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DEHORNOY’S CLASS AND SYLOWS FOR SET-THEORETICAL
SOLUTIONS OF THE YANG–BAXTER EQUATION

EDOUARD FEINGESICHT

Abstract. We explain how the germ of the structure group of a cycle set decomposes
as a product of its Sylow-subgroups, and how this process can be reversed to construct
cycle sets from ones with coprime classes. We study the Dehornoy’s class associated to
a cycle set, and conjecture a bound that we prove in a specific case. The main tool used
is a monomial representation, which allows for intuitive, short and self-contained proofs,
in particular to easily re-obtain previously known results (Garsideness, I-structure, De-
hornoy’s class and germ, non-degeneracy of finite cycle sets).

0. Introduction

In 1992 Drinfeld ([9]) posed the question of classifying set-theoretical solutions of the
(quantum) Yang–Baxter equation, given by pairs (X, r) where X is a set, r : X × X →
X ×X a bijection satisfying r1r2r1 = r2r1r2 where ri acts on the i and i + 1 component
of X × X × X. In [10], the authors propose to study solutions which are involutive
(r2 = idX×X) and non-degenerate (if r(x, y) = (λx(y), ρy(x)) then for any x ∈ X, λx
and ρx are bijective). Since then, many advances have been made on this question and
objects introduced: structure group ([10]), I-structure ([12]), etc. Many equivalent objects
are known, but in particular here we are interested in cycle sets, introduced by Rump
([17]). Dehornoy ([5]) then studied the structure group (from cycle sets) seen from a
Garside perspective (divisibility, word problem, ...), he then concludes with a faithful
representation, which will be the base of this article. Starting from this representation, we
retrieve most of Dehornoy’s results in simpler, shorter and self-contained proofs, and other
well known results (I-structure, non-degeneracy of finite left-non-degenerate involutive
solutions of [17]), then we study the germs (or Coxeter-like groups) and Dehornoy’s class.
We state the following conjecture on Dehornoy’s class (Conjecture 3.6):

Conjecture. Let S be a cycle set of size n. The Dehornoy’s class d of S is bounded
above by the "maximum of different products of partitions of n into distinct parts" and
the bound is minimal, i.e.

d ≤ max
({

k∏
i=1

ni

∣∣∣∣∣k ∈ N, 1 ≤ n1 < · · · < nk, n1 + · · ·+ nk = n

})
.

We then focuses on the germ and it’s Sylows, with the main result on cycle sets being
constructed from the Zappa–Szép product of germs (Theorem 4.12):

Theorem. Any cycle set can as the Zappa–Szép product of cycle sets with class a prime
power.

Taking decomposability ([1]) into account, one can consider that the "basic" cycle sets
are of class d = pk and size n divisible by p.
The first two sections are mostly a new approach to well-known theorems which allows
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2 EDOUARD FEINGESICHT

for simpler and more intuitive proofs, while the last two contain new results obtained by
using the new approach developed in the two first sections. More precisely:
Section 1 is a brief introduction to monomial matrices and the main properties that we will
use for our proofs. Section 2 consists in recovering most results of [5] with a monomial
representation, allowing for shorter, simpler and self-contained proofs. Including the
study of right-divisibility without Rump’s theorem on the non-degeneracy of finite cycle
sets (while also easily re-obtaining this theorem). Section 3 focuses on Dehornoy’s class
and germ, in particular we state a conjecture on the bound of the classes and prove it
in a particular case. Section 4 explains how to construct all cycle sets from ones with
coprime classes through the Zappa–Szép product of germs, with a precise condition and
an explicit algorithm/formula to do so.

1. Monomial matrices

The basic tool to work on the representation are monomial matrices. We recall the
definition and some basic properties: A matrix is said to be monomial if each row and each
column has a unique non-zero coefficient. We denote by Monomn(R) the set of monomial
matrices over a ring R. To a permutation σ ∈ Sn we associate the permutation matrix Pσ

where the i-th row contains a 1 on the σ(i)-th column, for instance P(123) =

0 1 0
0 0 1
1 0 0

.
We then have Pσ


v1
...
vn

 =


vσ(1)
...

vσ(n)

 and thus, if ei is the i-th canonical basis vector, Pσ(ei) =

eσ−1(i). Moreover, for σ, τ ∈ Sn we find PσPτ = Pτσ. It is well known that a monomial
matrix admits a unique (left) decomposition as a diagonal matrix right-multiplied by a
permutation matrix. Thus, if m is monomial, Dm will denote the associated diagonal
matrix, and Pm the associated permutation matrix, i.e. m = DmPm, and by ψ(m) we
will denote the permutation associated with the matrix Pm. Let D be a diagonal matrix
and P a permutation matrix. We denote the conjugate matrix PDP−1 as PD, and if σ
is the permutation associated with P we will also write σD. The following statements are
well-known. As they will be essential throughout this paper, so we state them explicitly:

Lemma 1.1. Let D be a diagonal matrix and P a permutation matrix. Then PD is
diagonal.
Moreover, the i-th row of D is sent by conjugation to the σ−1(i)-th row.

In particular, this implies that, PσD = σDPσ giving a way to alternate between left and
right (unique) decomposition of monomial matrices.

Corollary 1.2. Let m,m′ be monomial matrices. Then we have Dmm′ = Dm

(
ψ(m)Dm′

)
and ψ(mm′) = ψ(m′) ◦ ψ(m).
To simplify notations we will sometimes only write mDm′ for ψ(m)Dm′ .

As a final example, let m =

0 a 0
0 0 b
c 0 0

, m′ =

0 0 x
0 y 0
z 0 0

, which decomposes with

Dm = diag(a, b, c), Dm′ = diag(x, y, z) and ψ(m) = (123), ψ(m′) = (13). We find
ψ(m′) ◦ ψ(m) = (13) ◦ (123) = (12) and

Dm

(
ψ(m)Dm′

)
= diag(a, b, c) (123)diag(x, y, z) = diag(a, b, c)diag(y, z, x) = diag(ay, bz, cx)
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and indeed mm′ =

 0 ay 0
bz 0 0
0 0 cx

 = diag(ay, bz, cx)P(12).

2. Cycle sets and monomial matrices

In this section, we retrieve the results of [5] using monomial matrices. In particular, our
proofs don’t rely on Rump’s theorem on the bijectivity of finite cycle sets ([17]), and use
simpler arguments compared with the technicality of [5]. Moreover, although we don’t
need it in this section, we provide a short and simple proof of Rump’s theorem.
2.1. Cycle sets
Definition 2.1 ([17]). A cycle set is a set S endowed with a binary operation ∗ such that
for all s in S the map ψ(s) : t 7→ s ∗ t is bijective and for all s, t, u in S:

(s ∗ t) ∗ (s ∗ u) = (t ∗ s) ∗ (t ∗ u). (1)
When S is finite, ψ(s) can be identified with a permutation in Sn.
When the diagonal map is the identity (i.e. for all s ∈ S, s∗s = s) S is called square-free.

From now, we fix (S, ∗) a cycle set.
Definition 2.2 ([17]). The group GS associated with S is defined by the presentation:

GS := 〈S | s(s ∗ t) = t(t ∗ s), ∀s 6= t ∈ S〉 . (2)
Similarly, we define the associated monoid MS by the presentation:

MS := 〈S | s(s ∗ t) = t(t ∗ s), ∀s 6= t ∈ S〉+ .
It will be called the structure group (resp. monoid) of S.
Example 2.3. Let S = {s1, . . . , sn}, σ = (12 . . . n) ∈ Sn. The operation si ∗ sj = sσ(j)
makes S into a cycle set, as for all s, t in S we have (s∗t)∗(s∗sj) = sσ2(j) = (t∗s)∗(t∗sj).
The structure group of S then has generators s1, . . . , sn and relations sisσ(j) = sjsσ(i)
(which is trivial for i = j).
In particular, for n = 2 we find G = 〈s, t | s2 = t2〉.

When the context is clear, we will write G (resp. M) for GS (resp. MS).
We also assume S to be finite and fix an enumeration S = {s1, . . . , sn}.
Remark 2.4. By definition of ψ : S → Sn we have that si ∗ sj = sψ(si)(j), which we will
also write ψ(si)(sj) for simplicity.
2.2. Dehornoy’s calculus

Recall that we fixed (S, ∗) a finite cycle set of size n with structure monoid (resp. group)
M (resp. G).
In the following, we introduce the basics of Dehornoy’s Calculus, which will be easily
understood by directly looking at the representation introduced in the same paper [5],
and we use those to retrieve the well-known I-structure of the structure monoid ([12]).
Although all these results are already stated in [5], their provided proofs are very technical,
whereas using monomial matrices greatly simplifies proofs and allows for more intuition.
Definition 2.5 ([5]). For a positive integer k we define inductively the formal expression
Ωk by Ω1(x1) = x1 and

Ωk(x1, . . . , xk) = Ωk−1(x1, . . . , xk−1) ∗ Ωk−1(x1, . . . , xk−2, xk). (3)
We then define another formal expression Πk by:

Πk(x1, . . . , xk) = Ω1(x1) · Ω2(x1, x2) · . . . · Ωk(x1, . . . , xk). (4)
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For a cycle set S, Ωk(t1, . . . , tk) will be the evaluation in S of Ωk(x1, . . . , xk) at (t1, . . . , tk)
in Sk. Similarly, Πk(t1, . . . , tk) will be the evaluation inMS of Πk(t1, . . . , tk) with the sym-
bol · identified with the product of elements in MS.

Lemma 2.6 ([5]). The element Ωk(t1, . . . , tk) of S is invariant by permutation of the first
k − 1 entries.

Proof. For k = 1 and k = 2 there is only the identity permutation and for k = 3 this is
precisely the condition the cycle set equation (1):

Ω3(s, t, u) = Ω2(s, t) ∗ Ω2(s, u) = (s ∗ t) ∗ (s ∗ u) = (t ∗ s) ∗ (t ∗ u) = Ω3(t, s, u).

Assume k ≥ 4 and proceed by induction. Because the transpositions σi =
(
i i+ 1

)
generate Sk, we only have to look at σi with i ≤ k − 2. We have, by definition

Ωk(t1, . . . , tk) = Ωk−1(t1, . . . , tk−1) ∗ Ωk−1(t1, . . . , tk−2, tk).
If i 6= k − 2, By the induction hypothesis, both Ωk−1 occurring here are invariant by
σi as it doesn’t affect the last term. Remains the case i = k − 2, for which we have:
Ωk(t1, . . . , tσk−2(r−2), tσk−2(r−1), tk) = Ωk(t1, . . . , tk−3, tk−1, tk−2, tk)
= Ωk−1(t1, . . . , tk−3, tk−1, tk−2) ∗ Ωk−1(t1, . . . , tk−3, tk−1, tk) (Expanding)
= (Ωk−2(t1, . . . , tk−3, tk−1) ∗ Ωk−2(t1, . . . , tk−3, tk−2)) (Expanding)

∗ (Ωk−2(t1, . . . , tk−3, tk−1) ∗ Ωk−2(t1, . . . , tk−3, tk))
= (Ωk−2(t1, . . . , tk−3, tk−2) ∗ Ωk−2(t1, . . . , tk−3, tk−1)) (cycle set Equation)

∗ (Ωk−2(t1, . . . , tk−3, tk−2) ∗ Ωk−2(t1, . . . , tk−3, tk))
= Ωk−1(t1, . . . , tk−3, tk−2, tk−1) ∗ Ωk−1(t1, . . . , tk−3, tk−2, tk) (Collapsing)
= Ωk(t1, . . . , tk−2, tk−1, tk). (Collapsing)
Which concludes the proof. �

Proposition 2.7. The element Πk(t1, . . . , tk) of MS is invariant by permutation of the
entries.

Proof. For k = 1 there is nothing to prove. For k = 2 we find Π2(t1, t2) = t1(t1 ∗ t2) which
is identified with t2(t2 ∗ t1) = Π2(t2, t1) by the defining relations of M in 2.

Now assume k ≥ 3 and, as in the proof of the previous lemma; restrict to the transpo-
sitions σi =

(
i i+ 1

)
with 1 ≤ i < k. Recall that, by definition

Πk(t1, . . . , tk) = Ω1(t1) · Ω2(t1, t2) · . . . · Ωk(t1, . . . , tk).
Clearly, the first i − 1 terms remain unchanged by σi. And by the previous Lemma 2.6,
for k > i+ 1 the terms Ωk are invariant by σi. Thus we only have to look at the product:

Ωi(t1, . . . , ti−1, ti+1) · Ωi+1(t1, . . . , ti−1, ti+1, ti)
= Ωi(t1, . . . , ti−1, ti+1) · (Ωi(t1, . . . , ti−1, ti+1) ∗ Ωi(t1, . . . , ti−1, ti)) (Expanding)
= Ωi(t1, . . . , ti−1, ti) · (Ωi(t1, . . . , ti−1, t1) ∗ Ωi(t1, . . . , ti−1, ti+1)) (Relations of M)
= Ωi(t1, . . . , ti−1, ti) · Ωi+1(t1, . . . , ti−1, ti, ti+1). (Collapsing)
Which concludes the proof. �

Lemma 2.8. For any s, t1, . . . , tk in S, the map s 7→ Ωk+1(t1, . . . , tk, s) is bijective.

Proof. We proceed by induction: for k = 1 there is nothing to prove, for k = 2 this is part
of the definition of a cycle set. So consider k ≥ 2 and suppose that the property holds for
k − 1. We have

Ωk+1(t1, . . . , tk, s) = Ωk(t1, . . . , tk) ∗ Ωk(t1, . . . , tk−1, s),
by induction hypothesis s 7→ Ωt1,...,tk−1,s is bijective, and as Ωkt1, . . . , tk is an element of
S, its left action is bijective, which concludes the proof. �
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Proposition 2.9. Let f be in M . Then there exists (t1, . . . , tk)k in Sk such that f =
Πk(t1, . . . , tk).

In the sequel, for any f ∈M , by a "Π-expression of f" we mean choosing any (t1, . . . , tk)
in Sk such that f = Πk(t1, . . . , tk).

Proof. Take a decomposition of f as a product of elements of S:
f = t′1t

′
2 . . . t

′
k.

Let t1 = t′1, because S is a cycle set, the map t′ 7→ t1 ∗ t′ is bijective, so there exists t2
such that t′2 = t1 ∗ t2 (explicitly t2 = ψ(t1)−1(t′2)), i.e.:

f = t1(t1 ∗ t2)t′3 . . . t′k = Ω1(t1)Ω2(t1, t2)t′3 . . . t′k = Π2(t1, t2)t′3 . . . t′k.
We proceed by induction on k: suppose that we have t1, . . . , tk−1 such that t′1 . . . t′k−1 =
Πk−1(t1, . . . , tk−1), i.e. t′i = Ωk(t1, . . . , ti) for i < k. By the previous lemma the map
s 7→ Ωk(t1, . . . , tk−1, s) is bijective, so there exists tk such that

t′k = Ωk(t1, . . . , tk).
By induction, this gives the existence of t1, . . . , tk such that

f = Ω1(t1) . . .Ωk(t1, . . . , tk) = Πk(t1, . . . , tk).
�

Example 2.10. Take S = {s1, s2, s3, s4} with
ψ(s1) = (1234) ψ(s3) = (24)
ψ(s2) = (1432) ψ(s4) = (13).

And consider the element f = s1s2s3s4. We have ψ(s1)−1(s2) = s1, so f = s1(s1∗s1)s3s4 =
Π2(s1, s1)s3s4.
Similarly, ψ(s2)−1(s3) = s4, so s3 = s2 ∗ s3 = (s1 ∗ s1) ∗ s4, as ψ(s1)−1(s4) = s3, we have
s3 = (s1 ∗ s1) ∗ (s1 ∗ s3) = Ω3(s1, s1, s3). So f = Π3(s1, s1, s3)s4.
Finally, for s4, we first write s4 = s3 ∗ a, then a = s2 ∗ b and b = s1 ∗ c (going through the
letters of f = s1s2s3s4 from right to left), so that s4 = s3 ∗ (s2 ∗ (s1 ∗ c))). Replacing s3, s2
and s1 by their previously found expressions gives

s4 = ((s1 ∗ s1) ∗ (s1 ∗ s3)) ∗ ((s1 ∗ s1) ∗ (s1 ∗ c)) = Ω4(s1, s1, s3, c).
Here we find c = s2 so

f = Π4(s1, s1, s3, s2).
One can also check for instance that s4 = Ω4(s1, s1, s3, s2) also equals Ω4(s3, s1, s1, s2) and
so f = Π4(s3, s1, s1, s2).

2.3. The monomial representation
Recall that we fix (S, ∗) a finite cycle set of size n with S = {s1, . . . , sn} and with

structure monoid (resp. group) M (resp. G).

Proposition 2.11 ([5]). Let q be an indeterminate and consider Monomn(Q[q, q−1]),
denote Dsi

the matrix diag(1, . . . , q, . . . , 1) the n×n diagonal matrix with a q on the i-th
row.
The map Θ defined on S by

Θ(si) := Dsi
Pψ(si) (5)

extends to a representation G →Monomn(Q[q, q−1]) and similarly to a morphism M →
Monomn(Q[q]).
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Proof. We have to show that Θ respects the defining relations of G (and M). Let si, sj
be in S and define g = Θ(si)Θ(si ∗ sj) and g′ = Θ(sj)Θ(sj ∗ si). By Corollary 1.2 we have
Dg = Dsi

ψ(si)Dsi∗sj
= Dsi

ψ(si)Dψ(si)(sj) and the latter is equal to Dsi
Dsj

by Lemma 1.1.
By symmetry and commutativity of diagonal matrices, we deduce Dg = Dg′ .
On the other hand, again by Corollary 1.2, we have ψ(g)(t) = ψ(si ∗ sj) ◦ ψ(si)(t) =
(si ∗ sj) ∗ (si ∗ t) for all t ∈ S. By symmetry and as S is a cycle set we deduce that
ψ(g) = ψ(g′) and so g = g′. �

For simplicity, we will write Θ(g) = DgPg to mean Θ(g) = DΘ(g)PΘ(g).

Remark 2.12. The image of G by Θ lies in the subgroup ofMonomn(Q[q, q−1]) consisting
of matrices such that the non-zero coefficients (i.e. the diagonal part of the decomposition)
consists only of powers of q (including q0 = 1). We denote this subgroup by Σn. By Σ+

n

we denote the submonoid of Monomn(Q[q]) consisting of non-matrices whose non-zero
coefficients are non-negative powers of q only, and by Di the matrix diag(1, . . . , q, . . . , 1)
with a q in the i-th place.

Remark 2.13. Let G+ be the submonoid of M of positive words. As M and G+ have
the same generators, their images in their respective representations Θ coincide. Thus,
when working in Monomn(Q[q, q−1]), we will not distinguish between Θ(M) and Θ(G+).
Later, we will see that in fact G is the group of fractions of M and M = G+.

Example 2.14. Set S = {s1, s2, s3} and ψ(si) = (123) for all i.

Θ(s1) =

q 0 0
0 1 0
0 0 1


0 1 0

0 0 1
1 0 0

 =

0 q 0
0 0 1
1 0 0


and similarly

Θ(s2) =

0 1 0
0 0 q
1 0 0

 Θ(s3) =

0 1 0
0 0 1
q 0 0

 .
Proposition 2.15. For all s, t ∈ S:

PsDt = ψ(s)DtPs = Dψ(s)−1(t)Ps.

In particular, PsDs∗t = DtPs.

Proof. This is a direct consequence of Lemma 1.1. �

Definition 2.16. For an element g ∈ Σn, we define it’s "coefficient-powers tuple" cp(g)
to be the unique n-tuple of integers (c1, . . . , cn) such that Dg = diag(qc1 , . . . , qcn).
We set λ(g) := ∑n

i=0 | ci |.

For σ ∈ Sn, by σ(c1, . . . , cn) we denote (cσ(1), . . . , cσ(n)).

Example 2.17. If g =


q2 0 0 0
0 0 1 0
0 0 0 q−1

0 q 0 0

, then cp(g) = (2, 0,−1, 1) and λ(g) = 2 + 0 +

1 + 1 = 4.

Proposition 2.18. For all g, h ∈ Σn we have:

cp(gh) = cp(g) + ψ(g)cp(h). (6)
Moreover λ(gh) = λ(g) + λ(h).
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Proof. The first equality is a direct consequence of Corollary 1.2 applied to the repre-
sentation. The second follows from the fact that the defining relations of the structure
monoid respects the length of words. �

Set Ω′ = Θ◦Ω and Π′ = Θ◦Π the evaluation in the representation of the constructions
from Section 2.2, that is Π′k(t1, . . . , tk) = Θ(Π(t1, . . . , tk)).
Proposition 2.19. Let t1, . . . , tk be in S, then

DΠ′
k
(t1,...,tk) = Dt1 . . . Dtk

and
PΠ′

k
(t1,...,tk) = PΩ′1(t1) . . . PΩ′

k
(t1,...,tk).

Or equivalently for all s in S, ψ(Π′k(t1, . . . , tk))(s) = Ω′k+1(t1, . . . , tk, s).
Proof. We proceed by induction: for r = 1, Π1(t1) = t1 and there is nothing to prove.
Assume r ≥ 1 and the property true for r−1. Then, by definition we have Π(t1, . . . , tk) =
Πk−1(t1, . . . , tk−1) · Ωk(t1, . . . , tk), so by the induction hypothesis

Π′k(t1, . . . , tk) =
(
Dt1 . . . Dtk−1PΩ′1(t1) . . . PΩ′

k−1(t1,...tk−1)
) (
DΩ′

k
(t1,...,tk)PΩ′

k
(t1,...,tk)

)
Note that Ω′k(t1, . . . , tk) = Ω′k−1(t1, . . . , tk−1) ∗ Ω′k−1(t1, . . . , tk−2, tk). So by Proposition
2.15 we get

PΩ′
k−1(t1,...tk−1)DΩ′

k
(t1,...,tk) = PΩ′

k−1(t1,...tk−1)DΩ′
k−1(t1,...,tk−1)∗Ω′

k−1(t1,...,tk−2,tk)

= DΩ′
k−1(t1,...,tk−2,tk)PΩ′

k−1(t1,...tk−1).

We can then repeat this process for all the permutation matrices PΩ′
k−2(t1,...tk−2), . . . , PΩ′1(t1)

and get
PΩ′1(t1) . . . PΩ′

k−1(t1,...tk−1)DΩ′
k
(t1,...,tk) = DtkPΩ′1(t1) . . . PΩ′

k−1(t1,...tk−1).

Thus we find
Π′k(t1, . . . , tk) = (Dt1 . . . Dtk)

(
PΩ′1(t1) . . . PΩ′

k
(t1,...,tk)

)
.

As PσPτ = Pτσ, we have ψ(Π′k(t1, . . . , tk))(s) = ψ(Ω′k(t1, . . . , tk)) ◦ · · · ◦ ψ(Ω′1(t1))(s).
Then ψ(Ω′1(t1))(s) = t1 ∗ s = Ω2(t1, s), which in turns gives ψ(Ω′2(t1, t2)) ◦ ψ(Ω′1(t1))(s) =
ψ(Ω2(t1, t2))(Ω2(t1, s)) = Ω2(t1, t2) ∗ Ω2(t1, s) = Ω3(t1, t2, s). By induction, this gives the
last statement. �

Corollary 2.20. Any tuple of non-negative integers (c1 . . . , cn) ∈ Nn can be realized as
the coefficient-powers tuple of a matrix in Θ(MS).
Proof. Let l = ∑

i
ci and take the l-tuple containing ci times the element si. By the

previous proposition, Π′l applied to this tuple gives the expected result. �

Example 2.21. As in 2.10 take S = {s1, s2, s3, s4} with
ψ(s1) = (1234) ψ(s3) = (24) ψ(s2) = (1432) ψ(s4) = (13).

The tuple (2, 1, 1, 0) can be obtained from Π4(s1, s1, s3, s2) = s1s2s3s4 = f as, in the
induction of the proof we did:

Ps1Ps2Ps3Ds4 = Ps1Ps2Dψ(s3)−1(s4)Ps3 = Ps1Dψ(s2)−1◦ψ(s3)−1(s4)Ps2Ps3

= Dψ(s1)−1◦ψ(s2)−1◦ψ(s3)−1(s4)Ps1Ps2Ps3

Computing ψ(s1)−1 ◦ ψ(s2)−1 ◦ ψ(s3)−1(s4) = s2 precisely retrieves the Example 2.10.
Those reasonings are inverse to one another: to construct an element with given coefficient-
powers we use permutations step by step and letter by letter (this is the construction of
Π), and to get a Π-expression we use all the inverse of those permutations.



8 EDOUARD FEINGESICHT

Corollary 2.22. Any f ∈M is uniquely determined by DΘ(f).
Moreover, this diagonal part can be read as the entries when taking a Π-expression of f .

In particular, this means that the representation is injective on the monoid, as the
diagonal part is determined by the entries of a Π-expression, which is invariant by per-
mutations of those entries.

Proof. This follows from the previous proposition and Proposition 2.9. Take Θ(f) =
DfPf ∈ M with Df = Da1

s1 . . . D
ak
sk
. By Proposition 2.9 there exist t1, . . . , tk ∈ S such

that f = Πk(t1, . . . , tk). By Proposition 2.19, we have DΘ(f) = Dt1 . . . Dtk , this gives the
second statement. By the unicity of the monomial decomposition, we must have ai times
si in the tuple (t1, . . . , tk) and by Proposition 2.7 the orders of the ti’s doesn’t matter.
Thus if g ∈ M is such that DΘ(g) = DΘ(f), by the same argument we must have g =
Πk(t1, . . . , tk) = f . �

Denote Dn (resp. D+
n ) the subset of diagonal matrices of Mn (resp. M+

n ). We have an
obvious inclusion D+

n ↪→ Dn, and a faithful representation Nn ∼→ D+
n .

Corollary 2.23. The natural morphismM → G sending each generator si ∈M to si ∈ G
is injective.

Proof. We have shown that there is a (set) bijection Π: Nn ∼→ M . Then we have the
following commutative diagram:

Nn M G

D+
n Dn

∼
Π

∼

Because the composition Nn → D+
n → Dn is injective, and as Π: Nn → M is bijective,

the composition M → G→ Dn must be injective, so necessarily M injects in G. �

A word t1 . . . tk over S representing an element g is said to be reduced if it’s length k
is minimal among the representative words of g.

Proposition 2.24. Any element g ∈ G can be decomposed as a reduced left-fraction in
M , that is:

∃f, h ∈M, g = fh−1 with λ(g) = λ(f) + λ(h)
where λ denotes the length as a S ∪ S−1-word.

Proof. Let g ∈ G, and write a reduced decomposition of g as product of elements in
S ∪S−1. If this expression is of length 1, this is trivial. If the length is 2, we have 4 cases
with s, t ∈ S: st, s−1t−1, st−1 and s−1t. The first 3 cases are of the desired form. For the
last one, the defining relations of G give

s(s ∗ t) = t(t ∗ s)⇐⇒ s−1t = (s ∗ t)(t ∗ s)−1.

For arbitrary length, we can inductively use the same relation s−1t = (s ∗ t)(t ∗ s)−1 to
"move" all inverses of the generators to the right in a decomposition of g, which gives the
desired form. �

We will later state a similar result for right-fractions (Proposition 2.71).

Corollary 2.25. Any element in G can be decomposed as a left-fraction fg−1 in M such
that Dg commutes with all permutation matrices (more precisely that Dg is a power of
Ds1 . . . Dsn).
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Proof. Take a Π-expression Πk(t1, . . . , tk) of g. up to permuting the entries, we can assume
that g = Πk(s1, . . . , s1, . . . , sn, . . . , sn), where for 1 ≤ i ≤ n each si occurs ai times and
a1 + · · ·+ an = k. Let j be such that aj is (one of) the biggest of the ai’s, then if for some
i we have ai < aj we can consider a new element Πk+1(s1, . . . , s1, . . . , sn, . . . , sn, si) =
g · Ωk+1(s1, . . . , s1, . . . , sn, . . . , sn, si), where si occurs ai + 1 times and that is obtained
from g by right-multiplying by an element in S. Doing so, until all si occurs aj times,
provides an element g which is obtained from g by right-multiplication by some g′ ∈ M
and such that Dg = (Ds1 . . . Dsn)aj .

Let Pσ be a permutation matrix, then PσDg = σDgPσ = DgPσ where the last equality
is because all the diagonal terms in Dg are equal so are invariant by σ.

Finally fg′(g)−1 = fg−1, so replacing (f, g) by (fg′, gg′) gives us the result. �

Example 2.26. Take S = {s1, s2, s3} and ψ(si) = (123) for all i. Consider h = s−1
3 s−1

2 s3,
the relation s2s1 = s3s3 (i.e. s1s

−1
3 = s−1

2 s3) gives h = s−1
3 s1s

−1
3 ; similarly s3s2 = s1s1 (i.e.

s2s
−1
1 = s−1

3 s1) yields h = s2s
−1
1 s−1

1 .
Let f = s2 and g = s1s1 so that h = fg−1, we have g = s1(s1 ∗s3) = Π2(s1, s3), thus Dg =
DΘ(g) = Ds1Ds3 , which is not stable under permutation ((123)Dg = Ds(123)−1(1)

Ds(123)−1(2)
=

Ds3Ds2 6= Dg). To complete g so that it commutes, we must add Ds3 , so we take g′ =
Π3(s1, s2, s3) = gs1 and f ′ = fs1. Now Dg′ = Ds1Ds2Ds3 commutes with permutation
matrices, and f ′g′−1 = fs1s

−1
1 g−1 = fg−1 = h.

Theorem 2.27. Let S be a finite cycle set of cardinal n. Then Θ is a faithful represen-
tation of G.
Proof. Let g ∈ G, from Proposition 2.24 we know that there exist f, h ∈ M such that
g = fh−1. Thus as Θ is a representation:

Θ(g) = Idn ⇐⇒ Θ(f) = Θ(h)
By Corollary 2.23, Θ(f) = Θ(h)⇐⇒ f = h, thus Θ is faithful. �

From now on, we assume that S is a finite cycle set with S = {s1, . . . , sn}. We identify
G with its image by the (faithful) representation Θ. We can as well identify Ω (resp. Π)
with its image Ω′ (resp. Π′) by Θ.
Definition 2.28. A subgroup of Σn is called permutation-free if the only permutation
matrix it contains is the identity.
Proposition 2.29. G is permutation-free.
Proof. Suppose Pσ is a permutation matrix (associated with σ ∈ Sn) that is in G. Then
by Proposition 2.24, there exists f, g ∈ M such that Pσ = fg−1, i.e. DfPf = PσDgPg.
By Corollary 2.25 we can assume that PσDg = DgPσ, so DfPf = DgPσPg. By the
unicity of the monomial decomposition, we must have Df = Dg and Pf = PσPg, so by
Proposition 2.22 f = g and thus Pσ =Id (and σ =id). �

Corollary 2.30. An element g ∈ G is uniquely determined by Dg.
Proof. Suppose for g, h ∈ G we have Dg = Dh. Then

g−1h = (DgPg)−1(DhPh) = P−1
g D−1

g DgPh = P−1
g Ph ∈ G

We have a permutation matrix in G, so it must be the identity, so Pg = Ph and thus
g = h. �

Proposition 2.31. For any tuple a = (a1, . . . , ak) in Zk, there exists a unique g ∈ G
with cp(g) = (a1, . . . , ak).
Moreover, if all ai ≥ 0 then g ∈M has a Π-expression g = Πλ(a) which is of length of λ(a)
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and is minimal by additivity of λ.
Similarly, if g ∈ G, writing it as a fraction of two minimal-length elements ofM also gives
that the length of g over S ∪ S−1 is λ(g).

Proof. For the first part, the existence follows from Corollary 2.20 and the unicity from
the previous Corollary.
The second statement is just Proposition 2.18 applied to the generators of the monoid, and,
similarly, the third is a consequence of considering irreducible left-fractions in Proposition
2.24. �

Remark 2.32. This is precisely a matricial formulation of the I-structure of [12].

We’ve seen that the structure group of a cycle set is permutation-free, we now state a
reciprocal under a condition on the atom set of the submonoid:

Theorem 2.33. Let G be a subgroup of Σn, denote G+ = G ∩ Σ+
n (the submonoid of

positive elements). Suppose that the set of atoms S = {s1, . . . , sn} of G+ has cardinal n,
generates G and there exists a positive integer k such that Dsi

= Dk
i . Let the operation

∗ be defined on S by si ∗ sj = ψ(si)(sj), then the following assertions are equivalent:
(i) G is permutation-free
(ii) s(s ∗ t) = t(t ∗ s) for all s, t in S
(iii) G is the structure group of S

Proof. First notice that q 7→ qp provides an injective morphism Σn → Σn, so we can
assume p = 1.
(i) ⇒ (ii): For 1 ≤ i, j ≤ n, we have from Proposition 2.15:

sisψ(i)(j) = DiPsi
Dsi∗sj

Psi∗sj
= DiDjPsi

Psi∗sj

By symmetry, sj(sj ∗ si) will have the same diagonal part. Then

(si(si ∗ sj))−1 (sj(sj ∗ si)) = P−1
si(si∗sj)D

−1
si(si∗sj)Dsj(sj∗si)Psj(sj∗si) = P−1

si(si∗sj)Psj(sj∗si) ∈ G.

So by the assumption that G is permutation-free we deduce si(si ∗ sj) = sj(sj ∗ si).
(ii)⇒ (iii): Recall that Psi(si∗sj) = Psi

Psi∗sj
= Pψ(si∗sj)◦ψ(si), so we find ψ(si ∗ sj) ◦ψ(si) =

ψ(sj ∗ si)◦ψ(sj). For t ∈ S, this means that ψ(si ∗ sj)◦ψ(si)(t) = ψ(sj ∗ si)◦ψ(sj)(t), i.e.
(si ∗ sj) ∗ (si ∗ t) = (sj ∗ si) ∗ (sj ∗ t), so precisely that S is a cycle set. Then the generators
of M correspond to the generators of MS and both are submonoids of Σn, so M = MS.
Similarly, as S generates G we have GS = G.
(iii)⇒ (i): This is Proposition 2.29. �

2.4. Garsideness
In a 2017 talk ([6]), Dehornoy addressed the question of whether his results on the

construction of the Garside structure and the I-structure can be derived without using
Rump’s result on the non-degeneracy of finite cycle set ([11]). In this section, we answer
his question positively.
Although equivalent to working in the I-structure [12] ZnoSn by decomposing elements
(c, σ) = (c, 1)(1, σ) = (1, σ)(σc, 1), working with monomial matrices and their decomposi-
tion has the advantage of giving more intuition, and allows for looking at both left and
right structure at the same time. For instance, this is efficient when looking at divisibility,
that we study in this section.
Recall that we fix (S, ∗) a finite cycle set of size n with structure monoid (resp. group)
M (resp. G).
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Definition 2.34. Let g1, g2 be elements of M . We say that g1 left-divides (resp. right-
divides) g2, that we note g1 � g2 (resp. g1 �r g2) if there exists some h ∈ M such that
g2 = g1h (resp. g2 = hg1) and λ(g2) = λ(g1) + λ(h).
An element g ∈M is called balanced if the set of its left-divisors Div(g) and right-divisors
Divr(g) coincide.

We equip Zn with the partial ordering given by (a1, . . . , an) ≤ (b1, . . . , bn) iff ai ≤ bi
for all 1 ≤ i ≤ n. In particular, this means that given g1, g2 ∈ G, cp(g1) ≤ cp(g2) iff the
power of q on the i-th row of g1 is less than the one of g2 for 1 ≤ i ≤ n. Moreover, note
that, as g1 = Pg1

g1Dg1 and gt1 = P t
g1Dg1 = P−1

g1 Dg1 = g1Dg1P
−1
g1 , the coefficient on the i-th

column of g1 is the coefficient on the i-th row of gt1.
Proposition 2.35. g1 left-divides g2 if and only if cp(g1) ≤ cp(g2),
Similarly, g1 right-divides g2 if and only if cp(gt1) ≤ cp(gt2).

This means that, to check if g1 is a left- (resp. right-) divisor of g2, we only have to
check if the power of q is smaller on each row (resp. column).
Proof. Write gi = Dgi

Pgi
= Pgi

giDgi
. For left-divisibility, consider in G the element

h = g−1
1 g2 = P−1

g1 D
−1
g1 Dg2Pg2 . By Proposition 2.31 h ∈ M iff D−1

g1 Dg2) contains only
non-negative powers of q, precisely meaning that the power on each row of g1 is less than
the one of g2.
Similarly, for right divisibility, let h′ = g2g

−1
1 = Pg2

g2Dg2

(
g1Dg1

)−1
P−1
g1 , which is in M iff

g2Dg2

(
g1Dg1

)−1
contains only non-negative powers of q, which is the same criterion on the

columns. �

Example 2.36. Taking S = {s1, s2} with ψ(s1) = ψ(s2) = (12), we can see that:(
0 q3

1 0

)
left-divides

(
q4 0
0 1

)
(as 3 ≤ 4 on the first line and 0 ≤ 0 on the second since

1 = q0), but doesn’t right divide it (as 3 > 0 on the second column)
Corollary 2.37. Let g = Πk(t1, . . . , tk), then the left-divisors of g are precisely the Π’s
of subtuples of (t1, . . . , tk).
Reciprocally, the right multiples of g are the elements h such that, when writing h =
Πl(u1, . . . , ul), the tuple (u1, . . . , ul) contains the tuple (t1, . . . , tk).
Corollary 2.38. Let g1, g2 be in M . The left-gcd (resp. left-lcm) of g1 and g2, denoted
g1 ∧ g2 (resp. g1 ∨ g2) is given by the unique element such that the coefficient-power on
each row is the maximum (resp. minimum) of those of g1 and g2.
For right-gcd (resp. right-lcm) it is the same but for each column.

Explicitly, if cp(g1) = (a1, . . . , an) and cp(g2) = (b1, . . . , bn), then cp(g1 ∧ g2) =
(max(a1, b1), . . . ,max(an, bn)) and cp(g1 ∨ g2) = (min(a1, b1), . . . ,min(an, bn)).
Example 2.39. As in 2.10 take S = {s1, s2, s3, s4} with

ψ(s1) = (1234) ψ(s3) = (24)
ψ(s2) = (1432) ψ(s4) = (13)

We have 
0 q 0 0
1 0 0 0
0 0 0 q
0 0 1 0

 ∧


0 0 0 q
0 0 q 0
0 1 0 0
1 0 0 0

 =


0 q 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Which can be understood in two ways:
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• gcd (Π2(s1, s3),Π2(s1, s2)) = Π1(s1) as s1 the only term appearing in both Π2.
• The gcd of the two given matrices must have cp-tuple (1, 0, 0, 0) (taking the min-

imal coefficient-power row by row), which uniquely exists by the I-structure.
Similarly: 

0 q 0 0
1 0 0 0
0 0 0 q
0 0 1 0

 ∨


0 1 0 0
q 0 0 0
0 0 0 1
0 0 q 0

 =


q 0 0 0
0 q 0 0
0 0 q 0
0 0 0 q


can be understood as both:

• lcm (Π2(s1, s3),Π2(s2, s4)) = Π4(s1, s2, s3, s4) (we took the maximum number of
each occurences of each si, here always 1)

• The lcm of the two given matrices must have cp-tuple (1, 1, 1, 1) (taking the max-
imal coefficient-power row by row), which uniquely exists by the I-structure.

The second description however does not provide an explicit description of the element,
as we don’t have the permutation part.
For the right gcd and lcm, we do the same on the columns, which has the disadvantage
and not having something as explicit as the first-description of the left versions (see the
Π̃ of [5] for a more detailled approach).

Corollary 2.40. An element such that the non-zero terms of its i-th row and i-th column
are equal for all 1 ≤ i ≤ n is balanced.

Definition 2.41. An element of M is called a Garside element if it is balanced, Div(g)
is finite and generates M .

Proposition 2.42 ([5]). The unique element ∆ such thatD∆ = diag(q, . . . , q) is a Garside
element of M .

Equivalently, ∆ = Πn(s1, . . . , sn) or cp(∆) = (1, . . . , 1).

Proof. Because all the non-zero coefficients of ∆ are equal, the latter is balanced.
Its set of divisors is the set of elements with non-zero coefficients 1 or q and so is finite
and has cardinal 2n, and it contains all the generators si so also generates M. �

Remark 2.43. The powers of ∆, which are the unique elements with cp-tuple (k, . . . , k)
for k ≥ 1, are also Garside elements by the same reasoning.
More generally, Garside elements are precisely the balanced elements with no 1’s.

Definition 2.44 ([7]). A monoid is said to be a Garside monoid if:
(i) It is cancellative, i.e. if for every element g1, g2, h, k, hg1k = hg2k ⇒ f = g.
(ii) There exists a map Λ to the integers such that λ(g1g2) ≥ λ(g1) + λ(g2) and

λ(g) = 0⇒ g = 1.
(iii) Any two elements have a gcd and lcm relative to both � and �r.
(iv) It possesses a Garside element ∆.

Proposition 2.45 ([5]). M is a Garside monoid.

Proof. The map λ previously defined satisfies point (ii) (and in fact as an equality).
For (iii) we have Corollary 2.38 and for (iv) Proposition 2.42.
We are left to prove (i), which is a direct consequence of Corollary 2.23 (alternatively, we
can see this is that our elements are monomial matrices, such inject into the linear group
GLn(Q[q, q−1]) from which we deduce the cancellative property). �
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2.5. Germs
In [5] Dehornoy associates a germ to structure groups of cycle sets, in the construction

he uses the non-degeneracy of finite cycle sets. Here we provide proofs that do not rely on
this property. In particular the direct existence of Dehornoy’s class is obtained along with
a better bound (again improved in the next section). Moreover, we state an exchange
lemma and a solution to the word problem, as is known in the context of Coxeter groups.
Recall that we fix (S, ∗) a finite cycle set of size n with structure monoid (resp. group)
M (resp. G). For s ∈ S and k ∈ N denote by s[k] the unique element in M such that
Ds[k] = Dk

s , i.e. s[k] = Πk(s, . . . , s) = sT (s) . . . T k−1(s) where T is the diagonal map
s 7→ s ∗ s.

Proposition 2.46. There exists a positive integer d such that for all si ∈ S, s[d]
i is

diagonal, i.e. P
s

[d]
i

= Id.

The smallest integer satisfying this condition is called the Dehornoy’s class of S, and
all the others will be multiples of this class. Our results will be stated for the class, but
most would work for any multiples.

Proof. First fix s ∈ S. The map sending s[k] to ψ(s[k]) is a map from an infinite (countable)
set to a finite one (Sn), therefore it is not injective. So there exists k1, k2 ∈ N such that
Ps[k1] = Ps[k2] . We can assume k1 > k2 without loss of generality. We have s[k1](s[k2])−1 =
Dk1−k2
s which is in G, and as k1 − k2 > 0 is also in M (it is Πk1−k2(s, . . . , s)), so it is

necessarily equal to s[k1−k2] which is thus diagonal.
Doing this for all si ∈ S, we get the existence of di ∈ N such that s[di]

i is diagonal. Notice
that again, by the same argument, we must have for all k ∈ N (s[di]

i )k = Dkdi
si

= s
[kdi]
i .

Taking d = lcm(d1, . . . , dn) we have for all i the existence of d′i > 0 such that d = did
′
i, we

find that for all i, s[d]
i = (s[di]

i )d′i is diagonal. �

In [5], the author gives a bound on the class of a cycle set as d ≤ (n2)!. Here, we obtain
a better bound (which will be improved in the next section):

Proposition 2.47. The Dehornoy’s class d satisfies the following inequality:
d ≤ (n!)n.

Proof. In the proof of the previous proposition, note that each di (the smallest positive
integer such that s[di] is diagonal) is smaller than n!. As d is the lcm of the di’s, we
conclude that d = lcm(d1, . . . , dn) ≤ (n!)n. �

Proposition 2.48. Let d be the class of S and denote by G[d] the subgroup of G generated
by all the s[d]. Then G[d] is a normal subgroup of G.

Proof. The generators ofG[d] are diagonal, thus this subgroup consists of diagonal matrices
only. Conjugating a diagonal matrix D by a permutation matrix is diagonal, thus for all
g in G, (DgPg)D(P−1

g D−1
g ) = ψ(g)D. Because the subgroup contains all possible diagonal

matrix with coefficients powers of qd, it is stable by the action of Sn by permutation, so
∀h ∈ G[d], ghg−1 ∈ G[d]. �

We define the quotient group G by G = G/G[d].

Proposition 2.49 ([5]). The projection π : G→ G amounts to adding to the presentation
of G the relations s[d] = 1, more precisely quotienting is the same as specializing at
q = exp(2iπ

d
) noted evq.

Moreover, the map π ◦ Π: ZS → G induces a (set) bijection Π: (Z/dZ)S → G.
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Proof. The first part comes from the fact that G[d] is generated by the s[d] which are
diagonal, and as each element containing a coefficient-power greater than d is a multiple
of some s[d]

i by Proposition 2.35, we see that quotienting is just specializing at q = exp(2iπ
d

).
The second part then follows as (canonical representative of) elements of G have non-zero
coefficients in {1, q, . . . , qd−1}. �

Remark 2.50. If d = 1 then G[d] = G so G is trivial. However, d = 1 means that all
the generators s are diagonal, i.e. s ∗ t = t for all s, t in S: this is just the special case
of the trivial cycle set. So we will assume d ≥ 2, but this unique trivial case can still be
included as all our results work for any multiples of the class (thus any positive integer
for the trivial cycle set).

From now on, assume d ≥ 2.

Example 2.51. Let S = {s1, . . . , sn} with ψ(si) = (12 . . . n) = σ for all i. Then for any
s ∈ S, k ∈ Z: s[k]

i = Dk
sPσk . Thus Dehornoy’s class of S is equal to n. Let ζn = exp(2iπ

n
),

then G is generated by the si = diag(1, . . . , ζn, . . . , 1)Pσ.

Denote by ζd = exp(2iπ
d

) a primitive d-th root of unity and µd = {ζ id | 0 ≤ i < d}. Let
Σd
n be the subgroup of Monomn(C) with non-zero coefficients in {0} ∪ µd. Given k ≥ 1,

there is natural embedding ιdkd : Σd
n → Σdk

n sending ζd to ζkdk (as ζkdk = exp(2ikπ
dk

) = ζd).
From the previous proposition, we deduce the following result:

Lemma 2.52. The quotient group G is a subgroup of Σd
n.

Recall that if S has Dehornoy’s class d, then for any positive integer k we have that
s[kd] = (s[d])k is diagonal, thus we could also consider the germ G/〈s[kd]〉s∈S〉. The embed-
ding ιdkd (G) can then be seen as embedding the germ G is this bigger quotient group.

Definition 2.53. [5] If (M,∆) be a Garside monoid and G the group of fractions of M ,
a group G with a surjective morphism π : G → G is said to provide a Garside germ for
(G,M,∆) if there exists a map χ : G → M such that π ◦ χ = IdG, χ(G) = Div(∆) and
M admits the presentation

〈χ(G) | χ(fg) = χ(f)χ(g) when ||fg||S = ||f ||S + ||g||S〉
where || · ||S denote the length of an element over S = π(S).

Proposition 2.54 ([5]). The specialization evq that imposes q = exp(2iπ
d

) provides a
Garside germ of (G,M,∆d−1).

Proof. Consider the map χ : G → M defined by sending exp(2iπ·k
d

) to qk ∈ Q[q] for
1 ≤ k < d. It trivially satisfies evq ◦ χ = IdG. Its image is the elements of M such
that each coefficient-power (the power of q) is strictly less than d, and thus identifies
with Div(∆d−1) by the characterization of divisibility. And the presentation amounts to
forgetting that q is a root of unity, thus generating M as required. �

To work over G, we will use the following corollary to restrict to classes of equivalence
over the structure monoid.

Corollary 2.55. The projection evq : M → G is surjective.

Proof. G is generated by the si (positive generators) and their inverses s−1
i (negative

generators), so the same holds for G. Moreover, as G is finite, inverses can be obtained
from only positive generators. Finally, because M ↪→ G as the submonoid generated by
positive generators, we obtain the statement. �
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Example 2.56. Let S = {s1, . . . , sn} with ψ(si) = (12 . . . n) = σ for all i. Then for any
s ∈ S, k ∈ Z: s[k]

i = Dk
sPσk . The Dehornoy’s class of S is n and G is generated by the

si = diag(1, . . . , ζn, . . . , 1)Pσ where ζn = exp(2iπ
n

).
To recover G from G, one simply takes all the elements of G and forget that q is a root of
unity in the following sense: when computing the product of two elements and finding a
coefficient qa with a > d, we do not use that qd = 1 and just consider it as a new element.
So for instance in 〈χ(G)〉 with n = 4:

χ
(
s

[3]
1

)
χ
(
s

[2]
4

)
= χ(s1

[3])χ(s4
[2]) =


0 0 0 q3

1 0 0 0
0 1 0 0
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 q2 0 0

=


0 q5 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 = s
[5]
1 .

Because 5 > 4, we obtain a new element different from χ
(
s

[5]
1

)
= χ (s1).

The quotient group G defined above is called a Coxeter-like group, it was first studied
by Chouraqui and Godelle in [4] for d = 2 and generalized by Dehornoy in [5].
Fix G a Coxeter-like group obtained from a cycle set S of cardinal n and class d ≥ 2 (so
that G is not trivial).
Proposition 2.57. G is permutation-free.
Proof. From Proposition 2.29, we know that G is permutation-free. As G is the image of
G by the evaluation at q = ζd, a matrix g ∈ G is a permutation matrix if it comes from
an equivalence class of g ∈M such that cp(g) = (da1, . . . , dan) (with a1, . . . , an ∈ N), i.e.
g = (s[d]

1 )a1 . . . (s[d]
n )an = Dda1

s1 . . . Ddan
sn

which is diagonal, thus g is diagonal. �

Definition 2.58. For c = (c1, . . . , cn) ∈ (Z/dZ)n, define cp(diag(qc1 , . . . , qcn)) to be
the unique representative of c as (c1, . . . , cn) ∈ {0, . . . , d − 1}n. If g ∈ G, we define
cp(g)) = cp(Dg).
We define a function ld by:

∀k ∈ {0, 1, . . . , d− 1}, ld(k) =
k, if k ≤ d

2
k − d, if k > d

2 .
(7)

And we define λ(c) =
n∑
i=1
|ld(ci)|.

Note that cp corresponds to cp with the projection Z→ Z/dZ) and taking representa-
tives in the interval [0, d − 1[∩Z, while λ corresponds to λ with the same projection but
with representatives in ]− d

2 ,
d
2 ] ∩ Z. The latter is chosen because, if we have q6 = 1, the

shortest way to write q2 is q · q but to write q4 we should use q−1 · q−1.
Proposition 2.59. The followings hold:

(i) For any c = (c1, . . . , cn) ∈ (Z/dZ)n, there exists a unique element g ∈ G such that
cp(g) = c.

(ii) The length of an element g ∈ G over S = π(S) is given by λ
Proof. (i) follows from Proposition 2.57.
Point (ii) is obtained by realizing that the shortest way to write qk for k ∈ {0, . . . , d− 1}
is using q · ... · q is k ≤ d

2 and otherwise we use the fact that qd = 1 to write it as
q−1 · ... · q−1. �

Corollary 2.60. Because G is finite, the generators have finite order, so any element has
a decomposition as a product of generators (we don’t have to include inverses). Thus,
any element in G has a Π-expression (in the same sense as in M).
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Corollary 2.61. Defining similarly to Σn the group Σn with non-zero coefficients powers
of exp(2iπ

d
), we get that a subgroup of Σn respecting the conditions of Proposition 2.33 is

a Coxeter-like group.

Remark 2.62. We say that a word in S = π(S) is reduced in G if it has length λ(w)
when seen as an element of G.
For instance, if d > 2 then w = s(s ∗ s) is reduced as it represents Π2(s, s) which has
λ = 2 but the word corresponding to Πd(s, . . . , s) is not has it has λ̄ = 0. More generally,
the word associated to Πr((t1), . . . , (tr)) is reduced in G if each si occurs strictly less than
d times in the family (ti).

For Coxeter groups, we have the so-called exchanging lemma (see [16]). We provide a
similar result for Coxeter-like groups:

Lemma 2.63 (Exchange Lemma). Let g ∈ G be written has a reduced expression
Πk(t1, . . . , tk). For s ∈ S, if Πk+1(s, t1, . . . , tk) is not reduced, then there exists some
i such that g = Πk(s, t1, . . . , t̂i, . . . , tk), where t̂i means we omit ti.

Proof. As Πk(t1, . . . , tk) is reduced, s occurs strictly less than d times in (tj)1≤j≤k.
Thus, if Πk+1(s, t1, . . . , tk) is not reduced as word, then s must occur exactly d times in
s∪(tj)1≤j≤k, in particular as d > 1, s occurs at least once in (tj)1≤j≤k, say ti = s. Because
Π is invariant by permutation of the entries (as Π is), we can move this ti at the beginning
and thus g = Πk(s, t1, . . . , t̂i, . . . , tk). �

Another part of interest of the study of Garside groups is that they provide a solution
to the word problem:

Proposition 2.64. Two words t = t1 . . . tk and u = u1 . . . ul ∈ S∗ represent the same
element in M (resp. G) if, when taking a Π-expression (resp. Π-expression) of both, they
have the same number of occurrences of each si, 1 ≤ i ≤ n (resp. modulo d).

Proof. • In M , the elements corresponding to t and u have respectively a Π-expression
of length k and l, and because Π is a bijection from Nn to M , they represent the same
element iff they have the same number of occurrences of each of the atoms in Nn. In
particular, k = l.
• In G, the same reasoning applies: take a Π-expression of both elements, they represent
the same equivalence class iff the number of occurrences of each atom is the same modulo
d in Nn, as the map Π: (Z/dZ)n → G is a bijection. �

We summarize all the previous results in the following diagram, where black arrows
are morphism and blue arrows are just maps of sets, and the middle line is a short exact
sequence.

M

1 G[d] G G 1

ZS ZS (Z/dZ)S
∼ Π

π=evq

∼ Π

χ

∼ Π

×d

Note that the left Π is a group morphism because all elements of G[d] have trivial per-
mutation, so this group is abelian and thus Π is the morphism sending (a1, . . . , an) to
diag(qda1 , . . . , qdan).
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2.6. Non-degeneracy
Here we give a new proof of Rump’s result on the non-degeneracy of finite cycle sets

[17], that is the fact that s 7→ s∗s is bijective; in Dehornoy’s paper it is used to obtain the
bijectivity of (s, t) 7→ (s ∗ t, t ∗ s). Here we prove both of those results using the previous
section, the first proof has the advantage of being a simple direct consequence of the
I-structure compared to the proof in [17] which involves several steps and constructions.
Recall that we fix (S, ∗) a finite cycle set of size n with structure monoid (resp. group)
M (resp. G).

Lemma 2.65 ([17]). ∀s, s′ ∈ S, s ∗ s = s′ ∗ s′ ⇐⇒ s = s′.

Proof. If s = s′ ∗ s′ then trivially s ∗ s = s′ ∗ s′.
Suppose s ∗ s = s′ ∗ s′, and consider g = ss′−1, we want to show g = 1.
We have g = ss′−1 = DsPsP

−1
s′ D

−1
s′ , using that PσD = σDPσ and P−1

σ = Pσ−1 twice
we find g = DsPsD

−1
s′∗s′P

−1
s′ = DsD

−1
ψ−1(s)(s′∗s′)PsP

−1
s′ . By assumption s ∗ s = s′ ∗ s′ thus

g = DsD
−1
ψ−1(s)(s∗s)PsP

−1
s′ = DsD

−1
s PsP

−1
s′ = PsP

−1
s′ . As GS is permutation-free, we deduce

g = 1. �

Proposition 2.66. (i) The diagonal map T : s 7→ s ∗ s is a bijection of S.
(ii) The order o of T divides d. In particular, for any integer k, we have s[kd] =

(sT (s) . . . T o−1(s))k.
(iii) More generally s[k] = sT (s) . . . T o−1(s)sT (s) . . . with exactly k terms

Proof. As S is finite and T is injective by the previous lemma, it is bijective and so has
finite order. The third point follows directly from the equalities s[k] = Πk(s, . . . , s) =
sT (s) . . . T k−1(s) and, as T o(s) = s, we regroup as many words sT (s) . . . T o−1(s) as pos-
sible. For the second point, if s[k] is diagonal, then s[k]s = Dk

sDsPs which has diagonal
part Dk+1

s so must be s[k+1]. As s[d+1] = s[d]T d(s), we deduce T d(s) = s, thus o = o(T )
divides d. �

Corollary 2.67. Let Gt be the set of transposes of the elements of G. Then Gt is the
structure group of a cycle set structure on St.

Proof. First note that, because G is generated by S, Gt is generated by St. As T is a
bijection, for each i the set St contains exactly one element st such that Dst = Di, that is
s = T−1(si). Moreover, as G is permutation-free, so is Gt. So by Theorem 2.33 it is the
structure group of the cycle set St. �

In particular, this can be used to work on the columns in G: if we want an element of
G with coefficient powers tuple (a1, . . . , an) on the columns, we can work in Gt, use the
Π of Dehornoy’s calculus to obtain an elements gt in Gt with cp(gt) = (a1, . . . , an) and
transpose it to get g in G with qai on the i-th column.

Proposition 2.68. For any k ∈ N, ψ(s[k])(s) = T k(s). In particular, the map s 7→
ψ(s[k])(s) is a bijection of S.

Proof. For k = 0, s[0] = 1 so both sides of the equality are s. For k = 1, this is just the
definitions ψ(s)(s) = s ∗ s = T (s). Now proceed by induction:
Recall that ψ(s[k+1])(s) =

(
ψ(T k(s)) ◦ ψ(T k−1(s)) ◦ · · · ◦ ψ(s)

)
(s) = ψ(T k(s))(ψ(s[k])(s))

by Proposition 2.19, so by the induction hypothesis ψ(s[k+1])(s) = ψ(T k(s))(T k(s)) =
T k(s) ∗ T k(s) = T k+1(s).
As T is a bijection, so is T k. �

Corollary 2.69. For k in N and s in S, let t = (T k)−1(s) then s[−k] = Πk(t, . . . , t)−1.
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Proof. Let t ∈ S, we have

(t[k])−1 = (Dk
t Pt[k])−1 = P−1

t[k]D
−k
t = ψ(t[k])−1

D−kt P−1
t[k] = D−k

ψ(t[k])(t)P
−1
t[k] = D−kTk(t)P

−1
t[k] .

Thus, if t = (T k)−1(s), we find D(t[k])−1 = D−ks . �

Proposition 2.70 ([5]). The map (s, t) 7→ (s ∗ t, t ∗ s) is bijective.
Proof. As S is finite, so is S×S, so we only have to show injectivity, i.e. assume s∗t = s′∗t′
and t ∗ s = t′ ∗ s′ for some s, t, s′, t′ ∈ S.
Since Π2(s, t) = s(s ∗ t) = t(t ∗ s) = Π2(t, s), we get Π2(s, t)Π2(s′, t′)−1 = s(s ∗ t)(s′ ∗
t′)−1s′−1 = ss′−1 by hypothesis and then as previously ss′−1 = DsD

−1
ψ−1(s)(s′∗s′)PsP

−1
s′ .

We also have Π2(s, t)Π2(s′, t′)−1 = Π2(t, s)Π2(t′, s′)−1 = tt′−1 = DtD
−1
ψ−1(t)(t′∗t′)PtP

−1
t′ .

By unicity of the diagonal part, we must have DsD
−1
ψ−1(s)(s′∗s′) = DtD

−1
ψ−1(t)(t′∗t′), i.e.

DsDψ−1(t)(t′∗t′) = DtDψ−1(s)(s′∗s′). Because each term on each side corresponds to a di-
agonal matrix with only one q, we have either Ds = Dt and so t′ = s′ by the previous
lemma, or s = ψ−1(s)(s′ ∗ s′), thus s ∗ s = s′ ∗ s′ and again by the previous lemma s = s′,
so ss′−1 = 1 = tt′−1 and finally t = t′. In both cases, we are done. �

Proposition 2.71. Any element g ∈ G can be decomposed as a reduced right-fraction
in M , that is:

∃f, h ∈M, g = f−1h. with λ(g) = λ(f) + λ(h).
Proof. The proof is essentially the same as in Proposition 2.24. Take a reduced decom-
position of g as product of elements in S ∪ S−1, the defining relations of G give

s(s ∗ t) = t(t ∗ s)⇐⇒ s−1t = (s ∗ t)(t ∗ s)−1.

From the previous proposition, for any couple (s′, t′) ∈ S2 there exists (s, t) such that
(s∗t, t∗s) = (s′, t′), thus we can inductively use the relations s′t′−1 = (s∗t)(t∗s)−1 = s−1t
to "move" all inverses of the generators to the left in a decomposition of g, which gives
the desired form. �

From Propositions 2.24 and 2.71 we deduce:
Corollary 2.72 ([5]). G is the group of fractions of M .

This also implies that G is a Garside group.

3. Bounding of the Dehornoy’s class

We fix a finite cycle set (S, ∗) of size n with structure monoid (resp. group) M (resp.
G), of Dehornoy’s class d > 1 and associated germ G.
Definition 3.1. The permutation group GS associated to a cycle set S is the subgroup
of Sn generated by ψ(si), 1 ≤ i ≤ n.
When the context is clear we will simply write G.
G is precisely the image of the map sending g in G to Pg. Note that, as PσPτ = Pτσ,

we have that ψ(gh) = ψ(h)ψ(h), thus an antimorphism. This won’t pose problem here,
as we’ll only use ψ(sn) = ψ(s)n.
Definition 3.2 ([1]). A subset X of S is said to be G-invariant if for every s ∈ S,
ψ(s)(X) ⊂ X.
S is called decomposable if there exists a proper partition S = X t Y such that X, Y are
GS-invariant.
In this case (X, ∗|X ) and (Y, ∗|Y ) are also cycle sets.
A cycle set that is not decomposable is called indecomposable.
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Example 3.3. For S = {s1, s2, s3, s4} and ψ(s1) = ψ(s2) = (2143), ψ(s3) = ψ(s4) =
(2134), we have G = 〈(2143), (2134)〉 < Sn. We see thatX = {s1, s2} and Y = {s3, s4} are
both G-invariant and their respective cycle set structure are given by ψX(s1) = ψX(s2) =
(12) and ψY (s3) = ψY (s4) = (34).

In personal communications [18], the following conjecture was mentionned:
Conjecture 3.4 ([18]). If S is indecomposable then d ≤ n.

Note that, taking S = {s1, . . . , sn} with ψ(s) = (12 . . . n) for all s provides an indecom-
posable cycle set that attains this bound.

Using a python program based on the proof of Proposition 2.46, we find the following
maximum values of the class of cycle sets of size n:

n 3 4 5 6 7 8 9 10
dmax 3 4 6 8 12 15 24 30

This corresponds to the OEIS sequence A034893 "Maximum of different products of par-
titions of n into distinct parts", studied in [8] where the following is proved:
Lemma 3.5 ([8]). Let n ≥ 2 be written as n = Tm + l where Tm is the biggest triangular
number (Tm = 1 + 2 + · · ·+m) with Tm ≤ n (and so l ≤ m). Then the maximum value

an = max
({

k∏
i=1

ni

∣∣∣∣∣k ∈ N, 1 ≤ n1 < · · · < nk, n1 + · · ·+ nk = n

})
is given by

an = aTm+l =


(m+1)!
m−l , 0 ≤ l ≤ m− 2
m+2

2 m!, l = m− 1
(m+ 1)!, l = m.

This leads to the following conjecture:
Conjecture 3.6. The class d of S is bounded above by an and the bound is minimal.

Note that the set map Π: Zn → G allows us to transport the abelian group structure
of Zn to G as follows:
Proposition 3.7. There exists a commutative group structure on G denoted (G,+) such
that for all g, h in G, g + h is the unique element such that Dg+h = DgDh.
Proof. This is a direct consequence of Theorem 2.29. �

This structure corresponds to the structure of left braces, see for instance [3].

Proposition 3.8. There exist g′, h′ in G such that g + h = gh′ = hg′ with Dh′ = g−1
Dh

and Dg′ = h−1
Dg.

Moreover, if g, h are in M with g = Πk(t1, . . . , tk) and h = Πl(u1, . . . , ul) then g + h =
Πk+l(t1, . . . , tk, u1, . . . , ul), and g′, h′ are in M .
Proof. By definition g + h = DgDhPg+h. Let h′ = g−1(g + h) then h′ = P−1

g DhPg+h =
g−1
DhP

−1
g Pg+h, thus Dh′ = g−1

Dh by the unicity of monomial left-decomposition. And
similarly for g′ using g + h = h+ g.
For the second part, the Π-expression is a consequence of Proposition 2.9. Then, by the
first statement g′ (resp. h′) only has non-negative coefficient-powers iff g (resp. h) does,
which is equivalent to being in M . �

Proposition 3.9. The additive commutative structure (M,+) induces an abelian group
structure on G compatible with the map ψ : M → G.

https://oeis.org/A034893
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Proof. Let σ, τ be in G and g, h in M such that ψ(g) = σ and ψ(h) = τ (i.e. Pg = Pσ,
Ph = Pτ ). We will show that Pg+h does not depend on g and h but only on σ and τ , so
that σ + τ is well-defined as ψ(g + h).
By the commutativity of (M,+), it suffices to show that σ + τ does not depend on the
choice of the representative g of σ. From Proposition 3.8 we have the existence of h′
in M such that g + h = gh′ and Dh′ = g−1

Dh which only depends on h and Pg = Pσ.
As h′ is uniquely determined by Dh′ , it does not depend on the choice of g, so neither
does Ph′ . Finally, we have that Pg+h = PgPh′ is the product of terms only depending on
σ = ψ(g). �

As a consequence we obtain the following result:

Proposition 3.10 ([3]). The class d divides the order of G

Proof. For s ∈ S, the set {s[k] | k ∈ Z} is a subgroup of (G,+), and the smallest integer
ds such that s[ds] is diagonal corresponds to the order of ψ(s) in (G,+), which thus divides
|G|.
As d is the lcm of all the ds, s ∈ S, it also divides |G|. �

The landau function g : N∗ → N∗ ([13]) is defined as the largest order of a permutation
in Sn.

Proposition 3.11. If S is square-free and G abelian then d ≤ an

That is, under these conditions the bound part of Conjecture 3.6 holds.
Proof. If S is square-free, then for all s ∈ S we have by definition T (s) = s, so for any
k ∈ Z, s[k] = sT (s) . . . T k−1(s) = sk so {s[k] | k ∈ Z} is a subgroup of (G, ·) and the
smallest integer ds such that s[ds] is diagonal corresponds to the order of ψ(s) in (G, ·),
which thus divides e(G) the exponent of G (the lcm of the orders of every element). So d
will also divide e(G).
As G is abelian and finite, there exists an element with order equal to its exponent, so
the exponent is bounded by the maximal order of an element, i.e. d | e(G) ≤ g(n).
By the decomposition in disjoint cycles, g(n) is equal to the maximum of the lcm of
partitions of n:

g(n) = max ({lcm(n1, . . . , nk)|k ∈ N, 1 ≤ n1 ≤ · · · ≤ nk, n1 + · · ·+ nk = n})
Moreover, by properties of the lcm, if 1 ≤ ni = nj, as lcm(ni, nj) = ni, the max is
unchanged by replacing nj by only 1’s. And as the lcm of a set is bounded above by the
product of the elements, we have g(n) ≤ an. Thus d ≤ g(n) ≤ an. �

Proposition 3.12. The followings hold:
(i) ψ : G→ G factorizes through the projection G→ G
(ii) We have the following divisibilities:

• o(T ) | d
• d | #G
• #G | dn

where o(T ) is the order of the diagonal permutation T , #G denotes its order |G| (to avoid
confusion with | for divisibility).

Proof. (i) follows from the definition of d as ψ(s[d]) = id.
For (ii), the first divisibility is Proposition 2.66, the second is Proposition 3.10 and the
third is (i). �

For a positive integer k, denote by π(k) the set of divisors of k.
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Corollary 3.13. We have π(d) = π(#G).
In particular, d is a prime power iff #G is a prime power.

This means that our later results, which will involve the condition "d is a prime power"
can also be restated for #G.

Proof. As d divide #G any divisor of d is a divisor of #G. Conversely, if p is a prime
divisor of #G then it divides dn and thus divides d. �

Lemma 3.14. If S is indecomposable then n divides #G.
In particular, π(n) ⊆ π(#G) = π(d), and thus if d is a prime power then n is also a power
of the same prime.

Proof. By [10] S is indecomposable iff G acts transitively on S. By the orbit stabilizer
theorem, for any s in S we have #Orb(x) = #G

#Stab(x) . So if S is indecomposable there is
a unique orbit of size n so n divides #G. The last statements are a direct consequence of
this divisibility and the previous corollary. �

Lemma 3.15. If S is indecomposable and G is abelian, then n = |G|

Proof. 1 Again by [10] S is indecomposable iff G acts transitively on S. Let x0 ∈ S, by
transitivity for all x ∈ S, there exists σ ∈ G such that x = σ(x0). Let τ ∈ G be such that
we also have x = τ(x0), we will show that τ = σ. For all y ∈ S, there exists ν ∈ G such
that y = ν(x), thus σ(y) = σ(ν(x)) = σ(ν(τ(x0)) = τ(ν(σ(x0)) = τ(y). So an element
of G is uniquely determined by its image of x0, thus |S| ≥ |G|, and the other inequality
follows by transitivity. �

• Let k ≥ 1 and G[k] be the subgroup of G generated by S[k] = {s[k] | s ∈ S}. The
following result was simultaneously introduced in [14]:

Proposition 3.16. For ≥ 1, G[k] induces a cycle set structure on S[k].

Proof. Recall that ψ(s[k])(t) = Ωk+1(s, . . . , s, t) for all s, t ∈ S, and note that

s[k]t[k] = Dk
sPs[k]Dk

t Pt[k] = Dk
s

(
s[k]
Dk
t

)
Ps[k]Pt[k] = Dk

sD
k
ψ(s[k])−1(t)Ps[k]Pt[k] .

For all s[k], t[k] ∈ S[k], define s[k] ? t[k] as Ωk+1(s, . . . , s, t)[k]. Then we have

s[k](s[k] ? t[k]) = Dk
sD

k
ψ(s[k])−1(s[k]?t[k])Ps[k]Pt[k] = Dk

sD
k
t Ps[k]Pt[k] .

By symmetry, we have that Ds[k](s[k]?t[k]) = Dt[k](t[k]?s[k]). Thus as G is permutation-free we
conclude that s[k](s[k] ? t[k]) = t[k](t[k] ? s[k]).
All generators satisfy the conditions of Theorem 2.33 with Dsi

= Dk
i so (S[k], ?) is a cycle

set. �

Remark 3.17. Alternatively, one can directly show that ? satisfies Equation (1): let
s, t, u ∈ S, then we have
(s[k] ? t[k]) ? (s[k] ? u[k]) = Ωk+1(s, . . . , s, t)[k] ? Ωk+1(s, . . . , s, u)[k]

= Ωk+1(Ωk+1(s, . . . , s, t), . . . ,Ωk+1(s, . . . , s, t),Ωk+1(s, . . . , s, u))[k].
By definition of Ω (see [5] eq 4.8), the two expressions Ωp+q(x1, . . . , xp, y1, . . . , yq) and
Ωq(Ωp+1(x1, . . . , xp, y1), . . . ,Ωp+1(x1, . . . , xp, yq)) coincide.
Thus (s[k] ? t[k]) ? (s[k] ? u[k]) = Ω2k+1(s, . . . , s, t . . . , t, u). As Ω is invariant by permutation
all but the last coordinate, we have Ω2k+1(s, . . . , s, t, . . . , t, u) = Ω2k+1(t, . . . , t, s, . . . , s, u).
Thus, we conclude that: s[k] ? t[k]) ? (s[k] ? u[k]) = (t[k] ? s[k]) ? (t[k] ? u[k]).

1https://math.stackexchange.com/a/1316138
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Proposition 3.18. Let k be a positive integer smaller than d, then (S[k], ?) is of class
d

gcd(d,k) .
Moreover, (S[d+1], ?) is the same, as a cycle set, as (S, ∗).

This means that this construction provides, at most, d different cycle sets.
Proof. Recall that (s[k])[j] = s[kj]. Thus (s[k])[a] is diagonal when ka is a multiple of d, so
we deduce that S[k] is of class lcm(d,k)

k
= d

gcd(d,k) .
By definition of d, we have that (S[d], ?) is the trivial cycle set (ψ(s) = id), thus ψ(s[d+1]) =
ψ(s). �

4. Sylow subgroups and decomposition

Recall that for k > 1, Σk
n denotes the group of monomial matrices with non-zero

coefficients powers of ζk, and ιklk is the embedding Σk
n ↪→ Σkl

n sending ζk to ζ lkl. Given
two subgroups H,K < G, their internal product subset is defined by HK = {hk | h ∈
H, k ∈ K}. If H and K have trivial intersection and HK = KH, the set product HK
has a natural group structure called the Zappa–Szép product of H and K. We apply this
to the Sylow-subgroups of the germs to obtain that any cycle set can be obtained as a
Zappa–Szép product of cycle sets with coprime classes.
Definition 4.1. Let k, l be integers such that k, l > 1. Let m be a common multiple of
k and l, with m = ka = lb for some a, b ≥ 1. Given two subgroups G < Σk

n, H < Σl
n by

G ./m H we denote the subset ιmk (G)ιml (H) of Σm
n .

IdentifyingG andH with their image in Σm
n , we say that they commute ([15]) ifGH = HG

as sets, i.e. for any (g, h) in G × H, there exists a unique (g′, h′) in (G × H) such that
gh = h′g′.
Remark 4.2. This operation can be thought of as taking elements of G and H, changing
appropriately the roots of unity (with ζk = ζam and ζl = ζbm) and taking every product of
such elements (we embed G and H in Σm

n and take their product as subsets).
When k and l are coprime, G and H can be seen as subgroups of Σm

n with trivial inter-
section, and so if they commute we have that G ./m H is a group called the Zappa–Szép
product of G and H ([15], Product Theorem).

Let (S, ∗1), (S, ∗2) be two cycle sets, over the same set S, of coprime respective classes
d1, d2 and germs G1, G2. Let d = d1d2 and G = G1 ./d G2 (which, in general, is only a
subset of Σd

n), and we identify each Gi with its image in G.

Definition 4.3. S1 and S2 are said to be ./-compatible if G is the structure group of
some cycle set S1 ./ S2, called the Zappa–Szép product of S1 and S2.

We now construct a candidate S1 ./d S2 for which G could be the germ. This candidate
is not, in general a cycle set, but if it is, its class is a divisor of d. Then we will state the
condition for it to be a cycle set.
For clarity, we will put a subscript to distinguish between the respective structures of S1
and S2: ψ1(s) will denote the permutation given by ∗1, and s[k]2 will denote an element
of M2.
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Algorithm 1 Constructing S1 ./d S2
Input: A set S with two cycle sets structure ∗1, ∗2 on S of coprime classes d1, d2
Output: A couple (S, ∗) with ∗ a binary operation
1: Compute (u, v) the solution to Bézout’s identity d2u+ d1v = 1[d]
2: Set a
3: for i = 1 to n do
4: Compute g1 = s

[u]1
i ∈ G1

5: Let σ = ψ1(s[u]
i )

6: Compute g2 = s
[v]2
σ(i) ∈ G2

7: Let ψ(si) be the permutation part of ιdd1(g1)ιdd2(g2)
8: return S1 ./d S2 = (S, ∗) with si ∗ sj = sψ(si)(j).

Remark 4.4. The heart of the algorithm is lign 6 which relies on the following

Dk
i PσD

l
jPτ = Dk

iD
l
σ−1(j)Pτσ.

To obtain an element with coefficient-powers 1 on the i-th coordinate and zero elsewhere,
we have to take j = σ(i) with here σ = ψ(s[k]1

i ) and as we apply ιd on the elements (in S1
this does q 7→ qd2 and in S2 q 7→ qd1), we obtain Dsi

= Dd2u+d1v
i = Di from lign 1.

Example 4.5. Take two cycle sets of size n = 5 and class respectively 2 and 3, and apply
Algorithm 1 providing a candidate for a cycle set of class 6:
Let S1 = {s′1, . . . , s′5} and S2 = {s′′1, . . . , s′′5}, with (S1, ψ1), (S2, ψ2) given by:

ψ1(s′1) = ψ1(s′3) = (1234) ψ1(s′2) = ψ1(s′4) = (1432) ψ(s′5) = id
ψ2(s′′1) = ψ2(s′′2) = (354) ψ2(s′′3) = ψ2(s′′4) = ψ2(s′′5) = (345)

Where S1 is of class d1 = 2 and S2 of class d2 = 3.
Consider their respective germs G1 and G2 of order 25 and 35. Then define G = G1 ./6 G2
over the basis S = {s1, . . . , s5}. For instance:

ι62(s′1) = ι62




0 ζ2 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1



 =


0 ζ3

6 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1



ι63(s′′1) = ι63




1 0 0 0 0
0 1 0 0 0
0 0 0 0 ζ3
0 0 1 0 0
0 0 0 1 0



 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 ζ2

6
0 0 1 0 0
0 0 0 1 0


To construct an element g ∈ G with cp(g) = (0, 0, 1, 0, 0) we first solve Bézout’s identity
modulo 6: 3u+2v = 1[6], a solution is given by u = 1 and v = 2, so we will multiply some
ι62(s′[1]

i ) and ι62(s′′[2]
j ) so that their product has coefficient-powers (0, 0, 3 ∗ 1 + 2 ∗ 2, 0, 0) =

(0, 0, 1, 0, 0)[6]. Recall that:

Dk
i PσD

l
jPτ = Dk

iD
l
σ−1(j)Pτσ.
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Here we want i = σ−1(j) = 3, k = 3u and l = 2v, so we take i = 3. As σ = ψ(s′[1]
3 ) =

ψ(s′3) = (1234), we have j = σ(3) = 4, and note that s′′[2]
4 = s′′4s

′′
5. Finally:

ι62(s′3)ι63(s′′[2]
4 ) =


0 1 0 0 0
0 0 1 0 0
0 0 0 ζ3·1

6 0
1 0 0 0 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 ζ2·2

6 0 0
0 0 0 1 0



=


0 1 0 0 0
0 0 0 0 1
0 0 ζ3+4

6 0 0
1 0 0 0 0
0 0 0 1 0

 =


0 1 0 0 0
0 0 0 0 1
0 0 ζ6 0 0
1 0 0 0 0
0 0 0 1 0


This will be our candidate for s3. Doing this for all the generators we find:
ψ(s1) = (124)(35), ψ(s2) = (1532), ψ(s3) = (1254), ψ(s4) = (132)(45), ψ(s5) = (354).

Unfortunately, this isn’t a cycle set: (s1 ∗ s2) ∗ (s1 ∗ s1) = s4 ∗ s2 = s1 whereas (s2 ∗ s1) ∗
(s2 ∗ s1) = s5 ∗ s5 = s4. This also means that, G is not permutation-free or in Dehornoy’s
Calculus terms: with our candidates s1, s2 we have that Π2(s1, s2) and Π2(s2, s1) both
have coefficient-powers (1, 1, 0, 0, 0) but different permutations.

Proposition 4.6. If G1 and G2 commute, then S1 and S2 are ./-compatible.

In this case, G = G1 ./d G2 is the Zappa–Szép product of G1 and G2.

Proof. As d1 and d2 are coprime, it is clear that G1 ∩G2 = {1}.
By ([15], Product Theorem), G is a subgroup of Σk

n if and only if G1 and G2 commute,
i.e. G = G1 ./d G2 = G2 ./d G1. As G1 and G2 have different (non-zero) coefficient-
powers, a product g1g2 of two non-trivial elements from ιdd1(G1) and ιdd2(G2) cannot be a
permutation matrix.
With Algorithm 1, we know that G respects condition (ii) for Theorem 2.33, and we’ve
seen it also satisfies condition (i), finishing the proof. �

Remark 4.7. To check whether G1 and G2 commute, we can restrict to the generators
and check that:

∀s ∈ S1, t ∈ S2,∃s′ ∈ S1, t
′ ∈ S2 such that st = t′s′.

Proposition 4.8. If S1 and S2 satisfy the following "mixed" cycle set equation
∀s, t, u ∈ S, (s ∗1 t) ∗2 (s ∗1 u) = (t ∗2 s) ∗2 (t ∗2 u) (8)

then S1 and S2 are ./ −compatible and (S = S1 ./d S2, ∗) is a cycle set.

Explicitly, from Algorithm 1, we have ψ(si) = ψ2

(
s
′′[v]2
ψ1(s′[u]

i )(i)

)
◦ψ1

(
s
′[u]1
i

)
with u, v such

that d2u+ d1v = 1[d1d2].

Proof. We will use the previous proposition and show how Equation 8 naturally arises
from considering the commutativity of the germs.For clarity, although our two cycle sets
have the same underlying set S = {s1, . . . , sn}, we will distinguish where we see those
elements by writing s′ for (S, ∗1) and s′′ for (S, ∗2).
Let s′i ∈ S1, s

′′
j ∈ S2, then in G:

s′is
′′
j = Dd2

i Ps′iD
d1
j Ps′′j = Dd2

i D
d1
ψ1(s′i)−1(j)Ps′iPs′′j .
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We want some s′k ∈ S1, s
′′
l ∈ S2 such that s′is′′j = s′′l s

′
k, i.e:

Dd2
i D

d1
ψ1(s′i)−1(j)Ps′iPs′′j = Dd1

l D
d2
ψ2(s′′

l
)−1(k)Ps′′l Ps′k .

As d1 and d2 are coprime, they’re in particular different, so we must have:
Dd2
i = Dd2

ψ2(s′′
l

)−1(k)

Dd1
ψ1(s′i)−1(j) = Dd1

l

Ps′iPs′′j = Ps′′
l
Ps′

k
.

From which we first deduce: k = ψ2(s′′l )(i) and j = ψ1(s′i)(l), or equivalently sk = sl ∗2 si
and sj = si ∗1 sl. So taking this k and l we get Ds′is

′′
j

= Ds′′
l
s′

k
. We are left with last of the

three conditions, which then becomes:
Ps′iPs′i∗1s′′l

= Ps′′
l
Ps′′

l
∗2s′i

.

As PσPτ = Pτσ, the last condition is equivalent to
ψ2(s′i ∗1 s

′′
l ) ◦ ψ1(s′i) = ψ1(s′′l ∗2 s

′
i) ◦ ψ2(s′′l ).

As s′′l ∈ S2, ψ2(s′i ∗1 s
′′
l ) is seen as the action of an element of S2, so all this becomes

equivalent to:
∀s, t, u ∈ S, (s ∗1 t) ∗2 (s ∗1 u) = (t ∗2 s) ∗2 (t ∗2 u).

�

Remark 4.9. The condition that the classes are coprime is used, with Bézout’s identity,
to have generators of the group G (elements with diagonal part Di). Otherwise, say for
instance that the classes are powers of the same prime, d1 = pa and d2 = pb with b ≤ a.
Then ιdd2 is the identity and ιdd1 will add elements with higher coefficient powers (or equal),
thus we do not get any new generators (or too many in the case a = b).

We’ve seen how to construct cycle sets from ones of the same size and coprime classes.
Now we show that this is enough to get all cycle sets from just ones of prime-power class:
Let d = pa1

1 . . . par
r be the prime decomposition of p (ai > 0 and pi 6= pj), and write

αi = pai
i for simplicity. We use techniques inspired by [2] to construct new cycle sets from

two with coprime Dehornoy’s class.
Fix again a cycle set S of size n and class d > 1, with germ G. By Proposition 3.16,
given k > 0 diving d, the subgroup G[k] generated by S[k] = {s[k] | s ∈ S} is the germ of a
structure group, and has for elements the matrices whose coefficient-powers are multiples
of k.

Lemma 4.10. Let βi = d
αi

then

(i) For each i, G[βi] is a pi-Sylow subgroup of G.
(ii) Two such subgroups commute (i.e. G[βi]G

[βj ] = G
[βj ]
G

[βi]).
(iii) G is the product of all those subgroups.

Proof. Fix 1 ≤ i ≤ r, as β divides d, the group G
[βi] corresponds to the subgroup of

G of matrices with coefficient-powers in {0, βi, 2βi, . . . , βi(αi − 1)} and thus has cardinal
αni = pain

i , so it is a pi-Sylow subgroup of G.
For s, t ∈ S we have that s[βi]t[βj ] has a qβj on some row, thus is left-divisible by t′[βj ] for
some t ∈ S, i.e. s[βi]t[βj ] = t′[βj ]s′[βi] for some s′ ∈ S.
We’ve seen that the G[βi] are pi-Sylow subgroups of the abelian group (G,+), so by
cardinality it is the direct sum of those subgroups. By Proposition 3.8 for any g, h ∈ G,
there exists h′ ∈ G such that g+ h = gh′, where Dh′ = g−1

Dh, so if h is in some G[k], so is
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h′. Projecting onto G, we have that any element g can be expressed as a sum of gi ∈ G
[βi]

and thus a product of g′i ∈ G
[βi]. �

Example 4.11. The first example where S is indecomposable but has class product of
different primes is n = 8, d = 6 given by:

ψ(s1) = (12)(36)(47)(58), ψ(s2) = (1658)(2347),
ψ(s3) = (1834)(2765), ψ(s4) = (12)(38)(45)(67),
ψ(s5) = (1438)(2567), ψ(s6) = (1856)(2743),

ψ(s7) = (16)(23)(45)(78), ψ(s8) = (14)(25)(36)(78)

Here, G decomposes as the Zappa–Szép product G[3]
./6 G

[2] of its 2- and 3- Sylow. If we
denote by (S2, ψ2) and (S3, ψ3) their respective cycle set structure then we find:

ψ2(s′1) = ψ2(s′2) = (1476)(2583),
ψ2(s′3) = ψ2(s′6) = (18)(27)(36)(45),
ψ2(s′4) = ψ2(s′5) = (1674)(2385),
ψ2(s′7) = ψ2(s′8) = (12)(34)(56)(78)

and
ψ3(s′′1) = ψ3(s′′3) = ψ3(s′′5) = ψ3(s′′7) = (135)(264),
ψ3(s′′2) = ψ3(s′′4) = ψ3(s′′6) = ψ3(s′′8) = (153)(246).

Lemma 4.10 can be rephrased as G = G
[β1]

./d . . . ./d G
[βr]. As the germ can be used to

reconstruct the structure group and thus the cycle set, the following theorem summarizes
these results from an enumeration perspective, that is constructing all solutions of a given
size.
Theorem 4.12. Any cycle set can be obtained as the Zappa–Szép product of cycle sets
of class a prime power.
Proof. Any cycle set is determined by its structure monoid, which can be recovered from
the germ. By Lemma 4.10 and the above construction, the germ can be decomposed and
reconstructed from its Sylows, which also determine cycle set by Proposition 3.16. �

Remark 4.13. The class of the cycle set constructed will Algorithm 1 will, in general,
only be a divisor of the product of the prime-powers. This happens because nothing
ensures that, for instance, the cycle set obtained is not trivial: we only know that s[d1d2]

is diagonal, but it is not necessarily minimal.
Corollary 4.14. Any cycle set is induced (in the sense of using the decomposability and
Zappa–Szép product) by indecomposable cycle sets of smaller size and class, both powers
of the same prime.
Proof. Let S be obtained from the germ as an internal product of S1, . . . , Sr of classes
respectively pa1

1 , . . . , p
ar
r with distinct primes. Then, consider a decomposition of each

Si as indecomposable cycle sets: so up to a change of enumeration, the matrices in the
structure group of Si are diagonal-by-block with each block corresponding to a cycle set,
so with class dividing the class pai

i of Si, thus also a power of pi. By Lemma 3.14, the size
of those indecomposable cycle sets must also be powers of pi. �

However, as far as the author knows, there is no "nice" way, given two cycle sets, to
construct all cycle sets that decompose on those two, thus the above result is an existence
result but not a constructive one, unlike the Zappa–Szép product previously used.
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Remark 4.15. Starting from a cycle set, we first write it as a Zappa–Szép product
of its Sylows and then decompose each Sylow-subgroup if the associated cycle set is
decomposable. If one proceeds the other way, first decomposing and then looking at the
Sylows of each cycle set of the decomposition, we obtain less information. For instance,
if S = {s1, . . . , s6} with ψ(si) = (1 . . . 6) for all i, then S is not decomposable, but the
cycle sets obtained from its Sylows S[2] and S[3] are decomposable (ψ2(si) = (14)(25)(36)
and ψ3(si) = (135)(246) for all i, having respectively 3 and 2 orbits).
Example 4.16. In Example 4.11, 3 does not divide 8 so S3 has to be decomposable, and
indeed it decomposes as S3 = {s′′1, s′′3, s′′5} t {s′′2, s′′4, s′′6} t {s′′7, s′′8}.
Corollary 4.17. Let N(n, d) be the number of cycle sets of size n and of class a divisor
of d = pa1

1 . . . par
r . Then we have: N(n, d) ≤ ∏iN(n, pai

i ).
For n = 10, we find that there is approximately 67% of cycle sets that have class a

prime-power (∼ 3.3 out of ∼ 4.9 millions). We hope that this number greatly reduces as
n increases (as hinted by the previous values, for n = 4 it is 99%), as more values of d are
possible (Conjecture 3.6).
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