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Abstract

In this paper, we show that an input-output map can be realized by a linear
parameter-varying (LPV) state-space representation with an affine and static
dependence on the scheduling variables, if and only if this input-output map
satisfies certain LPV autoregressive input-output equations. The latter class
of equations is linear in the derivatives (for continuous-time) or time-shifts (for
discrete-time) of the outputs and control inputs, while the coefficients of this lin-
ear equation are polynomials of the shifts of the scheduling variable in discrete-
time, or of the high-order derivatives of the scheduling variable in continuous-
time. This result is a generalization of the well-known equivalence between linear
state-space representations and autoregressive input-output models. Moreover,
this result extends the results of [1] on LPV state-space representations with
a dynamic and meromorphic dependence on the scheduling variables to LPV
state-space representations with a static and affine dependence on the schedul-
ing variables.

1. Introduction

Linear parameter-varying (LPV) systems are usually defined as linear time-
varying systems, where the time varying coefficients are functions of a certain
time-varying signal, the so-called scheduling variable [1],[2]. Practical use of
LPV systems is stimulated by the fact that LPV control design [3–9] and identi-
fication [10–20] are well developed. Despite these advances, there are important
gaps in system theory for LPV systems.
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One such a gap is the relationship between input-output representations and
state-space representations for LPV systems. This question was addressed by
[1, 2], but [1, 2] considered LPV systems in terms of both state-space and input-
output representations with nonlinear and dynamic dependence on the schedul-
ing variable. More precisely, the system parameters were meromorphic functions
of the scheduling variables and its derivatives (continuous-times), or of the cur-
rent and future values of the scheduling variable (discrete-time). However, from
a practical point of view, LPV state-space representations with static and affine
dependence (affine dependence on the instantaneous value of the scheduling vari-
able) are preferable [9–20]. We will use the abbreviation LPV-SSA for the latter
class of state-space representations.

The motivation for the contribution of this paper is as follows: the trans-
formation from [1, 2] may yield an input-output representation with a dynamic
nonlinear dependence, even if it is applied to an LPV-SSA representation. Con-
versely, even if we know that an input-output representation arises from an
LPV-SSA representation, the transformation of [1, 2] needs not yield an LPV-
SSA representation. That is, [1, 2] does not tell us which class of input-output
representations corresponds exactly to the class of LPV-SSA representations.
Answering this question is especially useful for system identification. Indeed,
in general, identification of input-output representations is easier than that of
state-space representations. However, for control design LPV-SSA representa-
tions are highly preferred. Hence, for the identification of input-output represen-
tations to be meaningful, we need to know which input-output representations
correspond to LPV-SSA representations, and how to transform an identified
input-output representation to an LPV-SSA representation.

The current paper is an attempt to close this gap. We consider both the
discrete-time (DT) and the continuous-time (CT) cases. We show that an
input-output map can be realized by a LPV-SSA representation, if and only
if the input-output map satisfies a so called linear parameter-varying autore-
gressive (LPV-ARX) representation. The latter means that any input, output
and scheduling signal which are consistent with the input-output map satisfy an
equation, which is linear in the derivatives (CT) or time-shifts (DT) of the inputs
and outputs. Moreover, the coefficients with which the derivatives or time-shifts
of the outputs or inputs are multiplied are functions of the scheduling signal.
More precisely, these coefficients are polynomials of the shifted scheduling vari-
ables (DT) or of high-order derivatives of the scheduling variables (CT).

For the DT case, the result was already announced in [21], but without
proofs. The technical report [22] sketches some of the proofs for the DT case.
For the CT case, which is much more challenging than the DT case, the result
of this paper are completely new. For the proof of our results, we use [23–
26], where the correspondence between bilinear state-space representations and
polynomial input-output equations was shown. In contrast to [23–26], we deal
with LPV models. Hence, the adaptation of the results of [23–26] to LPV
models is not trivial. In [27] a characterization is presented of those LPV input-
output representation which correspond to LPV state-space representations with
a nonlinear (hence not necessarily affine) and static dependence. For this reason,
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the results of [27] do not imply the results of this paper.
As it was mentioned above, [1] addressed the equivalence between a class

of LPV state-space representations. However, in [1] the matrices of the LPV
state-space representation were assumed to be meromorphic functions of the
scheduling variable and its derivatives (in CT) or time-shifts (in DT). Similarly,
in [1] the coefficients of input-output equations were assumed to be meromorphic
functions of the scheduling variable and its derivatives (in CT) or time-shifts (in
DT). In contrast, in this paper we consider only LPV state-space representations
with matrices which are affine functions of the scheduling variable, and they do
not depend on the derivatives or time-shifts of the scheduling variable. In addi-
tion, in this paper we consider input-output equations with coefficients which are
polynomial functions of the scheduling variables and their derivatives (in CT)
or time-shifts (in DT). The results of [1] only tell us that if an input-output
behavior can be realized by an LPV-SSA, then it will satisfy a input-output
equation with coefficients that can depend dynamically and meromorphically
on the scheduling variables. However, [1] does not imply that these coefficients
can be restricted to be only polynomials. More importantly, [1] does not charac-
terize those input-output equations which have an LPV-SSA realisation. That
is, [1] does not answer the question which input-output equations should an
input-output behavior satisfy in order to be realizable by an LPV-SSA, which
is useful for further utilization, such as control design.

The paper is organized as follows. In Section 2, basic notions and concepts
are introduced, which are followed by the definition of LPV-SSA representations,
input-output maps and LPV-ARX representations. In Section 3, the main re-
sults of the paper are stated. In Section 4, we present the proof of the main
results.

2. Preliminaries

Notation. Let Z and R be the set of integer and real numbers, respectively, while
N = Z+

0 and R+
0 stand for the set of non-negative integers and non-negative reals.

For a set X, denote by S(X) the set of finite sequences generated from X, i.e.,
each s ∈ S(X) is of the form s = ζ1ζ2 · · · ζk with ζ1, ζ2, . . . , ζk ∈ X, k ∈ N.
|s| denotes the length of the sequence s, while for s, r ∈ S(X), sr ∈ S(X)
corresponds the concatenation operation. The symbol ε is used for the empty
sequence and |ε| = 0 with sε = εs = s. Furthermore, XN denotes the set of all
functions of the form f : N→ X. For each j = 1, . . . ,m, ej is the jth standard
basis in Rm. Furthermore, let Is2s1 = {s ∈ Z | s1 ≤ s ≤ s2} be an index set for
s1, s2 ∈ Z.

Let T = R+
0 = [0,+∞) be the time axis in the CT case, and T = N in the

DT case. Denote by ξ the differentiation operator d
dt (in CT) and the forward

time-shift operator q (in DT), i.e., if z : S → Rn, S ⊆ T then ξz is a function
on S, such that for T = R+

0 , (ξz)(t) = d
dtz(t) for all t ∈ S, and for T = N,

(ξz)(t) = z(t+ 1) for all t ∈ S. Note that in DT, we will apply ξ only when for
every t ∈ S, t + 1 ∈ S. As usual, denote by ξk the k-fold application of ξ, i.e.
for any z : T→ Rn, ξ0z = z, and ξk+1z = ξ(ξkz) for all k ∈ N.
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A function f : R+
0 → Rn is called piecewise-continuous, if f has finitely many

points of discontinuity on any compact subinterval of R+
0 and, at any point of

discontinuity, the left-hand and right-hand side limits of f exist and are finite.
We denote by Cp(R+

0 ,Rn) the set of all piecewise-continuous functions of the
above form. We denote by Ca(R+

0 ,Rn) the set of all n-dimensional absolutely
continuous functions [28].

LPV-SSA representations. Below we follow the presentation of [29]. An LPV
state-space (SS) representation with affine linear dependence on the scheduling
variable (abbreviated by LPV-SSA) is a system of the form

Σ

{
ξx(t) = A(p(t))x(t) +B(p(t))u(t),
y(t) = C(p(t))x(t) +D(p(t))u(t),

(1)

where x(t) ∈ X = Rnx is the state variable, y(t) ∈ Y = Rny is the (measured)
output, u(t) ∈ U = Rnu represents the input signal and p(t) ∈ P ⊆ Rnp is the
so called scheduling variable of the system represented by Σ, where the matrix
functions A(·), . . . , D(·) defining the SS representation (1) are considered to be
affine and static functions of p(t) in the form

A(p(t)) = A0 +

np∑
i=1

Aipi(t), B(p(t)) = B0 +

np∑
i=1

Bipi(t),

C(p(t)) = C0 +

np∑
i=1

Cipi(t), D(p(t)) = D0 +

np∑
i=1

Dipi(t),

(2)

for every p(t) = [ p1(t) · · · pnp
(t) ]> ∈ P, with constant matrices Ai ∈

Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx and Di ∈ Rny×nu for all i ∈ Inp

0 . The
signal p corresponds to varying-operating conditions, nonlinear/time-varying
dynamical aspects and /or external effects influencing the plant behavior and it
is allowed to vary in the set P, see [1] for details.

Remark 1. In the sequel, for the sake of simplicity, we assume that P = Rnp .

By a solution of Σ we mean a tuple of trajectories (x, y, u, p) ∈ (X ,Y,U ,P)
satisfying (1), where

� in CT, X = Ca(R+
0 ,X),Y = Cp(R+

0 ,Y),U = Cp(R+
0 ,U),P = Cp(R+

0 ,P),

� in DT X = XN,Y = YN,U = UN,P = PN.

Note that in CT, (x, u, y, p) is assumed to satisfy (1) for almost all t ∈ R+.
Note that for any input and scheduling signal (u, p) ∈ U ×P and any initial

state xo and any initial time to, there exists a unique pair (y, x) ∈ Y × X such
that (x, y, u, p) is a solution of (1) and x(to) = xo. That is, the dynamics of Σ
are thus driven by the inputs u ∈ U as well as the scheduling variables p ∈ P.

Remark 2 (Zero initial time). Notice that without loss of generality, we can
take initial time to = 0, see [2].
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Let xo ∈ Rnx be an initial state of Σ. Then the input-to-output function of
Σ induced by xo is the function

YΣ,xo : U × P → Y,

such that for any (u, p, y) ∈ U × P × Y,

y = YΣ,xo
(u, p)

if and only if there exists a state trajectory x ∈ X such that (x, y, u, p) is a
solution of (1) and x(0) = xo.

In other words, YΣ,xo
(u, p) is the output trajectory of Σ which corresponds

to the input u, scheduling signal p and a state trajectory x of Σ such that
x(0) = xo.

We formalize potential input-output behavior of LPV-SSA representations
as functions of the form

Y : U × P → Y. (3)

The LPV-SSA representation Σ is called a realization of the function Y of the
form (3) from the initial state xo, if Y = YΣ,xo

. If the initial state is not
relevant, then we will say that the LPV-SSA Σ is a realization of Y, if there
exist an initial state xo of Σ, such that Σ is a realization of Y from xo. We
say that Y has an LPV-SSA realization, if there exists an LPV-SSA which
is a realizatioon of Y. We refer the reader to [29] for necessary and sufficient
conditions for existence of an LPV-SSA which is a realization of an input-output
map Y.

Note that we can assume that D(·) ≡ 0 without any loss of generality re-
garding the concepts of realizability. Therefore, in the sequel, we will assume
that Di = 0 for all i ∈ Inp

0 , and we will often use the shorthand notation

Σ = (P, {Ai, Bi, Ci}
np

i=0)

to denote an LPV-SSA representation of the form (1).

Impulse response representation (IRR). Next, we recall from [21, 22, 29] the
notion of an impulse response representation (IRR) of an input-output map
both in CT and DT. Note that in [29] (in CT) and in [21, 22] (in DT), it was
shown that all input-output maps which are realizable as an LPV-SSA admit
such a representation, so for the purposes of this paper we will restrict attention
to input-output maps which admit an IRR.

In order to define IRRs, we need the following notation and terminology.

Notation 1. Let pq denote the qth entry of the vector p ∈ Rnp if q ∈ Inp

1 and
let p0 = 1. That is, for any p ∈ P, p0(t) = 1 and pq(t) is the qth entry of p(t).

Definition 1. For any sequence s ∈ S(Inp

0 ), time moments t, τ ∈ T, τ ≤ t, and
any scheduling trajectories p ∈ Cp(R+

0 ,Rnp) (in CT) or p ∈ (Rnp)N (in DT), the
so-called sub-Markov dependence (ws � p)(t, τ) is defined as follows:
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� Continuous-time: If s = ε is the empty sequence, then let (wε �
p)(t, τ) = 1. If s = s1s2 · · · sn for some n > 0, s1, . . . , sn ∈ Inp

0 , then

(ws � p)(t, τ) =

∫ t

τ

psn(δ) · (ws1s2···sn−1 � p)(δ, τ) dδ.

� Discrete-time: If s = ε, then (wε � p)(τ − 1, τ) = 1, if s is of the form
s = s1s2 · · · sn, for n = t− τ + 1 and for some s1, . . . , sn ∈ Inp

0 , then

(ws � p)(t, τ) = ps1(τ)ps2(τ + 1) · · · psn(t),

or otherwise (ws � p)(t, τ) = 0 for |s| 6= t− τ + 1.

Definition 2 (Impulse response representation, [29]). Let Y be an input-output
map of the form (3). We say that Y has a impulse response representation
(IRR) if there exist functions

θi,j,Y : S(Inp

0 ) 7→ Rny×nu , ηi,Y : S(Inp

0 ) 7→ Rny , i, j ∈ Inp

0 ,

such that

1. {θi,j,Y}
np

i,j=0, {ηi,Y}
np

i=0 satisfy an exponential growth condition, i.e., there

exist constants K,R > 0 such that ∀s ∈ S(Inp

0 ) with |s| ≥ 1,

‖θi,j,Y(s)‖F ≤ KR|s|, ‖ηi,Y(s)‖F ≤ KR|s|,

for all i, j ∈ Inp

0 , where ‖.‖F denotes the Frobenius norm;
2. for each (u, p) ∈ U × P, t ∈ T,

Y(u, p)(t) =

{
(gY � p)(t) +

∫ t
0
(hY � p)(δ, t)u(δ) dδ, in CT

(gY � p)(t) +
∑t−1
δ=0(hY � p)(δ, t)u(δ) in DT

where gY � p : T → Rny and hY � p : {(τ, t) ∈ T × T | τ ≤ t} → Rny×nu

are defined as follows. In the CT case,

(gY � p)(t) =
∑
i∈Inp

0

s∈S(Inp
0 )

ηi,Y(s)pi(t)(ws � p)(t, 0),

(hY � p)(δ, t) =
∑

i,j∈Inp
0

s∈S(Inp
0 )

θi,j,Y(s)pi(t)pj(δ)(ws � p)(t, δ),

and, in the DT case,

(gY � p)(t) =
∑
i∈Inp

0

s∈S(Inp
0 )

ηi,Y(s)pi(t)(ws � p)(t− 1, 0),

(hY � p)(δ, t) =
∑

i,j∈Inp
0

s∈S(Inp
0 )

θi,j,Y(s)pi(t)pj(δ)(ws � p)(t− 1, δ + 1).
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The functions {θi,j,Y, ηi,Y}
np

i,j=0 will be referred to as sub-Markov parameters of
Y.

From [29, Lemma 2] it follows that if Y has an IRR, then the sub-Markov
parameters are uniquely defined by Y. Conversely, from [29, Lemma 2] it fol-
lows that if two input-output maps both have an IRR and their sub-Markov
parameters are equal, then these two functions are equal too.

To provide a good intuition on the notion of the IRR, recall from [29] the
following result: if Y can be realized by an LPV-SSA representation Σ of the
form (1) from the initial state xo, then Y has an IRR representation, and for
all τ ≤ t ∈ T, p ∈ P,

(gY � p)(t) =

{
C(p(t))Φp(t− 1, 0)xo in DT

C(p(t))Φp(t, 0)xo in CT

(hY � p)(τ, t) =

{
C(p(t))Φp(t− 1, τ + 1)B(p(τ)) in DT

C(p(t))Φp(t, τ)B(p(τ)) in CT

(5)

Here Φp(t, τ) is the fundamental matrix of the time-varying linear system

ξx(t) = A(p(t))x(t),

i.e.,
Φp(τ, τ) = Inx

and for all τ ≤ t ∈ T,

d

dt
Φp(t, τ) = A(p(t))Φp(t, τ)

in CT and
Φp(t+ 1, τ) = A(p(t))Φp(t, τ)

in DT. In fact, according to [29, Lemma 3] the following lemma holds.

Lemma 1. An input-output map Y is realized by Σ of the form (1) from the
initial state xo, if and only if Y has an IRR which satisfies for all i, j ∈ Inp

0 that

∀s ∈ S(Inp

0 ) : ηi,Y(s) = CiAsxo, θi,j,Y(s) = CiAsBj (6)

where for s = ε, As denotes the identity matrix, and for s = s1s2 · · · sn and
s1, s2, . . . , sn ∈ Inp

0 , n > 0, As = AsnAsn−1
· · ·As1 .

Existence of an IRR of Y implies that Y is affine in u and can be represented
as a convergent infinite sum of iterated integrals in CT, while, in DT, Y is a
polynomial in p. In [29], it was shown that the sub-Markov parameters deter-
mine the input-output map uniquely. Moreover, in [29], it was shown that the
input-output maps of an LPV-SSA representation admit an IRR, and the cor-
responding sub-Markov parameters can be expressed as products of the system
matrices of the LPV-SSA representation.

To illustrate Definition 2, we recall from [29] the following example.
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Example 1. Assume that P = R, nu = ny = 1 and let Y be an input-output
map of the form (3) and assume it has an IRR. Then in DT, using that p0(t) = 1
for all t ∈ T,

(hY � p)(2, 5) = θ0,0,Y(00) + p(4)θ0,0,Y(01) + p(3)θ0,0,Y(10)+

+ p(3)p(4)θ0,0,Y(11) + · · ·+ p(2)p(5)θ1,1,Y(00) + p(2)p(5)p(4)θ1,1,Y(01)+

p(2)p(5)p(3)θ1,1,Y(10) + p(2)p(5)p(3)p(4)θ1,1,Y(11)

(gY � p)(2) = η0,Y(00) + p(1)η0,Y(01) + p(0)η0,Y(10) + p(0)p(1)η0,Y(11)+

p(2)η1,Y(00) + p(2)p(1)η1,Y(01) + p(2)p(0)p(1)η1,Y(11).

For CT,

(hY � p)(2, 5) = θ0,0,Y(ε) + 3θ0,0,Y(0) + θ0,0,Y(1)

∫ 5

2

p(s)ds+

+ · · ·+ θ0,0,Y(101)

∫ 5

2

p(s1)

∫ s1

2

∫ s2

2

p(s3)ds3ds2ds1 + · · ·

+ p(2)[θ0,1,Y(ε) + 3θ0,1,Y(0) + θ0,1,Y(1)]

∫ 5

2

p(s)ds

+ p(2)θ0,1,Y(101)

∫ 5

2

p(s1)

∫ s1

2

∫ s2

2

p(s3)ds3ds2ds1 + · · ·

(gY � p)(2) = η0,Y(ε) + 2η0,Y(0) + η0,Y(1)

∫ 2

0

p(s)ds+

+ · · ·+ η0,Y(101)

∫ 3

0

p(s1)

∫ s1

0

∫ s2

0

p(s3)ds3ds2ds1 + · · ·

+ p(2)η1,Y(ε) + 2p(2)η1,Y(0) + p(2)η1,Y(1)

∫ 2

0

p(s)ds+

· · ·+ p(2)η1,Y(101)

∫ 2

0

p(s1)

∫ s1

0

∫ s2

0

p(s3)ds3ds2ds1 + · · ·

That is, in DT, (hY � p)(2, 5) is a polynomial of p(2), p(3), p(4), p(5), and the
degree of p(2), p(3), p(4), p(5) in each monomial is at most one. Moreover, for
each i, j ∈ {0, 1}, θi,j,Y(s) are the coefficients of this polynomial with s being a
sequence of elements {0, 1} of length at most 2. In particular, only the compo-
nents of the sub-Markov parameters of the form θY(s), with s being of length 2,
occur in (hY � p)(2, 5). In contrast, in CT, (hY � p)(2, 5) is an infinite sum of
iterated integrals of p, where all the components of the form θi,j,Y(s), i, j = 0, 1,
with s being a sequence of arbitrary length, occur in (hY � p)(2, 5). The picture
for (gY � p)(2) is analogous.

Example 2. Assume that P = R, nu = ny = 1 and let Y be an input-output
map of the form (3) and assume it has an IRR with θi,j,Y(ε) = 0,

θ1,j,Y(l) = 0, θi,0,Y(l) = 0, η1,Y(l) = 0
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for all i, j, l ∈ I10 = {0, 1}, and

θ0,1,Y(0) = 0, θ0,1,Y(1) = 1, η0,Y(ε) = 1, η0,Y(0) = 0, η0,Y(1) = 1

and for all w ∈ S(Inp

0 ), |w| ≤ 2, θi,j,Y(w), ηi,Y(w) are defined recursively w.r.t.
the length of w as follows:

� if w = v00 or w = v10 for some v ∈ S(Inp

0 ), i.e., w terminates with the
sequence 00 or 10, then θi,j,Y(w) = ηi,Y(w) = 0;

� if w = v11 for some v ∈ S(Inp

0 ), i.e., w terminates with the sequence 11,
then θi,j,Y(w) = θi,j,Y(v), ηi,Y(w) = ηi,Y(v);

� if w = v01, for some v ∈ S(Inp

0 ), i.e., w terminates with the sequence 01,
then θi,j,Y(w) = θi,j,Y(v1) + θi,j,Y(v) and ηi,Y(w) = ηi,Y(v1) + ηi,Y(v).

Then it is easy to see that θi,j,Y, ηi,Y satisfy (6) with

A0 =

[
0 0
1 1

]
, A1 =

[
0 1
1 0

]
, B1 =

[
0
1

]
, B0 =

[
0
0

]
C0 =

[
1 0

]
, C1 =

[
0 0

]
, x0 =

[
1 1

]>
and as the result Σ = (P, {Ai, Bi, Ci}1i=0) is a realization of Y, both in DT and
CT.

3. Statement of the main results

In this section, we state the main results of the paper. For the sake of
readability, the proofs of the results will be given later in Section 4.

In order to state the main result, we have to define the class of input-output
representations which correspond to LPV-SSA representations. Informally, the
latter class will be the class of equations which are linear in the repeated shifts
(DT) or the high-order derivatives (CT) of the inputs and the outputs, and
which are polynomial in the repeated shifts (DT) or the high-order derivatives
(CT) of the scheduling signal. In order for such representations to be well posed
in the CT case, we have to show that smooth inputs and scheduling signals
result in smooth output responses at least for input-output maps which admit
an IRR. This will be done in the next lemma.

Lemma 2. In CT, if a given input-output map Y of the form (3) admits an
IRR, then Y(u, p) is smooth for all smooth (p, u) ∈ P × U .

Proof of Lemma 2. See Subsection 4.4.

In order to define the desired class of input-output representations formally,
we will use the following terminology: a function f : Rm → Rk×l will be said to
be polynomial, if its coordinate functions are polynomial, i.e. if fi,j : Rm 3 x 7→
(f(x))i,j ∈ R is a polynomial function for all i ∈ {1, . . . , k}, j ∈ {1, . . . , l}.
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Definition 3 (LPV-ARX representation). An LPV input-output autoregressive
(abbreviated by LPV-ARX) representation is a collection

({Ai,j}i∈Iny
1 ,j∈In0

, {Bi,j}i∈Iny
1 ,j∈In−1

0
), (7)

of polynomial functions of the form Ai,j : Rnp(n+1) → R, i ∈ Iny

1 , j ∈ In0 and
Bi,j : Rnp(n+1) → R1×nu , i ∈ Iny

1 , j ∈ In−1
0 , such that, for each i ∈ Iny

1 , not all
of the parameters {Ai,j}i∈In1 are zero, i.e., Ai,j 6= 0 for some j ∈ Ii.

Definition 4 (LPV-ARX representation of an input-output map). Consider
an input-output map Y of the form (3) that admits an IRR. The LPV-ARX
representation (7) is said to be an LPV-ARX representation of Y, if for any
pair of signals u ∈ U , p ∈ P, such that in CT case u and p are smooth, the
signal y = Y(u, p) satisfies

n∑
j=0

Ai,j(p, ξp, . . . , ξnp)ξjyi =

n−1∑
j=0

Bi,j(p, ξp, . . . , ξnp)ξju, (8)

for all i ∈ Iny

1 , where yi is the ith entry of y, i ∈ Iny

1 .

Example 3 (Continuous-time LPV-ARX representation). Consider the follow-
ing LPV-ARX representation: np = 2, ny = 1, nu = 1, n = 2, A1,2(p, ddtp) = p,

A1,1(p, ddtp) = −(p +
(
d
dtp
)
), A1,0(p, ddtp) = −(1 + p)p2, B1,0(p, ddtp) = p3,

B1,1(p, ddtp) = 0. Then

({A1,j}2j=0, {B1,j}1j=0) (9)

is an LPV-ARX representation of Y, if for all y = Y(u, p), where u and p are
smooth, the following holds:

ÿ(t)p(t)− ẏ(t)(p(t) + ṗ(t))− (1 + p(t))p2(t)y(t) = p3(t)u(t),

where ÿ(t) = d2

dt2 y(t), ẏ(t) = d
dty(t), ṗ(t) = d

dtp(t).

Example 4 (Discrete-time LPV-ARX representation). Consider the following
LPV-ARX representation: np = 2, ny = 1, nu = 1, n = 2, A1,2(p, ξp) = p,
A1,1(p, ξp) = −ξp, A1,0(p, ξp) = −(1 + p)pξp, B1,0(p, ξp) = p2ξp, B1,1(p, ξp) =
0. Then

({A1,j}2j=0, {B1,j}1j=0) (10)

is an LPV-ARX representation of Y, if for all y = Y(u, p) , the following holds:

y(t+ 2)p(t)− y(t+ 1)p(t+ 1)− (1 + p(t))p(t)p(t+ 1)y(t) = p2(t)p(t+ 1)u(t).

Note that Lemma 2 ensures that the right-hand side of (8) is well defined.
We can now state the following theorem which is our main result.

Theorem 1 (LPV-SSA representation of an input-output map). Consider an
input-output map Y which admits an IRR. Then Y has an LPV-SSA realization
if and only if there exists an LPV-ARX representation of Y.
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Proof of Theorem 1. See Subsection 4.4.

The main contribution of Theorem 1 is that it gives an exact characterization
of those LPV-ARX representations which correspond to LPV-SSA realization.
In [1], a more general form of LPV-ARX representations was considered. There,
the coefficients of the input-output equations were assumed to be meromorphic
functions of the future values of the scheduling variables (DT) or of the current
derivatives of the scheduling variables (CT), and it was shown that an input-
output map admits such a general LPV-ARX representation, if and only if it
arises as an input-output map of a LPV state-space representation whose matri-
ces depend on the scheduling variable in a meromorphic and dynamical manner.
However, the results of [1] do not tell us which LPV-ARX representations cor-
respond to LPV-SSA representations. In fact, even if the construction of [1] is
applied to an LPV-SSA, and the resulting LPV-ARX representation is of the
type defined in Definition 3, the application of the algorithm from [1, Section
4.3] will not in general yield an LPV-SSA, as it works with specific constructions
of state basis, which often will not correspond to the state basis on which the
original LPV-SSA representation was based on.

Theorem 1 implies that if we want to represent the input-output behavior of
an LPV-SSA representation by an LPV-ARX, then in general, the coefficients
of the LPV-ARX representation will still depend on scheduling variable in a
dynamical way.

We prove Theorem 1 by using known results on the relationship between
input-output equations and bilinear state-space representations. This relation-
ship was explored in [24] in DT case, and in [25, 30, 31] for CT case. Note that
bilinear state-space representations can be viewed as a subclass of LPV-SSA
without control inputs, if we view scheduling signals as inputs, so the use of
bilinear systems theory is quite natural in this context.

We have not formulated explicit algorithms for converting an LPV-ARX
form to an LPV-SSA form or vice versa. The reason for this is that such al-
gorithms would have to solve, as a special case, the problem of converting an
input-output equation to a bilinear state-space representation and vice versa.
However, despite the existence of a rich literature on bilinear systems, we have
not found such algorithms in the literature. The results of [30, 31], which use
differential algebra, suggest that in the CT case, input-output equations for bi-
linear state-space representations could, in principle, be obtained by computing
formal derivatives of the inputs and outputs and then eliminating the state vari-
able. However, no explicit algorithm has been formulated so far, to the best of
our knowledge. The analysis of the proofs of [30, 31] does not suggest an obvious
way to formulate such algorithms. The problem of designing algorithms for the
opposite transformation, i.e., for converting input-output equations to bilinear
state-space representations is not obvious either. The proofs of [24, 25, 30, 31]
do not suggest any easy way to formulate such algorithms. For these rea-
sons, the problem of formulating algorithms for converting an LPV-SSA to an
LPV-ARX or vice versa remains a topic of future research.

This being said, the proof of Theorem 1 is partially constructive. In particu-
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lar, it is possible to use the proof of Theorem 1 and the proofs from [24, 25, 30, 31]
to perform the transformation from an LPV-ARX to an LPV-SSA and back for
simple examples. Such an illustrating example is presented in Subsection 4.5 of
Section 4.

4. Proof of the main result

Below we present the proof of the main result of the paper formulated as
Theorem 1. We prove Theorem 1 by first showing that it can be reduced to the
single output case, and then using known results on the relationship between
input-output equations and bilinear state-space representations. The section is
organized as follows. In Subsection 4.1 we sketch the structure of the proof of
Theorem 1. In Subsection 4.2 we present the argument that it is enough to
prove Theorem 1 for the single output case. We recall the necessary facts for
bilinear state-space representations in Subsection 4.3. Then in Subsection 4.4
we present the proof of Theorem 1 and Lemma 2. We conclude the section by
presenting in Subsection 4.5 an example illustrating the steps of the proof of
Theorem 1.

4.1. Structure of the proof

The main ingredients of the proof are Lemma 5, Lemma 6 and Lemma 9
which will be stated in Subsection 4.4. In this section we aim at informally
explaining the role of these lemmas in the proof of Theorem 1. Lemma 5-6
relate LPV-SSA realizations of Y with bilinear state-space representations of
the input-output maps p 7→ (gY � p) and p 7→ (hY � p). Lemma 9 relates LPV-
ARX representations of Y with input-output equations for p 7→ (gY � p) and
p 7→ (hY � p). The latter input-output equations are of the same type as the
ones which correspond to bilinear state-space representations by [24, 25, 30, 31].

More precisely, the proof consists of the following steps. Assume that Y is
an input-output map admitting an IRR representation.

Step 1: The relationship between LPV-SSA and bilinear state-space representa-
tions (Lemma 5 and Lemma 6). . First, in Lemma 5 we show that if Σ is a
LPV-SSA of the form (1) which is a realization of Y from some initial state xo,
then we can construct a bilinear state-space representation B from the matri-
ces of Σ such that B is driven by scheduling signals from P as inputs, and the
values of the functions (gY � p) and (hY � p) are the time derivatives (in CT)
or time shifts (in DT) of the outputs of B induced by the input p and suitably
chosen initial states.

Conversely, in Lemma 6 we show that if there exists a bilinear state-space
representation B

′
which is driven by scheduling signals from P, and for each

p ∈ P, the values of the functions (gY � p) and (hY � p) are the time derivatives

(in CT) or time shifts (in DT) of the outputs of B
′

induced by the input p and
suitable initial states, then we can construct a LPV-SSA realizing Y from B

′
.
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Step 2: LPV-ARX representations and input-output equations for (gY � p) and
(hY � p) (Lemma 9) . In Lemma 9 we relate the existence of an LPV-ARX
representation of Y with the existence of an input-output equation for the maps
p 7→ (gY � p) and p 7→ (hY � p). More precisely, in Part I of Lemma 9 we show
that if Y has an LPV-ARX representation of the form (7), then the maps
p 7→ (gY � p) and p 7→ (hY � p) satisfy an input-output equation. The latter
equation is linear in the derivatives (CT) or shifts (DT) of (gY �p) and (hY �p),
and it is polynomial in derivatives (CT) or shifts (DT) of p. Conversely, in Part
II of Lemma 9 we show that if p 7→ (gY � p) and p 7→ (hY � p) both satisfy an
input-output equation of the latter type, then we can construct an LPV-ARX
representation of Y from the coefficients of that equation.

Step 3: The proof of Theorem 1 for the direction ‘existence of LPV-ARX =⇒
existence of LPV-SSA’. Assume that Y has an LPV-ARX representation of the
form (7). The by Lemma 9 the functions (gY � p) and (hY � p) satisfy a suitable
input-output equation. In fact, we can define input-output maps which act only
on the scheduling signals from P, such that

� the functions (gY � p) and (hY � p) are shifts (DT) or derivatives (CT) of
output responses of these input-output maps to the input p,

� these input-output maps satisfy input-output equations which are linear
in the shifts (DT) or derivatives (CT) of the output, and polynomial in
the shifts (DT) or derivatives (CT) of p.

From the second property using [24, 25, 30, 31] it follows that there exists
a bilinear state-space representation which generates these input-output maps
from suitable initial states. Then from Lemma 6 it follows that this bilinear
state-space representation gives rise to an LPV-SSA realizing Y.

Step 4: The proof of Theorem 1 for the direction ‘existence of LPV-SSA =⇒
existence of LPV-ARX’. Assume that Σ is an LPV-SSA of the form (1) which
is a realization of Y from some initial state xo. Then from Lemma 5 it follows
that there exists a bilinear state-space representation such that the functions
(gY � p) and (hY � p) are the time derivatives (in CT) or time shifts (in DT) of
the outputs of this bilinear state-space representations induced by the input p
and suitable initial states. From [24, 25, 30, 31] it follows that input and output
pairs of bilinear state-space representations satisfy input-output equation which
are linear in the derivatives (CT) or shifts (DT) of the output and which are
polynomial in the derivatives (CT) or shifts (DT) of the input. Then it can
be shown that the maps p 7→ (gY � p) and p 7→ (hY � p) also satisfy an input-
output equation of the same type. Then from Lemma 9 it follows that Y has
an LPV-ARX representation.

4.2. Reduction to the single output case

Note that it is enough to prove Theorem 1 for the single output case, i.e.,
when ny = 1, as the general case follows from the single output one. Indeed,
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consider any input-output map Y of the form (3), and let Yi = e>i Y, i =
1, . . . , ny be the elements of Y, i.e., ∀u ∈ U , p ∈ P, t ∈ T,

Y(u, p)(t) =
[
Y1(u, p)(t) . . . Yny

(u, p)(t)
]>
.

It is easy to see that Y has a realization by an LPV-SSA if and only if for each
i = 1, . . . , ny, Yi has a realization by an LPV-SSA. Furthermore, if

({Ai,j}i∈Iny
1 ,j∈In0

, {Bi,j}i∈Iny
1 ,j∈In−1

0
)

is an LPV-ARX representation of Y, then for each i = 1, . . . , ny, the LPV-ARX
representation

({Ai,j}j∈In0 , {Bi,j}j∈In−1
0

)

is an LPV-ARX representation of Yi, i ∈ Iny

1 . Conversely, assume that

({Aij}j∈Ini
0
, {Bij}j∈Ini−1

0
)

is an LPV-ARX representation of Yi for all i ∈ Iny

1 . Then by taking n =
max{ni | i ∈ Iny

1 } and defining

Ai,j =

{
Aij i ≤ ni
0 otherwise

,

and

Bi,j =

{
Bij i ≤ ni − 1
0 otherwise

,

we obtain an LPV-ARX representation

({Ai,j}i∈Iny
1 ,j∈In0

, {Bi,j}i∈Iny
1 ,j∈In−1

0
)

of Y. For this reason, in the rest of the paper, we will assume that ny = 1, i.e.
we consider the single output case

4.3. Technical results for bilinear state-space representations

Recall from [24, 32, 33] that a bilinear state-space representation over the
input-space P is a system of the form

ξz(t) = N0z +

np∑
i=1

(Niz(t))pi(t), z(0) = zo

y(t) = Cz(t)

(11)

where Ni ∈ Rnz×nz , i ∈ Inp

0 , C ∈ R1×nz . Let Z = Ca(R+
0 ,Rnz), in CT, and

Z = (Rnz)N in DT. A solution of (11) is a tuple (z, y, p) ∈ Z ×U ×P such that
it satisfies (11). We will identify the bilinear system (11) with the tuple

({Ni}i∈Inp
0
, C, zo).
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The bilinear system (11) is said to be a realization of an input-output map
F : P → Y, if for every p ∈ P there exists z ∈ Z, such that (z, y, p) is a solution
of (11) with y = F (p). We recall from [32, 34] some technical facts on generating
series (Fliess series) and their input-output maps. These facts will be used in
the proof of the main result of the paper.

A generating series over Inp

0 is a function c : S(Inp

0 ) → R such that there
exist K,R > 0 which satisfies

∀s ∈ S(Inp

0 ) : |c(s)| ≤ KR|s|.

The function Fc : Cp(R+
0 ,Rnp) → Cp(R+

0 ,R) generated by a generating series c
is defined as

Fc(p)(t) =
∑

v∈S(Inp
0 )

c(v)(wv � p)(t, 0),

where ws � p is the sub-Markov dependence defined in Definition 1 for CT.
In the sequel, we follow the established tradition of [32, 34] and we will

denote Fc(p) by Fc[p]. From [32], it follows that Fc is well defined. Note that
the growth condition ∀s ∈ S(Inp

0 ) : c(s) ≤ KRs was necessary for Fc[u] to be
well defined.

Next we extend the definition of generating series to include matrix and
vector valued series. We define a generating series as a function c : S(Inp

0 ) →
Rnr×nl for some integers nl, nr > 0, such that there exist K,R > 0:

∀v ∈ S(Inp

0 ) : ‖c(v)‖F ≤ KR|v|.

Here, ||.||F denotes the Frobenius norm for matrices. If nl = 1, then c is just a
vector valued generating series. Let us denote by Cp(R+

0 ,Rnr×nl) the set of all
piecwise-continuous functions f : R+

0 → Rnr×nl , i.e., functions such that for any
i = 1, . . . , nr, j = 1, . . . nl, the coordinate function fi,j : s 7→ (f(s))i,j belongs
to Cp(R+

0 ,Rnr×nl). We define Fc : Cp(R+
0 ,Rnp)→ Cp(R+

0 ,Rnr×nl) as

Fc[p](t) =
∑

v∈S(Inp
0 )

c(v)(wv � p)(t, 0),

where ws � p is the sub-Markov dependence defined in Definition 1 for CT,
and the infinite summation is understood in the usual topology of matrices.
Clearly, if ci,j denotes the (i, j)th component of c, ci,j is a generating series in
the classical sense and Fci,j [p](t) equals the (i, j)th entry of the matrix Fc[p](t),

i = 1, . . . , nr, j = 1, . . . , nl. If nl = 1, then Fc takes values in Cp(R+
0 ,Rnr ), i.e.,

Fc[p](t) is a vector in Rnr .
Although the map Fc was originally defined for CT, by an abuse of terminol-

ogy, we can apply it in DT as well. If c : S(Inp

0 )→ Rnr×nl is a generating series
according to the definition above, then, in DT, we define the function generated
by c as Fc : (Rnp)N → (Rnr×nl)N such that

Fc(p)(t) =
∑

v∈S(Inp
0 )

c(v)(wv � p)(t− 1, 0)
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where ws � p is the sub-Markov dependence defined in Definition 1 for DT.
Similarly to the CT case, we follow the established tradition of [32, 34] and we
denote Fc(p) by Fc[p]. If nl = 1, then Fc takes values in (Rnr )N, i.e., Fc[p](t) is
a vector in Rnr .

Note that in contrast to the CT case, the definition of Fc[p](t) involves only a
finite sum, and no growth condition on c is necessary in order to make Fc[p] well-
defined. Note, however, that in this paper we will be interested in generating
series c which potentially arise from bilinear state-space representations, and
for such series the growth condition holds. The finiteness of the sum Fc[p] will
allow us to use simpler proofs for the DT case.

It turns out that existence of a realization by a bilinear state-space repre-
sentation is equivalent to existence of an input-output equation.

Theorem 2 (Generating series based realisation, [24, 32, 33]). A bilinear system
of the form (11) is a realization of F : P → Y, where Y = Cp(R+

0 ,R) in CT
and Y = (R)N in DT, if and only if there exists a convergent series c such that
F = Fc and

∀s ∈ S(Inp

0 ) : c(s) = CNszo,

where Nε = Inz
and Nq1···qn = NqnNqn−1

· · ·Nq1 for q1, . . . , qn ∈ Inp

0 , n ≥ 1.

This gives that input-output maps of bilinear systems are functions which
arise from generating series. It turns out that input-output maps arising from
generating series can be realized by a bilinear state-space form if and only if
they satisfy an input-output equation of a certain form.

Theorem 3 (Input-output equation form, [24, 25]). Let c be a generating series.
There exists a bilinear system of the form (11) which is a realization of Fc if
and only if there exist an integer k ≥ 1 and polynomials E0, E1, . . . , Ek such
that for any p ∈ P, p being smooth in CT case,

k∑
i=0

Ei(p, ξp . . . , ξ
k−1p)ξi(Fc[p])= 0. (12)

Moreover, if Fc has a realization by a bilinear representation ({Ni}
np

i=0, C, zo),
then the polynomials Ei which satisfy (12) can be chosen in such a way that
they depend only on the matrices ({Ni}

np

i=0, C) and not on zo.

Note that by [34, Eq. (6) and Lemmas 2,4], if p is smooth then so is Fc[p].
So for smooth p, ξkFc[p] in (12) is well posed. Note that in Theorem 3, the
assumption that F arises from a generating series is essential. If this assumption
is omitted, then there exist counter-examples of F which satisfy an input-output
equation of the form (12), but which cannot be realized by a bilinear system,
see [25].

For the proof of Theorem 1, we will need the following technical results.

Notation 2 (Shift of a generating series). If c : S(Inp

0 )→ Rnl×nr is a generating
series, then for every v ∈ S(Inp

0 ), we define the shift of c by v as v ◦c : S(Inp

0 )→
Rnl×nr which corresponds to v ◦ c(w) = c(wv), w ∈ S(Inp

0 ).
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Lemma 3 (Derivative of functions generated by generating series). Let c be a
generating series. Then

(ξFc[p])(t) =
∑
q∈Inp

0

pq(t)Fq◦c[p](t), (13)

for all p ∈ P in DT, and for all smooth p ∈ P in CT.

Recall that for CT, (ξFc(p))(t) = d
dtFc(p)(t), and for DT, (ξFc(p))(t) =

Fc(p)(t+ 1).

Proof of Lemma 3. For CT, the statement of the lemma follows from [26, Eq.
(13)]. For DT, it can be seen by a simple calculation. Indeed, (ξFc[p])(t) =
Fc[p](t+ 1) and by definition Fc[p](t+ 1) =

∑
s∈S(Inp

0 ),|s|=t+1 c(s)(ws � p)(t, 0),

since in DT, (ws�p)(t, 0) = 0 of |s| 6= t+1 for all s ∈ S(Inp

0 ). Since (ws�p)(t, 0) =
pq(t)(ws′ � p)(t − 1, 0) if s = s′q, q ∈ Inp

0 , s, s′ ∈ S(Inp

0 ), |s| = t + 1, |s′| = t, it
follows that

Fc[p](t+ 1) =
∑

s∈S(Inp
0 ),|s|=t+1

c(v)(ws � p)(t, 0) =

=
∑
q∈Inp

0

pq(t)
∑

s′∈S(Inp
0 ),|s′|=t

c(s′q)︸ ︷︷ ︸
=(q◦c)(s′)

(ws′ � p)(t− 1, 0)

︸ ︷︷ ︸
=Fq◦c[p](t)

.

By repeated application of (13), it follows that for any k and v ∈ S(Inp

0 ),

0 < |v| ≤ k, there exists a polynomial αk,v in variables Tk = {Ti,j}
k,np

i=1,j=1 such
that for any generating series c,

ξkFc[p](t) =
∑

v∈S(Inp
0 ),0<|v|≤k

αk,v(p(t), . . . , ξ
k−1p(t))Fv◦c[p](t). (14)

Note that the polynomials αk,v are the same for any generating series c. However
they depend on whether DT or CT is chosen. For example, for np = 1, α3,11 = 0
and α2,11(p(t), ξp(t)) = p1(t + 1)p1(t) in DT and α3,11(p(t), ξp(t), ξ2p(t)) =
3p1(t)ṗ1(t), α2,11(p(t), ξp(t)) = (p1(t))2 in CT.

4.4. Proof of Lemma 2 and Theorem 1

We will use Theorem 2 and Theorem 3 from the previous section to prove
the main result of the paper. To this end, we have to introduce a number of
definitions and to prove some technical results.

Definition 5 (Generating series cY and cYr,i, c
Y
r ). Assume that Y has an IRR

and define the convergent series cYr with r ∈ Inp

0 as follows:

cY(ε) = 0, cYr (ε) = 0,
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and
cY(vq) = ηq,Y(v), cYr (vq) = θq,r,Y(v).

Finally let cYr,i be the generating series formed by the ith column of cYr , for
i = 1, . . . , nu.

It turns out that every LPV-SSA yields bilinear systems of the form (11)
realizing FcY , FcYr,i

and vice versa.

Lemma 4. There exists an LPV-SSA representation which realizes Y, if and
only if the input-output maps FcY and {FcYr,j}r∈I

np
0 ,j∈Inu

1
can be realized by bi-

linear systems of the form (11).

Lemma 4 follows from the following two lemmas.

Lemma 5. Assume that the LPV-SSA of the form (1) is a realization of Y.
Define zo,0 = (x>o , 0

>)> and for all r ∈ Inp

0 and j ∈ Inu
1 , let zr,j = (B>r,i, 0

>)>,
where Br,i is the ith column of Br and let

Ni =

[
Ai Onx,1

Ci 0

]
, i ∈ Inp

0 , C =
[
0 0 · · · 0 1

]
,

where Onx,1 is the nx × 1 matrix all entries of which are zero. Then the bi-
linear system ({Ni}

np

i=0, C, zo,0) is a realization of FcY , and the bilinear system
(Ni, C, zr,i) is a realization of FcYr,i

for all r ∈ Inp

0 and j ∈ Inu
1 .

Proof of Lemma 5. Notice that

Czo = Czr,j = 0, CNsq =
[
CqAs 0

]
,

for all s ∈ S(Inp

0 )∗, q ∈ Inp

0 .

cY(ε) = Czo = 0, cYr,j (ε) = Czr,j = 0.

Moreover, for any s ∈ S(Inp

0 )∗, using (6),

cY(sq) = ηq,Y(s) = CqAsxo = CNsqzo,

and
cYr (sq) = θq,r,Y(s) = CqAsBr.

Since cYr,j(sq) is the jth column of cYr (sq),

cYr,j(sq) = CqAsBr,j = CNsqzr,j .

The statement of the lemma follows now from Theorem 2.

Lemma 6. Assume that the bilinear system ({Ni}
np

i=0, C, zo) is a realization of

YcY and assume that the bilinear system ({F r,ji }
np

i=0, H
r,j , zr,jo ) a realization of
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YcYr,j
. Define the integer nx ≥ 1 and the matrices Ai ∈ Rnx×nx , Bi ∈ Rnx×nu ,

Ci ∈ R1×nx , i ∈ Inp

0 , and vector xo ∈ Rnx such that

Ai = diag(Ni, F
0
i , . . . , F

np

i ),

Ci =
[
C H0 . . . Hnp

]
Ai,[

B0 . . . Bnp

]
=

[
Ono,(np+1)nu

diag(zo,0, . . . , zo,np
)

]
,

xo =
[
z>o 0 . . . 0

]>
, zo,r = diag(zr,1o , . . . , zr,nu

o ),

F ri = diag(F r,1i , . . . , F r,nu

i ), Hr =
[
Hr,1 . . . Hr,nu

]
,

where no is the number of rows and columns of N0, Ono×(np+1)nu
is the no ×

(np + 1)nu matrix whose entries are all zero, and for any (not necessarily
square) matrixes L1, . . . , Lk, k > 0, diag(L1, . . . , Lk) is the block diagonal ma-
trix whose diagonal blocks are L1, · · · , Lk in that order. Then the LPV-SSA
(P, {Ai, Bi, Ci, 0}

np

i=0) is a realization of Y from xo.

Proof of Lemma 6. Notice that for all s ∈ S(Inp

0 ), q ∈ Inp

0 , CqAsxo = CNsqzo

and the jth column of CqAsBr equals to Hr,jF r,jsq z
r,j
o . From Theorem 2 and the

definition of cY, cYr,j it follows that CNsqzo = cY(sq) = ηq,Y(s) and it follows

that Hr,jF r,jsq z
r,j
o = cYr,j(sq) and the latter equals to the jth column of θq,r,Y(s).

Hence, (P, {Ai, Bi, Ci}
np

i=0) satisfies (6) and by Lemma 1 it is a realization of
Y.

Next, we show that there is a correspondence between LPV-ARX representa-
tions of Y and input-output equations of the form (12) for FcY and {FcYr,j}

np,nu

r=0,j=1.

Lemma 7. Let p ∈ P, and in CT, assume in addition that p is smooth. Then,

(gY � p)(t) = (ξυ)(t), υ(t) = FcY [p](t),

(hY � p)(τ, t) =
∑
r∈Inp

0

pr(τ)ξυτ,r(t),

υτ,r(t) = FcYr [στs(p)](t− τs), r ∈ Inp

0 ,

where τs = τ in CT and τs = τ + 1 in DT, and στs(p)(h) = p(h + τs) for all
h ∈ T, and in DT we assume that t > τ .

This means that the functions (gY �p)(t), (hY �p)(τ, t) can be expressed via
derivatives (in CT) or time shifts (in DT) of FcY and {FcYr,j}

np,nu

r=0,j=1.

Proof of Lemma 7. Notice that q ◦ cY equals to ηq,Y while q ◦ cYr,j equals to

the jth column of θq,r,Y for all q ∈ Inp

0 . From the definition of the functions
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(gY�p)(t), (hY�p)(τ, t) it follows that for all p ∈ P, τ, t ∈ T, τ ≤ t, j = 1, . . . , nu,

(gY � p)(t) =
∑
q∈Inp

0

pq(t)Fq◦cY [p](t),

(hY � p)j(τ, t) =

{∑
q,r∈Inp

0
pr(τ)pq(t)Fq◦cYr [στ (p)](t− τ) in CT,∑

q,r∈Inp
0
pr(τ)pq(t)Fq◦cYr [στ+1(p)](t− τ) in DT, if t > τ,

where (hY � p)j(τ, t) is the jth column of (hY � p)(t, τ). Combining this with
(13), we get the statement of the lemma.

Now we are ready to present the proof of Lemma 2.

Proof of Lemma 2. Since Y admits an IRR, it is enough to show that if p and u
are smooth, then gY � p, (hY � p)(τ, .) : [τ,+∞) 3 t 7→ (hY � p)(τ, t) are smooth
functions. From [34, Eq. (6) and Lemmas 2,4] it follows that FcY [p](t) and
FcYr [στ (p)](t− τ) are smooth in t, for all i, j ∈ Inp

0 , if p is smooth. From Lemma
7 it then follows that gY � p, (hY � p)(τ, .) are smooth, if p is smooth.

Next, note that for any p ∈ P and u ∈ U , y = Y(u, p), such that p and u are
smooth if CT is considered,

(ξky)(t) = ξk(gY � p)(t) + νk(p, u, t) +

{ ∫ t
0
dk

dtk
(hY � p)(δ, t)u(δ)dδ in CT∑t−1

δ=0(hY � p)(δ, t+ k)u(δ) in DT,

νk(p, u, t) =


k−1∑
j=0

dk−j−1

dtk−j−1 (( d
j

dtj (hY � p)(δ, t))|δ=tu(t)) in CT

t+k−1∑
δ=t

(hY � p)(δ, t+ k)u(δ) in DT.

(15)

In CT, we used the equality
d

dt

∫ t
0
h(τ, t)dτ = h(t, t) +

∫ t
0

d

dt
h(τ, t)dt for any

continuously differentiable function h. Note that by Lemma 7, the entries of
νk(u, p, t) are sums of products of ξl1u(t) with l1 = 1, . . . , k and expressions of
the form

dl2

dtl2

(
np∑
q=0

pq(t)

(
dl+1

dtl+1
Fq◦cYr,j

[σδ(p)](t− δ)
)∣∣∣∣

δ=t

)
, l, l2 = 1, . . . , k,

and
np∑
q=0

pq(t)Fq◦cYr,j
[σδ+1(p)](t+ l), l = 1, . . . , k,

in CT and DT respectively, and by (14), both expressions are polynomials in
p(t), ξp(t), . . . , ξkp(t), where ξ = d

dt in CT and ξ is the forward shift operator in
DT. Hence, we can state the following simple result.
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Lemma 8. For all i ∈ N, there exist polynomials {Ri,l,j}i−1,nu

l=0,j=1 in (i + 1)
variables such that for any p ∈ P, u ∈ U , p, u smooth in CT,

i−1∑
l=0

nu∑
j=1

Ri,l,j(p(t), . . . , ξ
ip(t))ξluj(t) = νi(p, u, t).

Moreover, for each i ∈ N and l ∈ Ii−1
0 , there exist polynomials {βi,l,v,r}v∈S(Inp

0 ),|v|≤i,r∈Inp
0

which do not depend on {cYr,j}r∈Inp
0 ,j∈Inu

1
, such that for all p̄ ∈ Ri·np ,

Ri,l,j(p̄) =
∑

v∈S(Inp
0 ),|v|≤i,r∈Inp

0

cYr,j(v)βi,l,v,r(p̄). (16)

The polynomials can easily be computed based on {βi,l,v,r}v∈S(Inp
0 ),|v|≤i,r∈Inp

0
,

even without knowing Y, by using (14) and the fact that Fv◦cYr,j
[σt(p)](0) =

cYr,j(v). This implies that we can replace ξky by ξk+1FcY [p] and ξk+1FcYr,j
[p]

in the input-output equations. More precisely, the following technical lemma
holds.

Lemma 9. Assume that Y has an IRR. Denote by (hY � p)(τ, .) the function
{t ∈ T | τ ≤ t} 3 t 7→ (hY � p)(τ, t).

(I) If Y has an LPV-ARX representation (7), then for all p ∈ P, with p
being smooth in the CT case, for all υ ∈ {(gY � p)} ∪ {(hY � p)(τ, .) | τ ∈ T},

n∑
i=0

A1,i(p, ξp, . . . , ξ
kp)ξiυ = 0. (17)

(II) Conversely, assume that there exist polynomials {A1,i}ni=0, such that
for all for all p ∈ P, with p being smooth in the CT case, and for all υ ∈
{(gY�p)}∪{(hY�p)(τ, .) | τ ∈ T}, (17) holds. Define the polynomials {B1,j}n−1

j=0

as

B1,l =
[
Rl,1, . . . , Rl,nu

]
, l ∈ In−1

0 ,

Rl,j(p, ξp, . . . , ξ
np)=

n∑
i=l+1

A1,i(p, ξp, . . . , ξ
np)Ri,l,j(p, ξp, . . . , ξ

ip),
(18)

where the polynomials {Ri,l,j}i−1,nu

l=0,j=1 are as in Lemma 8. Then

({A1,i}ni=0, {B1,j}n−1
j=0 )

is an LPV-ARX representation of Y.

Note that Part (II) of Lemma 9 is a rather straightforward consequence of
(15), while the proof of Part (I) is more involved.
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Proof of Lemma 9. Part (I)
Assume that (7) is an LPV-ARX representation of Y. If we take u = 0, then it
follows that ξiY(u, p)(t) = ξi(gY � p)(t), and hence from (8) it follows that

n∑
i=0

A1,i(p, ξp, . . . , ξ
np)ξi(gY � p) = 0, (19)

i.e. (17) holds for υ = (gY � p). If we evaluate (8) for y = Y(u, p) at t ∈ T such
that ξiu(t) = 0, i∈ In−1

0 and we use (15) and (17) for υ = gY � p proven above,
then we get

0 =

∫ t

0

ψ(δ)u(δ)dδ in (CT), 0 =

t−1∑
δ=0

ψ(δ)u(δ) in (DT), (20)

where

ψ(δ) =

n∑
i=0

A1,i(p(t), ξp(t), . . . , ξ
np(t))ξi(hY � p)(δ, t)

and ξi(hY �p)(δ, t) denotes the result of applying the ξi operator to the function
(hY�p)(δ, .) and then evaluating the resulting function at t, i.e., ξi(hY�p)(δ, t) =
di

dti (hY � p)(δ, t) in CT, and ξi(hY � p)(δ, t) = (hY � p)(δ, t + i) in DT. We will
show that (20) being true for any u such that ξiu(t) = 0, i ∈ In1 implies that
ψ(δ) = 0 for all δ ∈ [0, t], i.e., that (17) holds for all υ ∈ {(hY � p)(τ, .) | τ ∈ T}.

It remains to show that ψ(δ) = 0. For DT case, by choosing an u ∈ U such
that u(s) = ej , u(δ) = 0, δ 6= s for s ∈ It−1

0 , j ∈ Im1 , we get that (20) implies
ψ(δ) = 0.

For the CT case, [28, Chapter 11, Lemma 9.4] implies that that for any
open interval I = [0, t′) ⊆ [0, t), t′ < t, and any n ∈ N, we can choose a smooth

function φn such that φn is zero outside I (hence dj

dtj φn(t) = 0 for all j ∈ N),
φn converges to χI in L1([0, t]), where χI denotes the indicator function of
I. By taking un = φnej , and using the first equation of (20),

∫
I
ψ(δ)ejdδ =

limn→∞
∫ t

0
ψ(δ)un(δ)dδ = 0, from which by [28, Chapter 11,Collorary 6.4] and

continuity of ψ it follows that ψ(δ) = 0 for all δ ∈ [0, t].
Part (II) Assume that (17) is satisfied. Recall (15). From Lemma 8 and

(15) it follows that that for y = Y(u, p),

ξiy = ηi +

{ ∫ t
0
ξi(hY � p)(δ, t)u(δ)dδ, in CT,∑t−1
δ=0 ξ

i(hY � p)(δ, t)u(δ) in DT,

ηi(t) = ξi(gY � p)(t) +

i−1∑
l=0

nu∑
j=1

Ri,l,j(p(t), . . . , ξ
ip(t))ξluj(t).

ξi(hY � p)(δ, t) denotes the result of applying the ξi operator to the function
(hY�p)(δ, .) and then evaluating the resulting function at t, i.e., ξi(hY�p)(δ, t) =
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di

dti (hY � p)(δ, t) in CT, and ξi(hY � p)(δ, t) = (hY � p)(δ, t + i) in DT. Define

the LPV-ARX representation ({Ai}ni=0, {Bi}
n−1
i=0 ) as in (18). Then from the

discussion above it follows that
n∑
i=0

A1,i(p(t), . . . , ξ
np(t))ξiy(t) =

n∑
i=0

A1,i(p(t), . . . , ξ
np(t))ξi(gY � p)(t)+

+

n∑
i=0

A1,i(p(t), . . . , ξ
np(t))

i−1∑
l=0

nu∑
j=1

Ri,l,j(p(t), . . . , ξ
ip(t))ξluj(t)+

+

{ ∑n
i=0A1,i(p(t), . . . , ξ

np(t))
∫ t

0
ξi(hY � p)(δ, t)u(δ)dδ, in CT,∑n

i=0A1,i(p(t), . . . , ξ
np(t))

∑t−1
δ=0 ξ

i(hY � p)(δ, t)u(δ) in DT,

Notice that by (17),
∑n
i=0A1,i(p(t), . . . , ξ

np(t))ξi(gY � p)(t) = 0, and in CT,

n∑
i=0

A1,i(p(t), . . . , ξ
np(t))

∫ t

0

ξi(hY � p)(δ, t)u(δ)dδ =

∫ t

0

n∑
i=0

A1,i(p(t), . . . , ξ
np(t))ξi(hY � p)(δ, t)u(δ)︸ ︷︷ ︸

=0 by (17)

dδ = 0

and in DT:

n∑
i=0

A1,i(p(t), . . . , ξ
np(t))

t−1∑
δ=0

ξi(hY � p)(δ, t)u(δ) =

=

t−1∑
δ=0

n∑
i=0

A1,i(p(t), . . . , ξ
np(t))ξi(hY � p)(δ, t)u(δ)︸ ︷︷ ︸

=0 by (17)

= 0

Thus,

n∑
i=0

A1,i(p(t), . . . , ξ
np(t))ξiy(t) =

=

n∑
i=0

A1,i(p(t), . . . , ξ
np(t))

i−1∑
l=0

nu∑
j=1

Ri,l,j(p(t), . . . , ξ
ip(t))ξluj(t) =

=

n−1∑
l=0

nu∑
j=1

n∑
i=l+1

A1,i(p(t), . . . , ξ
np(t))Ri,l,j(p(t), . . . , ξ

ip(t))ξluj(t) =

=

n−1∑
l=0

B1,l(p(t), . . . , ξ
np(t))ξlu(t).

That is, (8) holds, i.e. ({Ai}i∈Iny
1 ,j∈In0

, {Bi}i∈Iny
1 ,j∈In−1

0
) is an LPV-ARX rep-

resentation of Y.
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Lemma 10. With the notation of Lemma 9, if (17) holds for all υ ∈ {(gY �
p)} ∪ {(hY � p)(τ, .) | τ ∈ T}, then and for all υ ∈ {FcY [p]} ∪ {FcYr [p] | r ∈ Inp

0 },

n+1∑
i=1

A1,i−1(p, ξp, . . . , ξkp)ξiυ = 0. (21)

Proof of Lemma 10. Since by Lemma 7, if υ = FcY [p], then ξυ = (gY�p)(t), and
as (gY � p) satisfies (17), it follows that υ = FcY [p] satisfies (21). If (17) holds,
it follows that for all p ∈ P, τ ≥ 0, ντ,p : {t ∈ T | t > τ} 3 t 7→ (hY � p)(τ, t)
satisfies

n∑
i=0

A1,i(p, ξp, . . . , ξ
kp)ξiντ,p = 0, (22)

for all τ and p, such that p is smooth in case of CT. Assume (22) is true for all
p ∈ P (such that p is smooth in case of CT) and t ≥ τ . We argue that then
(21) holds for all υ ∈ {FcYr [p] | r ∈ Inp

0 }.
First we consider the DT case. By Lemma 7,

ντ,p(t) =
∑
r∈Inp

0

pr(τ)ξFcYr [δτs(p)](t− τs).

Since in DT, τs = τ + 1,

ξFcYr [δτs(p)](t− τ) = ξFcYr [δτ+1(p)](t− τ)

does not depend on p(τ). Hence, replacing p by p̂r such that p̂r coincides with
p on (0, t] ∩ T and p̂0(0) = 0, p̂r(0) = er, r = 1, . . . , np, it follows that

ν0,p̂r (t) = ξFcYr [δ1(p̂r)](t− 1) = ξFcYr [δ1(p)](t− 1).

Hence, for ν(t) = FcYr [δ1(p)](t), ν0,p̂r (t) = ξν(t− 1), and therefore ν satisfies

n+1∑
i=1

A1,i−1(p(t), ξp(t), . . . , ξkp(t))ξiν(t− 1) = 0, (23)

for all t ≥ 1.
Let p̃ = δ1(p), then ξrp̃(t − 1) = p̃(t + r − 1) = p(t + r) = ξrp(t). Then, it

follows that (23) can be rewritten as

n+1∑
i=1

A1,i−1(p̃(t− 1), ξp̃(t− 1), . . . , ξkp̃(t− 1))ξiυ(t− 1) = 0, (24)

where υ = FcYr [p̃]. Note that any scheduling signal p̃ arises as δ1(p) = p̃ for
a suitable p. Hence, as (24) holds for all scheduling signals p̃ which are of the
form δ1(p) = p̃ for some p, it follows that (24) holds for all p̃ ∈ P and all t ≥ 1.
However, (24) is the same as (21), but with p̃ instead of p and t− 1 instead of
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t. Hence, if (24) holds for all p̃ ∈ P and t ≥ 1, then (21) holds for all p ∈ P,
and t ≥ 0, with ν = ξFcYr [p].

In CT, from [28, Chapter 11, Lemma 9.4] it follows that for any t > 0 and
any r = 0, . . . , np, we can choose 0 < ε < t, and a sequence of smooth functions
p̂n,r such that

lim
n→∞

∫ t

0

|pj(s)− p̂n,ij (s)|ds = 0, j ∈ Inp

1

and p̂n,r(0) = er, where e0 = 0, and p̂n,r coincides with p on [ε,+∞). Since

ν0,p̂n,r = ξFcYr [p̂n,r]

and, by assumption, (22) holds with p being replaced by p̂n,r, it follows that

ν := νn,r := FcYr [p̂n,e](t)

satisfies (21) for all t > 0 with p being replaced by p̂n,r. Notice that by [34,
Lemma 2.2], Fv◦cYr [p](t) is continuous in p in the L1 topology, 1 hence

lim
n→∞

Fv◦cYr [p̂n,r](t) = Fv◦cYr [p](t)

for all v ∈ S(Inp

0 ). Using this observation, (14) and p̂n,r(t) = p(t), we get that

lim
n→∞

ξkFv◦cYr [p̂n,r](t) = ξkFv◦cYr [p](t)

for all k ≥ 0. Moreover, clearly

A1,i(p̂
n,r(t), . . . , ξkp̂n,r(t)) = A1,i((p(t), ξp(t), . . . , ξ

kp(t))

as p̂n,r coincides with p around t. By taking limits of (21) when applied to

ν := νn,r := FcYr [p̂n,r](t)

and with p being replaced by p̂n,r, it follows that (21) holds for p and ν =
ξkFv◦cYr [p] for all t > 0. Finally, as p and Fv◦cYr [p](t) are smooth in p, by letting

t go to 0, it follows that (21) holds for all ν = ξkFv◦cYr [p], all smooth p and all
t ≥ 0.

1More precisely, [34, Lemma 2.2] shows that for any t and any generating series c,
and any real number T , the function Fc : VT 3 p 7→ Fc[p]|[0,T ] ∈ C[0, T ] is continu-
ous. Here C[0, T ] is the set of continuous functions defined on [0, T ] with the topology
induced by the form ‖f‖ = supt∈[0,T ] |f(t)|. The set VT is the set of functions p ∈ P
such hat ‖p‖∞ = sup

t∈[0,T ],i∈Inp
1

|pi(t)| < 1 and it is considered with the norm L1 norm

‖p‖1 = max
np

i=1

∫ T
0 |pi(s)|ds. Note that [34, Lemma 2.2] can readily be extended to show that

the function Fc : VR
T 3 p 7→ Fc[p]|[0,T ] ∈ C[0, T ] is continuous. Here VR

T is the set of functions

p ∈ P such hat ‖p‖∞ = sup
t∈[0,T ],i∈Inp

1
|pi(t)| < R, R > 0. As before, VR

T is considered

with the L1 norm. To this end, it is sufficient to notice that p ∈ VR
T implies that p/R ∈ VT .

Moreover, if we define the generating series c̃(s) = c(s)Rl(s), s ∈ S(Inp

0 ), where l(s) is the
number of letters of s which are not 0, then Fc̃[p/R] = Fc[p]. Hence, continuity of Fc[p] in p
follows from that of Fc̃[p/R] and the latter follows from [34, Lemma 2.2]. Finally, in order to
apply this result in our setting, we can easily choose R such that p, p̂n,i ∈ VR

t .
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Note that (17) is a special case of the input-output equation (12) described
in Theorem 3. This then allows us to use Theorem 3 to relate realizability of
{FcY [p], FcYr,i

| r ∈ Inp

0 , i ∈ Inu
1 } by a bilinear state-space representation with

existence of an LPV-ARX representation of Y. Exploiting this relationship is
the basic idea of the proof of Theorem 1 presented below.

Proof of Theorem 1. Consider the direction of implications separately.
LPV-ARX =⇒ LPV-SSA: Assume Y has an LPV-ARX representation.

From Lemma 9 and Lemma 10, it then follows that c ∈ {cY, cYr,i | r ∈ Inp

0 , i ∈
Inu
1 } satisfies (12) with E0 = 0 and Ek = A1,k−1, k ∈ In0 . Hence, by Theorem

3, Fc has a realization by a bilinear system in state-space form. By Lemma 4,
this implies that Y has a realization by an LPV-SSA.

LPV-SSA =⇒ LPV-ARX: Conversely, assume that Y has an LPV-SSA
realization. Lemma 5 implies that there exist matrices {Ni}

np

i=0, C such that the
bilinear system ({Ni}

np

i=0, C, zo,0) is a realization of FcY , and the bilinear system
({Ni}

np

i=0, C, zr,i) is a realization of FcYr,i
for all r ∈ Inp

0 and i ∈ Inu
1 , for suitable

initial states zo,0, zr,i. From the second statement of Theorem 3, it follows that
there exists polynomials E0, . . . , Ek of knp variables, such that Ek 6= 0 and

k∑
i=0

Ei(p, ξp, . . . , ξ
k−1p)ξiy = 0 (25)

for all (in CT case, smooth) p ∈ P and y ∈ Y such that y = FcY [p] or y =
FcYr,j

[p], j ∈ Inu
1 .

For the DT case, let us consider two cases. If E0 6= 0, then set n = k, and if
E0 = 0 set n = k − 1. Let

A1,i(p, ξp, . . . , ξ
np) =

{
Ei(ξp, . . . , ξ

np) if E0 6= 0
Ei+1(p, . . . , ξnp) if E0 = 0

(26)

i = 0, . . . , n. If E0 6= 0, then let us apply ξ to both sides of (25). Then,

it follows that
∑n+1
i=1 A1,i−1(p, ξp, . . . , ξnp)ξiy = 0 for any y = FcY [p] or y =

FcYr,j
[p], j = 1, . . . , nu. Hence, (17) indeed holds. If E0 = 0, then (25) can

be rewritten as
∑n+1
i=1 A1,i−1(p, ξp, . . . , ξnp)ξiy =

∑k
i=1Ei(p, ξp, . . . , ξ

np)ξiy =∑k
i=0Ei(p, ξp, . . . , ξ

np)ξiy = 0 for any y = FcY [p] or y = FcYr,j
[p], j = 1, . . . , nu.

Hence, (17) again holds.
For the CT case, we again distinguish two cases: E0 = 0 and E0 6= 0. If

E0 = 0, then it follows that (17) holds with n = k − 1, and A1,i = Ei+1,
i = 0, . . . , n. If E0 6= 0, then (25) implies

E0(p, ξp, . . . , ξk−1p)y = −
k∑
i=1

Ei(p, ξp, . . . , ξ
k−1p)ξiy. (27)

By applying ξ to both sides of (25), and multiplying both sides by E0(p, ξp, . . . , ξk−1p),
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and using (27) gives that

k∑
i=0

A1,i(p, ξp, . . . , ξ
kp)ξi+1y = 0

for unique polynomials {A1,i}ki=0 such that for all p, p smooth in CT,

A1,k(p, . . . , ξkp) = E0(p, ξp, . . . , ξk−1p)Ek−1(p, ξp, . . . , ξk−1p),

A1,i(p, . . . , ξ
kp) = E0(p, ξp, . . . , ξk−1p)×

×
[
−ξE0(p, . . . , ξkp)Ei+1(p, ξp, . . . , ξk−1p) + ξ(Ei+1(p, ξp, . . . ξkp))+

Ei(p, . . . , ξ
kp)
]
,

(28)

for all i = 0, . . . , k − 1. Hence, (17) indeed holds.
According to Lemma 9, then there exists an LPV-ARX representation of

Y.

4.5. Illustrating example
Assume that Y admits an IRR and that (9) (in CT) or (10) (in DT) is an

LPV-ARX representation of Y. Furthermore, assume that Y(0, p)(0) = 1 and
ξY(0, p)(0) = p(0). Then the proof of Theorem 1 implies that the LPV-SSA

Σ = (P, {Ai, Bi, Ci}1i=0), where

A0 =

[
0 0
1 1

]
, A1 =

[
0 1
1 0

]
, B1 =

[
0
1

]
, B0 =

[
0
0

]
C0 =

[
1 0

]
, C1 =

[
0 0

] (29)

is realization of Y from the initial state xo =
[
1 1

]>
. Conversely, the proof of

Theorem 1 implies that if the LPV-SSA Σ = (P, {Ai, Bi, Ci}1i=0) which satisfies

(29) is a realization of Y from xo =
[
1 1

]>
, then Y admits an LPV-ARX

representation (9) (in CT) or (10) (in DT). Below we will elaborate on these
claims.

LPV-ARX of the form (9) (CT) =⇒ Σ is a realization of Y. We will first
demonstrate the conversion of an LPV-ARX to an LPV-SSA in the CT case.
From Lemma 9 and Lemma 10 it follows that

ξ3y(t)p(t)− ξ2y(t)(p(t) + ξp(t))− (1 + p(t))p2(t)ξy(t) = 0 (30)

for all y ∈ {FcY [p]} ∪ {FcYi,1 [p] | i ∈ Inp

1 }. For any c ∈ {cY} ∪ {cYi,1 | i ∈ Inp

1 }, if

y = Fc[p], then there exist families of generating series

c1(µ) = (0 ◦ c) + µ1(1 ◦ c)
c2(µ1, µ2) = (00 ◦ c) + µ1(10 ◦ c) + µ2(1 ◦ c) + µ1(01 ◦ c) + µ2

1(11 ◦ c)
c3(µ1, µ2, µ3) = (000 ◦ c) + µ1(100 ◦ c) + µ2(10 ◦ c) + (010 ◦ c)µ1 + (110 ◦ c)µ2

1+

µ3(1 ◦ c) + µ2(01 ◦ c) + µ2µ1(11 ◦ c) + µ2(01 ◦ c) + µ1(001 ◦ c)+
+ µ2

1(101 ◦ c) + 2µ1µ2(11 ◦ c) + µ2
1(011 ◦ c) + µ3

1(111 ◦ c)
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where µ1, µ2, µ3 ∈ R, such that

ξy(t) = Fc1(p(t))[p](t), ξ
2y(t) = Fc2(p(t),ξp(t))[p](t),

ξ3y(t) = Fc3(p(t),ξp(t),ξ2p(t))[p](t).
(31)

By substituting these expressions into (30) and using [34, Lemma 4.1], it follows
that (30) is equivalent to

c3(µ1, µ2, µ3)µ1 − c1(µ1, µ2)(µ1 + µ2)− (1 + µ1)µ2
1c1(µ1) = 0, (32)

for all µ1, µ2, µ3 ∈ R. The left-hand side of (32) is a polynomial in µ1, µ2, µ3, and
its coefficients are generating series. Since this polynomial is zero for any choice
of µ1, µ2, µ3, it follows that the coefficients at each monomial in µ1, µ2, µ3 in the
left-hand side of (32) are zero. Notice that the coefficient for the monomial µ3µ1

in the left-hand side of (32) is (1◦c). Hence, (1◦c) = 0 holds. This then implies
that (v1 ◦ c) = 0 for all v ∈ S(Inp

0 ). Using this fact and the expressions for
c1(µ1), c2(µ1, µ2), c3(µ1, µ2), by computing the coefficients for each monomial
in µ1, µ2, µ3 and setting them to zero, we derive the following equations:

0 ◦ c = 110 ◦ c, 00 ◦ c = 0, 010 ◦ c = (10 ◦ c) + 0 ◦ c, 1 ◦ c = 0 (33)

Note that (33) holds for all c ∈ {cY}∪ {cYi,1 | i ∈ Inp

1 }. From (33) it follows that

the linear span of {v◦c | v ∈ S(Inp

0 )} is finite dimensional, and it is generated by
{0 ◦ c, 10 ◦ c, c}. From [24, 32, 33] it then follows that for every c which satisfies
(33), Fc can be realized by the bilinear system of the form (C, {N0, N1}, zo(c)),
where

N0 =

0 0 0
1 1 0
1 0 0

 , N1 =

0 1 0
1 0 0
0 0 0

 , zo(c) =

 c(0)
c(10)
c(ε)

 , C =
[
0 0 1

]
(34)

To see that (34) is a realization of Fc, it is sufficient to verify that z(t) =
(F0◦c[p](t), F10◦c[p](t), Fc[p](t))

> satisfies the differential equation ż(t) = (N0 +
N1p(t))z(t). The latter can be done using (13) and (33).

It is left to determine zo(c) for all c ∈ {cY} ∪ {cYi,1 | i ∈ Inp

1 }. To this end,
notice that c(ε) = 0 by definition, hence it is left to find c(0) and c(10).

Note that Y(0, p)(0) = cY(0)+p(0)cY(1) = 1. Since p is arbitrary, it implies
that cY(1) = 0 and cY(0) = 1. Using 1 ◦ cY = 0 and 00 ◦ cY = 0, it is easy
to see that d

dtY(0, p)(t)|t=0 = cY(10)p(0) = p(0) and the latter implies that

cY(10) = 1. Hence zo(cY) =
[
1 1 0

]>
.

By using the fact that the input-output map Y0(u, p) = Y(u, p) − Y(0, p)

also satisfies (9) and that Y0(u, p)(t) =
∫ t

0
(hY�p)(δ, t)u(δ)dδ, and by evaluating
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(9) at t = 0, it follows that

p(0)v2(0)− v1(t)(p(0) + ṗ(0)) = p3(0)u(0),

v1(0) = (hY � p)(0, 0)u(0),

v2(0) =

(
d

dt
(hY � p)(t, t)

)
|t=0 u(0) + (hY � p)(0, 0)u̇(0)+

+

(
d

dt
(hY � p)(τ, t)

)
|τ=t=0u(0)

(35)

By applying (35) for the case when u(0) = 0, u̇(0) = 1 it follows that for all

smooth p ∈ P, (hY�p)(0, 0) = 0. Using the fact that 1◦cYi,1 = 0 for i = 0, 1, it fol-

lows that (hY�p)(0, 0) = cY0,1(0)+cY1,1(0)p(0) = 0 for all p ∈ P. The latter implies

that cY0,1(0) = 0 and cY1,1(0) = 0. Using these facts and 1◦cYi,1 = 0, i = 1, 2 it fol-

lows that v1(0) = 0 and v2(0) = (cY0,1(10)p(0) + cY1,1(10)p2(0))u(0). Substituting

the latter expression into (34) leads to cY0,1(10)p2(0)u(0) + cY1,1(10)p3(0)u(0) =

p3(0)u(0). As u(0) and p(0) can be chosen in an arbitrary manner, the lat-

ter equation implies cY0,1(10) = 0 and cY1,1(10) = 1. Hence, zo(cY0,1) = 0 and

zo(cY1,1) =
[
0 1 0

]>
.

From (C, {N0, N1}, x0(c)), c ∈ {cY, cYi,1, i ∈ Inp

1 } we can construct an LPV-
SSA as described in Lemma 6 and then apply to it the minimization procedure
from [29] to obtain Σ. Alternatively, we can apply Lemma 5 to Σ to get the

bilinear systems (C, {N0, N1}, zo(c)), c ∈ {cY, cYi,1, i ∈ Inp

1 }

LPV-ARX of the form (10) (DT) =⇒ Σ is a realization of Y. Next, we
illustrate the transition from LPV-ARX to a LPV-SSA in the DT case. The
steps are similar to those of for the CT case. Indeed instead of (30), we can use
the following equation

ξ3y(t)p(t)− ξ2y(t)ξp(t)− (1 + p(t))p(t)ξp(t)ξy(t) = 0, (36)

which holds for all y ∈ {FcY [p]} ∪ {FcYi,1 [p] | i ∈ Inp

1 }, and (31) still holds for all

c ∈ {cY} ∪ {cYi,1 | i ∈ Inp

1 }, but

c1(µ1, µ2) = (00 ◦ c) + µ1(10 ◦ c) + µ2(01 ◦ c) + µ1µ2(11 ◦ c)
c3(µ1, µ2, µ3) = (000 ◦ c) + µ1(100 ◦ c) + (010 ◦ c)µ2 + (110 ◦ c)µ1µ2 + µ3(001 ◦ c)+

+ µ1µ3(101 ◦ c) + µ2µ3(011 ◦ c) + µ1µ2µ3(111 ◦ c)

In addition, instead of (32)

c3(µ1, µ2, µ3)µ1 − c1(µ1, µ2)µ2 − (1 + µ1)µ1µ2c1(µ1) = 0, µ1, µ2, µ3 ∈ R (37)

holds. Again, by regrouping the terms with the same monomial in µ1, µ2, µ3

and equating these coefficients to zero, we can derive the same inequalities as
in (33).
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Similarly to the CT case, we can derive a bilinear system (C, {N0, N1}, zo(c))

satisfying (34) which is a realization of Fc for c ∈ {cY} ∪ {cYi,1 | i ∈ Inp

1 }.
It is then left to compute zo(c), for which we have to compute c(0) and

c(10), for c ∈ {cY} ∪ {cYi,1 | i ∈ Inp

1 }. Similarly to the CT case, we first compute

zo(c) for c = cY. To this end, using 1 ◦ cY = 0 it follows that Y(0, p)(0) =
cY(0) and ξY(0, p)(0) = cY(00) + p(0)cY(10). Hence, from Y(0, p)(0) = 1
and ξY(0, p)(0) = p(0), it follows that cY(0) = 1, cY(10) = 1, and therefore

zo(cY) =
[
1 1 0

]>
.

Next, we determine the values cY0,1(0), cY1,1(0), cY0,1(10) and cY1,1(10). To this
end, we proceed as in the CT case: we notice that Y0(u, p) = Y(u, p)−Y(0, p)

also satisfies (10) and that Y0(u, p)(t) =
∑t−1
δ=0(hY�p)(δ, t)u(δ)dδ. By evaluating

(10) at t = 0 we get

p(0)v2(0)− v1(0)p(1) = p2(0)p(1)u(0),

v1(0) = (hY � p)(0, 1)u(0),

v2(0) = (hY � p)(1, 2)u(1) + (hY � p)(0, 2)u(0)

(38)

It follows that (hY�p)(1, 2) = 0 = cY0,0(0)+cY1,0(1)p(1) (we used 1◦cYi,1 = 0 for i =

0, 1). As p is arbitrary, cY0,0(0) = cY1,0(0) = 0. Then v1(0) = (hY�p)(0, 1)u(0) = 0

and v2(0) = (hY�p)(0, 2)u(0) = cY0,1(00)u(0)+cY0,1(10)p(1)u(0)+cY1,0(00)p(0)u(0)+

p(0)p(1)u(0)cY1,0(10). By substituting the expression for v2(0) into (38) and us-

ing the fact that p(0), p(1), u(0) can be arbitrary values, it follows that cY0,1(10) =

0 and cY1,1(10) = 1. Hence, similarly to the CT case, zo(cY0,1) = 0 and zo(cY1,1) =[
0 1 0

]
.

As in the CT case, we can apply Lemma 6 to these bilinear systems and
apply the minimization procedure from [29] to obtain Σ. As in CT, if Lemma 5

is applied to Σ, we get the bilinear systems (C, {N0, N1}, zo(c)), c ∈ {cY}∪{cYi,1 |
i ∈ Inp

1 }

LPV-SS of the form (29) =⇒ LPV-ARX representation (9) (CT) or (10)
(DT). Conversely, the proof of Theorem 1 implies that if Σ is a realization of
an input-output map Y, then, in CT, (9) is an LPV-ARX representation of
Y, and, in DT, (10) is an LPV-ARX representation of Y. To see this, let us
construct the bilinear state-space representation described in Lemma 6. It then
follows that the matrices C,N0, N1 of that state-space representation satisfy
(34).

We will argue that if c is any generating series such that (C, {N0, N1}, zo(c))
is a realization of Fc, then c satisfies the equations in (33). Indeed, it is easy
to see v ◦ c(s) = CNvNszo(c) for any s, v ∈ S(Inp

0 ). Since CN1 = 0, CN2
0 =

0, CN0N
2
1 = CN0, CN0N1N0 = CN0N1 + CN0, it follows that (33) holds.

That is, (33) holds for all c ∈ {cY} ∪ {cYi,1 | i ∈ Inp

1 }. But (33) implies that
(32) in CT and (37) in DT, which are equivalent to (30) in CT and (36) in DT
respectively, for all y ∈ {FcY [p]} ∪ {FcYi,1 [p], i ∈ Inp

1 }.
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That is, (25) from the proof of Theorem 1 holds with k = 3, E0 = 0, and
E1 = −(1 + p)p2, E2 = −(p + ξp), E3 = p in CT case and E1 = −(1 + p)ξp,
E2 = −ξp, E3 = p in DT case. Then using the proof of Theorem 1 it follows
that (17) holds with Aj,1, j = 0, 1, 2 as in (9) in CT and (10) in DT.

From the proof of Part (II) of Lemma 9, more precisely, the construction of
Bj,1, i = 0, 1 it follows that LPV-ARX (9) in CT and (10) in DT are LPV-ARX
representations of Y.

5. Conclusions

In this paper, we have studied the relationship between input-output equa-
tions and LPV-SSA representations. More precisely, we have shown that an
input-output map can be realized by an LPV-SSA, if and only if it has a so
called LPV-ARX representation, i.e., it satisfies certain input-output equations.
This relationship is expected to be useful for system identification, as in principle
it allows us to replace identification of LPV-SSA by LPV-ARX representations.
The latter is in general simpler to achieve. In order to pursue this path, we will
need algorithms for transforming an LPV-SSA representation to an LPV-ARX
representation, and vice versa. Finding such algorithms will be a topic of fu-
ture research. As it was mentioned before, finding such algorithms even for the
special case of bilinear systems remains an open topic.
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