ r ≤ p the partial derivative

∂L(θ)

∂θr
= −2

n∑
j=1

xj,r yj + 2
n∑
j=1

xj,rX̃
′
j
θ

and to minimize the function L(·) one needs to resolve the system

X′X θ = X′ Y . (3.5)

To this end we assume that following condition
C1) The matrix X′X is positively defined.

It clear that under this condition we obtain that the least square estimator

θ̂n = (X′X)−1 X′ Y . (3.6)

First note that

θ̂n = (X′X)−1 X′ Y = (X′X)−1 X′ (Xθ + ε) = θ + (X′X)−1 X′ ε .

That implies that the expectation

E θ̂n = θ

and the variance

V(θ̂n) = E (θ̂n − θ) (θ̂n − θ)′

= E (X′X)−1 X′ ε ε′X (X X′)−1

= σ2(X′X)−1 . (3.7)

16



From here we obtain immediately the criteria for the mean square convergence,
i.e.

lim
n→∞

E ‖θ̂n − θ‖2 = 0

if and only if
lim
n→∞

tr(X′X)−1 = 0 . (3.8)

Now we show a multivariate version of the Gauss - Markov theorem 2.1

Theorem 3.1. For any unbiased linear estimator θ̃n of non zero parameter θ
we have

E(θ̃n − θ)(θ̃ − θ)′ � V(θ̂n) , (3.9)

where for two symmetric matrices A and B the notation A � B means that
the difference A−B is positively defined.

Proof. Note first that θ̃n is of the form θ̃n = GY +b, where G is p×n matrix

and b ∈ Rp. Moreover, since θ̃n is unbiased, we obtain that b = 0. Indeed, we
have

Eθ̃n = G Xθ + b = θ , i.e. (G X− Ip)θ + b = 0 .

As this last equality must be verified which whatever θ ∈ Rp, we can deduce
that b = 0, and at the same time

G X = Ip. (3.10)

Therefore,
E(θ̃n − θ)(θ̃n − θ)′ = σ2 G G′ .

However, we have seen already that

V(θ̂n) = σ2(X′X)−1 .

Using here the property (3.10), the result can be deduced immediately from
Theorem A.1. Hence Theorem 3.1.
Now, similarly to the scalar case to estimate the noise variance σ2 we will use
the estimators for the noise variables in the model (3.1) for 1 ≤ j ≤ n defined
as

ε̂j = yj − X̃ ′j θ̂n = X̃ ′
j
(θ − θ̂n) + εj .

From here we can obtain that

ε̂ =

ε̂1
...
ε̂n

 = (In −A) ε and A = X(X′X)−1 X′ . (3.11)

17



Moreover, taking into account that A2 = A and trA = p we obtain that for
n > p

E ‖ε̂‖2 = σ2tr(In −A)2 = σ2tr(In −A) = σ2 (n− p) .

Therefore,

σ̂n =
1

n− p
‖ε̂‖2 =

1

n− p

n∑
j=1

ε̂2
j

(3.12)

is the unbiased estimator for the variance σ2. Therefore, to estimate the esti-
mation accuracy we set

V̂(θ̂n) = σ̂n (X′X)−1 . (3.13)

Now we need to study the distribution properties for the estimator (3.11) in the
case when the model (3.1) is Gaussian, i.e. when the noise variables (εj)1≤j≤n
are i.i.d. Gaussian with the parameters (0, σ2).

Proposition 3.1. Assume that the condition C1) holds. Then for the Gaus-
sian regression model (3.1) with n > p the random variable

γn =

∑n

j=1
ε̂2
j

σ2
∼ X 2

n−p . (3.14)

Proof. First, taking into account that the matrix In −A is idempotent, i.e.
(In −A)2 = In −A, we can obtain from the representation (3.11) that

γn =
‖ε̂‖2

σ2
= ξ′(In −A)ξ and ξ =

1

σ
ε . (3.15)

We remind that the trA = p, therefore this matrix has n − p eigenvalues 0
and p eigenvalues 1. Therefore, there exists an orthogonal n×n matrix Q, i.e.
Q′Q = In, such that

In −A = Q′JnQ and Jn = diag(λ1, . . . , λn) =

 λ1 . . . 0

0
. . . 0

0 . . . λn

 , (3.16)

where λ1 = . . . = λn−p = 1 and λn−p+1 = . . . = λn = 0. Using this form in
(3.15), we obtain that

γn =

n−p∑
j=1

η2
j

and η =

η1
...
ηn

 = Qξ ∼ N (0, In) . (3.17)

Now the desired result directly follows from Proposition 2.2.
Now using this property we can show the estimation accuracy.

18



Proposition 3.2. Assume, that the condition C1) holds true and n > p and
in the model (3.1) the noise variables (εj)1≤j≤n are i.i.d. Gaussian with the
parameters (0, σ2). Then for any non random non zero vector u from Rp the
normalized linear combination

u′(θ̂n − θ)√
u′V̂(θ̂n)u

∼ τn−p ,

i.e. has the Student distribution with n− p degree of liberty.

Proof. First, note that in view of (3.7) for the Gaussian model (3.1) for any
non zero u ∈ Rp

u′(θ̂n − θ) = σu′ (X′X)−1 X′ ξ ∼ N
(

0,u′V(θ̂n)u
)
,

where the vector ξ is defined in (3.15). Therefore, using the definitions (3.12)
- (3.14) we can write that

u′(θ̂n − θ)√
u′V̂(θ̂n)u

=
U√

γn/(n− p)
(3.18)

and

U =
u′(θ̂n − θ)√
u′V(θ̂n)u

∼ N (0, 1) .

Moreover, from (3.11) we can obtain the covariance matrix

E ε̂ (θ̂n − θ)′ = σ2(In −A) X (X′X)−1 = σ2(X (X′X)−1 −X (X′X)−1) = 0 .

We note that for the Gaussian model (3.1) this property implies that in the
representation (3.18) the random variables U and γn are independent. There-
fore, using here Proposition 2.4 and Proposition 3.1, we come to the desired
result.

Definition 3.1. Let p ≥ 1 and q ≥ 1 be two integers. The random variable
ζ follows the Fisher-Snedecor law with the p and q freedom degrees denoted as
fp,q if it has density

%p,q(u) =
Γ(p+q

2
)

Γ(p
2
)Γ( q

2
)

(
p

q

) p
2 u

p
2
−1(

1 + p
2
u
) p+q

2

1{u≥0} , (3.19)

i.e. for any measurable set A ⊂ R

P(ζ ∈ A) =

∫
A

%p,g(u)du .
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In the time series analysis such distributions are used to study the fraction of
the two independent X 2 random variables.

Proposition 3.3. Let U and V be two independent random variables of the
laws X 2

p
and X 2

q
respectevely. Then the fraction

U/p

V/q
∼ fp,q ,

i;e. follows Fisher-Snedecor law with p and q freedom degrees.

Proposition 3.4. Assume, that the condition C1) holds true and n > p and
in the model (3.1) the noise variables (εj)1≤j≤n are i.i.d. Gaussian with the
parameters (0, σ2). Then the normalized quadratic form

(θ̂n − θ)′V̂−1(θ̂n)(θ̂n − θ)
p

∼ fp,n−p (3.20)

i.e. has the Fischer - Snedecor distribution with p and n− p freedom degrees.

Proof. First note that using the matrix A introduced in (3.11) and the
Gaussian random variables defined in (3.17), we obtain that

(θ̂n − θ)′V−1(θ̂n) (θ̂n − θ) = ξ′Aξ =
n∑

j=n−p+1

η2
j
∼ X 2

p
.

Moreover, through the definitions (3.12) – (3.14), we can write that

V̂(θ̂n) =
γn

n− p
V(θ̂n)

and, therefore,

(θ̂n − θ)′V̂−1(θ̂n)(θ̂n − θ)
p

=
(θ̂n − θ)

′
V −1(θ̂n − θ)/p

γn/(n− p)
.

Taking into account here that θ̂n and γn are independent, we obtain through
Proposition 3.14 and Proposition 3.3 the distribution of the quadratic form in
(3.20). Hence Proposition 3.4.

It should be noted that, in practice very often we need to estimate not the
vector θ, but a linear transformation of this vector, i.e θT = Tθ for a fixed

matrix T . In this case we have to use the estimator θ̂T,n = T θ̂n. One can

obtain directly, that E θ̂T,n = θT and

V(θ̂T,n) = E (θ̂T,n − θT ) (θ̂T,n − θT )′ = TV(θ̂n)T ′ .
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Similarly to (3.13) to estimate the mean square accuracy for the vector θT we
set

V̂(θ̂T,n) = T V̂(θ̂n)T ′ . (3.21)

Now we study the distribution of this vector for the Gaussian model (3.1).

Proposition 3.5. Assume, that the condition C1) holds true and n > p and
in the model (3.1) the noise variables (εj)1≤j≤n are i.i.d. Gaussian with the
parameters (0, σ2). Then for any non random m×p matrix T with m ≤ p and
RangT = m the normalized quadratic form

(θ̂T,n − θT )′V̂−1(θ̂T,n)(θ̂T,n − θT )

m
∼ fm,n−p (3.22)

i.e. has the Fischer - Snedecor distribution with m and n− p freedom degrees.

Proof. First, note that for the gaussian model (3.1)

θ̂T,n − θT ∼ N (0,V(θ̂T,n) and V(θ̂T,n) = TV(θ̂n)T ′ .

It is clear, that if RangT = m, then V(θ̂T,n) is invertible. In addition, we have

(θ̂T,n − θT )′V−1(θ̂T,n)(θ̂T,n − θT ) = (θ̂n − θ)′T ′V−1(θ̂T,n)T (θ̂n − θ)
= ηη′ ,

where η = S−1T (X′X)−1 Xξ and S is a symmetric matrix, i.e. S′ = S, such
that S2 = T (XX′)−1T ′. Note that, for the Gaussian model (3.1) the vector
ξ = ε/σ is a Gaussian vector with the parameters N (0, In) and, therefore, the
vector η is gaussian also with E η = 0 and

E η η′ = E S−1 T (X′X)−1 X′ ξ ξ′X(X′X)−1T ′ S−1

= S−1 T (X′X)−1 T S−1 = Im .

This means that teh quadratic form

DT = (θ̂T,n − θT )′V−1(θ̂T,n) (θ̂T,n − θT ) ∼ X 2
m
.

It is clear that from (3.21) it follows that

V̂(θ̂T,n) =
γn

n− p
V(θ̂T,n)

and, therefore,

(θ̂T,n − aT )′V̂−1(θ̂T,n)(θ̂T,n − aT )

m
=

DT/m

γn/(n− p)
. (3.23)

Then, taking into account that the random variable γn and the vector θ̂T,n are
independent, we can conclude through Proposition 3.14 and Proposition 3.3
that the fraction (3.23) follows Fisher-Snedecor law with m and n− p freedom
degrees. Hence Proposition 3.5.
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3.1 Coefficients testing

• Comparison of linear combinations of parameters

First for the gaussian model (3.1) we consider the hypothesis testing
problem for a linear combination of the parameters, i.e.

H0 : u′θ = u′θ and H1 u′θ 6= u′θ , (3.24)

where u 6= 0 and θ are some fixed vectors from Rp. It should be noted if
the combination vector

u = (0, . . . , 1︸ ︷︷ ︸
i

, 0 . . . , 0)′ ,

then we obtain the the testing problem for the ith parameter θi, i.e.

H0 : θi = θi and H1 θi 6= θi .

Note that, under the hypothesis H0 in view of Proposition 3.2 we have

u′(θ̂n − θ)√
u′V̂(θ̂n)u

∼ τn−p .

Now, we denote by zα > 0 the quantile of threshold 1− α for |τn−p|, i.e.

P
(
|τn−p| ≤ zα

)
= 1− α .

Therefore, if ∣∣∣∣∣∣ u′(θ̂n − θ)√
u′V̂(θ̂n)u

∣∣∣∣∣∣ > zα

then we reject the hypothesis H0, i.e. the linear combination u′θ is
significantly different from u′θ (at the threshold α), if not, i.e.∣∣∣∣∣∣ u′(θ̂n − θ)√

u′V̂(θ̂n)u

∣∣∣∣∣∣ ≤ zα

then we accept the hypothesis H0, the linear combination u′θ is not
significantly different from u′θ (at the threshold α).
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• Comparison of set of parameters with fixed values.

Now we consider the hypothesis testing problem for the equality of a
subset of regression coefficients to some fixed values:

H0 : θ1 = θ1 , . . . , θm = θm and H1 : ∃ 1 ≤ i ≤ m : θi 6= θi . (3.25)

To this end we set the m× p - matrix T as

T =


1 0 . . . . . . . . . 0
0 1 . . . . . . . . . 0
...

. . .
...

0 . . . 0 1 . . . 0

 . (3.26)

So in this case we can rewrite the problem (3.25) as

H0 : θT = θ and H1 : θT 6= θ , (3.27)

where aT = Ta and θ = (θ1, . . . , θm). So, in view of Proposition 3.5 under
the hypothesis H0) the quadratic form of the inversed matrix (3.13)

1

m
(θ̂T − θ)′V̂−1(θ̂T )(θ̂T − θ) ∼ fm,n−p ,

i.e. has the Fisher-Snedecor distribution with the m and n − p liberty
degrees. Let zα > 0 be the quantile of threshold 1 − α for the Fisher-
Snedecor random variable fm,n−p, i.e.

P(fm,n−p ≤ zα) = 1− α .

Therefore we accept the hypothesis H0 if

1

m
(θ̂T − θ)′V̂−1(θ̂T )(θ̂T − θ) ≤ zα

and we reject it otherwise.

3.2 Confidence interval estimation

Now for some fixed vector u 6= 0 in Rp we estimate a liner combination u′θ via
the confidence interval of a threshold 0 < α < 1. Similarly to (2.24) we set

Ĵu′θ =

[
u′θ̂n − zα

√
u′V̂(θ̂n)u , u′θ̂n + zα

√
u′V̂(θ̂n)u

]
,

where the matrix V̂(θ̂n) is defined in (3.13) and zα > 0 is 1 − α quantile for
the Student distribution, i.e.

P
(
|τn−p| ≤ zα

)
= 1− α . (3.28)
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Note that in view of Proposition 3.2 for n > p the normalized deviation

u′(θ̂n − θ)√
u′V̂(θ̂n)u

∼ τn−p ,

i.e. has the Student distribution with n−p liberty degrees. Therefore, through
the definition of zα in (3.28), we obtain that

P
(
u′θ ∈ Ĵu′θ

)
= P

(
|τn−p| ≤ zα

)
= 1− α .

It should be noted, that asymptotically, under the condition (3.8) the length

2zα

√
u′V̂(θ̂n)u tend to zero.

3.3 Forescasting problem

Let us consider now the forecasting problem for the Gaussian model (2.1),
i.e. we consider the estimation problem for the yn+l for some fixed l ≥ 1
on the basis of the observations y1, . . . , yn, i.e. on the basis of the σ - field
Fn = σ{y1, . . . , yn} and n > p. To this end, using the vector (3.4) we set

ŷn+l = X̃ ′
n+l
θ̂n . (3.29)

From the model (2.1) we can obtain that the deviation from the value yn+l is
given as

ŷn+l − yn+l = X̃ ′
n+l

(θ̂n − θ)− εn+l . (3.30)

It is easy to obtain that E(ŷn+l − yn+l) = 0 and the forecasting variance

V(ŷn+l) = E(ŷn+l − yn+l)
2 = σ2

(
1 + X̃ ′

n+l
(X′X)−1X̃n+l

)
. (3.31)

Now, taking into account that the random variables θ̂n and εn+l are indepen-
dent, we can conclude that

ŷn+l − yn+l ∼ N (0,V(ŷn+l)) .

Moreover, using the estimator (3.12), we set

V̂(ŷn+l) = σ̂n

(
1 + X̃ ′

n+l
(X′X)−1X̃n+l

)
. (3.32)

Proposition 3.6. For the Gaussian regression model (2.1) with the condition
(2.3) and n > 1 the normalized forecasting accuracy

ŷn+l − yn+l√
V̂(ŷn+l)

(3.33)

has Student’s law with n− p degree of liberty.
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Proof. First note, that

V̂(ŷn+l)

V(ŷn+l)
=
σ̂n
σ2

=
γn

n− p
,

where the random variable γn is given in (3.14). Therefore, the fraction (2.31)
can be represented as

ŷn+l − yn+l

V̂(ŷn+l)
=

U√
γn/(n− p)

,

where

U =
ŷn+l − yn+l√

V(ŷn+l)
∼ N (0, 1) .

Now the desired result follows directly from Propositions 2.3 and 2.4.
It is clear that using this property we can define the α confidential interval for
the forecasting as

Ĵy,l = [ŷ∗ , ŷ
∗] , (3.34)

where

ŷ∗ = ŷn+l − zα
√

V̂(ŷn+l) , ŷ∗ = ŷn+l + zα

√
V̂(ŷn+l) .

and zα is α - quantile defined in (3.28).

Exercises

1. Let ζ be a random variable distributed as fp,q. Show that

Eζ =
q

q − 2
for q > 2

and

E(ζ − E ζ)2 =
2q2(p+ q − 2)

p(q − 22)(q − 4)
for q > 4 .

2. Show Proposition 3.3.
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4 Big Data models

Now we consider the parameter estimation problem for the model (3.2) in the
case, when the Big Data setting, i.e. the problem is to estimate the vector
θ = (θ1, . . . , θp)

′ ∈ Rp under the condition that p > n. We recall, that to find
the least square estimators one needs to resolve the system (3.5). Note, that
in the case when p > n the matrix X′X is degenerated, i.e. it is not invertible.
The linear subspace {θ ∈ Rp : Xθ = y} of the dimension m− n ≥ 1 gives the
solution for the minimization problem (3.3).

4.1 LASSO criteria

LASSO (Least Absolute Shrinkage and Selection Operator) (see, for example,
in [7]). The idea is to modify the cost function (3.3).

n∑
j=1

(
yj −

p∑
l=1

xj,lθl

)2

+

p∑
j=1

|θj| → min
θ∈Rp

In the sequel it was appeared different modifications

n∑
j=1

V1

(
yj −

p∑
l=1

xj,lθl

)
+

p∑
j=1

V2(θj) → min
θ∈Rp

,

where V1(·) and V2(·) are functions such that, for example, Vi(x) = |x|γi for
some γi > 0. Note, that if V1(x) = x2 and V2(x) = δx2 for some δ > 0, we
obtain the Tikhonov regularisation procedure, i.e.

θ̂n = (X′X + δIp)
−1 X′ Y , (4.1)

where Ip is the identity matrix of order p ≥ 1, the matrix X and the vector Y
are defined in (3.2).

4.2 Dantzig selector

The another modification was proposed by Candes and Tao (see, for example,
in [7])

min
θ∈Rp

p∑
j=1

|θj| subject to |y −Xθ|∞ ≤ ε

where for the vector z = (z1, . . . , zn)′ and the norm is defined as

|z|∞ = max
1≤j≤n

|zj| .
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The main difficulty is that usually these estimators can not be found in explicit
form. Moreover, to calculate these estimators one needs to know the parameter
dimension p.

5 Autoregressive and Moving Averaging pro-

cesses (ARMA)

We start by the definitions.

Definition 5.1. The process (yt)t≥0 is called the moving averaging process of
the order q ≥ 1 denoted as MA(q) if it can be represented as

yt = εt + φ1εt−1 + . . .+ φqεt−q , (5.1)

where φ1 , . . . , φq are some fixed non random parameters, (εt)−∞<t<+∞ are i.i.d.
random variables with E εt = 0 and E ε2

t
<∞. The process (yt)t≥0 is called the

autoregressive process of order p ≥ 1 denoted as AR(p), if it can be represented
as

yt = θ1yt−1 + . . .+ θpyt−p + εt , (5.2)

where θ1 , . . . , θp are some fixed non random parameters. The process (yt)t≥0

is called the autoregressive process of orders p ≥ 1 and q ≥ 1 denoted as
ARMA(p, q), if it can be represented as

yt = θ1yt−1 + . . .+ θpyt−p + εt + φ1εt−1 + . . .+ φqεt−q . (5.3)

Note also, that any time series (yt)t≥1 for which there exists a sequence (ψk)k≥1

with
∑

k≥1
ψ2
k
<∞ such that this series can be represented as

yt = εt +
+∞∑
k=1

ψk εt−k (5.4)

is called causal time series and denoted as MA(+∞). And this series is called
invertible if there exists a sequence (πk)k≥0

εt =
+∞∑
k=0

πk yt−k and
∑
k≥0

|πk| <∞ , (5.5)

where (εt)−∞<t<+∞ are i.i.d. random variables with E εt = 0 and E ε2
t
<∞.

Let now we represent the (5.2) in the vector form. To this end we set
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Xt =

 yt
...

yt−p+1

 , A =


θ1 . . . θp
1 0 . . . 0
...

...
...

0 . . . 1 0

 and ξt =


εt
0
...
0

 . (5.6)

Using these vectors, we can represent the process (5.2) as the autoregressive
process of the first order in Rp, i.e.

Xt = AXt−1 + ξt . (5.7)

It clear, that if this process is stationary, then it can be represented in Rp as

Xt =
+∞∑
j=0

Ajξt−j . (5.8)

This is possible if and only if all eigenvalues are less than one in the modules.
Since if all the modules of the eigenvalues are less than one, then there exist
c > 0 and 0 < % < 1 such that for all n ≥ 1

|An| ≤ c%n , (5.9)

where | · | is the Euclidean norm of the matrix, i.e. |A|2 = trAA
′
. Let us

calculate now the eigenvalues of the matrix A defined in (5.6). To this end
one needs to calculate the determinant of the matrix A − λ Ip for any scalar
λ ∈ C, where Ip is the identity matrix of the order p ≥ 1. To this end we set

∆p = det(A− λ Ip) = det


θ1 − λ . . . θp

1 −λ . . . 0
...

...
...

0 . . . 1 −λ

 .

This determinant can be represented as

∆p = (−1)p+1θp det


1; −λ . . . 0
0 1;−λ . . . 0
...

...
...

0 . . . 1;−λ
0 . . . 0 1

− λ∆p−1 = −λ∆p−1 + (−1)p+1θp .
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From this and taking into account, that ∆1 = θ1 − λ we get, that

∆p = (−λ)p−1∆1 +

p∑
j=2

(−λ)p−j(−1)j+1θj

= (−λ)p−1(θ1 − λ) + (−1)p+1

p∑
j=2

λp−jθj = (−1)pΘp(λ) ,

where

Θp(λ) = λp −
p∑
j=1

λp−jθj . (5.10)

The function Θp(λ) is called the characteristic polynomial of the process (5.2).

Theorem 5.1. The linear difference equation (5.4) has a stationary solution
if and only if all roots of the characteristic polynomial (5.10) in the module
are less than one.

Now it should be noted, that for the stationary process (5.2) the covariation
matrix is

EXtX
′

t
= F =

∑
j≥0

AjB(A
′
)j and B =

1 0 . . . 0
...

...
...

0 . . . 0 0

 . (5.11)

One can check directly, that (see, for example, in [1]) that the matrix F is
positive defined. Moreover, one can show, that through the large number law
for stationary processes

lim
n→∞

1

n

n∑
j=1

Xj X
′

j
= F a.s.. (5.12)

From (5.8) it follows directly, that

yt =
+∞∑
j=0

< Aj >11 εt−j , (5.13)

where < A >ij denotes the (i, j) element of the matrix A. Therefore, the
process (5.2) is causal if the root of the polynomial (5.10) are less than one in
the modules. It is clear, that the process (5.3) is inversible if the roots of the
polynomial Φq(λ) = λq + φ1λ

q−1 + . . . + φq are less than one in the modules.
Now we recall the definition of the partial autocorrelation coefficient. For the
weak stationary process (yt)t≥1 we set for l ≥ 2

r(l) =
E(ỹl+1 − Prl(ỹl+1))(ỹ1 − Prl(ỹ1))

E(ỹl+1 − Prl(ỹl+1))2
, (5.14)
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where ỹj = ỹj−E yj and Prl(ξ) is the projection in L2(Ω,F ,P) of the random

variable ξ into the linear subspace Vect(ỹ1, . . . , ỹl), i.e. Prl(ξ) =
∑l

j=2
λ∗
j
ỹj,

where the coefficients λ∗
2
, . . . , λ∗

l
are such that

E (ξ −
l∑

j=2

λ∗
j
ỹj)

2 = min
λ2,...,λl

E (ξ −
l∑

j=2

λj ỹj)
2 .

Moreover, for l = 1 we set r(1) = Eỹ2ỹ1/Eỹ
2
2
. It should be noted also that for

the autoregressive model the partial correlation coefficient r(l) = 0 for l ≥ p.
Moreover, as to the forecasting problem, note, that for any l ≥ 1 from (5.8)
we get, that

yt+l =

p∑
j=1

< Al >1,j yt+1−j +
l−1∑
j=0

< Aj >1,1 εt+l−j . (5.15)

Therefore, for any t ≥ p

E
(
yt+l | y1, . . . , yt

)
=

p∑
j=1

< Al >1,j yt+1−j , (5.16)

i.e. if we know the parameters θ1, . . . , θp, then the optimal forecasting is the
conditional expectation (5.16).

A Appendix

A.1 Matrix calculus

Lemma A.1. Let X and U two matrices of orders n×p and p×n respectively
such that UX = X′X. Then UU′ � X′X.

Proof. First, note that the p× n matrix V = U−X′ is orthogonal to X, i.e.
V X = 0. Therefore,

UU′ = (X′ + V)(X + V′)

= X′X + VX + X′V′ + VV′

= X′X + V V′ � X′X .

Hence Lemma A.1.
The theorem below is used in the proof of Theorem 3.1.
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Theorem A.1. Let G and X be two matrices of orders p × n and n × p
respectively such that GX = Ip. Assume that X′X is invertible. Then

G G′ � (X′X)−1 .

Proof. Let U = (X′X)G. Then we get

UX = X′XGX = X′X .

Thus, in view of Lemma A.1, UU′ � X′X, i.e.

(X′X)(G G′)(X′X) � X′X .

Now for any z ∈ Rp, setting z̃ = (X′X)−1z, we get that

z′(GG′)z = z̃′(X′X)(G G′)(X′X)z̃ ≥ z̃′(X′X)z̃ = z′(X′X)−1z ,

which proves, that
G G′ � (X′X)−1 .

Hence Theorem A.1.

A.2 Invariant Donsker Principle

Now we explain how we can calculate the limit distribution in the Skorokhod
space D[0, 1]. To this end for any 0 ≤ t ≤ 1 we set

W (n)
t

=
1√
n

[nt]∑
j=1

ξj , (A.1)

where (ξj)j≥1 are i.i.d. random variables with E ξj = 0 and E ξ2
j

= σ2.

Theorem A.2. ([5]) In the space D[0, 1] the functional sequence W (n) =

(W
(n)
t )0≤t≤1 defined in (A.1) weakly converges to Brownian motion W = (Wt)0≤t≤1

with the variance EW 2
1

= σ2, i.e. for any bounded D[0, 1]→ R functional g

lim
n→∞

E g(W (n)) = E g(W ) .
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