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Abstract

In this article, we extend the foundations of the theory of differential inclusions in the space of
compactly supported probability measures, introduced recently by the authors, to the setting of
general Wasserstein spaces. In this context, we prove a novel existence result a la Peano for this class
of dynamics under mere Carathéodory regularity assumptions. The latter is based on a natural,
yet previously unexplored set-valued adaptation of the semi-discrete Euler scheme proposed by
Filippov to study ordinary differential equations whose right-hand sides are measurable in the time
variable. By leveraging some of the underlying methods along with new estimates for solutions of
continuity equations, we also bring substantial improvements to the earlier versions of the Filippov
estimates, compactness and relaxation properties of the solution sets of continuity inclusions, which
are derived in the Cauchy-Lipschitz framework.
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1 Introduction

In recent years, the study of continuity equations in the space of measures has been the object of an
extensive interest in several mathematical communities. While the analysis of such partial differential
equations was more commonly conveyed in Lebesgue or Sobolev spaces — in which one could establish
classical well-posedness results —, several research currents in pure and applied mathematics prompted
the investigation of more general and weaker notions of solutions to these dynamics.

Amongst these research endeavours, one of the most influential was the development of the modern
theory of optimal transport — rendered in the treatises [7, 74, 77] — along with that of the theory of
gradient flows in measure spaces. Indeed, the concepts introduced in the seminal works [60, 65]
and later formalised in [7] expounded the fact that one could construct weak solutions to transport
equations with very irregular driving fields by applying continuous-time steepest descent schemes
to energy functionals defined over the space of probability measures. This far-reaching observation
allowed to derive general well-posedness results for a wide variety of evolution equations encountered
in physics, rational mechanics and biology, on the basis that they exhibit a variational structure, see
e.g. [7, 25,27, 41, 55, 60, 63, 65, 75] and references therein. The infatuation for this innovative point
of view stemmed both from its theoretical merits, and from its practical efficiency and adaptedness for
designing numerical methods [10, 24, 67]. In a similar vein, the theory of mean-field games [23, 58, (2]
— located halfway between control theory and the calculus of variations — largely contributed to the
popularisation of dynamical problems in measure spaces. Incidentally, some of the core concepts of
these emerging research trends found relevant application outlets in a wealth of multiscale models
aiming towards efficient descriptions of pedestrian flows [35, 64, 71] as well as opinion propagation
models [2, 56, 72] and swarming dynamics [1, 26, 28]. Another active field of research that put this
corpus of results to good use is that of mean-field control [14, 17, 29, 44, 45, 46, 59], which saw the
birth of several relevant extensions of the classical theory as further elaborated upon below.

In the aforedescribed context, a growing body of literature at the intersection between PDE analy-
sis, dynamical systems theory and optimal transport has been concerned with the derivation of general
well-posedness results for Cauchy problems of the form

{at,u(t) + divg (v(t, p(t)u(t)) = 0, (1.1)
n(0) = . |

Therein, the initial datum p® € 2(R?) is a Borel probability measure, while the velocity field v :
[0, 7] x Z(R%) x RY — R? is a Lebesgue-Borel map which may be nonlocal, in the sense that it is
allowed to depend on the measure variable itself. As alluded to in the previous paragraph, one of
the main frameworks in which one can meaningfully derive well-posedness results for (1.1) is that of
Wasserstein gradient flows (see e.g. [7, Chapter 11]), wherein v(t, u(t)) € LP(R?, RY; u(t)) is given as
the (sub)gradient of a functional defined over the space of measures. Analogously, in the theory of
mean-field games, the well-posedness of the forward measure dynamics frequently originates from a
variational principle, which requires that the common cost of the agents satisfies a suitable convexity
condition [62]. It is worth noting that general existence results are also available for irregular driving
fields when the dynamics exhibits a Hamiltonian structure, see for instance [6]. On the other hand,
as amply highlighted by the discussions in [7, Chapter 8], the dynamics in (1.1) admits a natural
interpretation as an ordinary differential equation in the Wasserstein manifold — or rather bundle —
(2,(RY), W(-,-)) for p € (1,400). Thus, in the absence of an underlying variational structure, one
should expect that the well-posedness of said Cauchy problems would rather stem from the regularity
properties of the driving vector field. In that case, the results available in the literature can be split
into two categories, depending on whether the velocity field is nonlocal or not.

o When v : [0,T] x R? — R? is independent of the measure variable, the known optimal well-
posedness settings are, on the one hand, Carathéodory assumptions (or small variations thereof)
when the initial measure is arbitrary, and on the other hand Sobolev [36] or BV [3] regularity
in the space variable, combined with integral bounds on the divergence or more general in-
compressibility assumptions [12], when the initial measure is absolutely continuous with respect
to the Lebesgue measures. The structuring concepts of this latter class of solutions — which



are usually referred to as reqular Lagrangian flows —, are surveyed together with the classical
Cauchy-Lipschitz theory in [4].

o When v : [0,7] x Z(RY) x R? R also depends on the measure variable, general suffi-
cient conditions for the well-posedness of (1.1) are only available in the Cauchy-Lipschitz and
Carathéodory regularity frameworks (see e.g. [14, 34, 70] and references therein). In particular,
there are currently no known generalisations of the concept of Lagrangian flow to the setting of
nonlocal continuity equations.

We end this literature overview by advertising a recent body of work initiated in [69] and furthered in
[19, 31, 68], in which the authors investigate relaxations of (1.1) wherein the driving fields are replaced
by probability measures over the tangent bundle. This line of study — which is highly reminiscent of
the earlier work [11] — bears strong resemblance with the theory of Young measures, and has already
produced very promising results shedding light on the interplay between contraction semigroups in
measure spaces and various kinds of Euler schemes.

In the lineage of this body of work, the aim of this paper is to introduce several far-reaching
refinements of the theory of continuity inclusions in Wasserstein spaces, whose elaboration started in
our previous work [14]. Therein, given a compactly supported measure pu° € Z.(R?) and a set-valued
map (t, ) € [0,T] x Z(RY) = V(t,u) C LP(RY, R 1), we defined solutions of the Cauchy problem

Ouut) € —divy (V (¢, u()pt) ),

(1.2)
p(0) = p°,

as the collection of all absolutely continuous curves pu(-) € AC([0,7T], Z,(R%)) for which there exists
an Z-measurable selection t € [0,T] — v(t) € V (¢, u(t)) such that (1.1) holds. The main motivation
for considering such objects is that differential inclusions, and set-valued analysis at large, play an
instrumental role in control theory and in the calculus of variations, as evidenced by the reference
works [8, 9, 33, 78] and [22, 32]. They provide convenient tools to establish existence results for
variational problems [43], to derive first- and second-order optimality conditions — both in the form
of a Pontryagin Maximum Principle [47, 52, 51, 54] or Hamilton-Jacobi-Bellman equations [48, 53]
—, and to investigate qualitative properties of optimal trajectories [21]. Owing to their mathematical
versatility, these schemes have recently started to percolate in the communities of mean-field control
and mean-field games [15, 16, 20, 29, 59, 68]. Compared with other notions that were put forth to define
solutions of differential inclusions in measure spaces, such as those of [30, 59], our approach presents
the advantage of being coherent with the modern theory of differential inclusions in vector spaces,
surveyed e.g. in [8, 9], as well as conceptually compatible with the geometric structure of Wasserstein
spaces and the interpretation of continuity equations as generalised ODEs following [7, 65]. Besides,
our construct is well-adapted to the study of control problems, as it ensures that there is a one-to-one
correspondence between solutions of controlled measure dynamics and their set-valued counterparts.

The first main contribution of this article is an existence result a la Peano for (1.2), presented in
Theorem 3.2, and derived under mere Carathéodory regularity assumptions. To be more precise, we
show therein that if V : [0,T] x Z,(R?) = CO(R4,R?) is #'-measurable with respect to t € [0, T],
continuous with respect to u € ,(R%) and has convex images, then (1.2) admits a solution from
every initial datum. The requirement that the admissible velocities are convex is commonly known
to be unavoidable to prove the existence of solutions to differential inclusions whose right-hand sides
are not Lipschitz (see e.g. [8, Chapter 2]), even in the familiar context of finite-dimensional vector
spaces. Our strategy for proving this result revolves around an astute set-valued adaptation of the
semi-discrete Euler scheme due to Filippov for Carathéodory ODEs, see e.g. [42, Chapter 1]. To the
best of our knowledge, this approach was not previously investigated even for classical differential
inclusions. It also relies on rather new ways of studying the compactness of solutions to continuity
equations, which we believe are of independent interest.

The second contribution of this article lies in the transposition of the findings of [14], derived for
curves of compactly supported measures, to the setting of general Wasserstein spaces. The first of these



key results are the so-called Filippov estimates, presented in Theorem 4.2, which provide the existence
of a solution to (1.2) whose distance to an a priori fixed measure curve is precisely controlled. Such
estimates are extremely useful to produce admissible trajectories for control systems when conducting
perturbative arguments and performing linearisations. The second of these results is the compactness
of the solution set when the right-hand side of the dynamics is convex, which is needed in virtually
every existence proof based on weak compactness arguments, both in optimal control theory and
in the calculus of variations. The third and last is the so-called relaxation theorem, which asserts
that in the absence of convexity, the closure of the solution set of (1.2) coincides with that of the
Cauchy problem in which the dynamics has been convexified. These three pivotal properties have
been widely used in conjunction with one another to derive sharp first- and second-order optimality
conditions for optimal control problems in various contexts, see e.g. [49, 52] for ordinary differential
equations, [49, 50] for general evolution equations in infinite-dimensional Banach spaces, and our
previous work [15] concerned with mean-field optimal control problems. It should be noted that the
relaxation theorem is also essential when investigating the fine properties of solutions to Hamilton-
Jacobi-Bellman equations, as it allows to posit without loss of generality the existence of optimal
trajectories associated with the corresponding value function.

From a more technical standpoint, the extension of these results required new insights on the
definition of continuity inclusions, as one needed a new functional setting that was amenable to
working with velocities having unbounded support, but still enjoyed good topological properties. These
reflections lead us to study continuity inclusions driven by velocity selections valued in CO(R% R%)
endowed with the topology of local uniform convergence, which happens to be a separable Fréchet
space whose compact subsets are precisely characterised by the Ascoli-Arzela theorem. It is our
personal opinion that adopting this fresh viewpoint allows for a cleaner, more general, and perhaps
more streamlined angle to study measure dynamics. We finally stress that while some of the working
assumptions used throughout this manuscript are more stringent than those in our previous work,
mainly to palliate the fact that the measures under consideration may have unbounded supports, the
results presented below strictly contain those of [14], up to minor technical adjustments. It should
finally be noted that some of our developments are based on new quantitative stability estimates for
continuity equations under low regularity requirements, which should again be of independent interest
for our fellow practitioners.

The contributions and organisation of the article can be summarised as follows. In Section 2, after
recalling some concepts pertaining to measure theory, optimal transport, set-valued and functional
analysis, we derive new compactness and stability estimates for solutions of continuity equations
in Proposition 2.21 and Proposition 2.23 respectively. We then define solutions of (1.2) for set-
valued maps V : [0,T] x Z,(R?) = CO(R?%,RY) in terms of velocity selections which are measurable
for the standard Fréchet topology of the space of continuous functions (see Definition 2.12 below).
Then, in Section 3, we prove a novel existence result for solutions of (1.2) in Theorem 3.2, under
the mere assumption that the right-hand side of the dynamics is Caratheodory and convex-valued.
We subsequently move on in Section 4 to the Cauchy-Lipschitz setting, and discuss the main results
of the theory of differential inclusions that may be derived therein. In Section 4.1, we start by
establishing two far-reaching versions of the Filippov estimates, starting with a local one in Theorem
4.2 and proceeding with a global one in Corollary 4.4. Then, we turn our attention to the topological
properties of the solution sets of (1.2) in Section 4.2. In Theorem 4.5, we start by showing that the
latter are compact for the topology of uniform convergence when the right-hand side of the dynamics
has convex images. In Theorem 4.6, we then relax the convexity requirement and prove that in this
case, the closure of the solution set coincides with that of the convexified Cauchy problem. We finally
close the paper by an appendix containing the proofs of several technical results and estimates.

2 Preliminaries

In the coming sections, we expose preliminary results pertaining to measure theory, set-valued analysis,
optimal transport and measure dynamics in general.



2.1 Measure theory and optimal transport in Banach spaces

In this first preliminary section, we recollect basic notions of measure theory and optimal transport
in Banach spaces, for which we largely refer to [5, 13, 39] and [7] respectively.

Elements of measure and integration theory. Given a separable Banach space (X, ||-||x), we
will denote by X* its topological dual and write (-,-)x for the underlying duality pairing. In the
sequel, the notation Cg (X, R%) will refer to the vector space of continuous bounded maps from X into
R?, and in the particular case where X = R™ for some m > 1, we will denote by C°(R™,R) the vector
space of infinitely differentiable functions with compact support. Letting (Y, dy (+,)) be a complete
separable metric space, we shall more generally write C°(X,Y") for the set of continuous maps from X
into Y, as well as AC(1,Y") for that of absolutely continuous arcs defined over an interval I C R with
values in Y. In addition, Lip(©2,Y") will stand for the space of Lipschitz maps from a subset Q@ C X
into Y, and we shall write Lip(¢;€2) for the Lipschitz constant of an element ¢ € Lip(2,Y).

In what follows, given closed set @ C X, we will consider the vector space .#(Q,R?%) of R%-
valued finite Radon measures. By the Riesz representation theorem (see e.g. [5, Theorem 1.54]), it is
known that when 2 is compact, the latter is isomorphic to the topological dual of the Banach space
(CO(Q,RY), [l co(q,ra)) under the action of the duality pairing

d
wdevazn =3 [ 6)nte) (21)

defined for all v € .Z(Q,R%) and ¢ € C°(Q,R?). Throughout the article, we denote by () the
space of Borel probability measures over €2 endowed with the narrow topology, that is the coarsest
topology for which the mappings

pePQ) /X é(x)du(z) € R (2.2)

are continuous for every element ¢ € CP(Q,R). It is a standard fact in measure theory (see e.g. [7,
Remark 5.1.2]) that () endowed with the narrow topology is a separable space, and we will write

Hn n—t\i—oo Hy
for the notion of convergence induced by (2.2) over Z(9).

Given two separable Banach spaces (X, | -|x) and (Y,]|-|ly) along with some p € [1,400), we
will write (LP(2, Y5 u), || |lr(x,v; ) for the space of maps from a subset 2 C X into Y which are p-
integrable in the sense of Bochner (see e.g. [39, Chapter II]) with respect to a measure u € .#(Q,R;).
Analogously, we let L>°(Q,Y; 1) be the space of p-essentially bounded maps from X into Y, and use
the denser notation (LP(1,Y), ||| re(r)) for p € [1,+00] when X := I is an interval and p := £ is the
standard 1-dimensional Lebesgue measure. We recall below a powerful criterion for weak compactness
in L'(I, X), whose statement can be found in [38, Corollary 2.6] (see also the earlier versions [37, 76]).

Theorem 2.1 (A weak compactness criterion for Bochner integrable maps). Let (X,| - |x) be a
separable Banach space, I C R be an interval and (v,(-)) C L' (I, X). Suppose that there exists a map
m(-) € LY(I,Ry) and a family (K;)ier of weakly compact subsets of X such that

lon () |lx < m(t) and v, (t) € Ky

for £'-almost every t € [0,T) and each n > 1. Then, there exists a subsequence (vy, (+)) C LY(I, X)
that converges weakly to an element v(-) € L(I, X). In particular

/I<u(t),v(t)—vnk(t)>xdt — 0,

k—+o00

for every v(-) € L*>®(I, X*) C LY(I, X)*.



Optimal transport and Wasserstein spaces. Throughout this article, the notation &,(X) will
refer to the subset of probability measures whose moment of order p € [1,+00) is finite, that is

M) i= [ JaPdu(a) < +oc.

In the following definition, we recall the known concepts of image measure through a Borel map, as
well as that of transport plan.

Definition 2.2 (Image measures and transport plans). The image of a measure p € P(X) through
a Borel map f: X =Y, denoted by fyu € P(Y), is defined as

fa(B) = u(f~H(B)),

for every Borel set B C Y. Given two probability measures u,v € Z(X), we say that an element
v € P(X x X) is a transport plan between p and v, denoted by v € I'(u,v), provided that

71'&7 =L and 71'?7 =,
where 8,72 : X x X — X stand for the projections onto the first and second factors.

When (X, ||-|[x) := (R%,|-]) is a d-dimensional real vector space endowed with its usual Euclidean
structure, it is a standard result in optimal transport theory that for any p € [1,+00), the quantity

1/p
W=t ([l utanton) >
plv)i= b L, eyl (2:3)

defined for each p,v € Z,(R?) is a distance over &,(R%). Moreover, it comes as an easy consequence
of the direct method of the calculus of variations that the infimum in (2.3) is always attained, and we
denote by I'y(p, ) the corresponding set of p-optimal transport plans. In the following propositions,
we recall some of the main properties of the Wasserstein spaces, along with a handy distance estimate.

Proposition 2.3 (Topology of Wasserstein spaces). The metric spaces (2,(R?), W, (-,-)) are complete
and separable, and the Wasserstein distances metrise the narrow topology (2.2), in the sense that

*

M 0
. . n—-+00o
Wy(pten,t) — 0 if and only if
o [ aldunt@) = [ laPaat).
Rd n—+oo  JRd

for any sequence (j1,) C Z,(RY) and each p € P,(RY). Moreover, a subset # C P,(R%) is relatively
compact for the topology induced by the metric Wy(-,-) if and only if it satisfies

sup/ zPdu(x) — 0,
uex J{z s.t. \x\zk}‘ ’ M( ) k—+o0

namely if and only if it is uniformly p-integrable.
Proof. We point the interested reader to [7, Chapter 7] or [77, Chapter 6]. O

Proposition 2.4 (Classical optimal transport estimate). Given some p,v € 2,(R%), it holds that
/]R L ¢@)d(p = v)(@) < Lip(¢;ROWi(p,v) < Lip(¢;RO)W(p,v) (24)

for every ¢ € Lip(R% R).



2.2 Set-valued analysis and topological properties of continuous functions

In this section, we recall some notations and results of set-valued and functional analysis. We shall
mostly rely on the treatises [8, 9] for the former and reference monographs [57, 73] for the latter.

In what follows, we write (F,dg(,-)) to denote a separable Fréchet space, i.e. a complete separable
locally convex topological vector space £/ whose topology is induced by a translation-invariant metric

dg(-,-). In this context, we define the closed convezr hull of a set B C E as

E

N N
to(B) := U { a;b; st. b € B, a; €[0,1] forie{l,...,N} and Z%’Zl} ,
N>1 Li=1 i=1

1=

wzE»
of

where stands for the closure with respect to dg(-,-). We will also use the generic notation

distgp(z; Q) := inf dg(z,y)
yeQ

for the distance between an element x € E and a closed set Q C E.

Set-valued analysis. Given two complete separable metric spaces (X,dx(+,)) and (Y,dy (")), we
write F : X =2 Y to mean that F(-) is a set-valued map — or multifunction — from X into Y. A
set-valued map is said to have closed images (respectively convex, when the notion makes sense) if the
sets F(x) C Y are closed (respectively convex) for each x € X. In addition, we define its graph by

Graph(F) := {(:c,y) eEXXY st.ye€ .7:(56)}
Below, we recall the standard concept of measurability for set-valued mappings defined over some

subinterval I C R of the real line, endowed with the complete o-algebra of Lebesgue-measurable sets.

Definition 2.5 (Measurable set-valued maps and measurable selections). A multifunction F : I =Y
is said to be £'-measurable provided that

FUO) = {tel st. F)n O #0}
is LY -measurable for every open set O C'Y. A mapping f : I — Y is called a measurable selection
of F(+) if it is L -measurable and such that f(t) € F(t) for £-almost every t € I.

In the following theorem, we recollect a deep result of set-valued analysis which provides the
existence of measurable selections for measurable multifunctions whose images are closed subsets of a
complete separable metric space.

Theorem 2.6 (Existence of measurable selections). Every .Z'-measurable set-valued map F : [ =Y
with nonempty closed image admits a measurable selection.

In our subsequent developments, we will use the notions of continuity and Lipschitz reqularity for
set-valued mappings, both of which are recalled in the following definitions. Therein, we denote by
Bx (z,r) and By (y,r) the closed ball of radius r > 0 centered at x € X and y € Y respectively, and
use the condensed notation Bx (2,7) := {z € X s.t. dx(z,2’) < r for some 2/ € Q } for any Q C X.

Definition 2.7 (Continuous set-valued maps). A multifunction F : X =Y is said to be continuous
at x € X if both the following conditions hold:

(1) F(-) is upper-semicontinuous at x € X, i.e. for every ¢ > 0, there exists 6 > 0 such that
F(a') C By (F(2),€)

for all 2’ € Bx(z,9).



(13) F(-) is lower-semicontinuous at x € X, i.e. for every e > 0 and each y € F(x), there exists
0 > 0 such that
F(@') NBy(y,e) # 0
for all 2’ € Bx(x,0).

Definition 2.8 (Lipschitz continuous set-valued maps). A multifunction F : X =Y is said to be
Lipschitz continuous if there exists a constant L > 0 such that

F(a') € By (F(x), Ldx(z,7')),

for every z,2' € X.

In the sequel, we will frequently resort to the general notion of Carathéodory set-valued map
between metric spaces, which is defined as follows.

Definition 2.9 (Carathéodory set-valued maps). A set-valued map G : I x X = Y s said to be
Carathéodory if t € I = G(t,x) is L -measurable for all x € X and v € X = G(t, ) is continuous
for L -almost every t € I.

In the following lemma — whose proof is outlined in Appendix A —, we state measurable selection
principles adapted from [9, Section 8.1] and [79, Section 9] that we shall extensively use in the sequel.
Therein, we let ¢ : I x Y — R4 U {400} be an extended real-valued function satisfying

w&w:gyww) (2.5)

for #1-almost every t € I and all y € Y, with (¢,(-,-)) being a pointwisely non-decreasing sequence
of Carathéodory maps. This implies in particular that t € I — ¢(t,y) is -£'-measurable for each
y €Y, whereas y € Y ~ ¢(t,y) is lower-semicontinuous for .#!-almost every ¢ € I.

Lemma 2.10 (Measurable selections principles). Let F : I =2 Y and G : I x X =Y be two set-valued
maps with nonempty images and ¢ : I x Y — Ry be as above. In addition, fix two £-measurable
functions x : I — X and L : I — R,.

(a) Suppose that F(-) is L' -measurable with compact images, and that the set-valued map
teI=FHN{yeY st pty) <LH)}

has nonempty images. Then the latter is £ -measurable, and there exists a measurable selection
t € I'w f(t) € F(t) such that o(t, f(t)) < L(t) for £*-almost every t € I.

(b) Suppose that F(-) is L -measurable with compact images. Then, the set-valued map

tel =2 F(t)n {y €Y st p(t,y) = inf gp(t,z)}
z€F(t)

is L1 -measurable with nonempty closed images, and as such admits a measurable selection.

(c) Suppose that G(-,-) is Carathéodory with closed images. Then, the set-valued map t € I =
G(t,xz(t)) is L -measurable, and as such admits a measurable selection.

We end this primer in set-valued analysis by stating an adaptation of Aumann’s integral convexity
theorem, for which we point the interested reader to [9, Theorem 8.6.4].

Theorem 2.11 (Convexity of the Aumann integral). Suppose that (X, ||-||x) is a separable Banach
space and let F : I — X be a set-valued map with closed nonempty images which is integrably
bounded, in the sense that there exists some k(-) € L*(I,R,) such that

F(t) C k(t)Bx,

for L -almost every t € I. Then, for every measurable set Q C I, any measurable selection t € I —
f(t) e F(t) and all 6 > 0, there exists a measurable selection t € I — fs(t) € F(t) such that

H/Qf(t)dt_/ﬂfzs(t)dtHX <.
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Topologies and metrics over C°(R%,R%). Throughout the manuscript, we will almost exclusively
work with multifunctions whose values are subsets of CO(R? R?). Following the pioneering work [80],
it is known that the most natural topology to endow this space with is that of uniform convergence on
compact sets — or compact convergence —, whose definition and distinctive features are recalled below.

Definition 2.12 (The topology of compact convergence). A sequence of continuous maps (vy,) C
CO(R?,R?) is said to converge uniformly on compact sets to some v € CO(R? R?) provided that

llv — Un”CO(K,Rd) n_>—+>oo 0,
for every compact set K C R, The topology that this notion of convergence induces on CO(R? R?) is
complete, separable, and metrised by the translation-invariant metric

+o0
dec(v,w) == 3° 2% min {1 [|v — wllco(5(0 4y ety (2.6)
k=1
that is defined for each v,w € C°(R%,R%). As such, the latter endows (C°(R%,R?),dec(-,-)) with the
structure of a separable Fréchet space.

In our subsequent developments, we will always consider C°(R% R?) endowed with the separa-
ble Fréchet topology induced by dcc(-,-), which interestingly carries a functional characterisation of
Carathéodory vector fields, as illustrated by the following result borrowed from [66, page 511].

Lemma 2.13 (Carathéodory vector fields as measurable functions in C°(R?,R9)). A vector field
(t,2) € IxR? s v(t,x) € R? is Carathéodory if and only if its functional lift t € I — v(t) € CO(R?, R?)
is L -measurable for the topology of uniform convergence on compact sets.

In light of this result, we will systematically identify .#'-measurable maps ¢t € I + v(t) €
CY(R%,R%) with Carathéodory vector fields v : I x RY — R?, and thus work within the vector space

ZL(I,C°RE,RY)) == {v T xR - R? s.t. v(-,-) is a Carathéodory vector ﬁeld}.

In addition to its amenable topological properties, the notion of uniform convergence on compact sets
is particularly well-tailored to the formulation of compactness results, as illustrated by the following
general version of the Ascoli-Arzela theorem from [73, Theorem 11.28].

Theorem 2.14 (Ascoli-Arzela compactness theorem). Let (v,) C CO(R%,RY) be a sequence of maps
which are uniformly bounded and equi-continuous on compact sets. Then, there exists an element
v e CORYRY) for which

dCC(Unkav) k—>—+>oo O,

along a subsequence (vy, ) C CO(RY,RY). Similarly if K C R? is compact and (v,) C CO(K,R?) is a
sequence of uniformly bounded and equi-continuous maps, then there exists v € C°(K, Rd) such that

||v_vnkHCO(K,Rd) k:joo 0,

along a subsequence (vy, ) C CO(K,RY).

Proof. The proof of the first compactness statement can be found in [73, Theorem 11.28|, while that
of the second one is simply the standard Ascoli-Arzela theorem. O

In order to formulate the well-posedness results of Section 4, we will also need a global notion
of vicinity for continuous maps, that will be inherently stronger than the local one provided by the
metric de.(+, ). For this reason, we will also consider the extended supremum metric defined by

dsup (v, w) := sup |v(z) —w(z)| € RU {+o0}, (2.7)
zeR4
for every v, w € CO(R?, R?). In the following lemma, we recollect for the sake of completeness a classical
result which shows that the natural lift of dsup(-,-) to the topological vector space £(I, CO(R4, R?))
is complete, in the sense that its Cauchy sequences converge.



Lemma 2.15 (Completeness of the integral of the extended metric). Consider a sequence of maps
(va () € Z(I,C°(RY, R?)) satisfying the Cauchy condition

/(]Tdsup(vn(t),vm(t))dt 0 (2.8)

n,m—-+o0o

Then, there erists an element v(-) € L(I,CO(RY,RY)) such that
T
/0 aup (0n(1), o(1)dt —> 0.

Proof. The proof of this result being somewhat standard, it is deferred to Appendix B below. O

2.3 Continuity equations and inclusions in the space of probability measures

In this section, we recollect known results about continuity equations in measures spaces, following
the usual Cauchy-Lipschitz and superposition-type theories surveyed e.g. in [4, 7], as well as their
set-valued counterpart introduced by the authors of the present manuscript in [14].

Given a real number p € [1,4+00), a time horizon T > 0 and a velocity field v : [0,7] x R — R?,
we will focus our attention on the well-posedness and qualitative properties of the Cauchy problem

Oep(t) + dive (v(t)u(t)) =0,
{M(T) = iy, (29)

wherein (7, u,) € [0,T] x Z,(R?) is a fixed datum and u(-) € CO(I, 2(R?)) is a narrowly continuous
curve of measure. The dynamics appearing in the first line of (2.9) is referred to as a continuity
equation, and understood in the sense of distributions

T
/0 [ (00(t,2) + (Vao(t, @), v(t,2) Jdp(B)(x)dt = 0,

for every test function ¢ € C>((0,T) x R% R). Throughout this article, we will mostly work with
velocity fields satisfying all or parts of the following assumptions which are standard when studying
continuity equations in the Cauchy-Lipschitz framework.

Hypotheses (CE).

(i) The vector field v : [0, T] xR? — R s Carathéodory, and there exists a map m(-) € L*([0,T],Ry)
such that
o(t, z)| < m(t)(1 + [x]),

for L -almost every t € [0,T] and all z € RY.
(ii) There exists a map I(-) € L*([0,T],Ry) such that
Lip(v(t) ; R?) < I(1),
for £-almost every t € [0,T).

Let it be noted that, while the velocity fields are generally assumed to be locally Lipschitz with
respect to z € R? in [14] and other references in the literature dealing with compactly supported
measures, the global condition written in (CE)-(i7) is necessary for the derivation of quantitative
stability estimates in (,(R%),W,(-,-)). In the following definition, we recall the notion of flows of
homeomorphisms generated by a Carathéodory vector field.

Definition 2.16 (Flows of homeomorphisms). Let v : [0,7] x R® — R? be a velocity field satisfy-
ing hypotheses (CE). Then, we denote by (@E’Tt)(-))me[oﬂ c CYR4 R?) the unique semigroup of
homeomorphisms that solve the Cauchy problems

7, —x—i—/ 5<I>U (z))ds,

for all times 7,t € [0,T] and every x € R%,
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Under the Cauchy-Lipschitz assumptions of Hypotheses (CE), the following strong well-posedness
result holds for solutions of continuity equations in (Z2,(RY),W,(-,-)). In what follows given some
q € [1,+00], we will frequently write ||-|[4:=||-||za(o,77) for the sake of conciseness.

Theorem 2.17 (Classical well-posedness of continuity equations). Let (7, ) € [0,T] x 2,(R?) and
v:[0,T] x R* = R be a velocity field satisfying Hypotheses (CE)-(i). Then, the Cauchy problem
(2.9) admits forward solutions u(-) € AC([r,T], Z,(R%)), and there exists a constant ¢, > 0 which
only depends on the magnitudes of p, My(u°) and ||m(-)||1, such that

to
Wilu(t), i(t2)) < ¢ [ m(s)ds, (2.10)
1
for all times 0 < t; <ty <T. If in addition Hypothesis (CE)-(ii) holds, then the solution of (2.9) is
unique, globally defined on [0,T], and can be represented explicitly as
p(t) = Pl (gpor, (2.11)
for all times t € [0,T].

Proof. These statements follow e.g. from a combination of several standard results from [7, Section
8.1] along with the moment estimates displayed in Proposition 2.21 below. U

Definition 2.16 and Theorem 2.17 inform us together that, in the Cauchy-Lipschitz setting, solu-
tions of continuity equations can be explicitly written as the transports of the initial datum along the
characteristic curves generated by the velocity field. When the latter is less regular, it is still possible
to give a rigorous meaning to this intuition by leveraging the concept of superposition measure. In
what follows, we denote by Y7 := C%([0,T],R?) the space of continuous arcs from [0, 7] into R

Definition 2.18 (Superposition measures). An element n € P(R? x Y1) is called a superposition
measure associated with a Lebesgue-Borel velocity field v : [0,T] x R* — R? from time T € [0,T)] if it
is concentrated on the set of pairs (x,0) € R? x AC([0,T],RY) satisfying

t
ot)==x —i—/ v(s,0(s))ds (2.12)
for all times t € [1,T).

A direct link can be provided between superposition measures and solutions of (2.9) under the
action of the so-called evaluation map, which is defined for all times ¢ € [0, T] by

e : (z,0) e RY x Bp = o(t) € R

More precisely, it can be checked that if n € 2(R? x ¥7) is a superposition measure associated with
a velocity field v : [0,7] x RY — R? such that (mga)yn = pir — where mga : (z,0) € R? x B 2 € R?
stands for the projection onto the space component —, and if the following local integrability condition

/ /d t)[v(t, o(t))|dn(z, o)dt < 400
RexXr

holds for each compact set K C RY, then the curve defined by u(t) := (e;)ym for all times ¢ € [r, T
is a solution of (2.9). We recall in the following theorem the converse of this statement — colloquially
known in the literature as the superposition principle —, for which we refer e.g. to [4, Theorem 3.4].

Theorem 2.19 (Superposition principle). Let (7, u,) € [0,T]x 2,(R%) and u(-) € AC([r,T], Z,(R%))
be a solution of (2.9) driven by a Lebesque-Borel velocity field v : [0, T] x RY — R? satisfying

/ /Rd T+ |:c| pu(t)(2)dt < +oo. (2.13)

Then, there exists a superposition measure 1, € P (R4 x X1) in the sense of Definition 2.18 such that
(er)smu = p(t) for all times t € [7,T].
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Throughout the remainder of this section, we derive a series of useful moment and stability esti-
mates for solutions of (2.9) driven by Lebesgue-Borel velocity fields v : [0,T] x R? — R% under the
additional assumption that there exists a map m(-) € L!([0,T],R;) such that

lo(t,z)] < m(t)(1+ |z|) (2.14)

holds for .Z'-almost every t € [0,7] and u(t)-almost every x € R? While some of the underlying
techniques were already explored in our previous work [14], the results below are new, proven under less
restrictive regularity assumptions, and requested several additional arguments. We start by stating
an adaptation of a result established in [14, Lemma 1], whose proof! follows straightforwardly from
the latter up to some minor technical adjustments.

Lemma 2.20 (Superposition plans inducing optimal transports). Consider two curves of measures
p(-),v(-) € AC([r,T], Z,(R%)) driven by the Lebesque-Borel velocity fields v,w : [0,T] x R — R?
complying with the pointwise sublinearity estimates

@t 2)] <m)(1+[z])  and  Jw(t,y)| <m(t)(1 + [y])

for Lt -almost every t € [1,T) and u(t) x v(t)-almost every (z,y) € R? x R%. Moreover, let n,,n, €
@(Rd X Xr) be two superposition measures given by Theorem 2.19, such that

p(t) = (e)ymu  and  v(t) = (er)smy

for all times t € [7,T]. Then, for every v, € U'y(u(7),v(7)), there exists N, € I'(u, M) such that

(T"R‘% WRd)ﬁﬁu,u = and (eta et)ﬁﬁu,u € Fo(ﬂ(t)7 V(t))
for all times t € [1,T).

In what follows, we leverage the general superposition results of Theorem 2.19 and Lemma 2.20
to prove moment and equi-integrability inequalities for solutions of (2.9) in Proposition 2.21, as well
as two stability estimates with respect to initial data and driving fields in Proposition 2.23. For the
sake of readability, we postpone the proof of these results to Appendices C and D respectively.

Proposition 2.21 (Moment and equi-integrability estimates). Let (1,u,) € 2,(R?) be given and
u(-) € AC([,T], Z,(R%)) be a solution of (2.9) driven by a Lebesgue-Borel velocity field v : [0,T] x
RY — R? satisfying the sublinearity estimate (2.14). Then, the following moment bound

My(p(t) = Co(My(r) + [ m(s)ds ) exp (G I ) (215)

holds for all times t € [1,T], where the constants Cp, C'I') > 0 are given explicitly by

-1

— -1 2P
Cp:=20"0P  and  C =2 (2.16)
In addition for every R > 0, the following uniform equi-integrability estimate
sup [ o du(t) () < CF [ (+la) duc(e),  (217)
telr,1)/ {= st. |e|>R} {a st.|2[>R/Cr—1}

holds with Cp := max {1, ||m(-)||1} exp (|[m(-)][1)-

Remark 2.22 (A refined moment inequality). In the sequel, we will often use the fact that, if a
velocity field v : [0,T] x RY — RY satisfies a slightly more general sublinearity inequality of the form

ot 2)] < m(t)(1+ 2]+ M (1)),

'In [14], the proof of Lemma 1 contains a small caveat in the definition of the coercive functional used to establish
the relative narrow compactness of a relevant sequence of superposition measures. Nevertheless, the conclusion remains
correct up to setting the latter to 400 outside the closed set of pairs (z,0) € R? x X satisfying |6 ()| < m(t)(1+|o(t)]).
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for L' -almost every t € [0,T] and all x € R, where M(-) € L>([0,T],Ry) is a priori given, then the
corresponding curve of measures ju(-) € AC([r, T], 2,(R%)) is such that

M) < Gy My(pr) + /Tt m(s)(L+ M(s))ds ) exp (Cf ImC) )

for all times t € [1,T). The latter inequality can be established by repeating verbatim the arguments
detailed in Appendiz C while replacing m(-) by m(-)(1 + M(-)).

Proposition 2.23 (Two general stability estimates for continuity equations). Let u,,v, € Z,(R%)
and u(-),v(-) € AC([r,T], Z,(R%)) be two solutions of (2.9), driven respectively by a Carathéodory
velocity field v : [0,T] x R? — RY satisfying Hypotheses (CE), and by a Lebesque-Borel velocity field
w: [0,T] x R* = RY complying with the pointwise sublinearity estimate

w(t, y)| < m(t)(1+ lyl), (2.18)
for L -almost every t € [0,T] and v(t)-almost every y € R, Then, if the map defined by
t € [r,T] = lv(t) — w(t)] Lo (ra, R, (2)

1s Lebesgue integrable, the following global stability estimate

W00, 0)) = Cp(Wilpr,ve) + [ 1006 = 0(6) g st ) 0 (G O gy ) 219)

holds for all times t € [1,T], wherein Cp,C;, > 0 are defined in (2.16). More generally, under our
assumptions, the application

t € [1,T] =|lv(t) — wt)|| Lo (B(0,R)R% v(1))

is Lebesgue integrable for every R > 0, and the following localised stability estimate

Wy (u(t),v(t) < C ( (trsvr +/ [[v(s) )| Loe (B0, R) R4 v(s)) A8 + Eu(T, 1, R)) (2.20)
x exp (Cp 1L gy )
holds for all times t € [1,T], where the additional error term is given by
1/p
E,(r b, R) =2 [m() | s g (1 + C’T)(/ (14 ]y\)pduT(y)) . (2.21)
{yst. [y|I=R/Cr—1}

with Cp := max{L, [jm(-)[[1} exp(|lm(-)[}1)-

Remark 2.24 (Comparison with the estimates of [14]). The stability estimates displayed in Proposi-
tion 2.23 above improve on those of [1/] in the two following ways. Firstly, the global inequality (2.19)
now holds for a general Lebesque-Borel velocity field w : [0,T] x R* — R satisfying the sublinearity
inequality (2.14), without requiring the latter to be Carathéodory. Secondly, the inequality (2.20) in-
volving the quantitative error term E,(7,t, R) is completely new to the best of our knowledge, and will
prove crucial to palliate the fact that the metric of compact convergence dec(-,-) only grants access to
local and non-uniform discrepancy estimates between functions.

We end this preliminary section by recalling the definition of continuity inclusions in Wasserstein
spaces. The latter was introduced by the authors of the present manuscript in [14] as a natural
set-valued generalisation of continuity equations. Indeed, its definition adopts the well-established
viewpoint that solutions of differential inclusions should be understood as absolutely continuous curves
whose derivatives are measurable selections of admissible velocities, see e.g. [9, Chapter 10].
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Definition 2.25 (Continuity inclusions in (Z,(R%), W,(+,-))). Let V : [0, T] x Z,(R%) = CO(R%,R?)
be a set-valued map. We say that a curve u(-) € AC([0,T], Z,(R%)) solves the continuity inclusion

Dupt) € —div, (V (£, p(t)pu(t) ) (2.22)

if there exists an Z*-measurable selection t € [0,T] + v(t) € V(t,u(t)) € CO(RY RY) such that the
trajectory-selection pair (u(-),v(:)) is a solution of the continuity equation

Dupa(t) + diva (v(H)u(t)) = 0,

in the sense of distributions.

3 Existence a la Peano in the Carathéodory framework

In this section, we establish a general existence result for set-valued Cauchy problems of the form

{@M(t) & —divy (V (£, u(0)u(t)), (3.1)

1(0) = p°,

formulated in the Wasserstein space (Z2,(R%), W,(-,-)), under the Carathéodory regularity assump-
tions listed below. Our strategy is based on a careful adaptation of the semi-discrete Euler scheme
due to Filippov for differential equations, see e.g. [42, Chapter 1 — Theorem 1]. To the best of our
knowledge, this approach is completely new, as it does not seem to have been investigated for dif-
ferential inclusions even in finite-dimensional vector spaces. In the context of measure dynamics, the
latter can also be seen as a kind of relative to the methods developed e.g. in [31, 69, 70]. We would
also like to stress that our proof strategy greatly improves on several related compactness arguments
explored in the literature of meanfield control, see e.g. [14, 46], thanks to the weak L'-compactness
criterion of Theorem 2.1.

Hypotheses (P).

(i) The set-valued map (t,u) € [0,T] x Z,(R?) = V(t,u) C CORYRY) is Carathéodory with
nonempty closed and convex images.

(ii) There exists a map m(-) € LY([0,T],Ry) such that for £ -almost every t € [0,T], any p €
2,(R?) and each v € V(t, ), there holds

[o(@)] < m()(1+ [2] + My(p)).

for all x € R,

(#33) For all compact sets # C P,(R?) and K C R%, there evist a map I(-) € L*([0,T],R,) and a
continuous modulus of continuity w : Ry — Ry such that for £‘-almost every t € [0,T], any
w € A and each v € V(t, p), there holds

vt z) —v(t,y)| < 1({t)w(lz —yl)
forall xz,y € K.

(iv) For every compact set # C P,(R%), there exists a map L(-) € L([0,T],R) and a continuous
modulus of continuity w : Ry — Ry such that for £-almost every t € [0,T], any p,v € # and
each v € V(t, ), there exists w € V(t,v) such that

dec(v,w) < L(t) w(Wy(11,)):
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Two remarks are in order concerning the previous set of assumptions. First, we stress that the
maps I(-), L(-) € L*([0,T],R) and the local continuity moduli w : Ry — R, appearing in Hypotheses
(P)-(i77) and (iv) are all localised on compact sets. That being said, we did not make this dependence
transparent so as to keep the notations as light as possible. Second, as mentioned in the introduction,
it is a well-known fact in the theory of differential inclusions that outside of the Cauchy-Lipschitz
framework, one must in general impose a convexity assumption on the admissible velocities to establish
the existence of solutions, even in finite-dimensional euclidean spaces (see e.g. [8, Chapter 2]).

Remark 3.1 (Examples of set-valued mapping satisfying our assumptions). A relevant example of
set-valued map V : [0,T] x Z,(RY) = CO(RY, RY) satisfying Hypotheses (P) is given by the set of
admissible velocities of a controlled system of the form

V(t,p) = {v(t,,u,u) e CO(RY,RY) s.t. u € U}.

Therein, (U,dy(+,+)) is a compact metric space representing admissible control inputs, while v : [0,T] X
Z,(R?) x U x RY — R is a vector field that is Carathéodory in (t,u) € [0,T] x U as well as locally
uniformly continuous in (u,xz) € gzp(Rd) x RY with constants that are Lebesque integrable functions
of time. In the simpler case in which the maps (1, ) € Z,(RY) x RY v v(t, p,u,z) € R are globally
Lipschitz with constants given by Lebesgue integrable functions of time, this control theoretic model
also fits Hypotheses (CI) of Section /.

In what follows, we state and prove the main result of this section which provides the existence of
solutions to (3.1) under Hypotheses (P).

Theorem 3.2 (Existence a la Peano for continuity inclusions). Let V : [0,T] x Z,(RY) = CO(R%,R?)
be a set-valued map satisfying Hypotheses (P). Then for every u° € 2,(R%), the Cauchy problem

{atw) € —div, (V(t, pu(t)p(t)),
p(0) = p,
admits at least one solution u(-) € AC([0,T], 2,(R%)).

The proof of Theorem 3.2 follows a constructive scheme which is split into five steps. We start
in Step 1 by constructing a sequence of trajectory-selection pairs solving continuity equations with
delayed velocity inclusions, and proceed by showing in Step 2 that the elements of the latter comply
with uniform moment, regularity and equi-integrability bounds. In Step 3, we then prove that such
estimates imply the existence of suitable weak cluster points for the sequence of trajectory-selection
pairs. To conclude the proof, we further establish in Step 4 that the limit curve of measures solves
a continuity equation driven by the corresponding velocity selection, and finally prove in Step 5 that
the latter is in turn a measurable selection in the set of admissible velocities.

Proof of Theorem 3.2. In what follows, our goal is to build a sequence of trajectory-selection pairs

(1t (), vn () € AC([0,T], Z,(RY)) x £([0,T],C°(R%,R?)) solutions of the Cauchy problems

{Btun(t) + divg (v, (E)pn(t)) = 0, (3.2)
pn(0) = .
These latter will be chosen so as to satisfy the delayed pointwise velocity inclusion

un(t) €V (Lt — 1)), (3.3)

for #'-almost every t € [0,T] — where here and in what follows we set ju,(t) := pu° for t € [-L,0] by
convention —, along with the uniform moment and regularity bounds

M, (un(t)) <C and W (pn(7), pn(t)) < ¢p /t m(s)ds (3.4)

T

for all times 0 < 7 <t < T and each n > 1. Therein, the constants C,c, > 0 only depend on the
magnitudes of p, M, (%) and ||m(-)]];.
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Step 1 — Construction of the sequence. Given an integer n > 1, we explicitly build the pair
(pin(+), vy (+)) satisfying the aforedescribed conditions by performing an induction on k£ € {0,...,n—1}.
First, let IO := [0, Z] and observe that under Hypotheses (P)-(i) and (i), the set-valued map

te I8 = V(t,u) c CORYRY)

is .Z!-measurable with nonempty and closed images for the topology of local uniform convergence.
Hence, it admits a measurable selection t € I + v0(¢) € V (¢, u°) by Theorem 2.6, and the underlying
Carathéodory velocity field v9 : 19 x R? Rd satisfies the sublinearity estimate

[t 2)] < m(®)(1+ |2 + My(u)),

for #1-almost every t € I9 and all € R?, as a consequence of Hypothesis (P)-(ii) along with Lemma
2.13. Tt complies in particular with Hypothesis (CE)-(i), and by Theorem 2.17 applied on the interval
I = I? with v(t, ) := v9(t, x), there exists a solution pu(-) € AC(IY, Z,(R%)) to the Cauchy problem

{@Mn( ) + divz (v, ()5 (£)) = 0,
p(0) = .

By repeating this process for k € {1,...,n — 1}, we detail below how one can inductively build a
k() € AC(I, 2,(RY)) x ZL(I, CO(RY,RY)) defined over

the family of time intervals I* := [£L, (k"‘l)T]

First, note that for .#'-almost every t € [0, 7], the sets V (¢, uf=1(t)) ¢ CO(R?, R?) are compact
for the topology induced by d..(+,-) as a consequence of Hypotheses (P)-(ii) and (i7i) combined with
the Ascoli-Arzela theorem. Second, under Hypothesis (P)-(7), it follows from Lemma 2.10-(c) that

family of trajectory-selection pairs (1 (- )

teIf =V (Lui (- 1)) c CORYRY)

is an .Z!-measurable set-valued map, whose images are nonempty. Thence, by what precedes, it
admits a measurable selection

teI’“»—H)()eV(tp Lt — I)). (3.5)

n

Besides by Lemma 2.13 and Hypothesis (P)-(ii), the vector field v¥ : I¥ x R? — R? is Carathéodory
and satisfies the sublinearity estimate

[k, )] < m(e) (1+ |2l + My (k' (¢ = £)) (3.6)

n

for #'-almost every t € I,’j, all z € R% and each k € {1,...,n—1}. Thus by applying Theorem 2.17 on
the time interval I := I¥ with v(t,z) := v (¢, 2), one can subsequently define zf(-) € AC(I¥, 2,(R%))
as being one of the solutions of the Cauchy problem

Ol (t) + divy (vE ()l (1)) = 0,
{ui‘i(k—T) = py ' (ED).

By classical concatenation properties for solutions of continuity equations (see e.g. [40, Lemma 4.4]),

the trajectory-selection pair (un(+),va(-)) € AC([0,T], Z,(R9)) x £([0,T],C°(R?,RY)) defined by

pn(t) = py(t)  and  wa(t) = (1), (3.7)

for t € I¥ and k € {0,...,n — 1} solves the Cauchy problem (3.2). Moreover, it can be checked using
(3.5) that this trajectory-selection pair satisfies the shifted pointwise inclusion (3.3).
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Step 2 — Uniform moment and regularity estimates. Our goal now is to establish the uniform
regularity and moment bounds posited in (3.4). First, notice that as a consequence of the construction
detailed in Step 1 and Proposition 2.21, the curves (u,(-)) € AC([0,T], Z,(R%)) satisfy

sup My (pn(t)) < 400
t€[0,T]

for each n > 1. This allows us to apply the moment estimate of Remark 2.22, which in context writes

Milpa®) < Gy My(u®) + [ () (1 + Mylpas = B} ) exp (G IO oy ):— 38)
for all times ¢ € [0, T, using again the convention that ju,(t) = u° when t € [-Z,0]. Defining the map
m() S Ll([072T]7R+) as

in(t) = {m(t) it t € 0,77, (3.9)

0 if t € [T, 2T,

one may rewrite the estimate displayed in (3.8) as

t T/n
Mpwn(t))scp(Mp(uM | omsas+ [ mi) M (0)as

max {O,th/n}
+/0 m(s + %)Mp(un(s))ds> exp (€ ImO3a g0 )

Cp(1 4+ M,(1?)) (1 + [Im ()l o.0) ) exp (Cé I o, )
+ Cp(/ot (s + %)Mp(ﬂn(*‘f))ds) exp (€ 1mO) oy )

where the first inequality follows from a simple change of variable, while the second one stems from
the non-negativity of 7(-) and M (un(-)). Thence, a standard application of Grénwall’s lemma yields

My (pn()) < Cp(1+ My()) (14 [m() 20 )

X exp (c;, IO g0y + Co I L1 os/m) €0 (Ch I, M))

for all times t € [0,T]. In turn, upon noticing that

()2 qo,erym)) < M)l

for all times ¢t € [0,T] and each n > 1 as a consequence of (3.9), there further exists a constant C > 0
which only depends on the magnitudes of p, M, (u°) and ||m(-)||1, such that

sup My (un(t)) < C

te[0,7)

for each n > 1. In particular, the velocity fields (v,(-)) C Z([0,T], C°(R%,R%)) satisfy the uniform
sublinearity bounds
lun(t, )| < (1+C)m(t)(1 + |=|) (3.10)

for #!-almost every t € [0,7], all 2 € R? and each n > 1. Therefore, by Theorem 2.17, there exists a
constant ¢, > 0 depending only on the magnitudes of p, M,,(u%) and ||m(-)||; such that

Wyl (7). (1)) < 6 [ (s

T

for all times 0 < 7 < ¢t < T. To summarise, we have shown that the sequence of curves (u,(-)) C
AC([0,T], Z,(R%)) satisfies the uniform moment and absolute continuity estimates (3.4).
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Step 3 — Relative compactness of the sequence of trajectory-selection pairs. Next, we
show that the regularity estimates of Step 2 yield the relative compactness of the sequence of pairs
(1t (), 00 (1)) € AC([0,T], Z,(RY)) x £([0,T],CY(R%,RY)) built in Step 1. Indeed, notice first that
by invoking the moment inequality (2.15) and the equi-integrability bounds (2.17) of Proposition
2.21, possibly with different constants Cr > 0, one may infer from Proposition 2.3 the existence of a
compact set & C Z,(R%), depending only on u and ||m(-)||1, such that

Lin(t) € A (3.11)

for all times t € [0,7]. Whence, taking into account the uniform regularity estimate (3.4) satisfied
by the sequence (un(+)) € AC([0,T], 2,(R%)), it follows from the Ascoli-Arzeld theorem for complete
separable metric spaces (see e.g. [61, Chapter 7 — Theorem 18]) that

sup Wp(pn(t), n(t)) — 0, (3.12)
te[0,T] n—++00

for some curve of measures (-) € AC([0,T], Z,(R%)), along a subsequence that we do not relabel.
Concerning the sequence of velocity selections, observe that for each m > 1, the space restrictions
to B(0,m) of (v,(-)) C £2([0,T],C°(R4 R?)) form an integrably bounded sequence owing to the
sublinearity estimate of (3.10). Besides, by Hypothesis (P)-(7i¢) combined with (3.11) and the classical
Ascoli-Arzeld theorem, there exists a family of compact sets (Ki");ep0.r) € C(B(0,m),R?) such that

V(t (=% = {UB(O,m) € CO(B(0,m),R?) s.t. v € V (L, pun(t — %))} c K

))lB(Ovm)
for #'-almost every ¢t € [0,7] and each n,m > 1, wherein V|B(0,m) Stands for the restriction of
the function v € C°(R?,RY) to B(0,m). Thus, by iteratively applying Theorem 2.1 while perform-

ing a standard diagonal argument, we obtain the existence of a Carathéodory vector field v(-) €
Z([0,T],C°(R?, RY)) such that for every R > 0, one has that

vn() = () (3.13)

n—-+4o0o

weakly in L'([0,T],C%(B(0, R),R%)), along a subsequence that depends on R > 0. In particular, this
convergence property implies that

n—-+o0o

T
/O V(D). 0(1) = 0a (D) o oy meydt — 0 (3.14)

whenever v(-) € L>([0,T], .# (B(0, R),R%)), again as a consequence of Theorem 2.1. Besides, it can
be straightforwardly verified that

M, (u(t)) <C and Wy (1), (1)) < ¢p /tm(s)ds

T

for all times ¢ € [0, 7] as a consequence of (3.12), while (3.10) and (3.13) yield up to an application of
Mazur’s lemma (see e.g. [18, Corollary 3.8]) that

o(t, )| < (14 C)m(t)(1+ |zl), (3.15)
for .#'-almost every t € [0,7] and all = € RY.
Step 4 — Dynamics of the limit trajectory-selection pair. At this stage, we need to show that

the limit trajectory-selection pair (u(-),v(-)) € AC([0,T], Z,(R%)) x £([0,T], C°(R¢,R?)) stemming
from the compactness argument of Step 3 is a distributional solution of the Cauchy problem
{Btu(t) T div, (v(8)p(t)) = 0,

. (3.16)

n(0) = p.
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To begin with, note that it trivially follows from (3.12) along with the construction detailed in Step 1
that 1(0) = p°. Thus, there remains to show that one may pass to the limit as n — +oo in the weak
formulation of (3.2), of which we remind that it is given by

/OT - (Bt 2) + (Vao(t, 2), va(t, 2)) ) dptn () (w)dt = 0 (3.17)

for all ¢ € C2°((0,T) x R?) and each n > 1. By leveraging the uniform convergence property of (3.12)
together with Proposition 2.3, it can be checked straightforwardly that

[ [ st adm@a [ [ oot @ (318)

In addition, upon noting that the convergence result provided in [7, Theorem 12.1.1] for bounded
Carathéodory vector fields is still valid for integrably bounded ones — up to a relevant adaptation in
the spirit of [7, Lemma 5.1.7] —, it follows from (3.15) combined with (3.12) and Proposition 2.3 that

T
/ / Vao(t, 2), v(t, 2))dpin(t) (z)dt H—+>OO/O /R (Vad(t,x), 0t ) du(t) (@)dt. (319)

Thus, by merging (3.18) and (3.19), one can check that in order recover the weak form of the dynamics
in (3.16) by letting n — +o0 in (3.17), there only remains to show that

// Vo (t,z),v(t, x) — vp(t, ) )dpn (£)(z)dt — 0 (3.20)

n—-+4o0o

for each ¢ € C2°((0,T) x R% R), possibly up to a subsequence. To do so, we consider test functions
of the form

o(t,x) == ((t)()
for all (t,z) € [0,T] x R? and some (¢, 1) € C°((0,T),R) x C°(R%,R), whose linear span is dense in
C((0,T) x R4, R) (see e.g. [7, Chapter 8]). We then let R, > 0 be such that supp(y)) C B(0, Ry),
and note that by Step 3, there exists a subsequence of (v,(-)) C .Z([0,T],C°(R% R?)) that we do not
relabel for which (3.13) holds in L([0,7],C°(B(0, R),R%)), with

Ri=(1+ Ry)max {1,(1+C) [m()[r Jexp ((1+C) [m(llr ) (3.21)

In that case, we claim that

) (Vip(o(t)),v(t, o(t) = vn(t, o(t))dt | st. &6(t) = vn(t, o(t))

sup
o€AC([0,T],R%)

n—-+4o0o

for .#1-almost every t € [0, T]} — 0.

(3.22)
Indeed, suppose by contradiction that there exists some ¢ > 0, a subsequence of Carathéodory vector
fields (vn, (1)) € Z2([0,T], C°(RY,R?)) and a sequence of curves (o%(-)) C AC([0, T], R?) such that

Gr(t) = vn, (¢, 0(t))

for #-almost every t € [0,T], and

0) (Vo(ou b)), ot on (1) = v (1. n() e | > & (3.23)

for each & > 1. Then, there must exist a sequence (7,) C supp(¢) such that oy(7x) € B(0,Ry) for
every k > 1, which together with the estimates of (3.10) and Gronwall’s lemma implies that

okl <R and  |ox(t) —on(r)| < (14 C)(1 + R) /:m<s>ds
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for all times 0 < 7 < ¢t < T and each k > 1, where R > 0 is given as in (3.21). Thence, by the
Ascoli-Arzela theorem, there exists a curve o(-) € AC([0,T],R%) such that

sup |o(t) —or(t)] — O, (3.24)
te[0,7] k—4-o00

along a subsequence which we do not relabel. Besides, it follows from Hypothesis (P)-(iii) and
Lebesgue’s dominated convergence theorem that

T
sup / (o, 0k () — vn(t, o ())]dE —s 0, (3.25)
n>1J0 k——+o00

which together with (3.23) further implies that

(3.26)

Do ™

T
/0 C(t) (Veb(a(t), v(t, 0 (1) — v (t, 0 (1)) dt | >

whenever k > 1 is sufficiently large. However, by the weak-compactness property of (3.14) applied to
the mapping ¢ € [0,T] = v(t) := ((t)Vi) - do) € A4 (B(0, R),R%), it necessarily hold that

k—+o00

/ O (Vo) 0t (1)) — v (o)At —> 0 (3.27)

along a subsequence that we do not relabel, which contradicts (3.26).
To conclude, we observe that by Theorem 2.19, there exists a sequence of superposition measures
(mn) € P(R? x $7) associated with (v,(+)) € Z(]0,T], C°(R? R?)) which satisfy

0

(TRa)§Tn = 1 and  (ey)smn = pn(t),

for all times ¢ € [0, 7] and each n > 1. Then, by (3.22) and Fubini’s theorem, one can check that

T
e [ (vt ot o) - o) () @)
0 R

[ [ G0 (F0),0(6.0(0) vt o), e |
0 Rex ¥

< sup
(x,0)€supp(nn)

< {
o€AC([0,7],RY)

[ € (pto), vlt.00) ~ uat, a(t))a|

s.t.

[ ) (Tlo(0),v(t.00) ~valt, 00

n—-+4o0o

a(t) = va(t,o(t)) for L -almost every t € [O,T]} — 0

as a consequence of (3.22), which then yields (3.20). Thence, we have established the trajectory-
selection pair (u(-),v(:)) € AC([0,T], Z,(R9)) x £([0,T], C°(R¢, RY)) is a solution of (3.16).

Step 5 — Admissibility of the limit velocity selection. In this last step, we conclude the proof
of Theorem 3.2 by showing that the limit Carathéodory vector field v(-) € .Z([0,T], C° (R4 R%)) is an
admissible velocity selection for (3.2), namely

v(t) € V(¢ u(t)) (3.28)

for .#'-almost every ¢ € [0,T]. To this end, we recall that the elements of the sequence (ju,(-)) C
AC([0,T], Z,(R%)) are uniformly equi-continuous by (3.4), which implies that for every § > 0, there
exists an integer Ng > 1 such that

Wy (i (t = L), pn(8)) <6,
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for all times ¢ € [0, 7], whenever n > Ns. Consider now the curves fi,,(-) € AC([0, T], Z,(R?)) defined
by fin(t) := pn(t — L) for all times ¢ € [0, 7], and notice that

sup Wy(fin(),u(t) — 0 (3.29)
te[0,T] n—r+00
owing to what precedes, and also
vn(t) € V(L fin (1)), (3-30)

for #'-almost every t € [0,7]. At this point, we recall that the set-valued map ¢t € [0,7] =
V(t,u(t)) ¢ C°(R?,RY) has nonempty and compact images by Hypotheses (P)-(ii) and (iii), and
that it is .Z!-measurable by Lemma 2.10-(c). Moreover, observe that as a consequence of Hypothe-
sis (P)-(iv) together with (3.11), there exists a map I(-) € L'([0,7],R) and a continuous modulus
w: Ry — Ry, both possibly depending on #* C Z2,(R%), such that

V(t, u(t) N {w € CORYRY) .t dec(va(t), w) < 1) w (W (fin (), ,u(t)))}

is nonempty for .Z'-almost every ¢t € [0,T]. Hence, it follows from Lemma 2.10-(a) that for each
n > 1, there exists a measurable selection

t € [0,T] = Ta(t) € V(t, u(t)) (3.31)

which is such that

dcc(ﬁn(t% Un (t)) S l(t) w (Wp (ﬂn(t)7 :u(t)))

for #'-almost every t € [0,7]. By Lebesgue’s dominated convergence theorem combined with (3.12)
and (3.13), this further implies that
On () n_:\roo v(-) (3.32)

weakly in L'([0, T], C°(B(0, R),R%)), along possibly different subsequences depending on R > 0. To
conclude, we finally consider the function sets defined by

VR = {w() e LY([0,7),C°(B(0, R),R%)) s.t. w(t) € V(t, 1(t))Bo,r) for ZL-almost every t € [O,T]}

for each R > 0, and note that the latter are closed for the strong topology of L*([0, 7], C°(B(0, R), R%)).
As these are convex by Hypothesis (P)-(i), it follows e.g. from [18, Theorem 3.7] that they are also
weakly closed in L'([0,7],C°(B(0, R),R%)). Thus, by (3.31) and (3.32), we may infer that the maps

v() iR t € [0,T] = v(t)po.r € C°(B(0,R),R)

belong to #g for each R > 0, which equivalently means that v(t) € V (¢, u(t)) for £ -almost every
t € [0,7] and ends the proof of Theorem 3.2. O

Remark 3.3 (On the choice of proving Theorem 3.2 by means of an Euler scheme). To prove the ex-
istence of solutions to a continuity inclusion with a Carathéodory right-hand side, a tempting strategy,
implemented e.g. in [8, Section 2.1 — Theorem 3] or [53, Theorem 2.9], could be to consider first a suf-
ficiently reqular ezact or approzimate velocity selection (t, p) € [0, T]x Z,(RY) = v(t, u) € CO(R,RY),
and then to show that a continuity equation driven by this latter admits at least a solution.

While such a program may work in practice, carrying it out seemed difficult — and perhaps subop-
timal — for the following reasons. Firstly, the results ensuring the existence of Carathéodory selections
for Carathéodory set-valued maps such as [9, Theorem 9.5.2] do not exist for multifunctions valued
in infinite-dimensional spaces. Even if an adequate counterpart were to be found in our context, one
would still then need to prove that the corresponding nonlocal continuity equations admit solutions,
most likely by means of an Fuler scheme. Secondly, even though results providing families of reqular
approximate selections for upper-semicontinuous set-valued mappings such as [9, Theorem 9.2.1] may
still hold for Fréchet instead of Banach spaces, establishing the compactness of the underlying sequences
may prove to be challenging, owing to the lack of uniformity in the reqularity of said selections.
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4 A priori estimates, compactness and relaxation in the Cauchy-
Lipschitz framework

In this section, we derive quantitative well-posedness results and discuss some of the fine topological
properties of the reachable sets of the set-valued Cauchy problem

{at,u(t) e —div, (V(t,u(t))ﬂ(f)), (4.1)
u(0) = 4.

To this end, we depart from the Carathéodory framework investigated in Section 3, and work under
the following stronger Cauchy-Lipschitz assumptions.

Hypotheses (CI).

(i) The set-valued map (t,u) € [0,T] x Z,(R?) = V(t,u) c CORYRY) is Carathéodory with
nonempty closed images.

(ii) There exists a map m(-) € LY([0,T],Ry) such that for £'-almost every t € [0,T], any p €
P,(RY), every v € V(t, ) and all x € RY, there holds
[o(@)] < m(t) (14 [2] + My(u))
for all x € RY.

(i4i) There exists a map l(-) € LY([0,T),Ry.) such that for £*-almost everyt € [0,T], any p € P,(R?)
and every v € V(t, ), there holds
Lip(v; RY) <1(t).

(iv) There exists a map L(-) € L*([0,T],Ry) such that for £ -almost every t € [0,T), any p,v €
2,(R?) and each v € V(t, 1), there exists an element w € V (t,v) for which

dsup (v, w) < L()Wp(p, v).

Remark 4.1 (Comparison with the main assumptions of [14]). The study of curves of compactly sup-
ported measures generated by locally Lipschitz set-valued maps initiated in [1/] is completely included
in our subsequent developments, up to some minor technical adjustments. Likewise, we could have
opted in the present manuscript for assumptions in which the Lipschitz constants of the dynamics are
localised on compact subsets of Z,(R%).

4.1 Existence of solutions and Filippov estimates

In this section, we prove a new variant of the Filippov estimates for solutions of the Cauchy problem
(4.1). Given an arbitrary measure curve, these latter involve the sum of a local discrepancy term
between the velocity of said curve and that of the solution of the inclusion on an arbitrary ball, to
which one adds a remainder controlled by the tail of the initial datum of said auxiliary curve.

Theorem 4.2 (Filippov estimates). Let V : [0,7] x Z,(RY) = CO(RY,R?) be a set-valued map
satisfying Hypotheses (CI) and v(-) € AC([0,T], Z,(R%)) be a solution of the continuity equation

O (t) + divy(w(t)v(t)) =0
driven by a Lebesgque-Borel velocity field w : [0,T] x RY — R? satisfying the sublinearity estimate

lw(t, y)| < m(t)(1+ ly]), (4.2)

for L -almost every t € [0,T] and v(t)-almost every y € R For every R > 0, define the localised
mismatch function ng(-) € L'([0,T],Ry) by

Nr(t) = dist zoc (B0, R) Re; (1)) (w(t) V(T V(t))) (4.3)
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for L1-almost every t € [0,T).

Then for every u° € 2,(R%) and each R > 0, there exists a trajectory-selection pair (u(-),v(-)) €
AC([0,T], Z,(RY)) x £([0,T], C°(R4,R?)) solution of the Cauchy problem (4.1) which satisfies the
distance estimate

Wi(u(t), v(t)) < Dyp(t, R) (4.4)

for all times t € [0,T], where

Dt R) = Cp(Wp(uO,u(O)) + /0 " n(s)ds +5,,(t,R)) exp (G 1O o +0®)- (45)

Therein, the constants Cp,Cp, > 0 are as in (2.16), the error term E,(t, R) is given explicitly by

1/p
£t B) =2 m() oy 1+ o) 1+ ) (0)(w))

ys.t. |y|>R/Cr—1}

for some constant Cr > 0 that only depends on the magnitudes of p, My(u°) and ||m(-)|1, and the
map Xp(-) € L>([0,T],Ry) writes for allt € [0,T] as

ol®) = Co 12Oz oy v (C IO o - (16)
Moreover, the velocity selection t € [0,T] — v(t) € V(t, u(t)) complies with the pointwise estimate
[0(t) = w(®)ll oo (B(o,R) R w(t)) < MR(E) + L()Dy(t; R) (4.7)

for L'-almost every t € [0,T).

Before moving on to the proof of Theorem 4.2, we state a technical lemma dealing with chained
integral estimates, whose proof is the matter of a straightforward induction argument.

Lemma 4.3 (A uniform bound on families of functions satisfying recurrent integral estimates). Let
m(-) € LY([0,T],Ry) and f° a > 0 be two given constants. Then, every at most countable family of
functions (fa(-)) € C°([0,T],R,) satisfying ||f0(.)||00([0 TRy < 10 as well as the recurrence estimate

t
fra(®) < a1+ [ mi)fals)ds )
0
for all times t € [0,T] and each n > 0 is uniformly bounded, with
s ey ) < (@ + 1) exp (o[ ).

The proof of Theorem 4.2 is based on a constructive scheme, much like that of Theorem 3.2, and
is split into four steps. In Step 1, we detail the initialisation of the underlying induction argument
by means of a selection principle applied along v(-), and proceed in Step 2 by building the whole
sequence of trajectory-selection pairs. We then show in Step 3 that the latter is a Cauchy sequence for
a suitable extended metric, and finally prove in Step 4 that the corresponding limit pair is a solution
of (4.1) which satisfies the stability estimates (4.4) and (4.7).

Proof of Theorem 4.2. Our goal in what follows is to build a sequence of trajectory-selection pairs
(1tn (), vn (1)) € AC([0, T, 2,(R%)) x Z([0, T], C°(R?, RY)) whose elements solve the Cauchy problems

{&fﬂn(t) + divg (vn (t)pn(t)) = 0,

pn(0) = 1, 9

while also satisfying the conditions

Un41(t) € V(L pn(t)) and dsup (U (£), vn41(2)) < L(E)Wp(pn—1(t), pn(t)) (4.9)

for #'-almost every t € [0,T], and complying with the uniform moment and regularity bounds

Mylpnl®) €€ and - Wy (r).in(0) < 65 [ mls)as (4.10)

for all times 0 < 7 <t < T and each n > 1. Therein, the constants C,c, > 0 only depend on the
magnitudes of p, M, (u%) and ||m(-)]];.
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Step 1 — Initialisation of the sequence. Observe first that by combining Hypotheses (CI)-(7)
and (ii) along with Theorem 2.14, the admissible velocity sets V (¢, v(t)) € C°(R?, R?) are compact
in the topology of uniform convergence on compact sets for #!-almost every ¢ € [0,7]. Besides
under Hypotheses (CTI)-(i) and (iv), the set-valued map ¢ € [0,T] = V(t,v(t)) C CO(R,RY) is £1-
measurable as a consequence of Lemma 2.10-(¢). Furthermore, it can be checked that

(t,v) € [0,T] x CORY,RY) v — w(t) | oo (B0, R) RY (8 € Rt

is a Carathéodory map for each R > 0, in the sense that it is .Z’!-measurable with respect to t € [0, 7]
and continuous with respect to v € CO(Rd,Rd) for the topology induced by dcc(+, ). Thus, recalling
the definition (4.3) of the mismatch function ng(-) and applying Lemma 2.10-(b) to the multifunction

te[0,T] = V(t,v(t) N {U € CO(RE,RY) st [l — w(t) || oo (B(0,R),RE, wit)) = nR(t)}7

we obtain the existence of an .#!-measurable map t € [0,7] — v1(t) € V(t,v(t)) such that

[v1(t) — W)l Lo (B0, R) R w(2)) = MR(E) (4.11)

for #1-almost every t € [0, T).
Remark now that as a by-product of Hypotheses (CI)-(i7) and (4i7) along with Lemma 2.13, the
velocity field v; : [0, 7] x R? — R? is Carathéodory and such that

1 (¢, 2)] < m(t) (14 2] + Mp(v(t)))  and  Lip(ui(t);R?) < 1(t)

for #1-almost every t € [0,T] and all x € R?. In particular, it satisfies Hypotheses (CE), and by
Theorem 2.17 there exists a unique curve j1(-) € AC([0,T], 2,(R%)) solution of the Cauchy problem

{8,5/“(15) + diVJ;(Ul (t)Ml (t)) =0,

p1(0) = 4.
Owing to the moment bound of Remark 2.22, the curve p;(-) further complies with the estimate
t
My () < C, (MM) + /0 m(s)(1+ Mpw(s)))ds) exp (Cp ImO) oy ): (412)

for all times ¢ € [0,7]. Consequently, by Lemma 4.3 and (2.15) of Proposition 2.21 applied to the
curve v(-) € AC([0,T], Z,(R%)), there exists a constant C > 0 that only depends on the magnitudes
of p, M(u°), M, (v(0)) and ||m(-)||1, such that

max { M, (v(t), My(m ()} <€ (4.13)
for all times ¢ € [0, T]. In particular, the velocity field vy : [0,T] x R — R? satisfies
lui(t, )] < (14 C)m(t)(1+ |z]), (4.14)

for #1-almost every t € [0,T] and all 2 € R, which combined with (2.10) of Theorem 2.17 yields
the existence of a constant ¢, > 0 depending only on the magnitudes of p, M,(u"), M,(v(0)) and
|lm(-)|]1, such that

Wyl (7)o (1)) < € [ m(s)ds

for all times 0 < 7 <t < T. Moreover, by applying the approximate stability inequality (2.20) of
Proposition 2.23 while taking into account the sublinearity estimate (4.14), it further holds that

W 1), (6)) < Cp (W0 + [ mm(s)ds + £,00 1)) exp (C) O ) (419
for all times t € [0,T7], where
1/p
£,(t.B) =2 ImO)lsgoay 1+ o) [ (1+ Iy dv(0)(w))

with Cr := max {1, (1 4+ C)||m(-)|[1 } exp ((1 + C)||m(-)||1). This together with the moment estimate
of (4.12) concludes the initialisation step of our induction argument.

st. [y >R/Cr—1}
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Step 2 — Construction of the sequence of trajectory-selection pairs. At this stage, note that

dsup (v1(t), w) = SU>Pl o1 (t) — w”CO(B(O,m),]Rd)

for #'-almost every t € [0,T] and all w € C°(R%,R?), and that by construction, the maps (¢, w) €
[0,T] x CORE, RY) = ||vr(t) — w||co(p(o,m),rd) € R+ are Carathéodory for each m > 1. Thence, as a
consequence of Lemma 2.10-(a) combined with Hypothesis (CI)-(iv), there exists an .#!-measurable
map t € [0,T] — wva(t) € V(t, pu1(t)) satisfying

doup (01(6), 02(£)) < LW, (a1 (1), (1))

for #!-almost every t € [0,T]. From Hypotheses (CI)-(ii) and (iii) combined with Lemma 2.13, we
may then infer that the velocity field v : [0, 7] x R — R? is Carathéodory, and such that

[oa(t, )| < m(t) (1 +Jal + Mp(m (1)) and Lip(ua(t);RY) < 1(0),

for #'-almost every t € [0,T] and all x € R?. In particular, it satisfies Hypotheses (CE), and thus
generates a unique solution uz(-) € AC([0, T], 2, (R%)) of the corresponding Cauchy problem

{8,5#2(15) + diVJ;(UQ (t)MZ (t)) =0,
p2(0) = p.

By the refined moment bound of Remark 2.22 and the estimate (2.19) of Proposition 2.23, it may
again be checked that

My ( ( <s>(1 + Mp(ul(S)))dS) exp (Cy ImO) 152 o) )
<o, / dap(01(5).v2(5))ds ) exp (G5 1) 1 . )

As a consequence of Lemma 4.3, this implies in particular that

Wp(pa(t), p2(t))

max { My (1(8)) My (1 (1)), My(a(0)} <€

for all times ¢t € [0,T], where C > 0 is the same constant as in Step 1 which only depends on the
magnitudes of p, M,,(u°), M, (v(0)) and [[m(-)|:.

By repeating this process, we can inductively build a sequence (1, (), v (+)) C AC([0, T], Z,(R%)) x
Z([0,T],C°(R?, RY)) of trajectory-selection pairs solution of the Cauchy problems (4.8), whose ele-
ments satisfy the conditions of (4.9) as well as the bounds in (4.10). In addition, these latter comply
for each n > 1 with the uniform sublinearity estimates

lun(t, )] < (1+C)m(t)(1 + |z]), (4.16)
for #-almost every ¢ € [0,T] and all z € RY, as well as the distance estimates
t
Wit (2), pin+1(1)) < Cp< /O dsup(vn(s),vn+1(s))ds> exp (C 1O 0. ) (4.17)
for all times ¢ € [0, 7.

Step 3 — Convergence of the sequence of trajectory-selection pairs. In what follows, we
prove that the sequence of pairs (1, (), vn(+)) C AC([0,T], Z,(R9)) x £([0,T],C°(R?,RY)) built in
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Step 1 and Step 2 is Cauchy in a suitable sense. First, observe that by merging the distance estimates
of (4.9), (4.15) and (4.17), one has that

Wy (kn (t), pn11(t))

< Gy [ deup(enon). vy (sn)dsn ) e (G4 O )
Cp(/ L(8n)Wp(pn—1(5n), Mn(sn»dsn) exp (Cl (- )lel([oﬂs}))
( /0 L(sy) /0 dsup(vn_1(sn_1),vn(sn_l))dsn_ldsn) exp (26 1O o))

< C’Zjl </0t L(s)d8>n<Wp(,u0, v(0)) + /Ot nr(s)ds + gu(t’R)> exp ((n +1)C, Hl(')Hil([OJD)’

& ! cp(wp(uO,y(O)) + /0 C(s)ds + Sy(t,R)) exp (C) 11O 152 o) )

(4.18)
for all times ¢ € [0,7] and each n > 1, where we recall that x,(-) € L>([0,T],R,) is defined as in
(4.6). Whence, for any pair of integers m,n > 1, one may deduce from (4.18) that

sup Wy (pn(t), tnym(t))

t€[0,T]
n+m—1
< sup )s it1(t))
t€[0,7] /;L "

n+m—1 Nk T
z( > %)cp(%wwow [ mate)as + E7 ) ) e (4 1O oy ) 1 O

i m,n——+00
=n

(4.19)
which means that (u,(-)) € AC([0,T], Z,(R%)) is a Cauchy sequence in C°([0,7T], Z,(R?)). Noting
that the latter is a complete metric space as a consequence e.g. of [61, Chapter 7 — Theorem 12|, there
exists some pu(-) € CO([0,T], 2,(R%)) such that

sup Wy (un(t), u(t — 0. 4.20
s Wolym0,0(0) (4.20)
Besides, as a consequence of the equi-absolute continuity estimate established in (4.10) for the sequence
(1 (+)) € AC([0,T], Z,(R%)), the limit curve is absolutely continuous as well, with

Wyu(r). u(9) < ¢, [ m(s)as

-
for all times 0 <7<t <T.

Concerning the sequence of Carathéodory vector fields (v,(-)) € Z([0,T],C°(R4,R%)), it directly
follows from (4.9) together with the estimates in (4.19) that for each m,n > 1, there holds

m+n—1

/ dsup Un 'Uner dt < Z / dsup Uk Uk-l—l(t))dt
. (120
<|ILC)l1 sup W (pr—1(t), pe(t — 0.
L0 s 3 Walba 00,
Hence, by Lemma 2.15, there exists a map v(-) € Z([0,T], C°(R%,R%)) such that
T
/0 oup (v (1), 0()dE —> 0. (4.22)
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This yields in particular the existence of a subsequence (v, (+)) C Z([0,T], C°(R4, R?)) satisfying

dsup(vm€ (t)av(t)) — 0

n—-+o00

for #1-almost every ¢t € [0,7], which combined with (4.16) directly implies that the limit velocity
field v : [0,7] x R? — R? satisfies the sublinearity and regularity estimates

lw(t,z)] < (1 +C)m@t)(1+|z])  and  Lip(v(t);RY) <I(t), (4.23)
for .#'-almost every t € [0,7] and all = € RY.

Step 4 — Properties of the limit trajectory-selection pair. By combining the estimate (2.4)
of Proposition 2.4 with the stability inequality (2.20) in Proposition 2.23 as well as (4.23), it can
be straightforwardly deduced from the convergence results of (4.20) and (4.22) that the trajectory-
selection pair (u(-),v(:)) € AC([0,T], Z,(RY)) x .Z(]0, T], C°(R% R?)) solves the Cauchy problem
{@u(t) T diva (v(t)p(t)) = 0,

. (4.24)

n(0) = p.
The next step in our argument consists in showing that the latter actually solves the continuity
inclusion (4.1). By (4.9), the sequence of trajectory-selection pairs is such that

Unt1(t) € V(E, pn(t)) (4.25)
for #'-almost every t € [0,T] and each n > 1. By (4.20) and (4.22), it further holds that
Wplkn(t), p(t))  —— 0, (4.26)
for all times t € [0,T7], as well as
dsup (vn(t), v (1)) o 0, (4.27)

for #1-almost every t € [0,T], along a subsequence that we do not relabel. Whence, upon combining
(4.25) with the pointwise convergence results (4.26) and (4.27) and Hypothesis (CI)-(iv), we obtain

v(t) € V(t, u(t))
for #1-almost every ¢t € [0,T], which in light of Definition 2.25 implies together with (4.24) that
p(-) € AC([0,T], Z,(R%)) is a solution (4.1), driven by the selection t € [0,T] = v(t) € V (¢, u(t)).
Now, there only remains to derive the distance and velocity estimates displayed in (4.4) and (4.7).
To this end, note that the chain of pointwise inequalities of (4.18) implies

n—1

W (£), v(8)) < Wip(pa (8), () + Y Wi (e (t), 41 (2)
k=1

n—1 k t
< (14 20N (w000 + [ st + 0.2 e (€ 1O

< Gy (Wl (0 + [ an(s)ds + E(6,R)) exp (G HOIE +xp(0)
= Dy(t, R),

for all times ¢ € [0,7T] and each n > 1, with D,(-) being defined as in (4.5). By letting n — 400
in the previous expression, we directly obtain (4.4). Concerning the velocity estimates, it holds as a
consequence of (4.9), (4.11) and (4.15) that

n—1
[0n(t) = w(t) | Lo (B0, R) R wt)) < NV1(E) = W(E) | oo (B0, R) R w(t)) T+ D Dsup (Vk41(E), vk (E))
=1
n—1
< nr(t) + L) Y Wylpr—1(t), (1))
=1
< nr(t) + L(t)Dy(t, R),
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for #1-almost every t € [0,7] and each n > 1. We obtain (4.7) by taking the limit as n — +o0 along
a suitable subsequence in the previous expression, which concludes the proof of Theorem 4.2. O

In the following corollary, we state a global version of the Filippov estimates which can be obtained
by a simple adaptation of the proof of Theorem 4.2.

Corollary 4.4 (Global version of Filippov estimates). Suppose that the assumptions of Theorem 4.2
hold, and in addition that the global mismatch function, defined by

n(t) := dist oo (ma R, (1)) (w(t) V(¢ V(t)))

for L'-almost every t € [0,T], is Lebesgue integrable. Then for every p° € Wp(Rd), there exists
a trajectory-selection pair (u(-),v(-)) € AC([0,T], Z,(R%)) x £([0,T],C°(R%,R?)) solution of the
Cauchy problem (4.1) which satisfies the distance estimate

t
W, (u(0)1(6) < Gy (Wi, v(0) + [ n(s)ds ) exp (Cy 1) 0 + 00).
for all times t € [0,T], as well as the velocity estimate

[v(t) — w() || oo (ra e (1))

<n(t) + L<t>cp<wp<u0, v(0)) + /0 tn(S)d8> exp (C 1O 0. +X0(8))

for L'-almost every t € [0,T).

Proof. One can simply repeat the proof strategy of Theorem 4.2 with R = 400 and &,(¢,R) =0. O

4.2 Compactness of the solution set and relaxation property

In this section, we investigate the topological properties of the solution set associated with the set-
valued Cauchy problem (4.1), which is defined by

S[O,T](,uo) = {u() € AC([0,T), Z,(RY)) s.t. p(-) is a solution of (4.1) with p(0) = ,uo} (4.28)

for each p® € Z2,(R%). Our first result establishes that Sjo,1) (u°) is compact for the topology of
uniform convergence when V : [0,T] x Z,(R?) = C°(R?,RY) has convex images. Its proof it not
written in full details, as it is based on simpler variants of the arguments subtending Theorem 3.2.

Theorem 4.5 (Compactness of the solution set). Let u’ € Z,(R?) and V : [0,T] x Z,(R?) =
CO%(R?%, R be a set-valued map satisfying Hypotheses (CI) and whose images are convex. Then, the
solution set Sy 71 (1°) € C°([0,T], Z,(R?)) associated with the Cauchy problem (4.1) is compact for
the topology of uniform convergence.

Proof. Given a sequence (1,(-),v,(+)) C AC([0,T], Z,(R%)) x Z([0,T],C°(R%,R?)) of trajectory-
selection pairs for the Cauchy problem (4.1), one may repeat the arguments of Step 3 in the proof
of Theorem 3.2 while using (CI)-(i) along with Remark 2.22 to show the existence a compact set
H C P,(RY) and a constant ¢, > 0, both depending only on u° p and |[m(-)||1, such that

pn(t) € X and Wy (pn (T), pn (1)) < ¢p /:m(s)ds

for all times 0 < 7 < ¢ < T and each n > 1. Hence, by the Ascoli-Arzela theorem, there exists a curve
p(-) € AC([0,T], Z,(R%)) such that

sup Wy (pn (1), p(t)) —> 0, (4.29)
tE[O,T} n—-+o00

28



along a subsequence that we do not relabel. By following again the compactness and diagonal argument
of Step 3 in the proof of Theorem 3.2, one can show that there exists a Carathéodory vector field
v(-) € Z([0,T],C°(RY,RY)) such that

on() = () (4.30)

n—-4o0o

weakly in L'([0,T], C°(B(0, R),R%)) for every R > 0, along possibly different subsequences. In par-
ticular, it follows from a direct application of Mazur’s lemma that

[o(t, @) < m()(1+ e + Mp(u(t))  and  Lip(u(t);RY) < 1(8), (4.31)

for .#1-almost every t € [0,7] and all z € R%. We now prove that (u(:),v(:)) € AC([0,T], Z,(R%)) x
Z([0,T],C°(R?,RY)) is a solution of (4.1). Upon combining the convergence result of (4.29) together
with (4.31) and Proposition 2.4, it is clear that

/ [, d(t.2)dna(t)(a Hm/ |, oot 2)dn(t) )t (4.32)
and .
| (ablt ) o)) = @) (@)t — 0 (4.33)
0 R n——+o0o

for each ¢ € C°((0,T) x R R). Moreover, by choosing test functions of the form

o(t, x) := ()Y (x), (4.34)

for all (t,z) € [0,T] x R, with (¢,%) € C=((0,T),R)x € C*(R% R), and then setting v(t) :=
C(H)Vap - u(t) € A (supp(rp),RY) for all times ¢ € [0, T, it follows from (4.30) that

T
| <o [ (Vo) oita) = valt.a)dut)@a — o, (435)
0 Rd n——+0o00
along a subsequence that depends on supp(¢)) C R%. Therefore, by merging the convergence results
of (4.32), (4.33) and (4.35) while recalling that the linear span of test functions of the form (4.34) is
dense in C2°((0,T) x R? R), we finally obtain that

[ [ (@tt,e) + (a0, 006, 20) a0}y = 0
0 JR

for all ¢ € C°((0,T) x R, RY), which together with the fact that x(0) = u° as a consequence of (4.29)
equivalently means that the pair (u(-),v(-)) € AC([0,T], Z,(R%)) x £([0,T], C*(R?,R%)) solves
{@M(t) + dive (v(t)p(t)) =0,

. (4.36)

1(0) = p.

To conclude, there simply remains to show that v(t) € V (¢, u(t)) for £ -almost every t € [0,T]. To
this end, observe that as a consequence of Hypothesis (CI)-(iv) combined with Lemma 2.10-(a) and
(c), there exists for each n > 1 a measurable selection

€ 0,7 s G,(t) € V (£, u(t)), (4.37)

which satisfies
deup (B0 (£), v (1)) < LOWy(1a(t), u(t))  —> 0

n—-+o0o

for #1-almost every t € [0, T], where we also used (4.29). Whence, by a direct application of Lebesgue’s
dominated convergence theorem, it necessarily follows that

T
| 130 = v ®loogao oz 4t 2. 0

——+o00
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for each R > 0, which combined with (4.30) implies in particular that

On(+) e v(+) (4.38)
weakly in L'([0, 7], C°(B(0, R), R?%)), along adequate subsequences which depend on R > 0. Repeating
the reasoning at the end of Step 5 in the proof of Theorem 3.2, one can finally prove v(t) € V (¢, u(t))
for #-almost every t € [0, T], which together with (4.36) concludes the proof of Theorem 4.5. O

The compactness result established in Theorem 4.5 crucially relies on the convexity of the admis-
sible velocities, and does not hold anymore without this assumption. In the following theorem, we
show that it is nonetheless possible to precisely characterise the closure of the solution of the solution
set in the absence of convexity, and that the latter coincides with that of the convexified dynamics.

Theorem 4.6 (Relaxation property for continuity inclusions). Let pu° € Z2,(R%) and V : [0,T] x
2,R?) = CORYRY) be a set-valued map satisfying Hypotheses (CI). Then, for every solution
u(-) € AC([0,T], Z,(R%)) of the relazed Cauchy problem

{@u(ﬂ € —div, (EV(t,M(t))M(t))a (4.39)
:U’(O) = MO’
and any 6 > 0, there exists a solution us(-) € AC([0,T7], L@P(Rd)) of the Cauchy problem
{atué(t) € —div, (V(t,ﬂa(f))ua(f))a (4.40)
15(0) = p°,

which satisfies

sup Wy (u(t), us(t)) < 0.

t€[0,T]
In particular, the solution set of (4.40) is dense in that of (4.39) for the topology of uniform conver-
gence over C°([0,T], 2,(R%)).

The proof of Theorem 4.6 will be split into three steps. In Step 1, we start by choosing a solution
of (4.39) and an adequate subdivision of the interval [0, 7] that we use along with Aumann’s theorem
to define an intermediate curve, of which it is shown in Step 2 that it is close to the original one
in C°([0, 7], Z,(R%)). We then conclude in Step 3 by applying the generalised Filippov estimates of
Theorem 4.2, which provides us with a solution of the Cauchy problem (4.40) that remains sufficiently
close to the intermediate curve, and thus to the original one.

Proof of Theorem /J.6. We start by observing that, if V : [0, T] x 2,(R%) = C°(R%, R?) is a set-valued
map satisfying Hypotheses (CI) and u(-) € AC([0,T], Z,(R?)) is a solution of either (4.39) or (4.40),
then by Proposition 2.21 every measurable selection v(-) € Z([0,T],C°(R%,R%)) of either c6 V (-, u(-))
or V (-, u(+)) necessarily satisfies

lo(t,z)| < (14 C)m(t)(1+ |z]), (4.41)

for #1-almost every t € [0,T] and all z € R%, where C > 0 is a constant that only depends on the
magnitudes of p, M,,(u°) and ||m(-)||;. Thus, denoting by n € Z(R¢ x ¥r) the superposition measure
associated with such a velocity field via Definition 2.18, it directly follows from Grénwall’s lemma that

HU(‘)HCO([QT},Rd) < Cr(1+ [=]), (4.42)

for n-almost every (z,0) € R? x X7, where Cz := max {1, (1 + C)||[m(-)[|1 } exp (1 + C) |m(-)|1)-
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Step 1 — Construction of an intermediate curve via Aumann’s theorem. Given an arbitrary
real number § > 0, the fact that u® € ﬁp(Rd) implies by standard results in measure theory that
there exists a positive radius Rs > 0 for which

. 1/p 5
(foos smer o O 0P @) < s enar oy

Besides, remarking that m(-) € L'([0,T],R, ), there exists a subdivision 0 =ty < t; < --- <ty =T
of the interval [0, 7] such that

(4.43)

tit1 )
m(s)ds < 4.44
J, s < ey (4
for each i € {0,..., N —1}. From Hypotheses (CI) and Lemma 2.10, one can check that the restricted
set-valued maps t € [0,T] = V (¢, u(t))p(0,rs) and t € [0,T] = TV (t, u(t)) (0, R,) are £ -measurable.
Furthermore, they have compact images and are integrably bounded, and using the fact that the
topology induced by dec(-, ) on C°(B(0, Rs),R?) coincides with the usual norm topology, one has that

(@V(t.1u) o s = (VEaE)50.R,) ) (4.45)

IB(OvRé)
wherein the second convex hull is taken in the Banach space (C°(B(0, Rs),R%), IlcoB(0, Ry )R-
Thus, denoting by ¢ € [0,7] — v(t) € coV(t,u(t)) the velocity selection associated with a given
solution u(-) € AC([0, T], 2,(R%)) of (4.39), it follows from Theorem 2.11 that there exist measurable
selections ¢ € [t;, tip1] — v (t) € V(t, (1)) B(0,Rrs) Such that

tit1 tit1 5
H/t U|B(O,R5)(3)ds_/t. vg (s)ds

for every i € {0,..., N — 1}, where the maps U?(')7U|B(O,R5)(') are elements of the separable Banach
space L'([0,T],C%(B(0, Rs),R%)) and the integrals are understood in the sense of Bochner. Notice
now that (t,w) € [t;, ti41] x CO(RY,RY) — |Jw — U?(t)||CO(B(O’R6)7Rd) are Carathéodory, and also that

5
< — (4.46)
CO(B(O,Rs)RY) NV

t € ftitin) = VIt (0) 1 {w € CORLRY st 0= o8 O)llongoo,mm =0}

have nonempty images for each ¢ € {0,..., N — 1} by construction. Thence, by Lemma 2.10-(a),
there exist measurable selections t € [t;,t;11] = vi(t) € V (£, u(t)) such that v;(t)po,r,) = vd(t) for
Z'-almost every t € [0, T]. Therefore, the velocity field w : [0,T] x R? — R? defined by

N-1
’U)(t,ﬂf) = Z ]l[ti,ti+1)(t)vi(t?x)
=0

for Z1-almost every ¢ € [0,T] and all z € R? is Carathéodory, and satisfies Hypotheses (CE). As such,
by Theorem 2.17, it generates a unique solution v(-) € AC([0,T], Z,(R%)) to the Cauchy problem

{(%V(t) + divy (w(t)v(t)) =0,
v(0) = uP.

Step 2 — Estimating of the Wasserstein distance between y(-) and v(-). Let n,,1, € Z(R?x
Y1) be two superposition measures given by Theorem 2.19 which satisfy

(esmu=p(t)  and  (e)m, = v(t)

for all times t € [0,T7], and 7, € I'(n,, ) be a transport plan given by Lemma 2.20, for which
(mgets T )y = (1, 10)g®  and () = (en,ex)grhun € Tolplt), (1))
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Then

Wl 0] = (/de |z — y[Pdy(t)(z, y)) N

(/(RdXETP |ou(t) = o () ARy (2, 0,y ay)) "
(/(]RdXET)2 /ot (U(s’%(s)) - U(S,UV(S)))ds

(U
RdXET

for all times ¢ € [0, T, where we used the fact that n,,n, are superposition measures in the sense of
Definition 2.18. By repeating the computations detailed in Appendices C and D, it can be shown that

< /(RdXET)2

; (4.47)

IN

1/
dﬁu,l/(x7 Uua y7 UV))

t p /p
A(W&%@D—w@mﬂ$ﬂﬁ<m4%wﬁl,

p

t /p
/0 (v(s,au(s))—v(s,a,,(s)))ds dﬁw,(x,au,y,a,,)>l

t » (4.48)
<O o ([ 1w, vsnas)

for all times ¢ € [0,7]. Concerning the second term in the last inequality of the right-hand side of
(4.47), it can be bounded from above by the sum of two integrals as

(oo,

<

p

! 1/p
/0(v(s,ay(S))—w(s,ay(s)))ds dn,,(y,gl,))

p

t 1/p
/0(v(s,a,,(s))—w(s,a,,(s)))ds dny(y,ay)> (4.49)

( /{(y7UV) s.t. ”UV(')”CO([Q’TLRd)SRé}

p

¢ 1/p
/0(U(S,UV(S))—w(s,ay(s)))ds dny(y,gy)) )

“(
{(%O’u) s.t. ”UV(')llcO([O’T]’]Rd)>R6}

Recalling that (mga)sm, = pu® and invoking the sublinearity estimates of (4.41) and (4.42), the second
term in the right-hand side of (4.49) can be estimated as

p

! 1/p
/0 (U(S,JV(S))—w(s,ay(s)))ds dny(y,gy))

( /{(%0'1/) s.t. ”UV(')llcO([O’T]’]Rd)>R6}

p 1/p
< m(-) |1 oyl CO([0,T],R4 v\Y,0v 4.
<2G+CHI(MI<A( (L4 10 Ollongory ) Aoty ) (450

yvoV) s.t. ”JV(')Hc()([()’T]’Rd) >R5}

1/p
<20+0)1+r) ImO) ( (1+ el dp(a) )

x s.t. |z|>Rs/Cr—1}
which together with our choice of Rs > 0 in (4.43) further yields

p

t 1/p
/0 (v(s,ay(s)) — w(s, ay(s)))ds dny(y,ay)) < 0. (4.51)

(/«y,w) st 110w ()0 (0.77.20) > Rs}
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We now focus our attention on the first term in the right-hand side of (4.49). By construction, there
exists an integer j € {0,...,N — 1} such that ¢t € [t;,t;41], which means that

p

! 1/p
/O(v(s,ay(S))—w(s,ay(s)))ds dny(y7gy)>

(/«y,au) st low O)ll oo,z ey <o)

7j—1
<> (/
=0 N Hwow) st llow (Ol oo 7y zay <Rs b

-
{(yval’) s.t. ”UV(')"CO([O’T]’Rd)SR(S}
1/p
dn(y.0,))  +5

j—1
S0
; {(y,Uu) s.t. ”UV(')llcO([O’TLRd)SRé}
(4.52)

where we used the estimates of (4.41) and (4.44) in the second inequality. Now, given an arbitrary
integer i € {0,...,j — 1}, the facts that v(-),v;(-) € Z(]0,T],C°(R? R?)) both satisfy the sublinearity
estimate (4.41) along with the regularity assumption of Hypothesis (CI)-(zii) allow us to write

p

i1 /p
[ (vls.00) = vis. () )ds dm(y,ay))l

t

p

/t (U(S, ou(s)) — Uj($7o'y(s)))ds

tj

1/p
dnu(y, Uu))

p

/titi+1 (U(S, ou(8)) — vi(s, O'V(S)))ds

p

tii /p
[ (o5, 00to) — s o) as [ amugy o))

ti

(/{(y,(ﬂ,) s.t. ”UV(')"CO([O’TLRd)SRé}

tir1 p 1/p
<(/ [ (oss000) = witssn ) s | dnv.or)
{(yval’) s.t. ”UV(')llcO([O’TLRd)SRé} t;
tir1 p 1/p
+(f [ (o6 — vl b)) s | dm(v.00))
{(y7UV) s.t. ”UV(')Hc()([O’T]’Rd)SRé} t;
tir1 p 1/]7
+( [ (s (s)) = il (t))ds | dm (30,
{(y,00) s.t. ”UV(')”CO([Q’TLRd)§R5} 2
tir1 tit1 5
< ‘ / v(8)|B(0,rs)dS —/ vy (s)ds
ti ti CO(B(0,Rs),R9)
t; P 1/p
i+1 S
+ 2( / [ ) [ om0+ 10,01+ €)dcds d’nu(y,au)>
{(y,00) s.t. ”UV(')”CO([Q’TLRd)SRé} 2 t;
tir1 tit1 5 tit1 s
< ‘ / v(8)|B(0,Rs)ds — / v (s)ds +2(1+Rs+C) / l(s)/ m(¢)d¢ds
t; t; CO%(B(0,Rs,R%)) t; t;
<

i) tit1
N + 5/ti I(s)ds,
(4.53)

where we leveraged the preliminary estimate (4.41) in the second and third inequalities, as well as
(4.44) and (4.46) in the last one. Hence, by inserting the estimates of (4.53) for ¢ € {0,...,j —1} into
(4.52), combining the resulting expression with (4.51) and plugging the latter in (4.49), we then get

(s,

By merging (4.48) and (4.54) into (4.47), raising the resulting inequality to the power p, applying
Gronwall’s lemma and then raising the corresponding expression to the power 1/p, we finally obtain

p

t 1/p
/0 (v(s,0(5)) = w(s,0,(s)) ) ds d’nu(y,au)) OB+ IC) ). (454)

Wy ((t), () < 6Cy(3+ 110) 1) exp (G 11O ). (4.55)

which holds for all times ¢ € [0, 7.
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Step 3 — Back to the unrelaxed problem using Filippov’s estimates. At this stage, one
should note that v(-) € AC([0,T], Z,(RY)) is not a solution of (4.40), since w(t) € V (¢, u(t)) for
L1 almost every t € [0,T]. Nevertheless, one has that the mismatch function defined by

05(8) = disteo (0.5 29) (w(t) V(L u(t)))
for #1-almost every t € [0,T] is Lebesgue integrable and satisfies

15(t) < L(E)Wp(u(t), v(t))
< SCL)(3 + ) exp (Cp O ),

as a consequence of Hypothesis (CI)-(iv). Thus, by leveraging the results of Theorem 4.2 while
recollecting the a priori bound of (4.43), there exists a solution ps(-) € AC([0,T], Z,(R%)) of the
unrelaxed Cauchy problem (4.40) which satisfies

Wi (us(8), v(t)) < Cy (wp IZC) 1 8+ 12O exp (Cp 1A ) + 5) exp (C 111 .0+ X0 (1))

<66, (14 (3 + O )k ) exp (G5 IO + o))

N

for all times ¢ € [0, T, where the map x,(-) is defined in (4.6). Thus, by combining (4.55) and (
applying the triangle inequality and redefining the constant § > 0 as

1)
Co((3 1O ) (1+ I Olloe exp (b)) + 0 (o) ) exp (G 1 )

56),

0=

we can finally conclude that the solution ps(-) of the unrelaxed Cauchy problem (4.40) is such that

sup Wy (pu(t), us(t)) <0,
te[0,7

which ends the proof of Theorem 4.6. U

Appendices

In this auxiliary section, we detail the proofs of several technical results appearing in the manuscript.

A  Proof of Lemma 2.10

In this first appendix, we detail parts of the proof of the measurable selection principles of Lemma
2.10, as these latter rely on somewhat non-standard assumptions.

Proof of Lemma 2.10. In what follows, we start with the proof of item (a), and proceed with that of
item (b). The proof of item (c) is completely standard and can be found e.g. in [9, Theorem 8.2.8].
The only delicate thing that needs proving in the statement of Lemma 2.10-(a) is the fact that the
set-valued map under consideration is measurable. To this end, we consider the multifunctions

te[0,T] = A1) = {y €Y st pult,y) < L(1)}

defined for each n > 1, which are .Z'-measurable by [9, Theorem 8.2.9]. For each closed set C C Y,
this implies in particular by [9, Theorem 8.1.4] that

Fe:= () {t€[0.7] st. F(t) N Au(t) NC #0}

n>1

34



is an Z!-measurable set. To conclude the proof of our claim, there remains to show that
G ={t€[0,T] st. F(t) N A(t) NC # 0},
where A(t) := {y € Y s.t. o(t,y) < L(t)} for Z1-almost every t € [0,T]. By construction, one has
{te[0,T] st. F()nA()NC #0} C Z,
as a consequence of (2.5). Conversely for any 7 € Z¢, remark that the sets defined for each n > 1 by
By(r):=F(r)nA,(t)NnC

form a non-increasing sequence since maps (¢, (-, -)) are pointwisely non-decreasing. Moreover under
our standing assumptions, the sets B, (7) C Y are compact and nonempty for each n > 1. Whence, it
follows from Cantor’s intersection theorem (see e.g. [73, Theorem 2.6]) that

B(r):= [ Bu(r) #0,

n>1

which together with the fact that B(r) C F(7) N .A(7) NC finally yields that
re{te0,T) st. F()n A{t)nc # 0}

and concludes the proof of our claim.
We now shift our focus to the statements of Lemma 2.10-(b), and start by observing that the
set-valued map appearing therein can be rewritten as

te 0, T = F()N {y €Y st p(t,y) < irJl__ft
zE

o P Z)}'

Thus by what precedes, it is sufficient for our purpose to show that the map

te|0,7] — inf t,z) eR
[0, T] Zég(t)w( z) ERy

is .Z!-measurable. It follows from classical measurability results (see e.g. [9, Theorem 8.2.11]) that
for each n > 1, the map
:t€[0,T] — inf t,
@it €[0T = il enlt2)

is .#!-measurable. Since the sequence (@, (-)) is pointwisely non-decreasing and bounded, the limits

=)= Ly el = 0 (2)

exist for #!-almost every ¢ € [0,T], and the map w(-) is .#'-measurable by [9, Theorem 8.2.5]. O

B Proof of Lemma 2.15

In this second appendix, we detail for the sake of completeness the proof of Lemma 2.15, which mimics
standard arguments used to show that the LP-spaces are complete, see e.g. to [73, Theorem 3.11]

Proof. Let (v,(-)) € Z(I,C°(R? R?)) be a Cauchy sequence in the sense of (2.8), and observe that
without loss of generality, the latter may be chosen so that

T 1
| deaplen(®), v () < o (B.1)
0

for all n > 1, up to extracting a subsequence. Consider now the sequence of real-valued mappings

dn(t) = 3 dyp (0 (8), v (1)), (B2)

k=1
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defined for .#!-almost every t € I and each n > 1, and observe that by (B.1), one has that

n>1

T +oo .7
sup /0 d,(t)dt < ; /O dyup (01 (), v (£)dE < 1. (B.3)

By [73, Theorem 1.38], the partial sums of series defined in (B.2) converge for .#!-almost every t € T
towards a map d(-) € L*(I, R, ), which must then satisfy

T
/ d(t)dt < 1.
0
Thus, it necessarily follows that d(t) < 4oo for .Z!-almost every t € I, which by (B.2) together with
the definition (2.7) of the extended metric dgyp (-, ) implies that the series of functions defined by
+o0
w(t,x) = Z (Vi1 (t, ) — vk (t, x)) for all z € RY

k=1

is normally convergent for .#'-almost every t € I. Consequently, for every (t,z) € I x R?, we can
define the mapping v : I x R? — R? by

(t1) = vi(t,x) +w(t,z) if (d,(t)) converges,
U= 0 otherwise,

and observe that it is .Z'-measurable with respect to ¢ € I and continuous with respect to z € R%.
Moreover, the map v(-) € Z(I, CO(R% R?)) is the pointwise limit of the sequence (v,(+)), since

n—1
dsup (vn (1), (1)) = dsup ( > (w1 (t) = vi(1)) w(t)>

k=1

n—1 +o0
= dsup ( Z (Uk—l—l(t) - ’Uk(t)) ) Z (vk-l—l(t) - vk(t))> — 0,

_>
k=1 k=1 noteo

where we used the fact that a series that is normally convergent over R? is also uniformly convergent.
By a simple application of Fatou’s lemma (see e.g. [73, Statement 1.28]), one can finally show that

T
/O dyup (0 (1), 0(8))dE — 0,

n—-+4o0o

which concludes the proof of our claim. O

C Proof of Proposition 2.21

In this third appendix, we detail the proof of the moment and equi-integrability bounds displayed in
Proposition 2.21, which both rely on the superposition principle recalled in Theorem 2.19.

Proof of Proposition 2.21. We do not detail the proof of (2.15) as it is almost identical to that of [14,
Proposition 2]. Concerning the equi-integrability estimate (2.17), let n,, € R? x Y7 be a superposition
measure given by Theorem 2.19 such that u(t) = (e;)ym,, for all times ¢ € [r,T], and observe then that

o(t, 0 ()] < m(t)(1 + 0,(t))

holds for #!-almost every t € [r,T] and m,-almost every (z,0,) € R? x %7 under our working
assumptions. Thence, it follows from a simple application of Gronwall’s lemma that

uto) < (1l + [ mGs)ds Y exp ([ mGs)ds) < Cr1-+1a0), (1)
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for all times ¢ € [r,T] and m,-almost every (z,0) € R? x ¥, where we introduced the constant
Cr = max{1, ||m(-)||1} exp(||m(-)]|1). In particular, for every R > 0, the latter inequality implies

( v B
‘xfpdu(t)(x)) = (/ le¢ (2, 0)|Pdn,(a, o ))
{z s.t. |z|>R} {(z,0,) s-t. |et(z,0.)|>R} H I L
1/p
SCT(/ (1 + |z))Pdnu(z, o ))
{(z,04) s.t. Cr(1+|z|)>R} w w

1/p
- CT( / (1+ \x!)pduo(x))
{z s.t. |z|>R/Cr—1}

for all times t € [r,T], which ends the proof of our claim. O

D Proof of Proposition 2.23
In this fourth and last appendix, we detail the proof of the stability estimates of Proposition 2.23.

Proof of Proposition 2.25. The demonstration of the global stability estimate (2.19) is omitted, as it
is almost identical to that of [14, Proposition 2]. Regarding the local stability estimate, fix some R > 0
and observe that under our working assumptions, the map

t e [r,T] =[v(t) — wt)l Lo (Bo,R)R: (1)

is Lebesgue integrable. In that case, one can prove by repeating the series of computations much like
those of [14, Appendix B] that

At 0] = 6 (WP(MT’VT) (/RdeT (/ [0(s, 00 (s)) = w(s, ou(s ))!dS)pdnu(y,Uu))l/p>

xexp (Cp 1O By ) -
(D.1)
for all times t € [r,T], wherein 5, € Z(R% x ¥r) is a superposition measure generating v(-) €
AC([r, T], Z,(R%)), whose existence follows from Theorem 2.19. We focus our attention on the integral
term appearing in the right-hand side of (D.1), and observe that the latter can be split into two parts

/]RdeT (/ (s, 0, (5)) — w(s, o, (s ))]ds)pdny(y,gy)
_ /{ T ( /Tt|v(8,0y(8))—w(S,J,,(s))|d5)pdny(y,a,,) (D2)

t p
+f ([ 10s.00(5)) = (s, (s))lds ) . r),
{(y,00) s.t. ”UV(')HCO([T’T]’Rd)>R} T

for all t € [0,T]. The first term in the right-hand side of (D.2) can be estimated straightforwardly as

p
/ (/ [v(s,ou(s w(s,ou,(s ))\ds) dnu(y,00)
{o) st llov Ol o7 7,y <R} (D.3)

p
(/ [[v(s) )1 Loe (B0, R) R4 v(s)) ds) ;

for all times ¢ € [7,T]. Concerning the second term in the right-hand side of (D.2), it follows from the
sublinearity assumptions made on v, w : [0, 7] X R? — R? and Hélder’s inequality that

t p
/ ([ 1etso0(s)) = wis.on ()]s dn )
{(y,00) s.t. ”UV(')HCO([T’T]’Rd)>R} T

([ me) 1+ loulo))ds) am (v, (D.4)

<o /
{(:00) 5t 190 (Vo .7y vty >R

t
< 2P Hm( )Hi/lq[’rt] / m(s)(/ (1 + |Uy(5)|)pdny(y,0-y))d8.
{000) st lowO)ll oty > )
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Recall now that by (C.1) above, it also holds that

llow ()l eogir,ryrey < Cr(L+ [yl),

for m,-almost every (y,o,), which together with (D.4) then yields

/{(yvo'u) st [Jow ()

P
</ ‘v s,0,(s w(S,Uu(S))‘d‘S) dn,(y,00)
IICO([TT Rd)>R}

(D.5)
<27 Im()7s gy /{

p
(1+Cr(1+y) dv- (y),
yst. |y >R/Cr—1}

for all times ¢t € [r,T]. Therefore, by merging (D.3) and (D.5) in (D.1) while applying Holder’s
inequality, we finally obtain that

t
Wp(u(t),v(t)) < Cp <Wp(/im’/f) +/ [v(s) = w(s)[ oo (B(0,R) R w(s)) S

+2(1+ Cr) [[m() 1 () (/{

1/p
(1 + lyl)Pdvs (y )
v st [y>R/Cr—1)

x exp (Cy OB ) )

for all times ¢t € [7,T], which concludes the proof of our claim. O
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