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We develop a mesoscopic model to study the plastic behavior of an amorphous material under cyclic loading. The model
is depinning-like and driven by a disordered thresholds dynamics which are coupled by long-range elastic interactions.
We propose a simple protocol of “glass preparation” which allows us to mimic thermalisation at high temperature,
as well as aging at vanishing temperature. Various levels of glass stabilities (from brittle to ductile) can be achieved
by tuning the aging duration. The aged glasses are then immersed into a quenched disorder landscape and serve as
initial configurations for various protocols of mechanical loading by shearing. The dependence of the plastic behavior
upon monotonous loading is recovered. The behavior under cyclic loading is studied for different ages and system
sizes. The size and age dependence of the irreversibility transition is discussed. A thorough characterization of the
disorder-landscape is achieved through the analysis of the transition graphs, which describe the plastic deformation
pathways under athermal quasi-static shear. In particular, the analysis of the stability ranges of the strongly connected
components of the transition graphs reveals the emergence of a phase-separation like process associated with the aging
of the glass. Increasing the age and hence stability of the initial glass, results in a gradual break-up of the landscape of
dynamically accessible stable states into three distinct regions: one region centered around the initially prepared glass
phase, and two additional regions, characterized by well-separated ranges of positive and negative plastic strains, each
of which is accessible only from the initial glass phase by passing through the stress peak in the forward, respectively,
backward shearing directions.

Introduction
Understanding the response of a disordered solid to an exter-
nally imposed forcing, such as stress or strain, is important in
order to characterize the transitions between rigid and flow-
ing states in a wide variety of soft matter systems. Examples
for such behavior include the jamming transition in granular
materials1, the yielding transition in amorphous solids2,3, and
the depinning transition of a pinned elastic interface, such as
flux-lines in type II superconductors4.

The interplay between the deformation energy cost and
gain, as the disordered solid adapts to the imposed forcing
by deforming, gives rise to rich dynamics on a complex en-
ergy landscape. For small loading, the response of the solid
is largely elastic, characterized by few plastic deformation
events. However as the loading is increased, plastic deforma-
tions start to proliferate and eventually this leads to yielding
and flow. The manner in which the transition to yielding oc-
curs has been found to depend strongly on the degree of initial
annealing, e.g. aging, of the sample5–10.

Over the last years a large body of experimental11–15 and
numerical6,9,10,16–30 work has been carried out to understand
the nature of the yielding transition in amorphous solids.
These results reveal an intriguingly complex and dynamical
spectrum of response that, besides its dependence on the de-
gree of annealing and the amount of loading, also shows de-
pendence on history, as well as system size and dimensional-
ity.

Of special recent interest has been the response of amor-

phous solids to cyclic shear, in particular under athermal qua-
sistatic (AQS) conditions9,10,18,19,23,26,27,31. Experiments and
simulations show18,19,31–36 that for small oscillatory strain
amplitudes, the solid settles into a cyclic response after just
a few driving cycles. As the strain amplitude is increased, the
transients to cyclic response become increasingly longer, and
multi-periodic response, i.e. cycles that repeat every T > 1
driving periods, starts to emerge. This behavior continues un-
til a critical strain amplitude is reached, beyond which cyclic
response is no longer attainable and particles start to diffuse
across the sample. The transition from cyclic to diffusive be-
havior has been found to be rather sharp and is called the irre-
versibility transition.

At the same time, a cyclic response to periodic loading can
also be regarded as a form of memory which encodes infor-
mation about the forcing that produced the response37. Such
memory effects have been observed experimentally as well
as numerically, in periodically sheared amorphous solids, col-
loidal suspensions as well as other soft-condensed matter sys-
tems15,32–34,38–41.

Along with atomistic models of amorphous solids, spatially
coarse-grained mesoscopic elastoplastic models3 have been
introduced. Due to their conceptual simplicity, mesoscopic
models are appealing both from a numerical as well as a the-
oretical perspective. Initially, the main goal of these models
has been to capture the response under monotonous loading
by shear strain. However more recently, mesoscopic mod-
els have been constructed that study the response under oscil-
latory shear42,43. In order to be able to realistically capture
cyclic response, particularly key features of the irreversibility
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transition, a prescription for replacing mesoscopic elements
once they have yielded has to be provided. We will refer to
the available choices generated by a given replacement pre-
scription as the “landscape” of the mesoscopic model.

Of special interest are two recently introduced elastoplastic
models that study the response under cyclic shear: The model
by Liu et al.42 assumes that mesoscopic elements that yielded
are replaced at random and hence irreversibly, while the model
of Khirallah et al.43 is complementary in that it is fully de-
terministic: elements that yielded are replaced by ones with
identical, i.e. non-random, yield stresses. The only source
of randomness being the initial internal stress configuration.
Thus in terms of the landscape terminology the model of Liu
et al. has a totally random disorder-landscape, while the one
of Khirallah et al. is totally ordered. Despite of these differ-
ences, both models nevertheless recover key features of the
response of amorphous solids to cyclic shear, such as the ir-
reversibility transition and divergence of lengths of transients
as the transition is approached. Let us finally note that these
types of mesoscopic models have been used as a starting point
for developing even further coarse-grained models, such as the
recently introduced stochastic mesostate models44–46. These
models, too, capture key features of the irreversibility transi-
tion of amorphous solids under oscillatory shear.

Here we present a depinning-like mesoscopic elastoplastic
model with a quenched disorder landscape. Our model there-
fore interpolates between the two types of landscapes consid-
ered before. Specifically, the model we consider has two fea-
tures : (i) a local yielding protocol which allows us to mimic
thermalization and aging, and thereby to tune the history of
our samples, (ii) the quenched disordered landscape, which
allows us to capture in rather great detail the transients and
the evolution to cyclic response in terms of the localized plas-
tic events.

As in previous work42,43, we first focus on the stress re-
sponse under monotonous loading by an externally applied
shear strain. Our model recovers the brittle-to-ductile transi-
tion: as our initial glass is increasingly aged better, the stress
response exhibits a stress peak that gets more pronounced with
the duration of aging.

We next focus on the irreversibility transition under oscilla-
tory shear and its dependence on both the degree of annealing
and system size. We find that for poorly- and moderately-aged
samples, the transient times to cyclic response diverge as the
irreversibility transition is approached. In the case of poorly-
aged samples, this divergence follows a power-law with an
exponent that is comparable with estimates obtained in recent
works19,22,23,43.

We finally turn to a more detailed comparison between the
disorder landscape of mesoscopic and atomistic models. To
this end we make use of the fact that the AQS dynamics
of driven disordered systems has a natural representation in
terms of a transition graph, the t-graph39,41,47,48. The AQS
dynamics is thereby encoded into the topology of the t-graph
and provides a unified setting within which we can compare
in great detail the properties of the disorder landscapes under-
lying our mesoscopic and atomistic models.

We perform such comparisons by focusing on a particular

topological feature of the t-graph, its strongly connected com-
ponents (SCCs). An SCC is a collection of mechanically sta-
ble configurations, actually elastic branches, which are con-
nected in a bi-directional manner by plastic deformation path-
ways: a pair of configurations belongs to the same SCC, if
there is a deformation pathway that leads from one to the other
and back. Hence the plastic events triggered by transitions
between states belonging to the same SCC are mechanically
reversible, while transitions connecting different SCCs are ir-
reversible41. Any periodic response must necessarily be con-
fined to a single SCC, and therefore the size of the SCCs and
their dynamic accessibility is a limiting factor for the length
of transients and the cyclic strain amplitudes at which cyclic
behavior can be attained41.

We have organized the manuscript in two main parts and
sub-divided these further into sections which we number con-
secutively across the parts. In Part I we present the meso-
scopic elastoplastic model; its behavior under monotonous
and cyclic loading and the dependence upon glass prepara-
tion. In Part II we present a characterization of the underlying
disorder landscape of the model based on the use of transition
graphs. Throughout the two parts, when applicable we also
compare our results qualitatively with atomistic simulations
we have carried out. We conclude with a discussion of our re-
sults. The following is summary of our main results and also
serves as a table of contents for the sections of Parts I and II.

In Part I, we present in section I the mesoscopic model de-
veloped for the present study. In section II, we detail the pro-
tocols of preparation that allow us to mimic annealing at high
temperature and aging at vanishing temperature, respectively.
In section III, we show that varying the level of aging allows
us to recover upon monotonous loading either a ductile re-
sponse or a brittle one, where a stress peak followed by a soft-
ening branch. In section IV, we focus on the analysis of the
irreversibility transition upon cyclic driving. In particular we
discuss the dependence of the transition on sample size and
preparation by aging. The poorly-aged glasses show a power-
law divergence of the transient time to cyclic response as the
strain amplitude approaches the irreversibility transition. We
find that this behavior changes qualitatively as the samples
are aged better and their sizes are sufficiently large. In this
case the irreversibility transition appears to be discontinuous.
Cyclic response is attained rather quickly for amplitudes be-
low a critical strain, or not at all.

In Part II a characterization of disorder landscape is given
with an emphasis on the prevalence of limit cycles. Our anal-
ysis is based on the transition graphs, as recently proposed
in the context of atomistic simulations39. The representation
of Athermal Quasi-Static (AQS) dynamics via t-graphs ex-
tracted from simulations is introduced in section V. Their ex-
traction from simulations of sheared amorphous solids is pre-
sented in section VI. The graph topology and the crucial role
of the strongly connected components (SCCs) in the context
of cyclic loading is discussed in section VII. In section VIII
we discuss the effect of glass preparation on the topological
properties of the t-graphs. In particular, we show the scale
free character of the size distribution of SCCs. In section IX
we show that in order to understand better the disorder land-
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scape underlying the differently aged glasses, one has to com-
bine the topological properties of the t-graph with structural
information, such as the stability range of the SCCs. This
combined information as well as the study of the evolution of
the plastic strain is discussed in section X, and we report on
an interesting age-induced symmetry breaking transition as-
sociated with a phase-separation-like process in the disorder
landscape.

Note that throughout the manuscript, we present qualitative
comparisons between results obtained from our mesoscopic
and atomistic simulations. Let us stress that our main aim
in showing such comparisons is not to reach a quantitative
agreement. Rather, our intention has been to use the molecular
dynamic results as a guide and a qualitative reference against
which to compare the different results obtained in the present
work.

The manuscript concludes with a discussion part that is fol-
lowed by a series of appendices. Methodological details of
atomistic and mesocopic simulations are summarized in ap-
pendices A and B, respectively. An estimate of the effective
sizes of the atomistic and mesoscopic simulations, in order to
allow us to compare these, is given in appendix C. Finite-size
effects on the stress response upon monotonous loading are
discussed in appendix D. Details on the properties of the cata-
logs used for assembling the transition graphs, which were ex-
tracted from simulations of the atomistic model and the meso-
scopic models, are presented in appendix E. A discussion of
the strip-like arrangement of SCCs on the plain of exit strains
is given in appendix F, while in appendix G we provide a tran-
sition graph perspective for the dependence of the irreversibil-
ity transition on finite-size and aging of the glasses.

Part I

History dependence of a
mesosocopic elasto-plastic
model under cyclic loading
I. A MESOSOCOPIC ELASTO-PLASTIC MODEL WITH
TUNABLE GLASS PREPARATION

We consider a scalar 2D lattice-based mesoscale elasto-
plastic model. The physics of this class of models relies on the
coupling between a threshold dynamics and an elastic interac-
tion induced by the incremental local plastic slip which arises
as a result of a mechanical instability3. We use here a variant
of the model introduced in Refs.49–51. A detailed presentation
is given in Appendix B. Here we give a brief introduction to
the model and emphasize its novel features, focusing on the
properties of the stress landscape.

We consider a square grid of N×N cells of size a×a. The
model is scalar, so that we account for one and only one shear
direction, along which we can shear the system forward and
backwards. We assume a uniform shear modulus µ . Each in-

εij

σij

−σ−ij,`

σ+ij,`

` ` + 1`− 1
εplij,`

εplij,`+1

σij
x+ij

x−ij

FIG. 1. Local elastic branches associated with a cell (i, j). Each elas-
tic branch ` is characterized by a pair of stress thresholds σ

±
i j,` and a

plastic strain ε
pl
i j,`, which prescribe the behavior of the local stress σi j

under elastic strain εel
i j = εi j − ε

pl
i j , as shown for the branch labeled

` in the figure. When the stress reaches the upper or lower stress
threshold, a transition to the corresponding neighbouring branches,
`± 1 occurs. The current stress state of the cell is denoted by a red
filled symbol on the elastic branch `. This allows us to define the
local plastic strengths x+i j = σ

+
i j −σi j and x−i j = σ

−
i j +σi j which give

the distance to threshold in the forward and backward directions, re-
spectively. The slopes of the local branches are identical and equal
to 2µ .

dividual cell (i, j) is characterized by a stack of local elastic
branches indexed by a variable `, each of which relates the
local stress σi j to the local strain εi j, as shown in Fig. 1. The
stability of each such local elastic branch ` is limited by two
bounds: a maximum stress threshold σ

+
i j,`, and a minimum

stress threshold −σ
−
i j,`. Note that in order to ease notation,

whenever no explicit reference to a particular branch number
` is made, we will omit it in the following. The two thresholds
σ
+
i j and σ

−
i j are drawn from a random distribution with sup-

port in R+ so as to ensure −σ
−
i j < σ

+
i j , i.e. the existence of a

stability domain for the cell (i, j). Whenever the local stress
σi j overcomes one of the two bounds, the cell experiences a
plastic event and its stability domain is shifted to a neighbor-
ing elastic branch. Since the cell is surrounded by other cells,
and can be seen as an Eshelby inclusion within an elastic ma-
trix52, this plastic event induces a stress redistribution in the
system so that other cells can get destabilized.

Details about the implementation and the driving of the
model are given in Appendix B but we summarize below the
main novel features of the present model with respect to the
previous variants presented in Refs.49,51:

Bidirectionality – Since cyclic loading (in addition to a sim-
ple monotonous loading) is considered here, two local thresh-
olds are defined instead of only one for each cell: one thresh-
old σ

+
i j in the forward direction and another one σ

−
i j in the

backward direction.
Annealed vs Quenched disorder– In the case of a

monotonous loading, every time a cell experiences a plas-
tic deformation, its threshold is renewed. Independently of
the particular method chosen to draw random thresholds, the
quenched character of the disorder is automatically obtained
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FIG. 2. Glass preparation - mimicking instant quench from high T: (a) evolution of the mean stress-threshold σ+ with the number of (random)
thermalization steps per site and for system sizes N = 16,32, and 64. The inset shows the same evolution for the standard deviations of the
stress thresholds δσ+, internal stresses δσ , and local plastic strength δx+. (b) stationary distributions of the fields σ , σ+ and x+ for N = 64.

since a unique value of the threshold σ
±
i j,` is assigned to each

triplet (i, j,ε pl
i j ). The possibility of back and forth motions

requires more care in the definition of the threshold disor-
der. Here, when performing cyclic loading tests, we use a
quenched disorder. In practice, we resort to a counter-based
random number generator (see. Ref. 54 for a pedagogical
introduction) to assign efficiently a unique pair of random
thresholds to each triplet without having to store the full se-
quence in memory.

Preparation of the system before cyclic loading– The struc-
ture and the mechanical behavior of glasses do depend on their
thermo-mechanical history. In order to account this prepa-
ration dependence in mesoscopic elastoplastic models, one
usually specifies a particular distribution of local thresholds
and/or internal stress in the initial configuration5,53. In con-
trast to atomistic simulations these distributions do not de-
rive from a well defined quench protocol but have to be in-
troduced by hand. Here we propose two simplistic protocols
of preparation allowing us to mimic (i) an instant quench from
a high temperature liquid, and (ii) aging at vanishing tempera-
ture. Although they are un-realistic caricatures of actual glass
preparations, the combination of theses two protocols allow
us to tune continuously the state of the system from a very
disordered fresh soft glass to a very aged hard glass in a (sta-
tistically) reproducible way.

II. GLASS PREPARATION: MIMICKING INSTANT
QUENCH AND AGING

As explained before, the present model is stress based and
relies on threshold dynamics: plasticity sets in at cell (i, j), if
and only if the local stress overcomes one of the two thresh-
olds in the positive or negative shear directions: σi j > σ

+
i j or

σi j < −σ
−
i j . Despite the absence of an explicit energy land-

scape, which would allow us to equilibrate the system at fi-
nite temperature and to subsequently perform a quench to zero
temperature54, it is possible to implement two limit-cases of
glass preparation: instant quench from a high temperature liq-
uid and aging at vanishing temperature, respectively.

A. Instant quench of a high temperature liquid

At high temperature the local energy barriers associated
with the stress thresholds are very low with respect to the
available thermal energy so that in the T → ∞ limit, all plas-
tic rearrangements are equally probable. We then define a
thermal step by selecting a site uniformly in space at ran-
dom and choosing one of the two directions with probabil-
ity 1/2. The chosen site thus experiences a plastic slip and
jumps onto a new elastic branch, which is characterized by
two new plastic thresholds. Next, the stress field is updated to
account for the stress redistribution. The stress redistribution
can make some other sites mechanically unstable and thereby
induce an avalanche. Updates are then performed until the
avalanche stops and the system is stable again. The system is
subjected in this manner to a sequence of thermal steps until
it reaches a stationary state. In Fig. 2(a) we show for dif-
ferent system sizes N how the mean stress-threshold σ+ of
our samples evolves with the number of thermal steps. We
see that when plotted against the average number of thermal
steps per site, the curves for the different sizes collapse and
σ+ reaches a stationary value rather quickly, after about 4-5
thermal events per site. The inset of the figure shows the cor-
responding evolution of the standard deviations δσ+,δσ , and
δx+, of the stress-threshold, the internal stress, and the plas-
tic strength, respectively. When plotted against the average
number of thermal steps per site, we find again little size de-
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FIG. 3. Glass preparation - low temperature aging: (a) evolution of the mean stress-threshold σ+ with the number of aging steps per site and
for system sizes N = 16,32, and 64. The inset of the figure shows the evolution of the standard deviation of local stress δσ , thresholds δσ±

and plastic strength δx for N = 64. (b) Distributions of the stress-thresholds for an N = 64 sample, that has not been aged at all (thermal), or
aged with an average number of 0.8 (PA), 15 (MA), and 150 (WA) aging steps per site, corresponding to a poorly-, moderately- and well-aged
glasses, respectively. The highlighted and color-coded circles in the main plot of (a) indicate the aging stages at which these samples were
prepared to be subjected to cyclic shear.

pendence. In Fig. 2(b) we show the stationary distributions of
the stress-thresholds, internal stress and local plastic strengths
for our N = 64 sample.

B. Aging at vanishing temperature

We now turn to the other limit, namely aging at very low
temperature, T → 0. In the framework of activated behav-
ior, the activity at low temperature is restricted to overcoming
the lowest barriers. Moreover, in the limit of vanishing tem-
perature, the lowest barrier becomes dominant. We define an
extremal aging step as follows: recall that for each site (i, j)
its plastic strength in the positive and negative directions are
given as x+i j = σ

+
i j −σi j and x−i j = σi j +σ

−
i j , respectively. We

identify the site and direction with lowest plastic strength and
let it experience a local slip so that stresses are redistributed,
and new stress thresholds are assigned to the yielded site. As
in the case of the “thermal” procedure with randomly selected
sites, a stability check is performed after each slip. If one
or more sites get unstable, they are updated in turn and with
the most unstable sites updated first, as explained before. The
procedure is iterated until the avalanche triggered by the ini-
tial extremal step terminates. Then, the next site and direction
of lowest plastic strength is identified and allowed to slip.

The present “aging” procedure is thus similar to the “ther-
mal” procedure, differing only in the choice of the initial site
to be slipped: in the case of “aging” an extremal site is se-
lected for slip, i.e. the cell and direction with least plastic
strength, while in the thermal case the selection of site and
direction is random. This difference drastically alters the dy-
namics, since it induces a systematic statistical bias. When
a site yields, it acquires a new pair of thresholds. The latter

are drawn from a prescribed distribution. But in the frame-
work of the aging procedure this takes place at an extremal
site, which is characterized by a very low plastic strength (ei-
ther in the positive or in the negative direction). We thus get a
typical exhaustion phenomenon: low thresholds get replaced
by “normal” ones. This systematic bias induces a drift in the
threshold distributions and thus a systematic plastic harden-
ing49,55.

Starting from an initial state corresponding to the inherent
state obtained from a “high temperature liquid”, as described
in the previous section, we thus “age” the system by slipping
a number of least stable sites. As shown in Fig. 3(a), we ob-
serve a logarithmic growth of the mean thresholds σ+ with
the number of aging steps. Again, the dependence of this evo-
lution on system size becomes negligible when we consider
the average number of aging steps per site, instead of the total
number of steps. We find that after about 103 aging steps per
site, the mean threshold doubles in value.

The inset of the figure shows the evolution of the standard
deviation of the stress-threshold, internal stress and plastic
strength. The standard deviation of thresholds shows a slow
decrease (about 20% over 103 aging steps per site). Together
with the doubling of the mean thresholds over the same range
of 103 steps, this corresponds to a significant narrowing of the
threshold distributions upon aging.

Interestingly, after a fast decrease in the early stage of the
aging protocol (less than one aging step per site) the standard
deviation of internal stress remains almost constant upon ag-
ing. In recent studies on the dependence of plastic behavior
of amorphous solids on glass preparation6,53, the width of the
stress fluctuation distribution has been used as a proxy for the
level of stability of the amorphous solids while keeping con-
stant (actually uniform) the value of the plastic threshold. We
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get here a different situation: an increase of the mean thresh-
old and stability of the stress fluctuations upon aging. A way
to reconcile these contrasting observations is to consider the
fluctuations of the local plastic strength x± = σ±∓σ and to
note that in the case of uniform thresholds the standard devia-
tion of plastic strength equals that of internal stress δx±= δσ .
Upon aging, we indeed observe a continuous decrease of δx±

which gets halved after about 103 aging steps per site.
In Fig. 3(b) we display distributions of the stress thresholds

σ+ for our N = 64 samples, which were either not aged at all
(thermal), or aged at 0.8,15, and 150 aging steps per site, for
N = 64. These aging levels have been indicated by the appro-
priately colored circles on the graph showing the evolution of
mean stress-thresholds with aging in panel (a). Henceforth
we will refer to these levels of aging as poorly-aged (PA),
moderately-aged (MA), and well-aged (WA).

The effect of our aging procedure is dramatic: it opens a
growing gap in the distribution of stress-thresholds σ+. In
spirit, we recover here a phenomenology which is close to that
of ultrastable glasses obtained via swap Monte-Carlo meth-
ods56. The opening of a gap will induce a perfect elastic be-
havior over a finite range of strains which contrasts with the
quasi-elastic behavior (short elastic branches punctuated by
plastic events) typically observed in less equilibrated glasses.

III. MONOTONOUS LOADING: DEPENDENCE ON
THERMAL HISTORY

Depending on glass preparation, stress-strain curves show
either a monotonous behavior up to a plateau or exhibit a
stress peak followed by a softening branch that slowly ap-
proaches the stress plateau at a steady-state stress Σss. The
existence of a stress peak is usually associated with shear-
banding behavior.

In section II, we proposed a glass preparation protocol for
our mesoscopic model which mimics aging at vanishing tem-
perature. While tuning an aging duration is very different
from tuning a quench rate from the liquid state, both meth-
ods allow us to transit continuously from a soft/poorly equi-
librated glass to a hard/well equilibrated glass. Our protocol
actually allows us to obtain in this way very different glassy
states. In Fig. 4, we show stress-strain curves corresponding
to a poorly-aged, a medium-aged, and well-aged glass, aged
at an average of 0.8,15, 150 number of steps per site. The sys-
tem size is N = 32 and the curves were obtained by averaging
over 500 realizations. While the poorly-aged glass does not
exhibit a stress peak, such a peak emerges and becomes more
pronounced as the samples are aged more. Thus by tuning the
duration of aging we are able to transit from a poorly-aged to
a well-aged glass. We checked that all curves do converge to
the same stress plateau for large enough shear strains. More
details on the size dependence of these stress-strain curves are
shown in Fig. 14 of Appendix D.

Comparison with atomistic simulations – In the inset of
Fig. 4, we show for reference two stress-strain curves obtained
by atomistic simulations under athermal quasi-static shear for
a slow and fast quench, respectively. The details of the simu-
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FIG. 4. Stress-strain curves upon monotonous loading. The main fig-
ures shows the stress-strain curves obtained for a mesoscopic glasses
of size N = 32, aged at an average number of 0.8 (poorly-aged PA),
15 (moderately-aged MA) and 150 (well-aged WA) aging steps per
site. The moderately- and well-aged glasses show a stress peak fol-
lowed by a softening branch which crosses over into a stress plateau.
The triangles mark the strain amplitudes where the probability to find
cyclic response under symmetric oscillatory shear is still larger than
2% (refer to Section IV for details). The dotted vertical lines termi-
nating with small circles mark the range of strains sampled by the
transition graphs discussed in Part II. The inset shows the corre-
sponding curves obtained from simulations of 2d atomistic glasses
that were quenched from a high temperature liquid state at a fast and
slow rate (refer to Appendix A for simulation details).

lations are provided in Appendix A. The slow quench curve
shows a distinct stress peak while apart from fluctuations, the
fast quench curve is almost monotonous. Due to computa-
tional time limitations, it is difficult to obtain strongly con-
trasting quenches and consequently stress-strain curves when
using molecular dynamics for the glass preparation. The re-
cently developed swap Monte-Carlo methods give access to a
wider range of glass preparation although they are more re-
strictive with respect to the nature of the model glasses56.

Let us emphasize that it has not been attempted here to
adjust the parameters of the elasto-plastic model to quantita-
tively reproduce the stress-strain curve obtained by atomistic
simulations. Rather, our goal is to compare generic features,
such as the brittle to ductile transition under monotonous load-
ing, and how the behavior upon cyclic loading depends on
the soft/hard nature of a glass. Recent analyses of coarse-
graining atomistic simulation to be used to feed mesoscopic
elasto-plastic models with realistic parameters can be found
in Ref.57.

IV. CYCLIC DRIVING: LIMIT CYCLES

In this section we consider the irreversibility transition, and
in particular the response to cyclic shear of our poorly-aged
(PA) and moderately-aged (MA) mesoscopic glasses whose
preparation was described in section II. The well-aged (WA)
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FIG. 5. Response of the N = 32 poorly-aged glass to cyclic shear at a strain amplitude below, (a) and above (b) the irreversibility transitions
by ∆ε = 5× 10−3. The main panels show the evolution of the stress-strain curve over the last 30 cycles with each subsequent cycle colored
in a darker shade of red, as indicated in the legend. The insets to the lower right show a detail of this evolution. The insets in the upper left
show the stroboscopic stress difference, obtained by taking the difference in stress at the beginning of two consecutive cycles, using the same
coloring for the last 30 cycles. In (a) cyclic response is attained after a transient of τ = 158 cycles, while in (b) such a response is still not
obtained after 104 cycles.

mesoscopic glasses yield a response to cyclic shear that is
qualitatively similar to that of the (MA) glasses and will there-
fore not be considered in this section.

A. Irreversibility transition

When subjected to cyclic shear loading, amorphous solids
tend to either evolve into periodic response or reach a diffu-
sive regime, depending on the value of the amplitude εamp of
the loading cycles. This transition presents typical features of
a critical transition. In particular, power-law divergence of the
number τ of loading cycles to reach the periodic response be-
low the transition, as well as the power law dependence of the
diffusivity above the transition have been observed both for
atomistic and mesoscopic models9,10,18,19,23,26,27,31. The fea-
tures of the irreversibility transition depend on glass prepara-
tion9,10,29,30. Fig. 5 shows the response of an N = 32 sample of
a poorly-aged mesoscopic glass to cyclic shear at strain ampi-
tude below, panel (a), and above, panel (b), of the irreversibil-
ity transition. In the former case a cyclic response was ob-
tained after τ = 158 cycles, while for the latter cyclic response
was still absent after 104 driving cycles. The main plots show
the evolution of stress and strain over the last 30 cycles, each
of which have been color-coded in increasing shades of red, as
indicated by the legend in (a). The lower insets show a detail
from the main plot. While the upper insets show the evolution
of the difference of stresses at the beginning of two consecu-
tive driving cycles. Below the irreversibility transition, panel
(a), this stress difference eventually vanishes (after τ = 158
while above the transition in panel (b) it keeps showing finite
fluctuations at least until τ = 104 Here we show results for the
size dependence of the irreversibility transition in our PA and

MA mesoscopic glasses. Specifically, we consider systems of
size N = 16(7500), 32(3000), 64(400), where the numbers in
parenthesis indicate the number of realizations used to obtain
our results.

We first focus on the poorly-aged (PA) systems. Figure 6
shows the mean success-rate psucc, i.e. the fraction of PA sys-
tems (circles) within our ensemble of realizations that reach a
limit cycle when subject to a given number τmax of symmetric
loading cycles at amplitude εamp: 0→ εamp→ 0→−εamp→
0. The different colors correspond to the system sizes, as in-
dicated in the legend of the figure. For system sizes N = 16,
32, and 64 we used a cut-off of τmax = 104 driving cycles, so
that if cyclic response had not been established at that point
we considered the run to be unsuccessful. A clear transition
can be observed between a low amplitude regime with con-
vergence to a limit cycle and a high amplitude regime with
no limit cycle. The transition between these two regimes gets
increasingly sharper with system size. A clear size depen-
dence is also observed in the location of the transition which
tends to occur at lower strain amplitudes for larger systems.
The size effect exhibited by our poorly-aged glasses is all the
more striking as it turns out to be completely absent in the
response to monotonous loading, and only weakly present in
the case of our moderately- and well-aged glasses, (Fig. 14 in
Appendix D).

For each size N, we estimate the strain εirr(N) at which
the irreversibility transition occurs, as the loading amplitude
such that 50% of the realizations reach a limit cycle, i.e.
psucc = 1/2, as indicated by the pink horizontal line in Fig. 6.
The inset of Fig. 6 shows the size and ageing dependence
of εirr(N) for N = 16,32, and 64, for the PA, MA and WA
glasses. We see that for a given degree of ageing, εirr(N) de-
creases with increasing system size. Moreover, a dependence
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FIG. 6. Success rate psucc of the convergence to a limit cycle under
cyclic shearing at amplitude εamp. Shown are results for ensembles
of poorly-aged (circles) and moderately-aged (diamond) glasses with
system sizes N = 16 (red), 32 (blue), and 64 (green). Intersections
with the dashed horizontal line indicate strain amplitudes where the
probability of finding a limit-cycle is 1/2. Inset: The plot of strain
amplitudes εirr at which psucc = 1/2 against 1/N2 for the poorly-,
moderately-, and well-aged glasses, PA, MA and WA.

of εirr on aging at fixed system size is clearly visible, in par-
ticular for the larger sizes N = 32 and 64. At these sizes the
MA glasses have slightly larger εirr then the PA ones, while
the WA glasses have overall larger values of εirr for all system
sizes considered. The behavior of εirr with aging is consistent
with atomistic simulations of cyclically sheared amorphous
solids which show that the strain marking the onset of the ir-
reversibility transition is largely independent of aging for suf-
ficiently poorly-aged samples, but that it starts to increase as
the samples are better aged9,10.

We turn next to the response of our moderately-aged (MA)
glasses to cyclic shear. The diamond symbols in Figure 6
show the fraction psucc of MA glasses in our ensembles of re-
alizations that reach a limit cycle when subject to cyclic load-
ing of amplitude εamp. Similarly to the poorly-aged samples,
as the system size is increased, the irreversibility transition ex-
hibits an increasingly sharper decline of the success-rate from
one to zero. However for a given system size, the rapid fall-
off of the success rate in the MA glasses occurs at consistently
larger strain values than for the PA glasses, which is in agree-
ment with the behavior of εirr discussed above.

B. Transient regime and limit cycles

Another feature of the irreversibility transition is the diver-
gence of the duration of the transient regime: atomistic sim-
ulations show that the number of loading cycles needed to
reach the limit cycles diverges as a power-law according to
τ(εamp) ∝ |εirr− εamp|−α , as shown in Refs.19,22,23,43.

In Fig. 7a, we plot τ(εamp) against |εirr(N)− εamp| for our
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FIG. 7. Convergence to limit cycles of poorly-aged (PA) glasses:
(a) Duration τ of transients vs. relative cycle amplitude |εirr− εamp|,
where εirr is the system size dependent strain amplitude where the
success-rate psucc of cyclic response is 1/2, cf. Fig. 6. The dashed
line is a power-law with exponent 2.7 and serves as a guide to the
eye. (b) The period T of the cyclic response in units of the number of
driving cycles for the poorly-aged samples at different system sizes.
The dashed line is a power-law with exponent 1.5 and serves as a
guide to the eye.

poorly-aged glasses and different system sizes N. Here εirr(N)
is the loading amplitude at which half of the realizations reach
limit cycle, as defined previously. Once again, a significant
size effect is observed: for a given |εirr(N)− εamp|, the larger
the system size, the shorter the transient regime. An indicative
power-law behavior of exponent α = 2.8 is plotted as a dashed
line. We see that the results obtained for N = 16,32, and
64 are reasonably consistent with this trend over roughly one
decade for the larger samples. Note that the value α = 2.8 is
close to the estimate of α ≈ 2.7, recently reported in Ref.43, as
well as α ≈ 2.6, which was obtained using atomistic simula-
tions by Regev et al.19,23. It is also close to the value α ≈ 2.66
obtained by Corté et al.33 for a simplified model of interacting
particles under flow. The saturation observed for large values
of τ(εamp) naturally stems from the hard limit associated with
the finite number of loading cycles τmax = 104 that we used in
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FIG. 8. Convergence to limit cycles of moderately-aged (MA)
glasses: (a) Duration τ of transients vs. relative cycle amplitude
|εirr − εamp|, where εirr is the system size dependent strain ampli-
tude where the success-rate psucc of cyclic response is 1/2, cf. Fig. 6
(inset). (b) The period T of the cyclic response in units of the number
of driving cycles for the moderately-aged samples at different system
sizes.

our numerical simulations for N = 16,32, and N = 64.
In Fig. 7b, we also plot the period of the limit cycle T (εamp)

against |εirr(N)−εamp| for our poorly-aged glasses and differ-
ent system sizes N. As already observed in Ref43, we see
that the limit cycles get more and more complex, with an in-
creasing period when the amplitude εamp of the cyclic loading
approaches the irreversibility transition εirr. For illustrative
purpose we show that the fast increase of the period is consis-
tent with a power law behavior T (εamp) ∝ |εirr(N)− εamp|−β

with β = 1.5 plotted as a dashed line in Fig. 7b.
In Fig. 8, we show the same observables τ(εamp) and

T (εamp) close to the irreversibility transition, now for the
moderately-aged glasses. For small systems sizes (N =
16,32), we again observe a diverging trend in the transient
duration and the limit cycles period. It appears actually that
the larger the system size, the narrower the range of ampli-
tudes over which this diverging behaviour holds. Another be-
haviour gradually becomes dominant: for large system sizes,

a limit cycle is reached after just a few loading cycles, and the
response is mainly elastic. Moreover, as it can be seen for the
N = 64 glass in Figs. 6 and 8 the transition to irreversibility
is rather abrupt and discontinuous. The system either reaches
a T = 1 cyclic response rather quickly or not. These findings
are consistent with results reported in the literature, e.g. work
by Bhaumik10 et al. where the authors consider simulations of
a 3d amorphous solid subject to cyclic shear. Fig. S5(a) of in
their paper’s supplement shows the evolution of the transient
for a well-aged sample by monitoring the average potential
energy per particle. Depending on the shear amplitude, the
transient is either very short or a cyclic response is not at-
tained at all. Appendix G contains additional details on the
dependence of the irreversibility transition on system size and
aging of our mesocopic glasses, which is complemented by
the results of the transition graph description of the disorder
landscape and which we turn next to.

Part II

Characterization of the
disorder landscape via
transition graphs
In order to characterize better the disorder landscape under-
lying our mesoscopic model, we turn next to the transition
graph (t-graph) representation of the dynamics under AQS
shear58. As was shown recently39,41, such t-graphs can be
extracted from atomistic simulations of sheared amorphous
solids. Features of the AQS dynamics, such as yielding and
return point memory, are thereby encoded in the topology of
the t-graph39,41,47. Thus t-graphs provide useful information
about the underlying disorder landscape. At the same time,
the representation of AQS dynamics via t-graphs extracted
from simulations provides a unified framework within which
we can compare the dynamics of atomistic as well as meso-
scopic models in a rather direct and comprehensive manner.
This is the aim of the present section.

V. AQS TRANSITION GRAPHS

To fix ideas, we consider first the sheared amorphous solid
in an atomistic setting. Under AQS conditions, a given me-
chanically stable particle configuration can be sheared in the
positive and negative direction until a mechanical instabil-
ity occurs. Denoting by ε± the critical values of the ex-
ternal shear strain at which the instability sets in, for shear
strains between ε− and ε+, the configuration of particles de-
forms smoothly and reversibly in response to the applied shear
strain. These sets of mechanically stable particle configu-
rations constitute an elastic branch of the system which we
simply refer to as a mesostate39. We will use capital letters
to label mesostates, and denote the critical strain values of a
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FIG. 9. Transition-graph representation of the AQS dynamics and thermal history – atomistic (AS) vs mesoscopic (Meso) models. Excerpts
of transition graphs extracted from atomistic (a,b) and N = 32 mesoscopic glasses (c,d) with different thermal histories: (a,c) poorly-aged/fast
quenched, (b,d) moderately aged/slow quenched. The color of each vertex indicates the strongly connected component (SCC) of the graph
that it belongs to (refer to text for details) and the initial mesostate of the prepared glass has been marked with a larger red vertex labeled O.
Vertices belonging to SCCs of size less than 10 have been colored in light gray.

mesostate A by ε±[A]. When ε = ε+[A] (or ε = ε−[A]), a
fast relaxation to a new mechanically stable particle config-
uration occurs. This particle configuration must necessarily
be part of another mesostate, i.e. belong to a different elas-
tic branch, say B. Thus the instability at ε = ε+[A] triggers
a transition from mesostate A to B. A similar transition oc-
curs when ε = ε−[A]. The transition between mesostates can
therefore be represented in terms of a directed graph, the AQS
transition graph or simply t-graph. The vertices of the t-graph
are the mesostates, while from each mesostate we have two
outgoing transitions which constitute the directed edges of
the graph.We shall denote the transitions when ε = ε+[A] or
ε = ε−[A] as the U-, respectively, D-transition out of A. We
will refer to the states that these transitions lead to as UA and
DA.

The t-graph along with the critical strains ε±[A] associated
with each mesostate forms a complete representation of the
AQS dynamics under arbitrary shearing protocols47. Given
an initial mesostate A and a shear protocol, the sequence of
mesostates visited can be read off by following the corre-
sponding U- and D-edges, while checking each time whether
the critical strains needed to trigger the transition have been
exceeded or not.

Note that since UA and DA are mesostates reached from A,
their stability ranges must contain the strains ε±[A] at which
these transitions were triggered, i.e. we have the AQS condi-

tions47

ε
−[DA]< ε

−[A]< ε
+[DA],

ε
−[UA]< ε

+[A]< ε
+[UA]. (1)

It follows that ε+[A]< ε+[UA]< ε+[U2A]< .. . and thus the
upper critical strains are monotonously increasing with re-
peated U-transitions. An analogous result holds for the lower
strain threshold under D-transitions. An immediate conse-
quence of this observation is that the sub t-graphs, which are
obtained by considering only transitions under U (or D), are
necessarily acylic, i.e. they cannot contain any cycles. Thus
any cyclic behavior must arise from an interplay of the U- and
D-transitions.

VI. CATALOG ACQUISITION AND t-GRAPHS FROM
SIMULATIONS

The numerical algorithm of extracting t-graphs from sim-
ulations of sheared amorphous solids has been described in
detail in the supplementary material of Ref.39. Here we will
sketch out the main idea. We start with an initial configura-
tion that is part of a mesostate O which we call the reference
state. We assign to O the generation number g = 0. Next, we
execute the U- and D-mesostate transitions out of O, leading
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to the mesostates UO and DO, and we assign these to genera-
tion g = 1. Everytime we reach a new mesostate, we compare
it to the catalog of mesostates we have obtained so far to see
whether it has been encountered before. If not, we add it to
our catalog. By proceeding generation by generation, we ac-
quire in this manner a catalog of mesostates: each mesostate
A is assigned an ID, its critical strains ε±[A] and the IDs of
the mesostates it transits into under a U- or D-transitions are
determined. The t-graph is then assembled from such cata-
logs. In our mesoscopic models, each mesostate corresponds
to a configuration of the local elastic branches associated with
each of the cells. The event based nature of their simulations
facilitates the identification of mesostates and their transitions.

We obtain catalogs from 10 realizations each of the N = 32
poorly-, moderately-, and well-aged glasses, as described in
the previous section. Tables I, II, and V (in Appendix E)
detail various properties, such as the number of generations
and mesostates contained in them. The ranges of strains that
these catalogs sample are indicated in Fig. 4, showing how far
these catalogs reach out in strain relative to the yield strain
under monotonous loading. In addition, we produced 10 cat-
alogs from samples of an ultra-stable glass aged by an av-
erage of 4.103 steps per-site. For comparison purposes, we
also extracted catalogs from our atomistic simulations, using
a set of 8 soft and 30 moderately hard reference configura-
tions, that were obtained via fast and slow quenches from a
high-temperature liquid. The description of these atomistic
catalogs is given in Appendix E.

Fig. 9 shows sample t-graphs from each of the four sets
of samples: fast quenched atomistic glass (AS Fast #4), slow
quenched atomistic glass (AS Slow #2), poorly-aged meso-
scopic glass (Meso PA #1), and the moderately-aged meso-
scopic glass (Meso MA #4). The numbers after the # sign
specify the particular realization of the glass, as listed in Ta-
bles I, II, VII, and VIII. The placement of the vertices of the
graph is arbitrary. The mesostate corresponding to the ini-
tially prepared glass, i.e. the reference state, is indicated by
the large vertex in red and labeled O. Note the general tree-
like structures in all four t-graphs which appear to be quali-
tatively similar, despite the different underlying model (atom-
istic vs. mesoscopic) and also the different degreee of glass
preparation. The color of each vertex indicates the SCC that
it belongs to, as we discuss in the next section.

A note of caution when comparing simulations of atomistic
and mesoscopic models is in order. As we argue in Appendix
C, our atomistic simulations correspond to an elastoplastic
model with size somewhere between N = 5 and 10. Thus our
atomistic simulations involve systems of smaller size and pos-
sibly suffer more from finite-size effects. Moreover, the way
the atomistic systems have been aged is different from the ag-
ing protocol used for our mesoscopic systems. All of these
features make detailed comparisons difficult and we want to
stress again, that our main aim in presenting our mesoscopic
model is not to quantitatively reproduce the results of atom-
istic simulations. We will return to this point when comparing
the SCC size distributions in section VIII.

VII. AQS GRAPH TOPOLOGY AND STRONGLY
CONNECTED COMPONENTS (SCCS)

We will probe the topology of the t-graphs more deeply by
focusing on their SCCs to which any cyclic response must be
confined41, as we explain now. Two mesostates A and B are
connected, if on the t-graph there is a directed path of U- and
D-transitions that leads from A to B. Physically, this implies
that there is some shearing protocol that, when applied to A,
gives rise to a deformation pathway terminating in B. We say
that two mesostates A and B are mutually reachable, if there is
a deformation pathway from A to B as well as one from B to A.
Mutual reachability is an equivalence relation (in particular,
if the pairs A,B and B,C are mutually reachable, so must be
the pair A,C). Therefore, the vertices of the t-graph can be
partitioned into equivalence classes under mutual reachability
and these classes form its SCCs59. Numerical details on how
to extract SCCs from t-graphs have been provided in Ref.41.

By construction, transitions between any two mesostates
belonging to different SCCs are irreversible: there may be
a deformation pathway from one to the other, but not back,
since otherwise the pair of states would have been mutually
reachable. Thus mutual reachability also partitions the set of
transitions between mesostates into reversible ones, i.e. those
connecting a pair of mesostates within the same SCC, and ir-
reversible ones, where the two mesostates must belong to dif-
ferent SCCs. Any periodic and hence reversible response to
some shear protocol must therefore be confined to a single
SCC. The SCCs are thus the “containers” of reversible behav-
ior41.

VIII. COMPARISON OF THE POORLY- AND
MODERATELY-AGED CATALOGS

Tables I and II show the properties of the 10 catalogs
with N = 32 which were obtained by taking the poorly- and
moderately-aged mesoscopic glasses as reference states. The
second column lists the number of generations gcomp up to
which all outgoing mesostate transitions were identified. Thus
gcomp = 39 means that we have identified every mesostate that
can be reached from the reference configuration by a sequence
of 39 U− and D-transitions. Next, N0 and NSCC list the num-
ber of mesostates and SCCs contained in the catalog. The last
row of each table provides the cumulative totals. We will dis-
cuss the results shown in the last four columns later in this
section.

SCC size distributions – In Fig. 10 we compare the size
distribution of the SCCs found in these catalogs. The blue
boxes and black circles show the size distribution of SCCs ex-
tracted from all 10 catalogs of the N = 32 mesoscopic glasses.
All curves are normalized but have been vertically offset for
clarity. Observe that the size distributions are broad and that
the moderately-aged catalogs contain larger SCCs. Never-
theless, power-law fits using the method of Clauset et al.60

yield a comparable power-law exponent of about 2.3± 0.3
for both distributions61. For comparison purposes, we also
show the SCC size distributions obtained from our atom-
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TABLE I. Properties of the 10 catalogs obtained from poorly-aged
(PA) glasses of the mesoscopic model with N = 32. The catalogs are
labeled by their run number, as given in the first column, while gcomp
identifies the generation upto which all outgoing mesostate transi-
tions have been identified. The number of mesostates and SCCs
found in the catalog are given by N0 and NSCC, respectively. The
last four columns provide statistics about limit-cycles under sym-
metric cyclic shear contained in the catalog: the number ncycles of
limit-cycles found, the number Nsupp

SCC of SCCs that support at least
one limit-cycle, the size smax

suppSCC of the largest SCC supporting a
limit-cycle, and the number nmaxSCC

cycles of limit-cycles contained in the
largest supporting SCC (refer to text for details). The last row is a
cumulative total over the entries in the corresponding columns.

Run gcomp N0 NSCC ncycles Nsupp
SCC smax

suppSCC nmaxSCC
cycles

1 35 26093 5817 21631 4598 91 97
2 35 59281 11084 44902 8579 175 84
3 35 28418 5963 23956 4261 128 116
4 35 131100 29478 123341 24215 106 104
5 35 48832 10374 52900 9474 73 67
6 35 89710 22955 101298 21130 132 116
7 35 46049 11498 36801 9301 139 124
8 35 145281 43409 133984 34033 104 67
9 35 52641 12854 56017 11595 148 124
10 35 49355 10155 47003 7377 115 153

ALL n/a 676760 163587 641833 134563 n/a 1052

istic simulations under slow and fast quench, labeled as AS
slow (triangles) and AS fast (diamonds), corresponding to
moderately- and poorly-aged glasses. These catalogs reveal
similarly broad distributions, with the moderately-aged cata-
logs containing again larger SCCs, while the fitted power-law
exponents 2.7±0.3 are comparable.

Note the presence of a finite-size cut-off around SCC sizes
of about 30 and 100 for the mesoscopic PA and MA cata-
logs, respectively. The SCC size distributions obtained from
the atomistic simulations do not feature such a cut-off. In
Appendix C we argue that the mesoscopic equivalent size N
corresponding to our atomstics simulations is somewhere be-
tween N = 4 and N = 10. Thus the atomistic samples are in
effect smaller. Fig. 13 of Appendix C shows the correspond-
ing SCC size distributions when we compare the atomistic
simulations with the size distributions obtained from N = 8
mesoscopic catalogs. While there, the finite-size cut-off ap-
pears to be less prominent in the distributions of the meso-
scopic models, particularly for the MA samples. We think
that the suppression of the cut-off is a finite-size effect. In
fact, among the 8 AS fast catalogs there are considerably fluc-
tuations in the size smax of the largest SCC found in each
of them. Ordered from smallest to largest, we find smax =
106,243,244,259,379,413,458, and 929. Among these, the
smallest value smax = 106 is realized in catalog #4, whose
transition graph is shown in Fig. 9, while the largest value
smax = 929 is observed in catalog #2, whose transition graph
is given in Fig. 1(b) of ref.41. In fact, we checked for AS
fast that the data points for the largest SCC sizes in Fig. 10,
are singletons corresponding to the largest SCCs found in the

TABLE II. Properties of the 10 catalogs obtained from moderately-
aged (MA) glasses of the N = 32 mesoscopic model. A brief sum-
mary of the quantities listed is given in the caption of Table I, while
further details are provided in the text.

Run gcomp N0 NSCC ncycles Nsupp
SCC smax

suppSCC nmaxSCC
cycles

1 39 46059 8148 3510 857 269 7
2 39 36279 8164 1732 363 451 11
3 39 130733 33324 3933 1148 542 129
4 39 19344 4244 1659 490 207 3
5 39 147476 49335 989 437 133 2
6 39 64096 11678 1731 643 166 2
7 39 117680 30721 6189 1809 244 58
8 39 64693 12657 5317 1219 651 179
9 39 118964 33857 3067 1143 141 12
10 39 91758 26814 8516 2011 201 127

ALL n/a 837082 218942 36643 10120 n/a 530
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FIG. 10. Statistics of SCCs vs thermal history – Comparison of the
SCC size distributions obtained from simulations of the atomistic
(AS) and N = 32 mesoscopic models (Meso) and distinguished by
the extent of aging they have been subjected to: moderately-aged,
labeled as Meso MA and AS slow, and poorly-aged, labeled as Meso
PA and AS fast, respectively. The dashed lines are power-law fits
to the data, which were obtained using a common lower SCC size
cut-off of sSCC = 4. Curves have been vertically offset for clarity.

catalogs.
Note that while the t-graphs and SCC size distributions ob-

tained from our mesoscopic and atomistic model are qualita-
tively similar, the dependence of these on the degree of aging
is rather weak. In other words, the topology of the t-graphs
alone does not appear to contain features that are directly
linked to the different amount of aging these samples have
been subjected to. As we will show next, the effect of aging
on the samples reveals itself when we combine the topologi-
cal features of the t-graphs with additional physical properties,
such as the prevalence of cycles, the strain stability ranges and
plastic strains associated with the mesostates and their SCCs.

Prevalence of cycles – We next turn to the population of
cycles in our catalogs. We are again interested in cycles
that can be traversed under a symmetric cyclic shear protocol:
0→ εamp→−εamp→ 0 with some shear amplitude εamp. We



Glassy Landscape Maps 13

consider every mesostate in our catalog that is stable at zero
strain and apply this cyclic shear protocol, checking whether a
cyclic response has set in or not. The column labeled ncycles of
Tables I and II lists the total number of distinct cycles found in
our catalogs obtained from our moderately- and poorly-aged
mesoscopic glasses. We find that the poorly-aged catalogs
contain a significantly larger number of cycles, although the
total number of mesostates in these catalogs is comparable
(836082 and 676760 mesostates, respectively).

As we have noted before, the mesostates forming a cyclic
response must all be confined to a single SCC, i.e. a cycle
cannot traverse multiple SCCs. We therefore ask next how the
cycles found in the catalogs are distributed across the avail-
able SCCs. In particular, we ask for the number of SCCs that
support at least one symmetric cycle, which we define as Nsupp

SCC
and list in Tables I and II. For ease of comparison, we have
put together in Table III the cumulative totals listed in the last
lines of these tables along with the corresponding data from
our atomistic simulations.

TABLE III. Comparison of the cumulative totals of the number of
mesostates N0, SCCs NSCC, and SCCs that support symmetric cy-
cles Nsupp

SCC . The top two rows show data for the poorly-aged (PA)
and moderately-aged (MA) mesoscopic glasses. The bottom two
rows compare these quantities for the fast and slow cooled atom-
istic glasses. Refer to text for further details and the Tables VII and
VIII in Appendix E for the sample-by-sample characterization of the
atomistic catalogs.

Catalogs N0 NSCC Nsupp
SCC

Meso PA 676760 163587 134563
Meso MA 837082 218942 10120

AS Fast 459508 210864 10933
AS Slow 555332 244334 5863

Starting with the mesoscopic glasses, there is again a stark
contrast between catalogs obtained from poorly-aged (PA)
and moderately-aged (MA) samples (first two rows of Table
III). In the MA glasses the symmetric cycles are contained
in a relatively small fraction of SCCs (10120 out of a total
of 218942 available ones), while for the poorly-aged cata-
logs a large fraction of SCCs supports at least one such cy-
cle (134563 SCCs that support symmetric cycles out of a total
of 163587). From Tables I and II, we see that this is true
also for the individual catalogs. It is thus apparent that in the
moderately-aged catalogs a relatively small fraction of SCCs
support most of the cycles found, while in the poorly-aged cat-
alogs the opposite is the case and almost every SCC supports
at least one cycle. A similar, albeit less pronounced behav-
ior is seen also in our atomistic simulations, cf. the last two
rows of Table III. Note that the cumulative data for poorly-
aged (moderately-aged) initial states have been sampled from
8 (30) catalogs (Tables VII and VIII in Appendix E), so that it
is hard to compare the overall number of cycles. Nevertheless,
we observe also in our atomistic simulations that the number
of cycle supporting SCCs in the poorly-annealed catalogs ap-
pears to be disproportionally larger.

We finally consider the largest SCCs that support symmet-

ric cycles, comparing their sizes smax
suppSCC and the number of

cycles they contain nmaxSCC
cycles . These numbers are shown in

the last column of Tables I and II. Again, we find contrast-
ing behavior. The largest cycle supporting SCCs found in the
moderately-aged catalogs are generally larger than those in
the poorly-aged ones, but despite of this, they contain fewer
cycles.

IX. THE DISORDER LANDSCAPE: SCCS AND SCC EXIT
STRAINS

Our results for the prevalence of symmetric cycles can be
summarized as follows: while the poorly-aged catalogs con-
tain a large number of such cycles which are distributed across
a large number of SCCs of various sizes, we find that the
opposite is true for the catalogs obtained from the well-aged
samples. For the latter, the number of symmetric cycles con-
tained is far less and these cycles are confined to a small subset
of available SCCs.

In order to understand better the difference of the disor-
der landscape arising from well-aged and poorly-aged sam-
ples, we coarse-grain the t-graph to the level of SCCs, since
– as we have shown – any cyclic response must be confined
to a single SCC. Every SCC has at least one outgoing U-
and one outgoing D-transition. Let us denote the states from
which these outgoing transitions originate as the U- and D-
exits of the SCC. Suppose now that the SCC has only one
U- and one D-exit and denote the threshold strains trigger-
ing these exiting transitions as E ±SCC. Consequently, given
any mesostate A belonging to that SCC and applying strains
confined to the interval E −SCC < ε < E +

SCC, the resulting se-
quence of mesostates must remain confined to the SCC. This
follows from the observation made before, namely that for any
mesostate A, ε+[A]< ε+[UA] and ε−[DA]< ε−[A].

In the case of multiple U- or D-exits from an SCC, we de-
fine E +

SCC and E −SCC as the largest, respectively lowest, strain
triggering the outgoing transitions. It actually turns out that
for the SCCs considered in our catalogs only a very small
fraction of SCCs have multiple U- or D-exits62 Assuming
therefore that each SCC has exactly one outgoing U- and D-
transition, it follows that in order for the SCC to support cyclic
response under the strain protocol 0→ εamp→−εamp→ 0 · · · ,
we must require that E +

SCC > εamp and E −SCC <−εamp. In par-
ticular, this implies that

E −SCC < 0 < E +
SCC. (2)

Distinguishing the SCCs by (i) their size, and (ii) whether
they support a symmetric cycle or not, we now ask how these
SCCs are scattered in the plane spanned by E −SCC and E +

SCC.
Panels (a) and (b) of Fig. 11 show the SCC scatter plots ob-
tained from single catalogs of our atomistic poorly-aged and
moderately-aged samples, while panels (c) and (d) show the
same for catalogs obtained from our mesoscopic poorly-aged
and moderately-aged N = 32 samples. Panels (e) and (f)
show SCC scatter plots obtained from even further aged meso-
scopic samples, with an average of 150 and 4000 aging steps
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FIG. 11. The coarse-grained disorder-landscape, atomistic vs. mesoscopic models, and the effect of aging – The six panels show the scatter
plots of the SCCs found in catalogs obtained from atomistic (first column) and our N = 32 mesoscopic simulations (second and third columns).
Panels (e) and (f) depict the disorder landscape extracted from increasingly better-aged samples of the mesoscopic model. Each symbol
represents an SCC, while the size and color correspond to the size of the SCC and the average plastic strain εpl of the mesostates constituting
that SCC. Each SCC has at least one U- and one D-transition that leads to another SCC, and we denote by E ±SCC the threshold strains to trigger
these transitions. As explained in the text, taking the extremes of these exit strains, the corresponding interval (E −SCC,E

+
SCC) provides a range

of strain values over which the system will be trapped in that SCC. These strains are used as coordinates for placing the SCC in the plot.
Box-shaped symbols indicate that the SCC supports at least one cycle under symmetric cyclic shearing. The area shaded in red in panels (d)
and (e) indicates where cycle supporting SCCs would have to be located if they were to contain cycles at strain amplitudes beyond the onset of
the irreversibility transition, as obtained from the inset of Fig. 6. For panels (c) and (f) this region lies outside the plot window. The diagonal
dashed lines corresponds to the average SSC strain range of Eq. F1, estimated as E +

SCC−E −SCC = Σss/µ , where Σss is the steady-state stress
under monotonous strain loading. Refer to text for further details.

per site, respectively (details of these catalogs are provided
in Appendix E). In each panel of the figure the number af-
ter the # sign indicates the particular sample from which the
data shown came from. The size of the symbols represent
the size of the SCCs, as indicated in the legend, while the
boxed symbol shape indicates that the SCC actually supports
a limit-cycle, as determined by inspecting our catalogs. The
highlighted upper left quadrant of each plot corresponds to the
region where the inequality (2) holds. Since this is the region
where any SCC which supports cyclic response under sym-
metric oscillatory shear must be located, we will refer to it as
the cycle-quadrant.

We start with a comparison of the poorly-aged (PA) and
moderately-aged (MA) SCC scatter plots obtained from our

atomistic and mesoscopic glasses, panels (a) – (d). Compar-
ing the catalogs obtained from the PA samples, panels (a) and
(c), with those of the MA samples, panel (b) and (d), we see
that in all cases the cycle supporting SCCs (boxes) are indeed
confined to the cycle-quadrant, i.e. the highlighted region in
the top left part of the figure, as they should. Moreover, note
the relative sparsity of cycle-supporting SCCs in the atomistic
(b) and mesoscopic (d) MA samples, when compared with
their poorly-aged counterparts, panels (a) and (c). This is con-
sistent with our earlier observation, namely that relative to the
poorly-aged samples, in the MA catalogs only a small fraction
of SCCs actually support symmetric cycles.

Plotting the SCCs against their exit strains (E −SCC,E
+

SCC)
also visualizes possible correlations in the locations of cy-
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cle supporting SCCs. For the poorly-aged samples, panels
(a) and (c), these SCCs fill out the cycle-quadrant rather uni-
formly and the extent to which this region is filled seems to
be limited mainly by the size of the catalog we have sampled,
i.e. the number of generations we tracked63. This is in con-
trast to the case of the moderately-aged samples, panels (b)
and (d): not only are there fewer SCCs in the cycle-quadrant,
but these SCCs tend to cluster around its boundaries, E +

SCC = 0
and E −SCC = 0, implying thereby that these SCCs can only sup-
port cycles with low amplitudes of a symmetrical shear pro-
tocol. In fact, for the mesoscopic samples we find that the
scarcity of SCCs within the cycle-quadrant and their cluster-
ing near its boundary becomes even more pronounced when
the samples are aged more, as shown in the SCC scatter plots
of panels (e) and (f) which were generated from samples that
underwent 150 and 4000 aging steps per site, respectively.

Thus panels (a) – (d) reveal that the SCC scatter plots ob-
tained from our mesoscopic model are qualitatively very simi-
lar to their atomistic counterparts: our mesoscopic model cap-
tures rather well the difference of the samples due to their ag-
ing as well the spatial distribution of the SCCs in the plane
plane of exit strains (E −SCC,E

+
SCC).

Before proceeding, we should note that there are sample-
to-sample fluctuations in the scatter plots obtained from the
individual glasses. This is also apparent in the variation of
catalog properties listed in Tables I and II, as well as in the
tables for the other catalogs given in Appendix E. In particu-
lar, the spatial population of SCCs in the cycle-quadrant varies
from sample to sample. Moreover, within a given sample the
populations of SCCs in the (E −SCC,E

+
SCC)-plane does not per-

fectly display the statistical E ±SCC→−E ∓SCC symmetry which
arises under interchange of the forward and reverse shearing
directions, even though the number of SCCs shown in these
plots are rather large. Nevertheless, the features we have been
discussing so far and in the following are typical and appear
to be robust from sample to sample. Appendix F contains a
discussion of the strip-like arrangement of the SCCs in the
plain of exit strains, which is highly pronounced in the case of
the atomistic samples, as well as the better-aged mesoscopic
ones.

X. THE DISORDER LANDSCAPE: DEPENDENCE OF
PLASTIC STRAINS ON AGING

Having established that the SCC scatter plots are a good
proxy to probe topological features of the disorder landscape,
we next look more closely at the effect of aging on our meso-
scopic glasses. Panels (c) – (f) of Fig. 11 show SCC scatter
plots obtained from increasingly better aged samples of our
mesoscopic glass which – apart from the PA, MA and WA
samples we considered so far – now includes also an ultra-
aged (UA) glass, obtained from a treatment with 4000 aging
steps per site. The properties of the 10 catalogs extracted from
these glasses are listed in Table VI of Appendix E.

Note that the moderately-aged (MA), well-aged (WA), and
ultra-aged (UA) samples each display distinct outlier SCCs
in the cyclic quadrant. For the MA sample these SCCs are

located around (E −SCC,E
+
SCC) = (−0.05,0.05), while for the

WA samples these are found at larger strains. These SCCs turn
out to be formed by mesostates that can be reached from the
initially prepared glass by strain deformation protocols that
do not go beyond the stress-peak and hence do not suffer the
subsequent large stress-drop.

To understand why with increased aging the cyclic quad-
rant becomes less densely populated by SCCs and why these
tend to cluster near its boundaries, we consider next the plas-
tic strains. Recall that with each mesostate A we associate
an elastic branch in the stress-strain plane. In the case of our
mesoscopic model, this branch is by construction linear and
the plastic strain εpl[A] associated with the branch is the (ex-
trapolated) value of the strain where the stress vanishes. By
averaging over the plastic strains of the mesostates that be-
long to an SCC, we obtain a coarse-grained plastic strain for
each SCC. The colors of the plot symbols shown in Fig. 11
represent the plastic strains of the SCCs, as indicated by the
color table legends. Note that for the mesoscopic samples,
panels (c) – (f), we have color-coded the same range of plas-
tic strains. Thus the shift of colors towards blue and red as
the samples get better aged indicates that the magnitudes of
typical plastic strains increase with aging.

Moreover, we see that the distribution of plastic strains
across SCCs is strikingly different for the differently aged
samples. The well- and ultra-aged samples reveal a clear bi-
modal distribution of plastic strains, characterized by very few
SCCs that have vanishing plastic strains64. For the poorly-
aged sample, panel (c), the distribution of plastic strains ap-
pears to be unimodal, with a large number of SCCs, particu-
larly those in the cycle quadrant, having plastic strains of very
small magnitude.

To understand better the segregation of SCCs by plastic
strain, we turn to the mesostates and their deformation his-
tories. Given a mesostate A, we consider the deformation path
that leads to it from the initially prepared glass state O. In
particular, we are interested in mesostates whose deformation
path experiences the stress-peaks and subsequent stress-drops,
that are encountered during monotonous shearing in the for-
ward or backward direction. We distinguish such states by
whether the stress-drop in the forward or backward direction
was experienced first, and call these FW, respectively BW
mesostates. In Fig. 12(a) we plot for each level of aging (MA,
WA, or UA) the plastic strain distribution extracted from the
elastic branches associated with the FW mesostates found in
all 10 catalogs. We do the same for BW mesostates. For
each level of aging we have thus two distributions of plas-
tic strains: one associated with FW, and one associated with
BW mesostates. We see that these distributions are peaked
and the location of the peaks move away from each other as
the samples are better aged. This can also be seen in the inset
of Fig. 12(a) where we plot the averages of these distributions
against the aging level. The bars accompanying each symbol
indicate the standard deviation of these distributions.

Panels (b) and (c) of Fig. 12 show the deformation path
of one particular FW mesostate A from the WA catalog. In
both panels the horizontal axis labels the mesostate transi-
tions starting from the initial glass state O and leading to A.
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FIG. 12. (a) Distribution of plastic strains of mesostates whose deformation paths have passed through the forward (FW) or backward (BW)
stress peak. The distributions were extracted from all moderately-, well- and ultra-aged catalogs aged, respectively, by 15 (MA), 150 (WA) and
4000 (UA) aging steps per site, and are labeled by circle-, diamond- and square-shaped plotting symbols. Each color refers to a different choice
of aging and whether the FW or BW stress peak was encountered first, as indicated in the legend. The inset shows the evolution of the mean
values of the FW (red symbols) and BW (blue symbols) plastic strain distributions. The standard deviation of the distributions is indicated by
the black bars. (b) and (c) sample strain and stress deformation path for a mesostate A from the WA sample #8, which experiences the FW stress
peak first. A is reached from the well-aged glass by undergoing 15 U-transitions followed by 25 D-transitions. The x-axis indexes the sequence
of transitions while the black and red circles on the y-axis indicate the strains, panel (b), and stresses, panel (c), at which the transitions occur.
The vertical blue lines indicate the extents of each of the elastic branches of the mesostates encountered along the deformation path from O to
A. The FW stress drop of ∆Σ≈ 0.4 occurs during the U-transition at g = 7, as visible in panel (c). The green diamonds in panel (b) mark the
plastic strains associated with the elastic branches visited. Refer to the text for further details.

Panel (b) shows the evolution of strains, while (c) depicts the
evolution of stress. Black and red circles mark the values at
which each transition occurs, respectively indicating whether
the transition happened as a result of a strain increase (black)
or decrease (red). The blue vertical lines indicated the extent
in strain (b) and stress (c) for each of the elastic branches asso-
ciated with the mesostates encountered along the deformation
path.

The protocol of applied strain that leads from O to A has
an initial segment where the strain is monotonously increased
to about ε = 0.08 (black dashed horizontal line), giving rise
to 15 U-transitions. Subsequently, the strain is monotonously
decreased to about zero (red dashed horizontal line) over 25
D-transitions. The large FW stress drop of ∆Σ ≈ 0.4 is seen
to occur at step g = 7, while the strain is still increasing. The
green curve superimposed in panel (b) shows the plastic strain
associated with each of the mesostate elastic branches along
the deformation path. We see that the stress-drop at step g = 7
is accompanied by a large increase in the plastic strain. As
we keep on increasing the driving strain, the plastic strain
continues to increase with g, though much more slowly. Re-

markably, once we start decreasing the strain again, the plas-
tic strain does not change appreciably. This shows that the
changes in plastic strain accrued as a result of experiencing
the stress drop are subsequently very difficult to undo, since
even a monotonous and prolonged decrease of strain does not
seem to change the plastic strain value very much.

We verified that for the better aged glasses, MA, WA and
UA, that all mesostates with an appreciable plastic strain have
a deformation history that experiences the stress drop. We
thus are able to link the bi-modal nature of the SCC plas-
tic strain distribution to the passage through the correspond-
ing stress peak which is then accompanied by a stress-drop,
as demonstrated in Fig. 12(b), (see also the t-graph excerpts
shown in Fig. 15 of Appendix E, where transitions accom-
panied by larger stress drops have been marked). The better
the aging, the larger the stress drops, and hence the larger the
jumps in plastic strain, and the more separated are the peaks
of the FW and BW distributions.

Moreover, as the evolution of plastic strains in Fig. 12(b)
clearly shows, these gains in plastic strain due to the expe-
rienced stress drop are apparently very hard to undo by sub-
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sequently shearing in the reverse direction. We find that un-
der shearing in the reverse direction the sample has now been
significantly softened, i.e. it has become more plastic (the
last 5 transitions from g = 35 to 40 happen at nearly con-
stant strain), indicating a rejuvenation of the sample28. Thus
for the well-aged and ultra-well-aged samples the diagonal
E −SCC +E +

SCC = 0 divides the plane of exit strains into an up-
per and lower half. SCCs located in the upper (lower) half
of the plot are SCCs whose mesostates were reached by pass-
ing through the forward (reverse) stress peak. This is also
consistent with the excerpts from the corresponding transition
graphs shown in Fig. 15 of Appendix E.

Discussion
We have introduced a depinning-like mesoscopic model of
amorphous plasticity characterized by a tunable aging and em-
bedded in a quenched disorder landscape. When driven by an
externally applied shear, the model recovers many phenomena
exhibited by sheared amorphous solids: a brittle-to-ductile
transition under monotonous strain loading, as well as an irre-
versibility transition under symmetric oscillatory shear, i.e. of
the form 0→ εamp→ 0→−εamp→ 0, and its dependence on
the extent the sample has been aged.

We find that the irreversibility transition exhibits a strong
dependence on system size as well as on the extent of prior ag-
ing of our mesoscopic glasses. Close to the transition, poorly-
aged systems show a power-law behavior for both the duration
of the transient (number of loading cycles needed to reach the
limit cycle) and the mean period of the cyclic response (mea-
sured in units of the number of driving cycles). Moreover,
with increasing system size, the strain value at which the ir-
reversibility transition occurs seems to converge to a well de-
fined value in the infinite system size limit.

In the case of the better aged samples, we find that cyclic
response under oscillatory shear emerges after only a few
loading cycles. The dependence on system size is more pro-
nounced in this case. Samples of small size exhibit a cyclic
response containing many plastic events and this response
continues up to strain amplitudes at which the system would
have yielded under monotonous shear loading. However, as
the sample size increases, the cyclic response becomes more
elastic and the range of strain amplitudes at which it is ex-
hibited shrinks. Changing the system size in our moderately-
and well-aged samples allows us to gradually transition from
a cyclic response whose phenomenology is characteristic of
poorly-aged glasses to one where this cyclic response is dom-
inantly elastic at larger sizes.

In order to better understand the dependence of the dynam-
ics of our mesoscopic model on the prior aging, we turned
next to the study of the transition graphs (t-graphs) which
capture the transitions between accessible elastic branches via
plastic events. The topology of the t-graphs encodes the dy-
namics under arbitrary shear loading protocols and thus pro-
vides a complementary tool to characterize the disorder land-
scapes underlying our differently aged systems. We con-

sidered a particular topological quantity characterizing the t-
graphs, its strongly connected components (SCCs), since any
cyclic response has to be confined to a single SCCs. The size
distribution of SCCs sampled from both atomistic and meso-
scopic simulations of differently aged samples all follow a
power-law with an exponent that varies little with the extent of
aging but is slightly smaller for the mesoscopic systems than
for the atomistic ones.

A closer inspection that also takes into account physical
properties associated with the SCCs, in particular their range
of stability and typical plastic strains, turns out to be extremely
informative. We find that the sample age induces a gradual
phase separation between domains of stability centered either
on the initial state or at a finite positive or negative plastic
strain. The complex age-dependence of the interplay between
the amplitude of the center of the domain and the width of the
stability ranges has important consequences on the accessibil-
ity of limit cycles depending on the particular parameters of
the cycling protocols.

Our findings have also implications for memory formation
in amorphous solids. Cyclic response under oscillatory shear
can encode information and thus form a “memory” about the
forcing that caused the response37. Viewed within the frame-
work of the t-graphs any periodic response must be confined
to one of its SCCs. Thus the evolution under oscillatory shear
is primarily a search for a confining SCC. In fact, such SCCs
not only contain the cycle forming the cyclic response, but
a hierarchy of nested cycles, one of which forms the cyclic
response. A hierarchical organization of cycles is typically
associated with return point memory39,41,47. In particular, the
size of an SCC, i.e. the number of configurations they contain,
can be regarded as a proxy for memory capacity41.

Since we find that the distribution of SCC sizes is broad,
irrespective of the thermal histories of the glasses from which
these distributions were sampled, this suggest a high memory
capacity even for well-aged glasses. However, a closer look at
the stability ranges of the SCCs found in these glasses, reveals
that only the poorly-aged samples have a large abundance of
SCCs that can support symmetric cyclic shearing protocols.
Contrastingly, in the case of the well-aged glasses very few
SCCs support cyclic response to such oscillatory shear pro-
tocols. We find that those that do are characterized by load-
ing/driving histories that did not experience the stress-peak
and subsequent stress drop. Consequently, their cyclic re-
sponse is largely elastic and confined to few and relatively
small SCCs.

On the other hand, loading histories in which a stress peak
and subsequent stress drop are encountered, invariably give
rise to rejuvenation of the sample which is also accompanied
by a jump of the plastic strain to non-zero values. As a re-
sult, a large number of SCCs become dynamically accessible.
However, due to the jumps in plastic strain, these SCCs will
only support cyclic response to oscillatory shear if the shear
strain is centred around the value of their plastic strain.

Having demonstrated that our mesoscopic model repro-
duces key features of amorphous solids under variable ather-
mal quasistatic loading, we conclude with a discussion of pos-
sible directions for future research. Compared to atomistic
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models, the computational cost of simulation of mesoscale
models is rather low, allowing us to perform extensive nu-
merical computations as well as probing system sizes not ac-
cessible to atomistic simulations. In this context, it would
be nice to understand better the complex interplay between
finite-size effects and the degree of aging that we have ob-
served under oscillatory shear. In the same vein, a detailed
statistical analysis of the spatial structure and correlations of
sites that undergo plastic activity will be of interest both near
the yielding transition, and also in the evolution of the tran-
sients toward cyclic response under oscillatory shear. In this
context, it would be relevant to understand how the spatial
structure of sites of plastic activity associated with transitions
within an SCC correlates with the size of the SCC and its sta-
bility range. In fact, one can regard the set of such active
sites as a fingerprint of its SCC and ask how this set changes
under transitions to neighbouring SCCs, thereby defining an
overlap function between SCCs. Since SCCs are containers
of periodic response, the strength of such overlaps will have
implications for memory formation. Strong overlaps would
imply that similar cyclic responses can be realized in neigh-
bouring SCCs. At the same time, such overlaps can also be
used to characterize in greater detail the topology of the dis-
order landscape and its possible hierarchical organization.
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Appendix A: Atomistic simulations

Atomistic simulations were performed on a two-
dimensional binary system with N = 1024 particles of
two sizes, where half the particles are 1.4 times larger than
the other half. We used a two-body radially-symmetric in-
teraction introduced in Ref.65 and used in Ref.19, employing
the same units of temperature and time discussed there. The
initial sample is prepared by first simulating the system at
a high temperature in a liquid state, and then quenching the
liquid to zero temperature. We used two different preparation
protocols to obtain soft and hard glasses. To obtain a soft
glass, starting from T = 1 we equilibrated the system for
t = 20 simulation time units and then reduced the temperature
to T = 0.1 and equilibrated for another t = 50. To obtain
a hard glass, starting from T = 1 we cooled the system to
T = 0.1 in steps of ∆T = 0.025, where at each step the
system was equilibrated for t = 10. Once an initial solid
sample was prepared, it was sheared quasistastically using
a standard AQS protocol: at each strain step, the system is
sheared using the Lees-Edwards boundary conditions66 such
that the total strain increases by 10−4. Immediately after
strain is applied, the energy is minimized using the FIRE
minimization algorithm67.

Appendix B: Mesoscopic simulations

We consider a scalar 2D lattice-based mesoscale elasto-
plastic model. The physics of this class of models relies on
the coupling between a threshold dynamics and an elastic in-
teraction induced by the incremental local plastic slip which
arises as a result of a mechanical instability3.

More specifically, we consider a square grid of N×N cells
of size a×a. The model is scalar, so that we account for one
and only one shear direction, along which we can shear the
system forward and backwards. We assume a uniform shear
modulus µ . Each individual cell (i, j) is characterized by a
stack of local elastic branches indexed by a variable `, each
of which relates the local stress σi j to the local strain εi j, as
shown in Fig. 1. The stability of each such local elastic branch
` is limited by two bounds: a maximum stress threshold σ

+
i j,`,

and a minimum stress threshold −σ
−
i j,`. Note that in order to

ease notation, whenever no explicit reference to a particular
branch number ` is made, we will omit it in the following.
The two thresholds σ

+
i j and σ

−
i j are drawn from a random dis-

tribution with support in R+ so as to ensure −σ
−
i j < σ

+
i j , i.e.

the existence of a stability domain for the cell (i, j).
In the present model, the local stress σi j experienced by

the cell (i, j) originates from two distinct contributions: a
global stress Σ due to the external loading, and an internal
stress associated to the interactions with other cells, so that
σi j = Σ+σ int

i j . The latter contribution fluctuates spatially and

is by definition of zero average so that we have σ int
i j = 0, and

therefore σi j = Σ. Here A denotes the spatial average of the
observable A.
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Due to the external loading and the stress interactions, the
local stress σi j is in general non-zero so that the amount of
(external) stress that needs to be applied in order to reach one
of the boundaries of the elastic branch is not a priori equal to
the stress thresholds σ

+
i j ,σ

−
i j . Instead, it is given by the local

plastic strengths in the positive and negative directions, which
we define as x+i j = σ

+
i j −σi j and x−i j = σi j +σ

−
i j , respectively.

Note that for a mechanically stable configuration we require
that −σ

−
i j < σi j < σ

+
i j , so that the quantities x±i j must be posi-

tive in that case.
The separation ∆ε between two neighboring local elastic

branches that belong to a given cell (i, j) defines the local plas-
tic strain ε

pl
i j,` experienced by the cell after the local stress has

reached threshold in one or the other direction.
Stress interaction – Local plastic strains are generated

within an elastic matrix (the other cells of the lattice). This
incompatibility induces an internal Eshelby stress field of
quadrupolar symmetry52. Since we assume homogeneous
elasticity, the elastic response to a unit plastic slip can be
computed once and for all. The internal stress thus directly
arises from the convolution of the field of plastic strain with
the Green function of Eshelby stresses. The latter is computed
from the discrete Fourier Transform of the analytical solution
in the reciprocal space. Details on the implementation and a
discussion can be found in Refs.49,68.

The typical stress drop associated to a rearrangement of
plastic strain ∆ε is of order µ∆ε . For the sake of comparisons
with atomistic simulations, we consider here µ = 10, a typical
value observed in Lennard-Jones binary model glasses19,69

Random landscape – The stress thresholds are drawn from
a random distribution P(σ±). Here we consider a Weibull
distribution of parameters λ = 1.0,k = 2.0, where λ and
k are constants in the cumulative density function given by
1−e−(σ

±/λ )k
. The plastic strain increment ∆ε = ε

pl
i j,`+1−ε

pl
i j,`

between two neighbor elastic branches ` and `+ 1 is also a
random variable, cf. Fig. 1. We choose it to be correlated
to the two plastic thresholds associated with the transition
`→ `+1, i.e. σ

+
i j,` in the forward direction and σ

−
i j,`+1 in the

backward direction. More specifically, we choose ∆ε from
a uniform distribution in [0,∆εmax] with ∆εmax = η(σ+

i j,` +

σ
−
i j,`+1)/(2µ), where η is a tunable parameter. Note that the

parameter η thus controls the strength of the elastic interac-
tion49,70: the larger η , the larger the short range stress kicks
that trigger the avalanche, but also the larger the amplitude
of the mechanical noise arising from the small positive and
negative contributions of the long range stress interaction. We
have set η = 1 in our simulations.

Nature of disorder – In the following we will consider two
different cases: (i) an annealed disorder where after a plastic
slip new values of the thresholds σ

+
i j , σ

−
i j are computed in the

absence of any memory; (ii) a quenched disorder, as a result of
which the stress landscape of any given cell remains fixed so
that the very same elastic branches are revisited in the course
of a back and forth motion.

The landscape with quenched disorder is implemented
through the use of a counter-based random number generator
(CRNG)71 so that the value of a threshold at the local elas-

tic branch ` only depends on the index ` of that branch and
on a previously defined key κ . In this way, the access to, say,
σ
+
` = fκ(`) requires just a simple call to the generator without

the need of storing a full sequence of random numbers.

In the following we will use an annealed disorder through-
out the glass preparation step and a quenched disorder
throughout the quasi-static shear driving steps. More specifi-
cally, we first “fabricate” our glasses using a two-step process,
which mimics a thermalization step at high T and a subse-
quent aging step at vanishing temperature. We control the de-
gree of aging of our glasses in this manner. Further details are
given in Section II. At the end of this preparation protocol the
different fields (thresholds in the forward/backward directions
σ
±
i j and internal stress σi j) are stored; the plastic strain field

is reinitialized at zero and this initial configuration is inserted
as the slice of index ` = 0 of a stack of quenched disorder
thresholds at each cell (i, j). This quenched configuration is
then used to perform mechanical loading.

Driving – Two kinds of mechanical loading are considered
in this study: monotonous shear loading and cyclic loading. In
both cases, the driving is strain controlled and changed quasi-
statically. The elementary steps consist in (i) identifying the
first site72 (i∗, j∗) which becomes unstable in the shear loading
direction, i.e. the extremal site; (ii) incrementing the external
strain ε up to the point where the extremal site (i∗, j∗) be-
comes unstable; (iii) incrementing the plastic strain of (i∗, j∗)
by ∆ε to trigger the transition `→ `± 1 to the next elastic
branch by the instability (plastification); (iv) updating the in-
ternal stresses of all sites; (v) identifying any site that has in
turn become unstable due to the internal stress update, plasti-
fying these sites as well, updating the internal stress etc. until
the end of the avalanche, i.e. until all sites have become stable
again; (vi) repeat steps (i)–(v) as needed.

Avalanches – The precise treatment of step (v), i.e. the
avalanche, deserves more detail. Once a list of unstable sites
has been identified, the question remains about the order in
which these sites will be updated. Indeed, since the elastic in-
teraction can induce both positive and negative stress kicks, an
unstable site can be healed and get stable again after another
one has been plastified and the resulting internal stresses at the
other sites have been updated, steps (iii) and (iv). Hence the
order of the updates matters. The effect of the ordering of up-
dates on the dynamical properties has been recently discussed
by Ferrero and Jagla73. Some of us opted for a synchronous
update51: all unstable sites are plastified simultaneously in
parallel; the internal stress is updated afterwards; after this
first sweep, a new configuration is reached, a stability test is
performed, if all sites are stable, the avalanche is over, other-
wise a new list of unstable sites is identified and the process
is iterated until a stable configuration is reached. Here we
make a different choice and perform a sequential update: the
most unstable site, i.e. the extremal site, is updated first (plas-
tic slip followed by an update of the associated elastic stress
field) and we repeat this procedure until all sites become sta-
ble again. This choice of updating protocol happens to be very
close to the extremal driving proposed in Ref.55
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Appendix C: Estimating the mesoscopic equivalent of the size
of atomistic simulations

Although our goal is not to quantitatively map the elasto-
plastic model onto atomistic simulations, we must ensure that
the disordered landscape statistics are comparable between
the two types of models. From this point of view, being able to
estimate the number of simulated elements of the mesoscopic
model, i.e. the system’s number of degrees of freedom, is
essential for a reasonable comparison which takes also into
account possible finite-size effects.

To estimate the equivalent number of simulated elements,
one must first determine the element size of the elastoplas-
tic model below which the mechanical description is unre-
solved. This size corresponds to an upper limit of the charac-
teristic plastic rearrangement size. Several experimental ap-
proaches have been performed to estimate the size of rear-
rangements ranging from direct observations in colloidal sys-
tems74 to indirect estimations from strain rate sensitivity anal-
ysis in metallic glasses75. In all of these cases, the results
show that plastic rearrangement cores contain a few dozen
particles, so that the overall sizes of these cores range from
about two to three particle diameters.

The determination of this length scale in atomistic sim-
ulations poses several difficulties. First, the presence of
avalanches makes it challenging to identify the individual re-
arrangements. Second, there is no method yet to spatially
distinguish between the non-linear and non-affine elastically
strained zones from the non-reversible plastic responses. Fi-
nally, another complication arises from the fact that the same
zone can contain several slip directions in a realistic particle
system76,77, resulting in an effective higher density of poten-
tial rearrangements than that of a scalar description. Sev-
eral approaches have been implemented to deal with these
difficulties. They rely on the analysis of long-range elastic
fields76,78, the quantitative calibration of elasto-plastic mod-
els57, the calculation of the spatial extension of rearrange-
ments79, the strain’s spatial correlations80,81, and the repro-
duction of the mechanical response from the spatial density of
barriers69. These approaches, particularly those using a two-
dimensional system under AQS loading like ours, lead to a
consistent estimate of the linear size of plastic rearrangements
lying between 3 and 7 particle diameters. For our atomistic
system containing 1024 atoms, these bounds lead to an equiv-
alent mesoscopic system size between N = 5 and 10.

We conclude this section with a comparison of the SCC dis-
tributions obtained from our atomistic simulations with those
obtained from catalogs of its mesocopic size-equivalent with
N = 8. The properties of our N = 8 mesoscopic catalogs are
given in Table IV below. The distributions are broad, and a
prominent size cut-off at largest SCC sizes is now less promi-
nent for the mesoscopic distributions when compared with the
SCC size distributions obtained from the N = 32 mesoscopic
catalogs, shown in Fig. 10.
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FIG. 13. Comparison of the SCC distribution obtained from the
atomistic simulations with those obtained from a mesoscopic model
with compatible system size N = 8. Shown are the distributions for
poorly- and medium-aged glasses.

TABLE IV. Properties of the 10 catalogs obtained from the meso-
scopic N = 8 poorly-aged and moderately-aged reference configu-
rations, shown in the left and right table respectively. Refer to the
caption of Table I for the description of the columns.

Run gcomp N0 NSCC

1 35 154630 45402
2 35 88933 22904
3 35 53179 15172
4 35 72471 21710
5 35 121168 33327
6 35 26003 5610
7 35 45376 11676
8 35 74215 20657
9 35 66648 15469
10 35 31616 7181

ALL n/a 734239 199108

Run gcomp N0 NSCC

1 44 74274 17668
2 44 74301 18749
3 44 54534 12360
4 44 148645 39763
5 44 113394 26659
6 44 246908 76190
7 39 341077 99587
8 44 25234 4347
9 44 163766 38098
10 44 154641 33074

ALL n/a 1396774 366495

Appendix D: Uniform shear of mesoscopic glass

Fig. 14 shows the dependence of stress under monotonous
strain loading on system size and aging. Different colors cor-
respond to different system sizes, as indicated in the legend,
while the line shapes correspond to the different degrees of ag-
ing. The curves have been obtained at various extent of aging
and for systems of size N = 16(4000), 32(1600), 64(750),
where the numbers in parenthesis indicate the number of re-
alizations used to obtain our results. While the poorly-aged
samples (PA with 0.8 aging steps per site) show no discernible
size-dependence, with increasing amount of aging a rather
weak system size dependence emerges, particularly near the
stress peak, as shown in the inset.
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FIG. 14. Stress-strain curves upon monotonous loading for various
system sizes and thermal histories. The inset shows a blow-up of the
region near the stress peak. The ultra-aged (UA) glass is not shown
to improve visibility.

Appendix E: Catalogs extracted from simulations of the
atomistic model and the mesoscopic model with well-aged
reference con�gurations.

In addition to the Tables I and II in the main text, which de-
scribe the properties of catalogs extracted from moderately-
and poorly-aged glasses of our mesoscopic model with N =
32, we also list here the properties of (i) two increasingly
better-aged mesoscopic catalogs, prepared from glasses sub-
jected to 150 and 4000 aging steps per site, which we will refer
to as the well-aged (WA) and ultra-aged (UA) glasses, respec-
tively, and (ii) atomistic catalogs obtained from 8 poorly-aged
and 30 well-aged reference configurations. The aging of the
atomistic glasses is controlled by the rate of quenching to zero
temperature from a high temperature liquid, as described in
Appendix A. We refer to these as fast (AS Fast) and slowly
(AS Slow) quenched atomistic glasses, respectively.

TABLE V. Properties of the 10 catalogs obtained from the N = 32
well-aged (WA) reference configurations aged at 150 aging steps per
site of our mesoscopic model. Refer to the caption of Table I for the
description of the columns.

Run gcomp N0 NSCC ncycles nsuppSCC smax
suppSCC nmaxsuppSCC

cycles

1 39 79565 25151 130 44 60 50
2 39 91201 27337 60 33 475 1
3 39 114686 36931 305 14 300 219
4 39 124298 33459 525 107 344 32
5 39 38629 13207 685 181 419 12
6 39 64475 13240 1388 606 127 7
7 39 26421 6677 115 45 38 12
8 39 80317 37092 122 65 56 50
9 39 68154 17009 43 5 26 38
10 39 84064 34515 66 2 88 42

ALL n/a 771810 244618 3439 1102 n/a 463

TABLE VI. Properties of the 10 catalogs obtained from the N = 32
ultra-aged (UA) reference configurations aged at 4000 aging steps
per site of our mesoscopic model. Refer to the caption of Table I for
the description of the columns.

Run gcomp N0 NSCC ncycles nsuppSCC smax
suppSCC nmaxsuppSCC

cycles

1 45 24999 2714 162 57 433 1
2 45 22443 1758 486 114 625 72
3 45 25541 1834 468 79 3173 43
4 45 28065 5796 205 77 703 5
5 45 77224 24002 94 51 168 8
6 45 19225 1643 314 107 2489 4
7 45 17750 1394 300 104 1292 1
8 45 15036 1066 681 107 1428 35
9 45 68780 14479 94 54 60 2
10 45 17118 1129 911 161 1467 93

ALL n/a 316181 55815 3715 911 n/a 264

Fig. 15 shows an excerpt of the transition graph extracted
from samples of sample #8 of our WA glass, panel (a), and
sample #3 of the ultra-stable UA glass, panel (b). The num-
ber of mesostates displayed in the t-graph excerpts shown are
1665 and 4610, respectively. We have obtained the graphs
shown in Fig. 9 of the main text as well as in Fig. 15 by start-
ing out in the reference configuration and following SCCs and
the transitions between them until at least 1500 mesostates
have been collected. For every SCC reached in this way, we
added also the remaining mesostates belonging to that SCC so
that the total number of vertices constituting the graph excerpt
is typically larger than 1500. The number of SCCs shown in
the excerpts of the two graphs in Fig. 15 are 216 (WA) and
19 (UA). The sizes of SCCs seen in the WA excerpt are small
(sSCC ≤ 56), while the UA excerpt has three very large SCC
with sizes sSCC = 3173,1271, and 82, shown in pink, yellow,
and green, respectively. These findings are consistent with
the SCC scatter plots shown in panels (e) and (f) of Fig. 11.
We believe that the emergence of the giant SCCs in the ultra-
stable sample is a finite-size effect.

The stress-strain curves of the well-aged samples under uni-
form shear exhibit large stress changes across the yielding
transition. For the WA and UA samples shown in Fig. 15,
the magnitude of these stress-jumps under shear in the for-
ward and reverse directions are ∆Σ = 0.46,0.45 for the WA
glass and ∆Σ = 0.62,0.70 for the ultra-stable UA glass. In the
graphs shown in Fig. 15 we have highlighted transitions that
involve stress-jumps with a magnitude of at least 0.1, by fat
black (U-transition) and red arrows (D-transition). Despite of
the relative low threshold value chosen for these jumps, only
very few transitions in the two graphs shown experience large
stress changes. Note that for both the WA and UA samples the
transitions involving the large stress-jumps under forward and
reverse shear tend to partition the graph into two halves (at
least to the resolution of the number of vertices shown). This
effect is even more dramatic for the ultra-stable glass sam-
ple where the transitions with large stress jumps immediately
leads to giant SCCs.
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FIG. 15. Excerpts of transition graphs extracted from well-aged (WA) and ultra-well-aged (UA) mesoscopic glasses with N = 32. Refer to text
for further details.

TABLE VII. Properties of the 8 catalogs obtained from poorly-aged
(fast quench) reference configurations of our atomistic model. Refer
to the caption of Table I for the description of the columns.

Run gcomp N0 NSCC ncycles Nsupp
SCC smax

suppSCC nmaxSCC
cycles

1 40 57638 24123 4650 1617 929 215
2 43 56158 27733 4515 1451 413 217
3 37 55658 24119 5380 1305 106 9
4 36 55057 24931 6972 1901 244 255
5 41 57602 27645 3297 834 458 396
6 35 53114 27939 4694 1453 259 244
7 41 65842 29580 4323 1185 379 253
8 45 58439 24794 5068 1187 234 235

ALL n/a 459508 210864 38899 10933 n/a 1824

Appendix F: Arrangement of SCCs on the plane of exit strains
E ±SCC

We conclude with a discussion of the spatial arrangement
of SCCs along a strip-like region in the (E −SCC,E

+
SCC), that is

clearly evident for the atomistic systems as well as the WA and
UA mesoscopic samples in the SCC scatter plots of Fig. 11.
The diagonal dashed line in each of the plots corresponds to

∆ESCC = E +
SCC−E −SCC. (F1)

As one would expect, the larger the strain range ∆ESCC over
which mesostates are trapped within an SCC, the larger the
size of the SCC itself. This trend is clearly visible in all
six panels of the plots. The smallest (and most numerous)
SCCs are clustered around small values ∆ESCC, while par-
ticularly for the WA and UA samples there appears to be
a value ∆ESCC = ∆Emax beyond which it is unlikely to find
SCCs, except for the outlier SCCs that we have associated
with mesostates not having experienced the stress-peak. A
naive estimate for ∆Emax can be made as follows. Denote
by Σss the steady-state yield stress reached under monotonous
loading (cf. Fig. 4). Assuming that between −Σss and Σss
the system responds purely elastically, we obtain the estimate

TABLE VIII. Properties of the 30 catalogs obtained from well-aged
(slow quench) references configurations of our atomistic model. Re-
fer to the caption of Table I for the description of the columns.

Run gcomp N0 NSCC ncycles Nsupp
SCC smax

suppSCC nmaxSCC
cycles

1 37 21105 11892 908 118 642 285
2 39 16416 7202 797 211 196 148
3 34 13894 5774 1101 264 503 135
4 34 13710 5188 874 246 328 153
5 37 18417 10118 552 140 371 120
6 40 17618 6659 1660 275 718 302
7 31 21250 10511 1373 371 330 64
8 37 20940 8876 907 349 802 170
9 43 18145 8578 664 26 980 78
10 34 16847 6895 793 200 334 33
11 32 13849 7535 766 201 521 178
12 40 17723 7326 1200 233 356 148
13 36 19814 10441 465 106 343 193
14 41 22248 8824 1132 220 513 251
15 35 14288 7221 727 123 377 199
16 39 20930 7124 1562 257 2688 712
17 42 15207 4769 1884 252 1017 375
18 42 20779 7891 1719 271 1232 583
19 35 16019 7276 712 186 729 263
20 39 17477 6786 765 169 1489 307
21 37 22784 11117 447 78 486 226
22 38 17773 6717 473 96 853 181
23 34 18273 7791 549 180 118 48
24 42 24157 8904 1099 256 451 102
25 37 14743 4966 1092 207 1199 274
26 39 19295 9505 664 192 383 89
27 36 19070 9547 873 301 518 146
28 39 23452 10941 786 105 892 172
29 42 18683 8289 822 89 833 341
30 39 20426 9671 1493 141 963 883

ALL n/a 555332 244334 28859 5863 n/a 7159

∆Emax = Σss/µ . From Fig. 4 we find that for the mesoscopic
samples Σss ≈ 0.85, while for the atomistic samples Σss ≈ 2.4.
The dashed lines shown in Fig. 11 correspond to these choices,
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i.e. E +
SCC−E −SCC = Σss/µ .

Appendix G: Finite-size e�ects and the irreversibility transition
from a t-graph perspective

As our cyclic shear simulations show, at strain amplitudes
close to but below the irreversibility transition, cyclic response
may eventually be attained, but after a long transient. In par-
ticular, for the better-aged MA and WA samples we find that
with increasing system size the transition to irreversibility be-
comes abrupt, meaning that we either reach cyclic response
after a few driving cycles (typically 1 or 2 cycles) or not at all,
implying a rather sharp and possibly discontinuous transition
from reversibility to irreversibility. Our simulations indicate
that this transition becomes smoother when the system size is
fixed and the samples are less aged or when we reduce the sys-
tem size at fixed aging steps per site. Thus ,for example, for
system sizes N = 16 and N = 32, the moderately-aged samples
are able to attain limit-cycles (cf. Fig. 8(a)), and even at strain
amplitudes that are well beyond the location of the stress peak
under uniform shear, which is thought of as marking the onset
of yielding. To demonstrate this, we have used red triangles
to mark on the monotonous loading curves of Fig. 4 the strain
amplitudes beyond which the probability of finding a cycle is
less than 2%. For the MA and WA samples there are located
beyond the stress peak.

These observations are consistent with findings in recent
work by one of us on periodically sheared 3d atomistic glass
formers82. There it was found that small samples that were
moderately- or well-aged exhibit cyclic response at ampli-
tudes well beyond the value of the strain at the stress peak.
As the size of the samples increases, a sharp irreversibility
transition at the stress peak is recovered. We should note
however, that in Ref.82 such behavior was found to be the
case only for totally asymmetric shear protocols of the form
0→ εamp→ 0→ εamp · · ·

Summarizing all of these findings: (i) we think that for the
better-aged samples, the cycles reached after relatively long
transients and at amplitudes beyond the stress-peak, meaning
that the cyclic driving must have passed through it at least
once, are an artefact of the system’s finite size. (ii) Related to
this, we also find that as the samples get increasingly better
aged, finite-size effects are not necessarily characterized by
long transients. A case in point is the response to cyclic shear
for the N = 32 UA sample. Here it turns out that a cyclic
response after only a few cycles is reached even at strain am-
plitudes as large as 0.4, which is well beyond the location of
the stress peak. Consequently such cycles are composed of a
large number of plastic events, and hence mesostates, mean-
ing that the SCCs confining them must be quite large as well.
This finding is consistent with the “giant” SCCs already visi-
ble in the transition graph excerpt of the N = 32 UA sample,
shown in Fig. 15(b). A better understanding of such finite size
effects, particularly in the ultra-stable glasses is clearly desir-
able and the subject of future work.
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