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Abstract

In this article, we extend the foundations of the theory of differential inclusions in the space
of probability measures recently laid down in one of our previous work to the setting of general
Wasserstein spaces. Anchoring our analysis on novel estimates for solutions of continuity equations,
we prove new variants of the Filippov theorem, compactness of solution set and relaxation theorem
for continuity inclusions studied in the Cauchy-Lipschitz framework. We also propose an existence
result “à la Peano” for this class of dynamics, under Carathéodory-type regularity assumptions. The
latter is based on a set-valued generalisation of the semi-discrete Euler scheme originally proposed
by Filippov to study ordinary differential equations with measurable right-hand sides.
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1 Introduction

In recent years, the study of continuity equations in the space of measures has been the object of
a blooming interest in several mathematical communities. Even though the analysis of such partial
differential equations was more commonly conveyed in Lebesgue or Sobolev spaces – in which one
could establish classical well-posedness results –, several research currents originating in equal parts
from pure and applied mathematics motivated various kinds of explorations outside this paradigm.

Amongst these research endeavours, one of the most influential was certainly the development of
the modern theory of optimal transport – rendered in the monographs [9, 80, 84] – along with that
of gradient flows in Wasserstein spaces. The concepts introduced in the seminal papers [66, 71] and
later formalised in the reference treatise [9] expounded the fact that, by applying a continuous-time
steepest descent schemes to energy functionals defined over the space of probability measures, one
could construct solutions to transport equations with irregular driving fields enjoyed. This simple
yet far-reaching observation allowed to derive general well-posedness results for a wide variety of
evolution equations encountered in physics, rational mechanics and biology, on the basis that they
possessed a variational structure, see e.g. [9, 28, 30, 46, 61, 66, 69, 71, 81] and references therein.
The ensuing infatuation for this innovative viewpoint stemmed both from its theoretical merits, and
from its practical efficiency and adaptedness for designing numerical methods [13, 27, 73]. In a similar
vein, the theory of mean-field games [26, 64, 68] – which is located halfway between control theory
and the calculus of variations – largely contributed to popularising the study of dynamical problems
in measure spaces. Incidentally, some of the core concepts of these emerging research schools found
relevant application outlets in a wealth of multiscale models aiming at efficiently describe pedestrian
dynamics [40, 70, 77], opinion propagation [2, 3, 62, 78], flocks and swarms [1, 29, 31] or macroscopic
approximations of biological systems [15, 82]. Another active field of research that put this corpus of
results to good use is that of mean-field control [17, 20, 32, 33, 49, 50, 51, 65], which saw the birth of
several relevant extensions of the classical theory as further elaborated hereinbelow.

In the aforedescribed context, a growing body of literature at the intersection between PDE anal-
ysis, dynamical systems and optimal transport has been concerned with the derivation of general
well-posedness results for Cauchy problems of the form

{

∂tµ(t) + divx(v(t, µ(t))µ(t)) = 0,

µ(0) = µ0.
(1.1)

Therein, the initial datum µ0 ∈ P(Rd) is a probability measure while v : [0, T ] × P(Rd) × R
d → R

d

is a Lebesgue-Borel velocity field which may be nonlocal, in the sense that it is allowed to depend
on the measure variable itself. As alluded to in the previous paragraph, one of the main frameworks
in which one can meaningfully derive well-posedness results for (1.1) is that of Wasserstein gradient
flows (see e.g. [9, Chapter 11]), where v(t, µ(t)) ∈ Lp(Rd,Rd;µ(t)) happens to be the subgradients
of a functional defined over the space of measures. Analogously, in the theory of mean-field games,
the well-posedness of the forward measure dynamics frequently originates from a variational principle,
which requires that the common agent cost satisfies a suitable convexity condition [68]. It is also worth
noting that general existence results are available for very irregular driving fields when the dynamics
exhibits a Hamiltonian structure [8].

As amply highlighted by the discussions in [9, Chapter 8], the dynamics in (1.1) admits a natural
interpretation as an ordinary differential equation in the Wasserstein “manifolds” – or bundles –
(Pp(R

d),Wp). Thus, in the absence of an underlying variational structure, one should expect that the
well-posedness of said Cauchy problem would stem from the regularity properties of the driving vector
field. In that case, the results available in the literature can be split into two categories, depending
on whether the velocity field depends on the measure variable or not. When v : [0, T ] × R

d → R
d

is independent of the measure variable, the optimal well-posedness settings are, on the one hand,
Carathéodory assumptions (or small variations thereof) when the initial measure is arbitrary, and on
the other Sobolev [42] or BV [4] regularity in the space variable, combined with integral bounds on
the divergence or incompressibility assumptions [16], when the initial measure is absolutely continuous
with respect to the Lebesgue measures. The structuring concepts of this latter class of solutions –
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which are usually referred to as regular Lagrangian flows –, are surveyed together with the classical
Cauchy-Lipschitz theory in [6]. We also mention the article [5] in which a local existence theory akin
to the classical Peano one for ODEs is developed, as well as the older paper [38] wherein sharp stability
estimates are derived for the DiPerna-Lions flow. On the other hand when v : [0, T ]×P(Rd)×R

d 7→ R
d

also depends on the measure variable, general sufficient conditions for the well-posedness of (1.1) are
only available in the Cauchy-Lipschitz and Carathéodory regularity frameworks (see e.g. [17, 39, 65, 76]
and references therein). In particular, there are currently no known generalisations of the concept of
Lagrangian flow to the setting of nonlocal continuity equations. We end this literature overview by
adverting to a recent body of work initiated in [75] and furthered in [22, 35, 74], in which well-posedness
results for relatives of (1.1) and (1.2) in which the driving fields are replaced by probability measures
on the tangent bundle are investigated. This line of study – which is highly reminiscent of [14] – bears
strong resemblance with the theory of Young measures [10, Section 4.3], and has already produced
very promising results shedding light on the interplay between contraction semigroups in measure
spaces and various kinds of explicit Euler schemes.

The aim of this paper is to provide several important and far-reaching refinements of the theory
of continuity inclusions in Wasserstein spaces, whose elaboration started in our previous work [17].
Therein, given a compactly supported datum µ0 ∈ Pc(R

d) and a set-valued map (t, µ) ∈ [0, T ] ×
Pc(R

d) ⇒ V (t, µ) ⊂ Lp(Rd,Rd;µ), we define the solution set of the Cauchy problem







∂tµ(t) ∈ −divx
(

V (t, µ(t))µ(t)
)

,

µ(0) = µ0,
(1.2)

as the collection of absolutely continuous curves µ(·) ∈ AC([0, T ],Pp(R
d)) for which there exists

an L 1-measurable selection t ∈ [0, T ] 7→ v(t) ∈ V (t, µ(t)) such that (1.1) holds. Compared with
other notions that were put forth to define differential inclusions in measure spaces, such as those of
[34, 65], our approach presents the advantage of being coherent with the modern theory of differential
inclusions in vector spaces, surveyed e.g. in [11, 12], and conceptually compatible with the geometric
structure of Wasserstein spaces, as well as with the interpretation of continuity equations as generalised
ODEs following [9, 71]. Besides, our construct is well adapted to the study of control problems as
it ensures that there is a one-to-one correspondence between solutions of controlled dynamics and of
their set-valued counterparts.

Differential inclusions and set-valued analysis at large play an instrumental role in control theory
and in the calculus of variations, as evidenced by the reference monographs [11, 12, 37, 85] and [25, 36].
They provide a convenient setting that allows to prove existence results [48] for variational problems,
to derive first- and second-order optimality conditions – both in the form of a Pontryagin Maximum
Principle [52, 57, 58, 60] or Hamilton-Jacobi-Bellman equations [53, 59] –, and to investigate qualitative
properties of optimal trajectories [24]. Owing to their mathematical versatility, these schemes have
recently started to percolate in the communities of mean-field control and mean-field games [18, 19, 23,
32, 65, 74]. With the goal of transposing these powerful and tried concepts to the setting of mean-field
control, we generalised in [17] the cornerstones of the theory of Cauchy-Lipschitz differential inclusions
to dynamics formulated in the space (Pc(R

d),Wp) of compactly supported measures endowed with
a Wasserstein metric. The first of these key results are the Filippov estimates, which provide the
existence of a solution to (1.2) whose distance to an a priori fixed measure curve is controlled, and that
is extremely useful to produce admissible trajectories when conducting perturbative and linearisation
arguments. The second one is the compactness of the set of trajectories when the right-hand side of
the dynamics is convex, which is naturally needed in virtually every existence proof based on weak
compactness arguments, both in optimal control theory and in the calculus of variations. The third
one is the so-called relaxation theorem, which asserts that in the absence of convexity, the closure of
the solution set of (1.2) coincides with that of the Cauchy problem in which the dynamics has been
convexified. In addition to its topological relevance, this result is widely used for the derivation of
sharp first- and second-order optimality conditions for optimal control problems in extremely varied
contexts, see e.g. [54, 56, 57] for ordinary differential equations, [55] for infinite-dimensional control
problems, and our previous work [18] concerned with mean-field optimal control problems. The
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relaxation theorem is also essential when investigating the fine properties of solutions to Hamilton-
Jacobi-Bellman equations, as it allows to posit without loss of generality the existence of optimal
trajectories associated with the corresponding value function.

As underlined in the previous paragraph, the analyses and results of [17] were confined to curves
of measures whose supports are contained in some compact set. While this modelling assumption
does permit to handle most of the commonly encountered applications in population dynamics, mean-
field control and mean-field games, this limitation is not satisfactory with regard to the preexisting
literature in optimal transport and in the calculus of variations, or to their more recent offsprings such
as [35]. Furthermore, while it is easier from a purely technical standpoint to work with compactly
supported measures, one could argue that this constraint may somewhat obscure the exact role of
some of the objects involved in the definition of continuity inclusions, as well as in the proofs of
the corresponding structure theorems. For the aforedescribed reasons, it is crucial to extend the
theory of continuity inclusions to the more general and streamlined setting of measure dynamics
formulated in (Pp(R

d),Wp). We stress that, while some of the working assumptions used throughout
this manuscript are more stringent than those in our previous work – mainly to palliate the fact that
measures may have unbounded supports –, the corresponding results strictly contain those derived in
[17] up to minor technical adjustments. Besides achieving greater generality and making the theory of
continuity inclusions more synthetic, revisiting our previous contributions was the occasion to derive
new quantitative stability estimates for continuity equations, which should constitute a fine addition
to the tooling used to investigate dynamics in measure spaces. Moreover, we also propose a completely
novel existence result “à la Peano” for continuity inclusions whose velocities are merely continuous
instead of Lipschitz, by astutely generalising to the set-valued framework a variant of the explicit
Euler scheme due to Filippov for ordinary differential equations, see [47, Chapter 1]

The contributions and organisation of the article can be summarised as follows. In Section 2,
after recalling a broad range of concepts pertaining to measure theory, optimal transport, set-valued
and functional analysis, we derive new compactness and stability estimates for solutions of continuity
equations in Proposition 2.22 and Proposition 2.24 respectively. We then define solutions of (1.2) for
set-valued maps V : [0, T ]×Pp(R

d) ⇒ C0(Rd,Rd) in terms of velocity selections which are measurable
for the standard Fréchet topology of the space of continuous functions (see Definition 2.12 below),
and subsequently move on in Section 3 to the three main results of the theory of differential inclusions
studied in the Cauchy-Lipschitz setting. In Section 3.1, we start by establishing two far-reaching
versions – a local one in Theorem 3.3 and a global one in Corollary 3.5 – of the Filippov estimates.
Then, in Theorem 3.6 of Section 3.2, we show that the set of solution to (1.2) is compact for the
topology of uniform convergence when its right-hand side is convex-valued. In Section 3.3, we proceed
to relax this latter assumption, and prove in Theorem 3.7 that in this case, the closure of the solution
set coincides with that of the convexified Cauchy problem. Finally in Section 4, we abandon the
Cauchy-Lipschitz framework, and provide in Theorem 4.1 an existence result for solutions of (1.2)
when the right-hand side is Caratheodory and convex-valued. To the best of our knowledge, the proof
strategy developed therein, based on a variation of the delayed semi-discrete scheme of [47, Theorem
1], is completely new even in the context of classical differential inclusions with measurable right-hand
sides. We then close the paper by an appendix containing the proofs of several technical results and
estimates. Even though some of these partly rely on ideas similar to those of [17, Appendices A and
B], we expose them here for the sake of completeness and self-containedness.

2 Preliminaries

In the coming sections, we expose a preliminary results pertaining to measure theory, set-valued
analysis, optimal transport and measure dynamics in general.

2.1 Measure theory and optimal transport in Banach spaces

In this first preliminary section, we recollect basic notions of measure theory and optimal transport
in Banach spaces, for which we largely refer to the monographs [7, 44] and [9] respectively.
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Elements of measure theory and integration. Given a separable Banach space (X, ‖·‖X ), we
will denote by X∗ its topological dual and write 〈·, ·〉X for the underlying duality bracket. In the
sequel, the notation C0

b (X,Rd) will refer to the vector space of continuous bounded maps from X
into R

d, and in the particular case where X = R
m for some m ≥ 1, we will denote by C∞

c (Rm,R)
the vector space of infinitely differentiable functions with compact support from R

m into R. Letting
(Y, dY (·, ·)) be a complete separable metric space, we shall more generally write C0(X,Y ) for the set
of continuous maps from X into Y , as well as AC(I, Y ) for that of absolutely continuous arcs defined
over an interval I ⊂ R with values in Y . In addition, Lip(X,Y ) will stand for the set of Lipschitz maps
from X into Y , and we shall write Lip(φ ;X) for the Lipschitz constant of an element φ ∈ Lip(X,Y ).

In what follows, we will consider the vector space M (K,Rd) of Rd-valued Radon measures defined
over a compact set K ⊂ R

d. By the Riesz representation theorem (see e.g. [7, Theorem 1.54]), it is
known that the latter is isomorphic to the topological dual of the Banach space (C0(K,Rd), ‖·‖C0(K,Rd))
under the action of the duality pairing

〈ν, φ〉C0(K,Rd) :=
d
∑

i=1

∫

K
φi(x)dνi(x), (2.1)

defined for all ν ∈ M (K,Rd) and φ ∈ C0(K,Rd). Throughout the article, we denote by P(X)
the space of Borel probability measures over X endowed with the narrow topology, i.e. the coarsest
topology for which the applications

µ ∈ P(X) 7→
∫

X
φ(x)dµ(x) (2.2)

are continuous for every element φ ∈ C0
b (X,R). It is a standard fact in measure theory (see e.g. [9,

Remark 5.1.2]) that P(X) is a Polish space, and we will write

µn ⇀∗

n→+∞
µ,

for the notion of convergence induced by (2.2) over P(X).
Given two separable Banach spaces (X, ‖ · ‖X ) and (Y, ‖ · ‖Y ) along with some p ∈ [1,+∞), we

will write (Lp(X,Y ;µ), ‖ · ‖Lp(X,Y ;µ)) for the space of p-integrable maps with respect to a measure
µ ∈ P(X), defined in the sense of Bochner (see e.g. [44, Chapter II]). Analogously, we will let
L∞(X,Y ;µ) be the space of µ-essentially bounded maps from X into Y , and use the denser notation
(Lp(I, Y ), ‖·‖Lp(I)) when X = I is an interval and µ = L 1 is the standard 1-dimensional Lebesgue
measure. We recall below a powerful sufficient condition for weak compactness in L1(I,X), whose
statement can be found in [41, Corollary 2.6] (see also the earlier contributions of [43, 83]).

Theorem 2.1 (A weak compactness criterion for Bochner integrable maps). Let (X, ‖·‖X ) be a Banach
space, I ⊂ R be an interval and (vn(·)) ⊂ L1(I,X). Suppose that there exists a map m(·) ∈ L1(I,R+)
and a family (Kt)t∈I of weakly compact subsets of X such that

‖vn(t)‖X ≤ m(t) and vn(t) ∈ Kt

for L 1-almost every t ∈ [0, T ] and each n ≥ 1. Then, there exists a subsequence (vnk
(·)) ⊂ L1(I,X)

that converges weakly to an element v(·) ∈ L1(I,X). In particular
∫

I

〈

φ(t), v(t) − vnk
(t)
〉

X
dt −→

k→+∞
0,

for every φ(·) ∈ L∞(I,X∗) ⊂ L1(I,X)∗.

Optimal transport and Wasserstein spaces. Throughout this article, the notation Pp(X) will
refer to the subset of probability measures whose momentum of order p ∈ [1,+∞) is finite, that is

Mp
p(µ) :=

∫

X
|x|pdµ(x) < +∞.

In the following definition, we recall the known concepts of image measure – or pushforward – through
a Borel map, as well as that of transport plan.
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Definition 2.2 (Image measures and transport plans). The pushforward of a measure µ ∈ P(X)
through a Borel map f : X → Y – denoted by f♯µ ∈ P(Y ) – is defined by

f♯µ(B) = µ(f−1(B)),

for every Borel set B ⊂ Y . Given two probability measures µ, ν ∈ P(X), we say that an element
γ ∈ P(X ×X) is a transport plan between µ and ν – denoted by γ ∈ Γ(µ, ν) –, provided that

π1
♯ γ = µ and π2

♯ γ = ν,

where π1, π2 : X ×X → X stand for the projections onto the first and second factors.

Throughout the remainder of this subsection, we will assume that (X, ‖ · ‖X) := (Rd, | · |) is
a d-dimensional real vector space endowed with its usual Euclidean structure. For a real number
p ∈ [1,+∞), it is a standard result in optimal transport theory that the quantity defined by

Wp(µ, ν) := inf
γ∈Γ(µ,ν)

(
∫

R2d
|x− y|pdγ(x, y)

)1/p

(2.3)

for each µ, ν ∈ Pp(R
d) is a distance over Pp(R

d). Moreover, it comes as an easy consequence of the
direct method of the calculus of variations that the infimum in (2.3) is always attained, and we denote
by Γo(µ, ν) the corresponding set of p-optimal transport plans. In the following propositions, we recall
some of the main properties of the so-called Wasserstein spaces, along with handy distance estimates.

Proposition 2.3 (Properties of Wasserstein spaces). The spaces (Pp(R
d),Wp) are complete separable

metric spaces on which the Wp-distance metrises the narrow topology (2.2), in the sense that

Wp(µn, µ) −→
n→+∞

0 if and only if











µn ⇀∗

n→+∞
µ,

∫

Rd
|x|pdµn(x) −→

n→+∞

∫

Rd
|x|pdµ(x),

for any sequence (µn) ⊂ Pp(R
d) and each µ ∈ Pp(R

d). Moreover, a subset K ⊂ Pp(R
d) is relatively

compact with respect to the Wp-metric if and only if it satisfies

sup
µ∈K

∫

{x s.t. |x|≥k}
|x|pdµ(x) −→

k→+∞
0.

Proof. We point the interested reader to [9, Chapter 7] or [84, Chapter 6].

Proposition 2.4 (Classical optimal transport estimate). Let µ, ν ∈ Pp(R
d) and consider a map

φ ∈ Lip(Rd,R). Then, it holds that
∫

Rd
φ(x)d(µ − ν)(x) ≤ Lip(φ ;Rd)W1(µ, ν) ≤ Lip(φ ;Rd)Wp(µ, ν). (2.4)

2.2 Set-valued analysis and topological properties of continuous functions

In this section, we recall some notations and results of set-valued and functional analysis. We shall
mostly rely on the reference monographs [11, 12] for the former and [63, 79] for the latter.

In what follows, we write (E, dE(·, ·)) to denote a separable Fréchet space, i.e. a locally convex topo-
logical vector space E whose topology is induced by a complete, separable and translation-invariant
metric dE(·, ·). In this context, we define the closed convex hull of a set B ⊂ E as

co(B) :=
⋃

N≥1

{

N
∑

i=1

αibi s.t. bi ∈ B, αi ∈ [0, 1] for i ∈ {1, . . . , N} and
N
∑

i=1

αi = 1

}
E

,

where “•E” stands for the closure of a set with respect to dE(·, ·). We will also use the generic notation

distE(x ;Q) := inf
y∈Q

dE(x, y),

for the distance between an element x ∈ E and a closed set Q ⊂ E.
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Set-valued analysis. Given two complete separable metric spaces (X, dX (·, ·)) and (Y, dY (·, ·)), we
write F : X ⇒ Y to mean that F(·) is a set-valued map – or a multifunction – from X into Y . A
set-valued map F(·) is said to have closed (respectively convex) images if the sets F(x) ⊂ Y are closed
(respectively convex) for each x ∈ X. In addition, we define the graph of F : X ⇒ Y by

Graph(F) :=

{

(x, y) ∈ X × Y s.t. y ∈ F(x)

}

.

Below, we recall a standard measurability concept for set-valued mappings defined over subintervals
of the real line, endowed with the complete Lebesgue σ-algebra.

Definition 2.5 (Measurable set-valued maps and measurable selections). A multifunction F : [0, T ] ⇒
Y is said to be L 1-measurable provided that the sets

F−1(O) :=
{

t ∈ [0, T ] s.t. F(t) ∩ O 6= ∅
}

are L 1-measurable for every open set O ⊂ Y . A mapping f : [0, T ] → Y is called a measurable
selection of F(·) if it is L 1-measurable and such that f(t) ∈ F(t) for L 1-almost every t ∈ [0, T ].

In the following theorem, we recollect a deep result of set-valued analysis which provides the
existence of measurable selections for measurable multifunctions with closed nonempty images in
complete separable metric spaces.

Theorem 2.6 (Existence of measurable selections). If F : [0, T ] ⇒ Y is an L 1-measurable set-valued
map with closed and nonempty images, then it admits an L 1-measurable selection.

In our subsequent developments, we will resort to the notions of continuity and Lipschitz regularity
for set-valued mappings, both of which are recalled in the following definitions. Therein, we denote
by BX(x, r) and BY (y, r) the metric ball of radius r > 0 centered at x ∈ X and y ∈ Y respectively,
and use the condensed notation BX(Ω, r) := {x ∈ X s.t. dX(x, x′) ≤ r for some x′ ∈ Ω } for Ω ⊂ X.

Definition 2.7 (Continuous set-valued maps). A multifunction F : X ⇒ Y is said to be continuous
at x ∈ X if both the following conditions hold.

(i) F(·) is upper-semicontinuous at x ∈ X, i.e. for every ε > 0, there exists δ > 0 such that

F(x′) ⊂ BY (F(x), ε)

for all x′ ∈ BX(x, δ).

(ii) F(·) is lower-semicontinuous at x ∈ X, i.e. for every ε > 0 and each y ∈ F(x), there exists
δ > 0 such that

F(x′) ∩ BY (y, ε) 6= ∅

for all x′ ∈ BX(x, δ).

Definition 2.8 (Lipschitz continuous set-valued maps). A multifunction F : X ⇒ Y is said to be
Lipschitz continuous if there exists a constant L > 0 such that

F(x′) ⊂ BY

(

F(x) , LdX(x, x′)
)

,

for every x, x′ ∈ X.

In the sequel, we will frequently resort to the general notion of Carathéodory set-valued map
between metric spaces, which is defined as follows.

Definition 2.9 (Carathéodory set-valued maps). A set-valued map G : [0, T ] × X ⇒ Y is said to be
Carathéodory if the application t ∈ [0, T ] ⇒ G(t, x) is L 1-measurable for all x ∈ X, and the map
x ∈ X ⇒ G(t, x) is continuous for L 1-almost every t ∈ [0, T ].
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In the following lemma – whose proof is outlined in Appendix A –, we state measurable selections
principles adapted from [12, Section 8.1] and [86, Section 9] that we shall extensively use in the sequel.
Therein, we let ϕ : [0, T ] × Y → R+ ∪ {+∞} be an extended real-valued function satisfying

ϕ(t, y) = sup
n≥1

ϕn(t, y) (2.5)

for L 1-almost every t ∈ [0, T ] and all y ∈ Y , where (ϕn(·, ·)) is a pointwisely non-decreasing sequence
of Carathéodory maps. This implies in particular that t ∈ [0, T ] 7→ ϕ(t, y) is L 1-measurable for each
y ∈ Y , whereas y ∈ Y 7→ ϕ(t, y) is lower-semicontinuous for L 1-almost every t ∈ [0, T ].

Lemma 2.10 (Measurable selections principles). Let F : [0, T ] ⇒ Y and G : [0, T ] × X ⇒ Y be two
set-valued maps with nonempty images. In addition, fix two L 1-measurable functions x : [0, T ] → X
and L : [0, T ] → R+.

(a) Suppose that F(·) is L 1-measurable with compact images, and that the set-valued map

t ∈ [0, T ] ⇒ F(t) ∩
{

y ∈ Y s.t. ϕ(t, y) ≤ L(t)
}

has nonempty images. Then the latter is L 1-measurable, and there exists a measurable selection
t ∈ [0, T ] 7→ f(t) ∈ F(t) such that ϕ(t, f(t)) ≤ L(t) for L 1-almost every t ∈ [0, T ].

(b) Suppose that F(·) is L 1-measurable with compact images. Then, the set-valued map

t ∈ [0, T ] ⇒ F(t) ∩

{

y ∈ Y s.t. ϕ(t, y) = inf
z∈F (t)

ϕ(t, z)

}

is L 1-measurable with closed nonempty images, and as such admits a measurable selection.

(c) Suppose that G(·, ·) is Carathéodory with closed images. Then, the set-valued map t ∈ [0, T ] ⇒
G(t, x(t)) is L 1-measurable, and as such admits a measurable selection.

We end this primer in set-valued analysis by stating an adaptation of Aumann’s integral convexity
theorem, for which we point the interested reader to [12, Theorem 8.6.4].

Theorem 2.11 (Convexity of the Aumann integral). Suppose that (X, ‖·‖X ) is a separable Banach
space and let F : [0, T ] → X be a set-valued map with closed nonempty images that is integrably
bounded, in the sense that there exists k(·) ∈ L1([0, T ],R+) such that

F(t) ⊂ k(t)BX ,

for L 1-almost every t ∈ [0, T ]. Then, for every Lebesgue measurable set Ω ⊂ [0, T ], any measurable
selection t ∈ [0, T ] 7→ f(t) ∈ coF(t) and each δ > 0, there exists a measurable selection t ∈ [0, T ] 7→
fδ(t) ∈ F(t) such that

∥

∥

∥

∥

∫

Ω
f(t)dt−

∫

Ω
fδ(t)dt

∥

∥

∥

∥

X

≤ δ.

Topologies and metrics over C0(Rd,Rd). Throughout the remainder of this manuscript, we will
almost exclusively work with multifunctions valued in the power set of C0(Rd,Rd). Following the
pioneering work [87], it is known that the most natural topology to endow this space with is that
of uniform convergence on compact sets – or compact convergence –, whose definition and distinctive
features are recalled below.

Definition 2.12 (The topology of compact convergence). A sequence of continuous maps (vn) ⊂
C0(Rd,Rd) is said to converge uniformly on compact sets to some v ∈ C0(Rd,Rd) provided that

‖v − vn‖C0(K,Rd) −→
n→+∞

0,
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for every compact set K ⊂ R
d. The topology that this notion of convergence induces on C0(Rd,Rd) is

metrised by the complete, separable and translation-invariant metric

dcc(v,w) :=
+∞
∑

k=1

2−k min
{

1 , ‖v − w‖C0(B(0,k),Rd)

}

(2.6)

that is defined for each v,w ∈ C0(Rd,Rd). As such, the latter endows (C0(Rd,Rd), dcc(·, ·)) with the
structure of a separable Fréchet space.

Remark 2.13 (Link with the compact-open topology). It is a standard – albeit nontrivial – fact in
functional analysis (see e.g. [67, Chapter 7 – Theorem 11]) that the topology of uniform convergence
on compact sets defined over C0(Rd,Rd) coincides with the so-called compact-open topology. While the
former is usually considered when studying maps between metric spaces, the latter can be defined more
generally over the space of continuous functions between topological spaces via bases of neighbourhoods.

In our subsequent developments, we will always consider C0(Rd,Rd) as a separable Fréchet space
equipped with the metric dcc(·, ·). One of the interesting features of this latter is that it provides
an equivalent functional characterisation of Carathéodory vector fields, as illustrated by the following
result whose proof can be found e.g. in [72, page 511].

Lemma 2.14 (Carathéodory vector fields as measurable functions in C0(Rd,Rd)). A vector field
(t, x) ∈ [0, T ] × R

d 7→ v(t, x) ∈ R
d is Carathéodory if and only if its functional lift t ∈ [0, T ] 7→ v(t) ∈

C0(Rd,Rd) is L 1-measurable for the topology of uniform convergence on compact sets.

In light of this result, we will systematically identify L 1-measurable maps t ∈ [0, T ] 7→ v(t) ∈
C0(Rd,Rd) with Carathéodory vector fields v : [0, T ] × R

d → R
d, and work with the vector space

L ([0, T ], C0(Rd,Rd)) :=

{

v : [0, T ] × R
d → R

d s.t. v(·, ·) is a Carathéodory vector field

}

.

In addition to its amenable topological properties, the notion of uniform convergence on compact sets
is particularly well-tailored to formulate compactness results, as illustrated by the following adaptation
of the Ascoli-Arzelà theorem from [79, Theorem 11.28].

Theorem 2.15 (Ascoli-Arzelà compactness theorem). Let (vn) ⊂ C0(Rd,Rd) be a sequence of maps
which are uniformly bounded and equi-continuous on compact sets. Then, there exists an element
v ∈ C0(Rd,Rd) for which

dcc(vnk
, v) −→

k→+∞
0,

along a subsequence (vnk
) ⊂ C0(Rd,Rd). Similarly if K ⊂ R

d is compact and (vn) ⊂ C0(K,Rd) is a
sequence of uniformly bounded and equi-continuous maps, then there exists v ∈ C0(K,Rd) such that

‖v − vnk
‖C0(K,Rd) −→

k→+∞
0,

along a subsequence (vnk
) ⊂ C0(K,Rd).

Proof. The proof of the first compactness statement can be found in [79, Theorem 11.28], while that
of the second one simply follows from the fact that the topology induced by dcc(·, ·) on C0(K,Rd)
coincides with the standard topology of uniform convergence.

In order to formulate the well-posedness results of Section 3, we will also need a global notion of
vicinity for continuous maps, that will inherently be stronger than the local one described in Definition
2.12. For this reason, we will also consider in the sequel the extended supremum metric defined by

dsup(v,w) := sup
x∈Rd

|v(x) − w(x)| ∈ R ∪ {+∞}, (2.7)

for every v,w ∈ C0(Rd,Rd). In the following lemma, we recollect for the sake of completeness a classical
result which shows that the natural lift of dsup(·, ·) to the topological vector space L ([0, T ], C0(Rd,Rd))
is complete, in the sense that its Cauchy sequences converge.
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Lemma 2.16 (Completeness of the integral of the extended metric). Consider a sequence of maps
(vn(·)) ⊂ L ([0, T ], C0(Rd,Rd)) satisfying the Cauchy condition

∫ T

0
dsup(vn(t), vm(t))dt −→

n,m→+∞
0. (2.8)

Then, there exists an element v(·) ∈ L ([0, T ], C0(Rd,Rd)) such that

∫ T

0
dsup(vn(t), v(t))dt −→

t→+∞
0.

Proof. The proof of this result is a transposition of standard arguments used to show that the
Lebesgue spaces are complete, and for which we refer e.g. to [79, Theorem 3.11]. Let (vn(·)) ⊂
L ([0, T ], C0(Rd,Rd)) be a Cauchy sequence in the sense of (2.8), which can be chosen so that

∫ T

0
dsup(vn(t), vn+1(t))dt ≤

1

2n
(2.9)

for all n ≥ 1, up to extracting a subsequence. Consider now the sequence of real-valued mappings

dn(t) :=
n
∑

k=1

dsup(vk(t), vk+1(t)), (2.10)

defined for L 1-almost every t ∈ [0, T ] and each n ≥ 1, and observe that by (2.9), one has that

sup
n≥1

∫ T

0
dn(t)dt ≤

+∞
∑

k=1

∫ T

0
dsup(vk(t), vk+1(t))dt ≤ 1. (2.11)

By [79, Theorem 1.38], the partial sums of series defined in (2.10) converge for L 1-almost every
t ∈ [0, T ] towards a map d(·) ∈ L1([0, T ],R+), which must then satisfy

∫ T

0
d(t)dt ≤ 1.

Thus, it necessarily follows that d(t) < +∞ for L 1-almost every t ∈ [0, T ], which by (2.10) together
with the definition (2.7) of the extended metric dsup(·, ·) implies that the series of functions defined by

w(t, x) :=
+∞
∑

k=1

(

vk+1(t, x) − vk(t, x)
)

for all x ∈ R
d

is normally convergent for L 1-almost every t ∈ [0, T ]. Consequently, for every (t, x) ∈ [0, T ] × R
d, we

can define the mapping v : [0, T ] × R
d → R

d by

v(t, x) :=

{

v1(t, x) + w(t, x) if (dn(t)) converges,

0 otherwise,

and observe that it is L 1-measurable with respect to t ∈ [0, T ] and continuous with respect to x ∈ R
d.

Moreover, the map v(·) ∈ L ([0, T ], C0(Rd,Rd)) is the pointwise limit of the sequence (vn(·)), since

dsup(vn(t), v(t)) = dsup

(

n−1
∑

k=1

(

vk+1(t) − vk(t)
)

, w(t)

)

= dsup

(

n−1
∑

k=1

(

vk+1(t) − vk(t)
)

,
+∞
∑

k=1

(

vk+1(t) − vk(t)
)

)

−→
n→+∞

0,

where we used the fact that a series that is normally convergent over R
d is also uniformly convergent.

By a simple application of Fatou’s lemma (see e.g. [79, Statement 1.28]), one can finally show that

∫ T

0
dsup(vn(t), v(t))dt −→

n→+∞
0,

which concludes the proof of our claim.
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2.3 Continuity equations and inclusions in the space of probability measures

In this section, we recollect known results about continuity equations in measures spaces, following
the usual Cauchy-Lipschitz and superposition-type theories surveyed e.g. in [6, 9], as well as their
set-valued counterpart introduced by the authors of the present manuscript in [17]. Given a real
number p ∈ [1,+∞), a measure µ0 ∈ Pp(R

d) and a velocity field v : [0, T ] × R
d → R

d, we will focus
our attention on the well-posedness of the Cauchy problem

{

∂tµ(t) + divx(v(t)µ(t)) = 0,

µ(0) = µ0,
(2.12)

wherein µ(·) ∈ C0([0, T ],P(Rd)) is a narrowly continuous curve of measure. The dynamics appearing
in the first line of (2.12) is a continuity equation, that is understood in the sense of distributions as

∫ T

0

∫

Rd

(

∂tφ(t, x) +
〈

∇xφ(t, x), v(t, x)
〉

)

dµ(t)(x)dt = 0,

for every test function φ ∈ C∞
c ((0, T ) × R

d,R). Throughout this article, we will mainly work with
velocity fields satisfying the following set of assumptions, which are classical when studying continuity
equations in the Cauchy-Lipschitz framework, and provide standard well-posedness results for (2.12).

Hypotheses (CE).

(i) The vector field v : [0, T ]×R
d → R

d is Carathéodory, and there exists a map m(·) ∈ L1([0, T ],R+)
such that

|v(t, x)| ≤ m(t)
(

1 + |x|
)

,

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d.

(ii) There exists a map l(·) ∈ L1([0, T ],R+) such that

Lip(v(t) ;Rd) ≤ l(t),

for L 1-almost every t ∈ [0, T ].

Let it be noted that, while the velocity fields are generally assumed to be locally Lipschitz with
respect to x ∈ R

d in [17] and other references in the literature dealing with compactly supported
measures, the global condition written in (CE)-(ii) is necessary for the derivation of quantitative
stability estimates in (Pp(R

d),Wp). In the following definition, we recall the notion of flows of
diffeomorphisms generated by a Carathéodory vector field.

Definition 2.17 (Flows of diffeomorphisms). Let v : [0, T ] × R
d → R

d be a velocity field satisfying
hypotheses (CE). Then, we denote by (Φv

(0,t)(·))t∈[0,T ] ⊂ C0(Rd,Rd) the unique semigroup of diffeo-
morphisms that solve the Cauchy problems

Φv
(0,0)(x) = x and ∂tΦ

v
(0,t)(x) = v

(

t,Φv
(0,t)(x)

)

,

for all x ∈ R
d.

Under the Cauchy-Lipschitz assumptions stated in hypotheses (CE), the following strong well-
posedness result holds for solutions of continuity equations in (Pp(R

d),Wp). Therein and in what
follows, given some q ∈ [1,+∞], we will frequently write ‖·‖q:=‖·‖Lq([0,T ]) for the sake of conciseness.

Theorem 2.18 (Classical well-posedness of continuity equations). Let µ0 ∈ Pp(R
d) and v : [0, T ] ×

R
d → R

d be a velocity field satisfying hypotheses (CE)-(i). Then, the Cauchy problem (2.12) admits
solutions µ(·) ∈ AC([0, T ],Pp(R

d)), and there exists a constant cp > 0 which only depends on the
magnitudes of p,Mp(µ

0) and ‖m(·)‖1 such that

Wp(µ(τ), µ(t)) ≤ cp

∫ t

τ
m(s)ds, (2.13)
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for all times 0 ≤ τ ≤ t ≤ T . If in addition the velocity field v(·, ·) satisfies hypothesis (CE)-(ii), then
the solution µ(·) ∈ AC([0, T ],Pp(R

d)) of (2.12) is unique and can be represented explicitly as

µ(t) = Φv
(0,t)(·)♯µ

0, (2.14)

for all times t ∈ [0, T ].

Proof. These statements follow e.g. from a combination of several standard results from [9, Section
8.1] along with the momentum estimates displayed in Proposition 2.22 below.

Definition 2.17 and Theorem 2.18 together inform us that, in the Cauchy-Lipschitz setting, solu-
tions of continuity equations can be explicitly written as the transports of the initial datum along the
characteristic curves generated by the velocity field. When the latter is less regular, it is still possible
to give a rigorous meaning to this intuition by using the concept of superposition measure. In what
follows, we will write ΣT := C0([0, T ],Rd) for the space of continuous arcs from [0, T ] into R

d.

Definition 2.19 (Superposition measures). An element η ∈ P(Rd × ΣT ) is called a superposition
measure associated with a Lebesgue-Borel velocity field v : [0, T ] ×R

d → R
d if it is concentrated on the

set of pairs (x, σ) ∈ R
d × AC([0, T ],Rd) satisfying

σ(0) = x and σ̇(t) = v(t, σ(t)), (2.15)

for L 1-almost every t ∈ [0, T ].

A direct link can be provided between superposition measures and solutions of (2.12) under the
action of the so-called evaluation map, which is defined for all times t ∈ [0, T ] by

et : (x, σ) ∈ R
d × ΣT 7→ σ(t) ∈ R

d.

More precisely, it can be checked that if η ∈ P(Rd × ΣT ) is a superposition measure associated with
a velocity field v : [0, T ] × R

d → R
d such that (πRd)♯η = µ0, where πRd : (x, σ) ∈ R

d × ΣT 7→ x ∈ R
d

stands for the projection onto the space component, and which satisfies the local integrability condition

∫ T

0

∫

Rd×ΣT

1K(σ(t))|v(t, σ(t))|dη(x, σ)dt < +∞

for each compact set K ⊂ R
d, then the curve defined by µ(t) := (et)♯η for all times t ∈ [0, T ] is a

solution of (2.12). We recall in the following theorem the converse of this statement – colloquially
known in the literature as the superposition principle –, for which we refer e.g. to [6, Theorem 3.4].

Theorem 2.20 (Superposition principle). Let µ0 ∈ Pp(R
d) and µ(·) ∈ AC([0, T ],Pp(R

d)) be a
solution of (2.12) driven by a Lebesgue-Borel velocity field v : [0, T ] × R

d → R
d satisfying

∫ T

0

∫

Rd

|v(t, x)|

1 + |x|
dµ(t)(x)dt < +∞. (2.16)

Then, there exists a superposition measure ηµ ∈ P(Rd× ΣT ) in the sense of Definition 2.19 such that
(et)♯ηµ = µ(t) for all times t ∈ [0, T ].

Throughout the remainder of this section, we derive a series of useful momentum and stability
estimates for solutions of (2.12) driven by Lebesgue-Borel velocity fields v : [0, T ] × R

d → R
d, under

the additional assumption that there exists a map m(·) ∈ L1([0, T ],R+) such that

|v(t, x)| ≤ m(t)(1 + |x|) (2.17)

holds for L 1-almost every t ∈ [0, T ] and µ(t)-almost every x ∈ R
d. While some of the underlying

techniques were already explored in our previous work [17], the results that we discuss here are both
new and proven under less restrictive regularity assumptions. We start by stating an adaptation of a
structural result established in [17, Lemma 1], whose proof is detailed in Appendix B.
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Lemma 2.21 (Superposition plans inducing optimal transports). Consider two curves of measures
µ(·), ν(·) ∈ AC([0, T ],Pp(R

d)) driven by the Lebesgue-Borel velocity fields v,w : [0, T ] × R
d → R

d

complying with the pointwise sublinearity estimates

|v(t, x)| ≤ m(t)(1 + |x|) and |w(t, y)| ≤ m(t)(1 + |y|)

for L 1-almost every t ∈ [0, T ] and µ(t) × ν(t)-almost every (x, y) ∈ R
d × R

d. Moreover, let ηµ,ην ∈
P(Rd × ΣT ) be two superposition measures given by Theorem 2.20, such that

µ(t) = (et)♯ηµ and ν(t) = (et)♯ην

for all times t ∈ [0, T ]. Then, for every γ0 ∈ Γo(µ
0, ν0), there exists a plan η̂µ,ν ∈ Γ(ηµ,ην) such that

(πRd , πRd)♯η̂µ,ν = γ0 and (et, et)♯η̂µ,ν ∈ Γo(µ(t), ν(t))

for all times t ∈ [0, T ], where Γo stands here for the set of p-optimal transport plans.

In what follows, we leverage the general superposition results of Theorem 2.20 and Lemma 2.21 to
prove momentum and equi-integrability inequalities for solutions of (2.12) in Proposition 2.22, as well
as two stability estimates with respect to initial data and driving fields in Proposition 2.24. For the
sake of readability, we postpone the proof of these results to Appendix C and Appendix D respectively.

Proposition 2.22 (Momentum and equi-integrability estimates). Let µ0 ∈ Pp(R
d) be given and

µ(·) ∈ AC([0, T ],P(Rd)) be a solution of (2.12) driven by a Lebesgue-Borel velocity field v : [0, T ] ×
R
d → R

d satisfying the sublinearity estimate (2.17). Then, the following momentum bound

Mp(µ(t)) ≤ Cp

(

Mp(µ
0) +

∫ t

0
m(s)ds

)

exp
(

C ′
p ‖m(·)‖p1

)

, (2.18)

holds for all times t ∈ [0, T ], where the constants Cp, C
′
p > 0 are given by

Cp := 2(p−1)/p and C ′
p := 2p−1

p . (2.19)

In addition for every R > 0, the following uniform equi-integrability bound

sup
t∈[0,T ]

∫

{

x s.t. |x|≥R
}

|x|p dµ(t)(x) ≤ CpT

∫

{

x s.t. |x|≥R/CT −1
}

(

1 + |x|
)p

dµ0(x), (2.20)

holds with CT := max
{

1, ‖m(·)‖1
}

exp
(

‖m(·)‖1
)

.

Remark 2.23 (A refined momentum inequality). In the sequel, we will often use the fact that, if a
velocity field v : [0, T ] × R

d → R
d satisfies the slightly more general sublinearity inequality

|v(t, x)| ≤ m(t)
(

1 + |x| +M(t)
)

,

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d, where M(·) ∈ L∞([0, T ],R+) is given a priori, then the

corresponding curve of measures µ(·) is such that

Mp(µ(t)) ≤ Cp

(

Mp(µ
0) +

∫ t

0
m(s)(1 +M(s))ds

)

exp
(

C ′
p ‖m(·)‖pL1([0,t]

)

,

for all times t ∈ [0, T ]. The latter inequality can be established by repeating verbatim the arguments
detailed in Appendix C.

Proposition 2.24 (Two general stability estimates for continuity equations). Let µ0, ν0 ∈ Pp(R
d)

and µ(·), ν(·) ∈ AC([0, T ],Pp(R
d)) be two solutions of (2.12), driven respectively by a Carathéodory

velocity field v : [0, T ] × R
d → R

d satisfying hypotheses (CE) and a Lebesgue-Borel velocity field
w : [0, T ] × R

d → R
d complying with the sublinearity inequality

|w(t, y)| ≤ m(t)
(

1 + |y|
)

, (2.21)
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for L 1-almost every t ∈ [0, T ] and ν(t)-almost every y ∈ R
d. Then, if the map defined by

t ∈ [0, T ] 7→‖v(t) − w(t)‖L∞(Rd,Rd; ν(t)),

is Lebesgue integrable, the following global stability estimate

Wp(µ(t), ν(t)) ≤ Cp

(

Wp(µ
0, ν0) +

∫ t

0
‖v(s) −w(s)‖L∞(Rd,Rd; ν(s)) ds

)

exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

, (2.22)

holds for all times t ∈ [0, T ], wherein Cp, C
′
p > 0 are defined in (2.19). More generally, under our

assumptions, the application

t ∈ [0, T ] 7→‖v(t) − w(t)‖L∞(B(0,R),Rd ; ν(t)),

is Lebesgue integrable for every R > 0, and the following localised stability estimate

Wp(µ(t), ν(t)) ≤ Cp

(

Wp(µ
0, ν0) +

∫ t

0
‖v(s) − w(s)‖L∞(B(0,R),Rd ; ν(s))) ds+ Eν(t, R)

)

× exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

,

(2.23)

holds for all times t ∈ [0, T ], where the error term is defined by

Eν(t, R) := 2 ‖m(·)‖L1([0,t]) (1 + CT )

(
∫

{y s.t. |y|≥R/CT −1}
(1 + |y|)pdν0(y)

)1/p

. (2.24)

with CT = max{1, ‖m(·)‖1} exp(‖m(·)‖1).

Remark 2.25 (Comparison with the estimates of [17]). The stability estimates displayed in Proposi-
tion 2.24 above improve on those of [17] in the two following ways. Firstly, the global inequality (2.22)
now holds for a general Lebesgue-Borel velocity field w(·, ·) satisfying the sublinearity inequality (2.17),
without requiring the latter to be Carathéodory. Secondly, the inequality (2.23) involving the quantita-
tive error term Eν(·, ·) is completely new to the best of our knowledge, and will prove crucial to palliate
the fact that the metric of compact convergence dcc(·, ·) only grants access to local and non-uniform
estimates between functions.

We end this preliminary section by recalling the definition of continuity inclusions in Wasserstein
spaces. The latter, introduced by the authors of the present manuscript in [17], and constitutes a
natural set-valued generalisation of continuity equations, as its definition mimics the well-established
viewpoint that solutions of differential inclusions should be absolutely continuous curves whose deriva-
tive are measurable selections of admissible velocities (see e.g. [12, Chapter 10]).

Definition 2.26 (Continuity inclusions in (Pp(R
d),Wp)). Let V : [0, T ]×Pp(R

d) ⇒ C0(Rd,Rd) be a
set-valued map. We say that a curve µ(·) ∈ AC([0, T ],Pp(R

d)) is a solution of the continuity inclusion

∂tµ(t) ∈ −divx
(

V (t, µ(t))µ(t)
)

, (2.25)

if there exists an L 1-measurable selection t ∈ [0, T ] 7→ v(t) ∈ V (t, µ(t)) ⊂ C0(Rd,Rd) such that the
trajectory-selection pair (µ(·), v(·)) solves

∂tµ(t) + divx(v(t)µ(t)) = 0,

in the sense of distributions.
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3 Well-posedness in the Cauchy-Lipschitz setting

In this section, we derive general well-posedness results for the set-valued Cauchy problem






∂tµ(t) ∈ −divx
(

V (t, µ(t))µ(t)
)

,

µ(0) = µ0,
(3.1)

posed in the Wasserstein space (Pp(R
d),Wp). We start by establishing in Section 3.1 a general version

of the renowned Filippov estimates (see e.g. [85, Section 2.4]) for this class of problems, which combine
an existence result along with a powerful a priori estimate on trajectories. We then proceed by showing
in Section 3.2 that the solution set of (3.1) is compact for the topology of uniform convergence when
the sets of admissible velocities are convex, and then conclude in Section 3.3 by proving that when
this latter property does not hold, the underlying solution set remains dense in that of the relaxed
dynamics whose right-hand side has been convexified.

Throughout the remainder of this article, we will assume that T > 0 and p ∈ [1,+∞) are given real
numbers, and we shall systematically consider that the space C0(Rd,Rd) is endowed with the topology
induced by the metric of uniform convergence on compact sets dcc(·, ·) introduced in Definition 2.12.

Hypotheses (CI).

(i) For any µ ∈ Pp(R
d), the set-valued map t ∈ [0, T ] ⇒ V (t, µ) ⊂ C0(Rd,Rd) is L 1-measurable

and has closed nonempty images.

(ii) There exists a map m(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ ∈
Pp(R

d), every v ∈ V (t, µ) and all x ∈ R
d, it holds

|v(x)| ≤ m(t)
(

1 + |x| + Mp(µ)
)

.

(iii) There exists a map l(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ ∈ Pp(R
d)

and every v ∈ V (t, µ), it holds
Lip(v(t) ;Rd) ≤ l(t).

(iv) There exists a map L(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ, ν ∈
Pp(R

d) and each v ∈ V (t, µ), there exists an element w ∈ V (t, ν) for which

dsup(v,w) ≤ L(t)Wp(µ, ν).

Remark 3.1 (Comparison with the main assumptions of [17]). It is worth noting that our working
assumptions are essentially the same as those of [17], except for the fact that the Lipschitz constants
appearing in hypothesis (CI)-(iii), (iv) are required to be global. This turns out to be necessary in order
to establish stability estimates for curves of measures whose supports may be unbounded. That being
said, the study of curves of compactly supported measures generated by locally Lipschitz set-valued maps
is completely included in our subsequent developments, up to some minor technical adjustments. Like-
wise, we could have opted in the present manuscript for assumptions in which the Lipschitz constants
of the dynamics are allowed to vary from one compact sets of Pp(R

d) to the other.

Remark 3.2 (Example of set-valued mapping satisfying our assumptions). A relevant example of
set-valued map V : [0, T ] × Pp(R

d) ⇒ C0(Rd,Rd) satisfying hypotheses (CI) is given by the set of
admissible velocities of a controlled system, which is of the form

V (t, µ) :=
{

v(t, µ, u, ·) ∈ C0(Rd,Rd) s.t. u ∈ U
}

.

Therein, (U, dU (·, ·)) is a compact metric space representing the collection of control signals, while
v : [0, T ] × Pp(R

d) × U × R
d → R

d is a vector field that is Carathéodory in (t, u) ∈ [0, T ] × U as well
as globally Lipschitz in (µ, x) ∈ Pp(R

d) × R
d with constants that are Lebesgue integrable functions of

time. In the more general case in which v : [0, T ] × Pp(R
d) × U × R

d → R
d is simply Carathéodory

with local uniform continuity constants in (µ, u, x) ∈ Pp(R
d) × U × R

d given by Lebesgue integrable
functions of time, this control theoretic model also fits in hypotheses (P) of Section 4.
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3.1 Existence of solutions and Filippov estimates

In this section, we prove a general version of the well-posedness result of Filippov for solutions of the
set-valued Cauchy problem (3.1). We stress that, while the underlying strategy is greatly inspired by
the methodology we previously developed in [17], the corresponding results are much more general
and the details of the proof fairly different from a technical standpoint.

Theorem 3.3 (Filippov estimates). Let V : [0, T ] × Pp(R
d) ⇒ C0(Rd,Rd) be a set-valued map

satisfying hypotheses (CI) and ν(·) ∈ AC([0, T ],Pp(R
d)) be a solution of the continuity equation

∂tν(t) + divx(w(t)ν(t)) = 0

driven by a Lebesgue-Borel velocity field w : [0, T ] × R
d → R

d satisfying the sublinearity estimate

|w(t, y)| ≤ m(t)(1 + |y|), (3.2)

for L 1-almost every t ∈ [0, T ] and ν(t)-almost every y ∈ R
d. For every R > 0, define the localised

mismatch function ηR(·) ∈ L1([0, T ],R+) by

ηR(t) := distL∞(B(0,R),Rd ; ν(t))

(

w(t) ;V (t, ν(t))
)

(3.3)

for L 1-almost every t ∈ [0, T ].
Then for every initial datum µ0 ∈ Pp(R

d) and each R > 0, there exists a trajectory-selection pair
(µ(·), v(·)) ∈ AC([0, T ],Pp(R

d)) × L ([0, T ], C0(Rd,Rd)) solution of the Cauchy problem (3.1) which
satisfies the distance estimate

Wp(µ(t), ν(t)) ≤ Dp(t), (3.4)

for all times t ∈ [0, T ], where

Dp(t) := Cp

(

Wp(µ
0, ν(0)) +

∫ t

0
ηR(s)ds+ Eν(t, R)

)

exp
(

C ′
p ‖l(·)‖pL1([0,t]) +χp(t)

)

. (3.5)

Therein, the constants Cp, C
′
p > 0 are as in (2.19), the error term Eν(t, R) is given by

Eν(t, R) := 2 ‖m(·)‖L1([0,t]) (1 + CT )

(
∫

{y s.t. |y|≥R/CT −1}
(1 + |y|)pdν(0)(y)

)1/p

,

for some constant CT > 0 that only depends on the magnitudes of p,Mp(µ
0) and ‖m(·)‖1, and the

map χp(·) ∈ L∞([0, T ],R+) writes as

χp(t) := Cp ‖L(·)‖L1([0,t]) exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

. (3.6)

Moreover, the velocity selection t ∈ [0, T ] 7→ v(t) ∈ V (t, µ(t)) obeys the pointwise norm estimate

‖v(t) − w(t)‖L∞(B(0,R),Rd ; ν(t)) ≤ ηR(t) + L(t)Dp(t) (3.7)

for L 1-almost every t ∈ [0, T ].

Before moving on to the proof of Theorem 3.3, we need to state a technical lemma dealing with
chained integral estimates, whose proof is the matter of a straightforward induction argument.

Lemma 3.4 (A uniform bound on families of functions satisfying recurrent integral estimates). Let
m(·) ∈ L1([0, T ],R+) and f0, α > 0 be two given constants. Then, every at most countable family of
functions (fn(·)) ⊂ C0([0, T ],R+) such that ‖f0(·)‖C0([0,T ],R+) ≤ f0 and

fn+1(t) ≤ α

(

1 +

∫ t

0
m(s)fn(s)ds

)

,

for all times t ∈ [0, T ] and each n ≥ 0, complies with the following inequality

sup
n≥0

‖fn(·)‖C0([0,T ],R+) ≤ (α+ f0) exp
(

α ‖m(·)‖1

)

.
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The proof of Theorem 3.3 is based on a constructive scheme in which one builds a sequence of
trajectory-selection pairs, and is split into four steps. In Step 1, we detail the initialisation of the
underlying induction argument by means of a selection principle applied along ν(·), and proceed in
Step 2 to build the whole sequence of trajectory-selection pairs. We then show in Step 3 that the latter
is a Cauchy sequence for a suitable extended metric, and finally prove in Step 4 that the corresponding
limit pair is a solution of (3.1) which satisfies the estimates (3.4) and (3.7).

Proof of Theorem 3.3. Our goal in what follows is to build a sequence of trajectory-selection pairs
(µn(·), vn(·)) ⊂ AC([0, T ],Pp(R

d)) × L ([0, T ], C0(Rd,Rd)) solving the Cauchy problems

{

∂tµn(t) + divx(vn(t)µn(t)) = 0,

µn(0) = µ0,
(3.8)

and satisfying the conditions

vn+1(t) ∈ V (t, µn(t)) and dsup(vn(t), vn+1(t)) ≤ L(t)Wp(µn−1(t), µn(t)), (3.9)

for L 1-almost every t ∈ [0, T ] while complying with the uniform momentum and regularity bounds

Mp(µn(t)) ≤ C and Wp(µn(τ), µn(t)) ≤ cp

∫ t

τ
m(s)ds (3.10)

for all times 0 ≤ τ ≤ t ≤ T and each n ≥ 1. Therein, the constants C, cp > 0 will only depend on the
magnitudes of p,Mp(µ

0) and ‖m(·)‖1.

Step 1 – Initialisation of the sequence. Observe first that by combining hypotheses (CI)-(ii)
and (iii) along with Theorem 2.15, the admissible velocity sets V (t, ν(t)) ⊂ C0(Rd,Rd) are compact
in the topology of uniform convergence on compact sets for L 1-almost every t ∈ [0, T ]. Besides under
hypotheses (CI)-(i) and (iv), the set-valued map t ∈ [0, T ] ⇒ V (t, ν(t)) ⊂ C0(R,Rd) is L 1-measurable
as a consequence of Lemma 2.10-(c). Furthermore, it can be checked that

(t, v) ∈ [0, T ] × C0(Rd,Rd) 7→‖v − w(t)‖L∞(B(0,R),Rd ;ν(t))∈ R+

is a Carathéodory map for each R > 0, in the sense that it is L 1-measurable with respect to t ∈ [0, T ]
and continuous with respect to v ∈ C0((Rd,Rd) for the topology induced by dcc(·, ·). Thus, recalling
the definition (3.3) of the mismatch function ηR(·) and applying Lemma 2.10-(b) to the correspondence

t ∈ [0, T ] ⇒ V (t, ν(t)) ∩

{

v ∈ C0(Rd,Rd) s.t. ‖v − w(t)‖L∞(B(0,R),Rd , ν(t)) = ηR(t)

}

,

we obtain the existence of an L 1-measurable map t ∈ [0, T ] 7→ v1(t) ∈ V (t, ν(t)) such that

‖v1(t) − w(t)‖L∞(B(0,R),Rd ; ν(t)) = ηR(t) (3.11)

for L 1-almost every t ∈ [0, T ].
Remark now that as a by-product of hypotheses (CI)-(ii) and (iii) along with Lemma 2.14, the

velocity field v1 : [0, T ] × R
d → R

d is Carathéodory and such that

|v1(t, x)| ≤ m(t)
(

1 + |x| + Mp(ν(t))
)

and Lip(v1(t) ;Rd) ≤ l(t)

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d. In particular, it satisfies hypotheses (CE). Hence by

Theorem 2.18, there exists a unique curve µ1(·) ∈ AC([0, T ],Pp(R
d)) solution of the Cauchy problem

{

∂tµ1(t) + divx(v1(t)µ1(t)) = 0,

µ1(0) = µ0.
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Owing to the momentum bound of Remark 2.23, the curve µ1(·) complies with the estimate

Mp(µ1(t)) ≤ Cp

(

Mp(µ
0) +

∫ t

0
m(s)

(

1 + Mp(ν(s))
)

ds

)

exp
(

C ′
p ‖m(·)‖p1

)

, (3.12)

for all times t ∈ [0, T ]. Consequently, by Lemma 3.4 combined and (2.18) of Proposition 2.22 applied
to the curve ν(·) ∈ AC([0, T ],Pp(R

d)) – which is valid owing to (3.2) –, there exists a constant C > 0
that only depends on the magnitudes of p,Mp(µ

0),Mp(ν(0)) and ‖m(·)‖1, such that

max
{

Mp(ν(t)) , Mp(µ1(t))
}

≤ C (3.13)

for all times t ∈ [0, T ]. In particular, the velocity field v1(·, ·) satisfies the uniform sublinearity estimate

|v1(t, x)| ≤ (1 + C)m(t)
(

1 + |x|
)

, (3.14)

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d, which combined with (2.13) of Theorem 2.18 yields

the existence of a constant cp > 0 depending only on the magnitudes of p,Mp(µ
0),Mp(ν(0)) and

‖m(·)‖1, such that

Wp(µ1(τ), µ1(t)) ≤ cp

∫ t

τ
m(s)ds

for all times 0 ≤ τ ≤ t ≤ T . Moreover, by applying the approximate stability inequality (2.23) of
Proposition 2.24 while taking into account the sublinearity estimate (3.14), it further holds that

Wp(µ1(t), ν(t)) ≤ Cp

(

Wp(µ
0, ν(0)) +

∫ t

0
ηR(s)ds+ Eν(t, R)

)

exp
(

C ′
p ‖l(·)‖p1

)

(3.15)

for all times t ∈ [0, T ], where

Eν(t, R) := 2 ‖m(·)‖L1([0,t]) (1 + CT )

(
∫

{ s.t. |y|≥R/CT −1}
(1 + |y|)pdν(0)(y)

)1/p

with CT := max
{

1, (1+C)‖m(·)‖1
}

exp
(

(1+C)‖m(·)‖1
)

. This together with the momentum estimate
of (3.12) concludes the initialisation step of our induction argument.

Step 2 – Construction of the sequence of trajectory-selection pairs. At this stage, note that

dsup(v1(t), w) = sup
m≥1

‖v1(t) − w‖C0(B(0,m),Rd)

for L 1-almost every t ∈ [0, T ] and all w ∈ C0(Rd,Rd), and that by construction, the maps (t, w) ∈
[0, T ] × C0(Rd,Rd) 7→ ‖v1(t) − w‖C0(B(0,m),Rd) ∈ R+ are Carathéodory for each m ≥ 1. Thence, as a

consequence of Lemma 2.10-(a) combined with hypothesis (CI)-(iv), there exists an L 1-measurable
map t ∈ [0, T ] 7→ v2(t) ∈ V (t, µ1(t)) which satisfies

dsup(v1(t), v2(t)) ≤ L(t)Wp(µ1(t), ν(t)),

for L 1-almost every t ∈ [0, T ]. From hypotheses (CI)-(ii) and (iii) combined with (3.13) and Lemma
2.14, we may then infer that the velocity field v2 : [0, T ] × R

d → R
d is Carathéodory, and such that

|v2(t, x)| ≤ m(t)
(

1 + |x| + Mp(µ1(t))
)

and Lip(v2(t) ;Rd) ≤ l(t),

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d. In particular, it satisfies hypotheses (CE), and thus

generates a unique solution µ2(·) ∈ AC([0, T ],Pp(R
d)) of the corresponding Cauchy problem

{

∂tµ2(t) + divx(v2(t)µ2(t)) = 0,

µ2(0) = µ0.
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By the refined momentum bound of Remark 2.23 and the estimate (2.22) of Proposition 2.24, it can
again be checked that



















Mp(µ2(t)) ≤ Cp

(

Mp(µ
0) +

∫ t

0
m(s)

(

1 + Mp(µ1(s))
)

ds

)

exp
(

C ′
p ‖m(·)‖p1

)

,

Wp(µ1(t), µ2(t)) ≤ Cp

(
∫ t

0
dsup(v1(s), v2(s))ds

)

exp
(

C ′
p ‖l(·)‖p1

)

.

As a consequence of Lemma 3.4, this implies in particular that

max
{

Mp(ν(t)) , Mp(µ1(t)) , Mp(µ2(t))
}

≤ C

for all times t ∈ [0, T ], where C > 0 is the same constant as in Step 1 which only depends on the
magnitudes of p,Mp(µ

0),Mp(ν(0)) and ‖m(·)‖1.
By repeating this process, we can iteratively build a sequence (µn(·), vn(·)) ⊂ AC([0, T ],Pp(R

d))×
L ([0, T ], C0(Rd,Rd)) of trajectory-selection pairs solutions of the Cauchy problems (3.8), and which
satisfy the conditions of (3.9) as well as the bounds of (3.10). In addition, the elements of the sequence
comply for each n ≥ 1 with the uniform sublinearity estimates

|vn(t, x)| ≤ (1 + C)m(t)
(

1 + |x|
)

, (3.16)

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d, as well as the distance estimates

Wp(µn(t), µn+1(t)) ≤ Cp

(
∫ t

0
dsup(vn(s), vn+1(s))ds

)

exp
(

C ′
p ‖l(·)‖p1

)

, (3.17)

for all times t ∈ [0, T ]. In particular by (3.16) and Theorem 2.18, there exists a constant cp > 0
depending only on the magnitudes of p,Mp(µ

0) and ‖m(·)‖1, such that

Wp(µn(τ), µn(t)) ≤ cp

∫ t

τ
m(s)ds,

for all times 0 ≤ τ ≤ t ≤ T and each n ≥ 1.

Step 3 – Convergence of the sequence of trajectory-selection pairs. In what follows, we
prove that the sequence of pairs (µn(·), vn(·)) built in Step 1 and Step 2 is Cauchy in a suitable sense.
First, observe that by merging the distance estimates of (3.9), (3.15) and (3.17), one has that

Wp(µn(t), µn+1(t))

≤ Cp

(
∫ t

0
dsup(vn(sn), vn+1(sn))dsn

)

exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

≤ Cp

(
∫ t

0
L(sn)Wp(µn−1(sn), µn(sn))dsn

)

exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

≤ C2
p

(
∫ t

0
L(sn)

∫ sn

0
dsup(vn−1(sn−1), vn(sn−1))dsn−1dsn

)

exp
(

2C ′
p ‖l(·)‖pL1([0,t])

)

...

≤ Cnp

(
∫ t

0
L(sn)

∫ sn

0
L(sn−1) . . .

∫ s2

0
L(s1)Wp(µ1(s1), ν(s1))ds1 . . . dsn−1dsn

)

exp
(

nC ′
p ‖l(·)‖pL1([0,t])

)

≤
Cn+1
p

n!

(
∫ t

0
L(s)ds

)n(

Wp(µ
0, ν(0)) +

∫ t

0
ηR(s)ds+ Eν(t, R)

)

exp
(

(n+ 1)C ′
p ‖l(·)‖pL1([0,t])

)

,

=
χp(t)

n

n!
Cp

(

Wp(µ
0, ν(0)) +

∫ t

0
ηR(s)ds+ Eν(t, R)

)

exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

(3.18)
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for all times t ∈ [0, T ] and each n ≥ 1, where we recall that χp(·) ∈ L∞[0, T ],R+) is defined as in (3.6).
Whence, for any pair of integers m,n ≥ 1, one can deduce from (3.18) that

sup
t∈[0,T ]

Wp(µn(t), µn+m(t))

≤ sup
t∈[0,T ]

n+m−1
∑

k=n

Wp(µk(t), µk+1(t))

≤

(

n+m−1
∑

k=n

‖χp(·)‖
k
∞

k!

)

Cp

(

Wp(µ
0, ν(0)) +

∫ T

0
ηR(s)ds+ Eν(T,R)

)

exp
(

C ′
p ‖l(·)‖p1

)

−→
m,n→+∞

0,

(3.19)
which means that (µn(·)) ⊂ AC([0, T ],Pp(R

d)) is a Cauchy sequence in C0([0, T ],Pp(R
d)). Noting

that the latter is a complete metric space as a consequence e.g. of [67, Chapter 7 – Theorem 12], there
exists some µ(·) ∈ C0([0, T ],Pp(R

d)) such that

sup
t∈[0,T ]

Wp(µn(t), µ(t)) −→
n→+∞

0. (3.20)

Besides, as a consequence of the equi-absolute continuity estimate established in (3.10) for the sequence
(µn(·)) ⊂ AC([0, T ],Pp(R

d)), the limit curve µ(·) is absolutely continuous as well, with

Wp(µ(τ), µ(t)) ≤ cp

∫ t

τ
m(s)ds

for all times 0 ≤ τ ≤ t ≤ T .
Concerning the sequence of Carathéodory velocity fields (vn(·)) ⊂ L ([0, T ], C0(Rd,Rd)), it directly

follows from (3.9) together with the estimates in (3.19) that

∫ T

0
dsup(vn(t), vn+m(t))dt ≤

m+n−1
∑

k=n

∫ T

0
dsup(vk(t), vk+1(t))dt

≤ ‖L(·)‖1 sup
t∈[0,T ]

m+n−1
∑

k=n

Wp(µk−1(t), µk(t)) −→
m,n→+∞

0,

(3.21)

for each m,n ≥ 1. Hence, by Lemma 2.16, there exists a map v(·) ∈ L ([0, T ], C0(Rd,Rd)) such that

∫ T

0
dsup(vn(t), v(t))dt −→

n→+∞
0. (3.22)

This yields in particular the existence of a subsequence (vnk
(·)) ⊂ L ([0, T ], C0(Rd,Rd)) for which

dsup(vnk
(t), v(t)) −→

n→+∞
0

for L 1-almost every t ∈ [0, T ], which combined with (3.16) directly implies that the limit velocity
field v : [0, T ] × R

d 7→ R
d satisfies the sublinearity and regularity estimates

|v(t, x)| ≤ (1 + C)m(t)
(

1 + |x|
)

and Lip(v(t) ;Rd) ≤ l(t), (3.23)

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d.

Step 4 – Properties of the limit trajectory-selection pair. By combining the estimate (2.4)
of Proposition 2.4 with the stability inequality (2.23) in Proposition 2.24 as well as (3.23), it can
be straightforwardly deduced from the convergence results of (3.20) and (3.22) that the trajectory-
selection pair (µ(·), v(·)) is a distributional solution of the Cauchy problem

{

∂tµ(t) + divx(v(t)µ(t)) = 0,

µ(0) = µ0.
(3.24)

20



In addition, it follows from (3.23) and Theorem 2.18 that the curve µ(·) ∈ AC([0, T ],Pp(R
d)) is in

fact the unique solution of (3.24).
The next step in our argument consists in showing that (µ(·), v(·)) is a solution of the continuity

inclusion (3.1). By (3.9), the sequence of trajectory-selection pairs is such that

(

µn(t), vn+1(t)
)

∈ Graph(V (t)), (3.25)

for L 1-almost every t ∈ [0, T ] and each n ≥ 1. By (3.20) and (3.22), it further holds that

Wp(µn(t), µ(t)) −→
n→+∞

0, (3.26)

for all times t ∈ [0, T ], as well as
dsup(vn(t), v(t)) −→

n→+∞
0, (3.27)

for L 1-almost every t ∈ [0, T ], along a subsequence that we do not relabel. Whence, upon combining
(3.25) with the pointwise convergence results (3.26) and (3.27) and hypothesis (CI)-(iv), we obtain

(

µ(t), v(t)
)

∈ Graph(V (t)),

for L 1-almost every t ∈ [0, T ]. In light of Definition 2.26, this latter fact together with (3.24) implies
that the limit curve µ(·) ∈ AC([0, T ],Pp(R

d)) is a solution of the continuity inclusion (3.1), driven by
the L 1-measurable selection t ∈ [0, T ] 7→ v(t) ∈ V (t, µ(t)).

Now, there only remains to derive the distance and velocity estimates displayed in (3.4) and (3.7).
To this end, note that the chain of pointwise inequalities of (3.18) implies

Wp(µn(t), ν(t)) ≤ Wp(µ1(t), ν(t)) +
n−1
∑

k=1

Wp(µk(t), µk+1(t))

≤

(

1 +
n−1
∑

k=1

χp(t)
k

k!

)

Cp

(

Wp(µ
0, ν(0)) +

∫ t

0
ηR(s)ds+ Eν(t, R)

)

exp
(

C ′
p ‖l(·)‖p1

)

≤ Cp

(

Wp(µ
0, ν(0)) +

∫ t

0
ηR(s)ds+ Eν(t, R)

)

exp
(

C ′
p ‖l(·)‖p1 +χp(t)

)

= Dp(t),

for all times t ∈ [0, T ] and each n ≥ 1, with Dp(·) being defined as in (3.5). By letting n → +∞
in the previous expression, we directly recover (3.4). Concerning the velocity estimates, it holds as a
consequence of (3.9), (3.11) and (3.15) that

‖vn(t) − w(t)‖L∞(B(0,R),Rd ; ν(t)) ≤ ‖v1(t) − w(t)‖L∞(B(0,R),Rd ; ν(t)) +
n−1
∑

k=1

dsup(vk+1(t), vk(t))

≤ ηR(t) + L(t)
n−1
∑

k=1

Wp(µk−1(t), µk(t))

≤ ηR(t) + L(t)Dp(t),

for L 1-almost every t ∈ [0, T ] and each n ≥ 1. By taking the limit as n → +∞ along a suitable
subsequence in the previous expression, we recover (3.7), which concludes the proof of Theorem 3.3.

In the following corollary, we state a global version of the Filippov estimate which can be obtained
by a simple adaptation of the proof of Theorem 3.3.

Corollary 3.5 (Global version of Filippov’s estimates). Suppose that the assumptions of Theorem 3.3
hold, and in addition that the global mismatch function, defined by

η(t) := distL∞(Rd,Rd; ν(t))

(

w(t) ;V (t, ν(t))
)
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for L 1-almost every t ∈ [0, T ], is Lebesgue integrable. Then for every µ0 ∈ Pp(R
d), there exists

a trajectory-selection pair (µ(·), v(·)) ∈ AC([0, T ],Pp(R
d)) × L ([0, T ], C0(Rd,Rd)) solution of the

Cauchy problem (3.1), which satisfies the distance estimate

Wp(µ(t), ν(t)) ≤ Cp

(

Wp(µ
0, ν(0)) +

∫ t

0
η(s)ds

)

exp
(

C ′
p ‖l(·)‖pL1([0,t]) +χp(t)

)

,

for all times t ∈ [0, T ], as well as the velocity estimate

‖v(t) − w(t)‖L∞(Rd,Rd; ν(t))

≤ η(t) + L(t)Cp

(

Wp(µ
0, ν(0)) +

∫ t

0
η(s)ds

)

exp
(

C ′
p ‖l(·)‖pL1([0,t]) +χp(t)

)

,

for L 1-almost every t ∈ [0, T ].

Proof. One can simply repeat the proof strategy of Theorem 3.3 with R = +∞ and E(t, R) = 0.

3.2 Compactness of the solution set for convex velocities

In this section, we study the compactness properties of the solution set S[0,T ](µ
0) associated with the

Cauchy problem (3.1), defined by

S[0,T ](µ
0) :=

{

µ(·) ∈ AC([0, T ],Pp(R
d)) s.t. µ(·) is a solution of (3.1) with µ(0) = µ0

}

(3.28)

for each µ0 ∈ Pp(R
d). More specifically, we show in the following theorem that S[0,T ](µ

0) is com-

pact for the topology of uniform convergence as soon as the set-valued map V : [0, T ] × Pp(R
d) ⇒

C0(Rd,Rd) has convex images.

Theorem 3.6 (Compactness of the solution set). Let µ0 ∈ Pp(R
d) and V : [0, T ] × Pp(R

d) ⇒

C0(Rd,Rd) be a set-valued map satisfying hypotheses (CI) and whose images are convex. Then, the
solution set S[0,T ](µ

0) ⊂ C0([0, T ],Pp(R
d)) associated with the Cauchy problem (3.1) is compact for

the topology of uniform convergence.

Proof. Let (µn(·), vn(·)) ⊂ AC([0, T ],Pp(R
d)) × L ([0, T ], C0(Rd,Rd)) be a sequence of trajectory

selection pairs for the Cauchy problem (3.1). Observe first that by the momentum bound of Remark
2.23, there exists C > 0 depending only on the magnitudes of p,M(µ0) and ‖m(·)‖1 such that

sup
n≥1

M(µn(t)) ≤ C,

for all times t ∈ [0, T ]. Thus, by hypothesis (CI)-(ii) together with the equi-integrability estimate of
Proposition 2.22 and the characterisation of relatively compact subsets of Pp(R

d) given in Proposition
2.3, there exists a compact set K ⊂ Pp(R

d) depending only on µ0 and ‖m(·)‖1, such that

µn(t) ∈ K

for all times t ∈ [0, T ] and each n ≥ 1. Besides, recalling that the velocity fields vn : [0, T ] × R
d → R

d

are Carathéodory and uniformly equi-sublinear for each n ≥ 1, one has by Theorem 2.18 that

Wp(µn(τ), µn(t)) ≤ cp

∫ t

τ
m(s)ds,

for all times 0 ≤ τ ≤ t ≤ T and each n ≥ 1, where cp > 0 only depends on the magnitudes of
p,Mp(µ

0) and ‖m(·)‖1. Whence, by the Ascoli-Arzelà theorem for complete separable metric spaces
(see e.g. [67, Chapter 7 – Theorem 18]), there exists a curve µ(·) ∈ AC([0, T ],Pp(R

d)) such that

sup
t∈[0,T ]

Wp(µn(t), µ(t)) −→
n→+∞

0, (3.29)
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along a subsequence that we do not relabel.
Observe now that for each m ≥ 1, the restrictions to B(0,m) of the sequence of maps (vn(·)) ⊂

L ([0, T ], C0(Rd,Rd)) is uniformly bounded and equi-integrable in L1([0, T ], C0(B(0,m),Rd)) as a
consequence of the sublinearity estimate of hypothesis (CI)-(ii) and Proposition 2.22. This, together
with hypothesis (CI)-(iii) and the Ascoli-Arzelà theorem, yields the existence of family of compact
sets (Km

t )t∈[0,T ] ⊂ C0(B(0,m),Rd) such that

V (t, µn(t))|B(0,m) :=

{

v|B(0,m) ∈ C0(B(0,m),Rd) s.t. v ∈ V (t, µn(t))

}

⊂ Km
t

L 1-almost every t ∈ [0, T ] and each n,m ≥ 1, where v|B(0,m) stands for the restriction of the function

v ∈ C0(Rd,Rd) to the closed ball B(0,m). Thus, by iteratively applying Theorem 2.1 and then
performing a standard diagonal argument, we obtain the existence of a Carathéodory vector field
v(·) ∈ L ([0, T ], C0(Rd,Rd)) such that for every R > 0, one has

vn(·) ⇀
n→+∞

v(·) (3.30)

weakly in L1([0, T ], C0(B(0, R),Rd)), along a subsequence that depends on R > 0. In particular, this
convergence property implies that

∫ T

0

〈

ν(t), v(t) − vn(t)
〉

C0(B(0,R),Rd)
dt −→

n→+∞
0, (3.31)

whenever ν(·) ∈ L∞([0, T ],M (B(0, R),Rd)), again as a consequence of Theorem 2.1. Furthermore,
by combining Mazur’s lemma (see e.g. [21, Corollary 3.8]) with (3.29), one can show that

|v(t, x)| ≤ m(t)
(

1 + |x| + Mp(µ(t))
)

and Lip(v(t) ;Rd) ≤ l(t), (3.32)

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d.

Our goal is now to prove that the limit pair (µ(·), v(·)) ∈ AC([0, T ],Pp(R
d))×L ([0, T ], C0(Rd,Rd))

is a solution of (3.1). Upon combining the convergence result of (3.29) and (3.32) together with the
Wasserstein estimate (2.4) of Proposition 2.4, it is clear that

∫ T

0

∫

Rd
∂tφ(t, x)dµn(t)(x)dt −→

n→+∞

∫ T

0

∫

Rd
∂tφ(t, x)dµ(t)(x)dt, (3.33)

and
∫ T

0

∫

Rd

〈

∇xφ(t, x), vn(t, x)
〉

d
(

µ(t) − µn(t)
)

(x)dt −→
n→+∞

0, (3.34)

for each φ ∈ C∞
c ((0, T ) × R

d,R). Moreover, by choosing test functions of the form

φ(t, x) := ζ(t)ψ(x), (3.35)

for all (t, x) ∈ [0, T ] × R
d, with (ζ, ψ) ∈ C∞

c ((0, T ),R)× ∈ C∞
c (Rd,R), and then setting ν(t) :=

ζ(t)∇ψ · µ(t) ∈ M (supp(ψ),Rd) for all times t ∈ [0, T ] in (3.31), it also holds that

∫ T

0
ζ(t)

∫

Rd

〈

∇ψ(x), v(t, x) − vn(t, x)
〉

dµ(t)(x)dt −→
n→+∞

0, (3.36)

along a subsequence that depends on supp(ψ) ⊂ R
d. Therefore, by merging the convergence results

of (3.33), (3.34) and (3.36) while recalling that the linear span of test functions of the form (3.35) is
dense in C∞

c ((0, T ) × R
d,R) (see e.g. [9, Chapter 8]), we finally recover that

∫ T

0

∫

Rd

(

∂tφ(t, x) +
〈

∇xφ(t, x), v(t, x)
〉

)

dµ(t)(x)dt = 0
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for all φ ∈ C∞
c ((0, T )×R

d,Rd), which together with the fact that µ(0) = µ0 as a consequence of (3.29)
equivalently means that the pair (µ(·), v(·)) is a solution of the Cauchy problem

{

∂tµ(t) + divx(v(t)µ(t)) = 0,

µ(0) = µ0.

To conclude the proof of Theorem 3.6, there now remains to show that v(t) ∈ V (t, µ(t)) for L 1-almost
every t ∈ [0, T ]. To this end, observe first that as a consequence of hypothesis (CI)-(iv) combined
with Lemma 2.10-(a) and (c), there exists for each n ≥ 1 a measurable selection

t ∈ [0, T ] 7→ ṽn(t) ∈ V (t, µ(t)), (3.37)

which satisfies
dsup(ṽn(t), vn(t)) ≤ L(t)Wp(µn(t), µ(t)) −→

n→+∞
0

for L 1-almost every t ∈ [0, T ], where we also used (3.29). Whence, by a direct application of Lebesgue’s
dominated convergence theorem, it necessarily follows that

∫ T

0
‖ṽn(t) − vn(t)‖C0(B(0,R),Rd) dt −→

n→+∞
0

for each R > 0, which combined with (3.30) implies in particular that

ṽn(·) ⇀
n→+∞

v(·) (3.38)

weakly in L1([0, T ], C0(B(0, R),Rd)), along adequate subsequences which depend on R > 0. At this
point, one can easily check that under hypotheses (CI), the sets

VR :=

{

w(·) ∈ L1([0, T ], C0(B(0, R),Rd) s.t. w(t) ∈ V (t, µ(t))|B(0,R) for L
1-almost every t ∈ [0, T ]

}

,

are closed for the strong topology of L1([0, T ], C0(B(0, R),Rd)). The latter are also convex under our
working assumptions, and thus weakly closed in L1([0, T ], C0(B(0, R),Rd)) by Mazur’s lemma (see
e.g. [21, Theorem 3.7]). Thus, from (3.37) and (3.38), we may infer that the maps

v(·)|B(0,R) : t ∈ [0, T ] 7→ v(t)|B(0,R) ∈ C0(B(0, R),Rd)

belong to VR for each R > 0, which equivalently means that v(t) ∈ V (t, µ(t)) for L 1-almost every
t ∈ [0, T ] and concludes the proof of Theorem 3.6.

3.3 Relaxation property for non-convex velocities

In this section, we investigate the topological properties of the solution set S[0,T ](µ
0) defined in (3.28)

when the admissible velocities are not convex. While the compactness result of Theorem 3.6 does not
hold anymore in this context, we show in what follows that one can still characterise the closure of
the underlying solution set by convexifying the right-hand side of the dynamics.

Theorem 3.7 (Relaxation theorem for continuity inclusions). Let µ0 ∈ Pp(R
d) and V : [0, T ] ×

Pp(R
d) ⇒ C0(Rd,Rd) be a set-valued map satisfying hypotheses (CI). Then, for any solution µ(·) ∈

AC([0, T ],Pp(R
d)) of the relaxed Cauchy problem







∂tµ(t) ∈ −divx
(

coV (t, µ(t))µ(t)
)

,

µ(0) = µ0,
(3.39)

and any δ > 0, there exists a solution µδ(·) ∈ AC([0, T ],Pp(R
d)) of







∂tµδ(t) ∈ −divx
(

V (t, µδ(t))µδ(t)
)

,

µ(0) = µ0,
(3.40)
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which satisfies
sup
t∈[0,T ]

Wp(µ(t), µδ(t)) ≤ δ.

In particular, the solution set of the Cauchy problem (3.40) is dense in that of the relaxed Cauchy
problem (3.39) for the topology of uniform convergence over C0([0, T ],Pp(R

d)).

The proof of Theorem 3.7 will be split into three steps. In Step 1, we start by choosing an adequate
subdivision of the interval [0, T ] that we shall use to build an intermediate measure curve. In Step
2, we subsequently prove that the latter construction based on Aumann’s theorem produces a curve
which is close to µ(·) in C0([0, T ],Pp(R

d)). We then conclude in Step 3 by applying the generalised
Filippov estimates of Theorem 3.3, which allows us to recover a solution of the Cauchy problem (3.40)
that remains sufficiently close to our initial measure curve.

Proof of Theorem 3.7. We start by observing that, if V : [0, T ] × Pp(R
d) ⇒ C0(Rd,Rd) is a set-

valued map satisfying hypotheses (CI) and µ(·) ∈ AC([0, T ],Pp(R
d)) is a solution of either (3.39)

or (3.40), then by Proposition 2.22 every measurable selection v(·) ∈ L ([0, T ], C0(Rd,Rd)) in either
t ∈ [0, T ] 7→ coV (t, µ(t)) or t ∈ [0, T ] 7→ V (t, µ(t)) necessarily satisfies

|v(t, x)| ≤ (1 + C)m(t)
(

1 + |x|
)

, (3.41)

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d, where C > 0 is a constant that only depends on the

magnitudes of p,Mp(µ
0) and ‖m(·)‖1. Thus, denoting by η ∈ P(Rd×ΣT ) the superposition measure

associated with such a velocity field via Definition 2.19, it directly follows from Grönwall’s lemma that

‖σ(·)‖C0([0,T ],Rd) ≤ CT (1 + |x|), (3.42)

for η-almost every (x, σ) ∈ R
d × ΣT , where CT := max

{

1, (1 + C)‖m(·)‖1

}

exp
(

(1 + C)‖m(·)‖1

)

.

Step 1 – Construction of an intermediate curve via Aumann’s theorem. Given an arbitrary
real number δ > 0, the fact that µ0 ∈ Pp(R

d) implies by standard results in measure theory that
there exists a positive radius Rδ > 0 for which

(
∫

{x s.t. |x|≥Rδ/CT −1}
(1 + |x|)pdµ0(x)

)1/p

≤
δ

2(1 + C)(1 + CT )(1+ ‖m(·)‖1)
. (3.43)

Besides, remarking that m(·) ∈ L1([0, T ],R+), there exists a subdivision 0 = t0 < t1 < · · · < tN = T
of [0, T ] into N ≥ 1 subintervals, such that

∫ ti+1

ti
m(s)ds ≤

δ

2(1 + C)(1 +Rδ)
(3.44)

for each i ∈ {0, . . . , N −1}. From hypotheses (CI) and Lemma 2.10, one can check that the restricted
set-valued map t ∈ [0, T ] 7→ V (t, µ(t))|B(0,Rδ) and t ∈ [0, T ] ⇒ coV (t, µ(t))|B(0,Rδ) are L 1-measurable.
Furthermore, they have compact images and are integrably bounded, and using the fact that the
topology induced by dcc(·, ·) on C0(B(0, Rδ),R

d) coincides with the usual norm topology, one has that

(

coV (t, µ(t))
)

|B(0,Rδ)
= co

(

V (t, µ(t))|B(0,Rδ)

)

, (3.45)

wherein the second convex hull is taken in the Banach space (C0(B(0, Rδ),R
d), ‖·‖C0(B(0,Rδ),Rd)).

Thus, denoting by t ∈ [0, T ] 7→ v(t) ∈ coV (t, µ(t)) the velocity selection associated with the solution
µ(·) ∈ AC([0, T ],Pp(R

d)) of (3.39), it follows from Theorem 2.11 that there exist measurable selections
t ∈ [ti, ti+1] 7→ vδi (t) ∈ V (t, µ(t))|B(0,Rδ) such that

∥

∥

∥

∥

∫ ti+1

ti
v|B(0,Rδ)(s)ds−

∫ ti+1

ti
vδi (s)ds

∥

∥

∥

∥

C0(B(0,Rδ),Rd)

≤
δ

N
(3.46)
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for every i ∈ {0, . . . , N − 1}, where the maps vδi (·), v|B(0,Rδ
(·) are elements of the separable Banach

space L1([0, T ], C0(B(0, Rδ),R
d)) and the integrals are understood in the sense of Bochner. Notice now

that the maps (t, w) ∈ [ti, ti+1] × C0(Rd,Rd) 7→ ‖w − vδi (t)‖C0(B(0,Rδ),Rd) are Carathéodory, whereas

t ∈ [ti, ti+1] ⇒ V (t, µ(t)) ∩

{

w ∈ C0(Rd,Rd) s.t. ‖w − vδi (t)‖C0(B(0,Rδ),Rd) ≤ 0

}

have nonempty images for each i ∈ {0, . . . , N − 1} by construction. Thence by Lemma 2.10-(a),
there exist measurable selections t ∈ [ti, ti+1] 7→ vi(t) ∈ V (t, µ(t)) such that vi(t)|B(0,Rδ) = vδi (t) for

L 1-almost every t ∈ [0, T ]. Therefore, the velocity field w : [0, T ] × R
d → R

d defined by

w(t, x) :=
N−1
∑

i=0

1[ti,ti+1)(t)vi(t, x)

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d is Carathéodory, and satisfies hypotheses (CE). As

such, it generates a unique solution ν(·) ∈ AC([0, T ],Pp(R
d)) to the Cauchy problem

{

∂tν(t) + divx(w(t)ν(t)) = 0,

ν(0) = µ0.

as a consequence of Theorem 2.18.

Step 2 – Estimation of the Wp-distance between µ(·) and ν(·). Let ηµ,ην ∈ P(Rd × ΣT )
be the superposition measures associated with µ(·) and ν(·) respectively, and η̂µ,ν ∈ Γ(ηµ,ην) be a
transport plan given by Lemma 2.21, which satisfies

(πRd , πRd)♯η̂µ,ν = (Id, Id)♯µ
0 and γ(t) := (et, et)♯η̂µ,ν ∈ Γo(µ(t), ν(t))

for all times t ∈ [0, T ]. Then, one has that

Wp(µ(t), ν(t)) =

(
∫

R2d
|x− y|pdγ(t)(x, y)

)1/p

=

(
∫

(Rd×ΣT )2
|σµ(t) − σν(t)|

pdη̂µ,ν(x, σµ, y, σν)

)1/p

≤

(
∫

(Rd×ΣT )2

∣

∣

∣

∣

∫ t

0

(

v(s, σµ(s)) − v(s, σν(s))
)

ds

∣

∣

∣

∣

p

dη̂µ,ν(x, σµ, y, σν)

)1/p

+

(
∫

Rd×ΣT

∣

∣

∣

∣

∫ t

0

(

v(s, σν(s)) − w(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

,

(3.47)

for all times t ∈ [0, T ], where we used the fact that ηµ,ην are superposition measures in the sense of
Definition 2.19. By repeating the computations detailed in Appendix C and D, it can be shown that

(
∫

(Rd×ΣT )2

∣

∣

∣

∣

∫ t

0

(

v(s, σµ(s)) − v(s, σν(s))
)

ds

∣

∣

∣

∣

p

dη̂µ,ν(x, σµ, y, σν)

)1/p

≤ ‖l(·)‖
(p−1)/p
L1([0,t])

(
∫ t

0
l(s)W p

p (µ(s), ν(s))ds

)1/p

,

(3.48)

for all times t ∈ [0, T ]. Concerning the second term in the right-hand side of (3.47), it can be bounded
from above by the sum of two integrals as

(
∫

Rd×ΣT

∣

∣

∣

∣

∫ t

0

(

v(s, σν(s)) − w(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤

(
∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ t

0

(

v(s, σν(s)) −w(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

+

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>Rδ}

∣

∣

∣

∣

∫ t

0

(

v(s, σν(s)) − w(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

.

(3.49)
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Recalling that (πRd)♯ην = µ0 and invoking the sublinearity estimates of (3.41) and (3.42), the second
term in the right-hand side of (3.49) can be estimated as

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>Rδ}

∣

∣

∣

∣

∫ t

0

(

v(s, σν(s)) − w(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤ 2(1 + C) ‖m(·)‖1

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>Rδ}

(

1 + ‖σν(·)‖C0([0,T ],Rd)

)p
dην(y, σν)

)1/p

≤ 2(1 + C)(1 + CT ) ‖m(·)‖1

(
∫

{x s.t. |x|>Rδ/CT −1}
(1 + |x|)pdµ0(x)

)1/p

,

(3.50)

which together with our choice of Rδ > 0 in (3.43) further yields that

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>Rδ}

∣

∣

∣

∣

∫ t

0

(

v(s, σν(s)) − w(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤ δ. (3.51)

We now focus our attention on the first term in the right-hand side of (3.49). By construction, there
exists an integer j ∈ {0, . . . , N − 1} such that t ∈ [tj , tj+1], which means that

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ t

0

(

v(s, σν(s)) − w(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤
j−1
∑

i=0

(
∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ ti+1

ti

(

v(s, σν(s)) − vi(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

+

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ t

tj

(

v(s, σν(s)) − vj(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤
j−1
∑

i=0

(
∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ ti+1

ti

(

v(s, σν(s)) − vi(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

+ δ,

(3.52)
where we used the estimates of (3.41) and (3.44) in the second inequality. Now, given an arbitrary
integer i ∈ {0, . . . , j− 1}, the facts that v(·), vi(·) ∈ L ([0, T ], C0(Rd,Rd)) both satisfy the sublinearity
estimate (3.41) along with the regularity assumption of hypothesis (CI)-(iii) allow us to write

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ ti+1

ti

(

v(s, σν(s)) − vi(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ ti+1

ti

(

v(s, σν(ti)) − vi(s, σν(ti))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

+

(
∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ ti+1

ti

(

v(s, σν(s)) − v(s, σν(ti))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

+

(
∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ ti+1

ti

(

vi(s, σν(s)) − vi(s, σν(ti))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤

∥

∥

∥

∥

∫ ti+1

ti

v(s)|B(0,Rδ)ds−
∫ ti+1

ti

vδi (s)ds

∥

∥

∥

∥

C0(B(0,Rδ),Rd)

+ 2

(

∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤Rδ}

∣

∣

∣

∣

∫ ti+1

ti

l(s)

∫ s

ti

m(ζ)
(

1 + |σν(ζ)| + C
)

dζds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤

∥

∥

∥

∥

∫ ti+1

ti
v(s)|B(0,Rδ)ds−

∫ ti+1

ti
vδi (s)ds

∥

∥

∥

∥

C0(B(0,Rδ ,Rd))

+ 2
(

1 +Rδ + C
)

∫ ti+1

ti
l(s)

∫ s

ti
m(ζ)dζds

≤
δ

N
+ δ

∫ ti+1

ti

l(s)ds,

(3.53)
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where we leveraged the preliminary estimates (3.41)-(3.42) in the second and third to last inequalities,
as well as (3.44)-(3.46) in the last one. Hence, by inserting the estimates of (3.53) for i ∈ {0, . . . , j−1}
into (3.52), combining the resulting expression with (3.51) and plugging the latter in (3.49) then yields

(
∫

Rd×ΣT

∣

∣

∣

∣

∫ t

0

(

v(s, σν(s)) − w(s, σν(s))
)

ds

∣

∣

∣

∣

p

dην(y, σν)

)1/p

≤ δ
(

3 + ‖l(·)‖1
)

. (3.54)

By merging (3.48) and (3.54) into (3.47), raising the resulting inequality to the power p, applying
Grönwall’s lemma and then taking the power 1/p of the corresponding expression, we finally recover
the estimate

Wp(µ(t), ν(t)) ≤ δ Cp
(

3 + ‖l(·)‖1
)

exp
(

C ′
p ‖l(·)‖p1

)

, (3.55)

which holds for all times t ∈ [0, T ].

Step 3 – Back to the unrelaxed problem via Filippov’s estimates. At this stage, one should
note that ν(·) ∈ AC([0, T ],Pp(R

d)) is not a solution of (3.40), since w(t) ∈ V (t, µ(t)) for L 1-almost
every t ∈ [0, T ]. Nevertheless, observe that the mismatch function ηδ(·) ∈ L1([0, T ],R+), defined by

ηδ(t) := distC0(B(0,Rδ),Rd)

(

w(t) ;V (t, ν(t))
)

for L 1-almost every t ∈ [0, T ], satisfies

ηδ(t) ≤ L(t)Wp(µ(t), ν(t))

≤ δCpL(t)
(

3 + ‖l(·)‖1
)

exp
(

C ′
p ‖l(·)‖p1

)

,

as a consequence of hypothesis (CI)-(iv). Thus, by leveraging the results of Theorem 3.3 while
recollecting the a priori bound of (3.43), there exists a solution µδ(·) ∈ AC([0, T ],Pp(R

d)) of the
unrelaxed Cauchy problem (3.40) which satisfies

Wp(µδ(t), ν(t)) ≤ Cp

(

δCp ‖L(·)‖1
(

3 + ‖l(·)‖1
)

exp
(

C ′
p ‖l(·)‖p1

)

+ δ

)

exp
(

C ′
p ‖l(·)‖pL1([0,t])+χp(t)

)

≤ δCp

(

1 +
(

3 + ‖l(·)‖1
)

‖χp(·)‖∞

)

exp
(

C ′
p ‖l(·)‖p1 + ‖χp(·)‖∞

)

,

(3.56)
for all times t ∈ [0, T ], where the map χp(·) is defined in (3.6). Thus, by combining (3.55) and (3.56),
applying the triangle inequality and redefining the constant δ > 0 as

δ :=
δ

Cp

(

(

3 + ‖l(·)‖1
)

(

1+ ‖χp(·)‖∞ exp
(

‖χp(·)‖∞
)

)

+ exp
(

‖χp(·)‖∞
)

)

exp
(

C ′
p ‖l(·)‖p1

)

we can finally conclude that the solution µδ(·) of the unrelaxed Cauchy problem (3.40) is such that

sup
t∈[0,T ]

Wp(µ(t), µδ(t)) ≤ δ,

which ends the proof of Theorem 3.7.

4 Existence “à la Peano” in the Carathéodory setting

In this section, we establish a general existence result for continuity inclusions whose right-hand sides
are continuous with respect to the measure and space variables. In that case, it is well-known even
that one must impose a convexity hypothesis on the admissible velocities of the inclusion (see e.g. [11,
Chapter 2]) in order to prove the existence of solutions, even in finite-dimensional euclidean spaces.
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Hypotheses (P).

(i) The set-valued map (t, µ) ∈ [0, T ] × Pp(R
d) ⇒ V (t, µ) ⊂ C0(Rd,Rd) is Carathéodory with

nonempty closed and convex images.

(ii) There exists a map m(·) ∈ L1([0, T ],R+) such that for L 1-almost every t ∈ [0, T ], any µ ∈
Pp(R

d) and every v ∈ V (t, µ), it holds

|v(x)| ≤ m(t)
(

1 + |x| + Mp(µ)
)

.

for all x ∈ R
d.

(iii) For every compact set K ⊂ Pp(R
d), any ε > 0 and each R > 0, there exists a map δR(·) ∈

L1([0, T ],R∗
+) such that for L 1-almost every t ∈ [0, T ], any µ ∈ K and every v ∈ V (t, µ), it

holds
|v(t, x) − v(t, y)| ≤ ε

for all x, y ∈ B(0, R) satisfying |x− y| ≤ δR(t).

In the sequel, we adapt to the setting of continuity inclusions an argument outlined in [47, Chapter
1 – Theorem 1] for Carathéodory differential equations, which is based on a variant of the classical
explicit Euler scheme. To the best of our knowledge, this approach is fairly new even for classical
differential inclusions, as it does not seem to have been thoroughly investigated in the context of
finite-dimensional vector spaces. In the context of continuity equations with nonlocal velocities, the
latter can also be seen as a close relative to the methodologies developped e.g. in [35, 75, 76].

Theorem 4.1 (A Peano existence theorem for continuity inclusions). Let V : [0, T ] × Pp(R
d) ⇒

C0(Rd,Rd) be a set-valued map satisfying hypotheses (P). Then, for every initial datum µ0 ∈ Pp(R
d),

there exists a solution µ(·) ∈ AC([0, T ],Pp(R
d)) to the Cauchy problem







∂tµ(t) ∈ −divx
(

V (t, µ(t))µ(t)
)

,

µ(0) = µ0.
(4.1)

The proof of Theorem 4.1 follows a constructive scheme – in a fashion that is somewhat similar
to that of Theorem 3.3 –, and is split into three steps. We start in Step 1 by building a sequence
of trajectory-selection pairs solutions of continuity equations with delayed velocity inclusions, and
proceed by showing in Step 2 that it is weakly compact by carefully adapting some of the arguments
subtending Theorem 3.6. We then conclude in Step 3 by proving that the underlying cluster points
are indeed solution of the Cauchy problem (4.1).

Proof of Theorem 4.1. In what follows, our goal is to build a sequence of trajectory-selection pairs
(µn(·), vn(·)) ∈ AC([0, T ],Pp(R

d)) × L ([0, T ], C0(Rd,Rd)) solutions of the Cauchy problems

{

∂tµn(t) + divx(vn(t)µn(t)) = 0,

µn(0) = µ0.
(4.2)

These latter will be chosen so as to satisfy the delayed pointwise velocity inclusions

vn(t) ∈ V
(

t, µn
(

t− T
n

)

)

, (4.3)

for L 1-almost every t ∈ [0, T ] – where here and in what follows we set µn(t) = µ0 for t ∈ [−T
n , 0] by

convention –, along with the momentum and regularity bounds

Mp(µn(t)) ≤ C and Wp(µn(τ), µn(t)) ≤ cp

∫ t

τ
m(s)ds (4.4)

for all times 0 ≤ τ ≤ t ≤ T and each n ≥ 1. Therein, the constants C, cp > 0 shall be uniform with
respect to n ≥ 1, and only depend on the magnitudes of p,Mp(µ

0) and ‖m(·)‖1.
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Step 1 – Construction of the sequence. Given an integer n ≥ 1, we start by building the pair
(µn(·), vn(·)) satisfying the aforedescribed conditions by performing an induction on k ∈ {0, . . . , n−1}.
First, observe that as a consequence of hypotheses (P)-(i), the set-valued map

t ∈
[

0, Tn
]

⇒ V (t, µ0) ⊂ C0(Rd,Rd)

is L 1-measurable with closed nonempty images. Thus, it admits a measurable selection t ∈ [0, Tn ] 7→
v0
n(t) ∈ V (t, µ0) by Theorem 2.6, and the underlying Carathéodory velocity field v0

n :
[

0, Tn
]

×R
d 7→ R

d

satisfies the sublinearity estimate

|v0
n(t, x)| ≤ m(t)

(

1 + |x| + Mp(µ
0)
)

,

for L 1-almost every t ∈
[

0, Tn
]

and all x ∈ R
d, as consequence of hypothesis (P)-(ii) along with

Lemma 2.14. In particular it complies with hypothesis (CE)-(i), and by Theorem 2.18 applied on the
time interval [0, Tn ] with v(·, ·) := v0

n(·, ·), there exists a curve of measures µ0
n ∈ AC([0, Tn ],Pp(R

d))
solution of the Cauchy problem

{

∂tµ
0
n(t) + divx(v

0
n(t)µ0

n(t)) = 0 in
[

0, Tn
]

× R
d,

µ0
n(0) = µ0.

By repeating this process for k ∈ {1, . . . , n−1}, we show how to iteratively build a family of trajectory-

selection pairs (µkn(·), vkn(·)) ∈ AC([kTn ,
(k+1)T

n ],Pp(R
d)) × L ([kTn ,

(k+1)T
n ], C0(Rd,Rd)) as follows.

Given a pair (µk−1
n (·), vk−1

n (·)), it stems from hypotheses (P) along with the Ascoli-Arzelà theorem

that t ∈
[ (k−1)T

n , kTn
]

⇒ V (t, µk−1
n (t)) ⊂ C0(Rd,Rd) is L 1-measurable with nonempty compact images.

Whence by Lemma 2.10-(c), there exists a measurable selection

t ∈
[kT
n ,

(k+1)T
n

]

7→ vkn(t) ∈ V
(

t, µk−1
n

(

t− T
n

)

)

. (4.5)

Besides by hypothesis (P)-(ii) and Lemma 2.14, the Carathéodory vector field vkn : [0, T ] × R
d → R

d

satisfies the sublinearity estimate

|vkn(t, x)| ≤ m(t)
(

1 + |x| + Mp
(

µk−1
n

(

t− T
n

))

)

(4.6)

for L 1-almost every t ∈ [kTn ,
(k+1)T

n ], all x ∈ R
d and each k ∈ {1, . . . , n − 1}. Thus by applying

Theorem 2.18 on the time interval [kTn ,
(k+1)T

n ] with v(·, ·) := vkn(·, ·), we can subsequently define

µkn(·) ∈ AC([kTn ,
(k+1)T

n ],Pp(R
d)) as being one of the solutions of the Cauchy problem







∂tµ
k
n(t) + divx(vkn(t)µkn(t)) = 0 in

[

kT
n ,

(k+1)T
n

]

× R
d,

µkn(kTn ) = µk−1
n

(kT
n

)

.

By classical concatenation properties for solutions of continuity equations (see e.g. [45, Lemma 4.4]),
the trajectory-selection pair (µn(·), vn(·)) ∈ AC([0, T ],Pp(R

d)) × L ([0, T ], C0(Rd,Rd)) defined by

µn(t) := µkn(t) and vn(t) := vkn(t), (4.7)

for t ∈
[kT
n ,

(k+1)T
n

]

and k ∈ {0, . . . , n− 1} is a solution of the Cauchy problem (4.2). Moreover, it can
be checked using (4.5) that it satisfies the shifted pointwise velocity inclusion (4.3).

Step 2 – Momentum estimates and compactness. Our next goal is to establish the uniform
regularity and momentum bounds of (4.4), and to show that they yield the compactness of the sequence
of pairs (µn(·), vn(·)) ⊂ AC([0, T ],Pp(R

d))×L ([0, T ], C0(Rd,Rd)). First, notice that as a consequence
of the construction detailed in Step 1, the curves µn(·) satisfy

sup
t∈[0,T ]

Mp(µn(t)) < +∞
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for each n ≥ 1. This allows us to resort to the momentum estimate of Remark 2.23, which writes as

Mp(µn(t)) ≤ Cp

(

Mp(µ
0) +

∫ t

0
m(s)

(

1 + Mp
(

µn
(

s− T
n

))

)

ds

)

exp
(

C ′
p ‖m(·)‖pL1([0,t])

)

, (4.8)

for all times t ∈ [0, T ], again with the convention that µn(t) = µ0 when t ∈ [−T
n , 0]. Defining the map

m̂(·) ∈ L1([0, 2T ],R+) as the periodisation of m(·) on [T, 2T ], namely

m̂(t) :=

{

m(t) if t ∈ [0, T ],

m(t− T ) if t ∈ [T, 2T ],
(4.9)

one can rewrite the estimate displayed in (4.8) as

Mp(µn(t)) ≤ Cp

(

Mp(µ
0) +

∫ t

0
m(s)ds+ Mp(µ

0)

∫ T/n

0
m(s)ds

+

∫ max
{

0, t−T/n
}

0
m
(

s+ T
n

)

Mp(µn(s))ds

)

exp
(

C ′
p ‖m(·)‖pL1([0,t])

)

≤ Cp
(

1 + Mp(µ
0)
)

(

1 + ‖m(·)‖L1([0,t])

)

exp
(

C ′
p ‖m(·)‖pL1([0,t])

)

+ Cp

(
∫ t

0
m̂
(

s+ T
n

)

Mp(µn(s))ds

)

exp
(

C ′
p ‖m(·)‖pL1([0,t])

)

,

where the first inequality follows from a simple change of variable along with the fact that µn(t) = µ0

for t ∈ [−T
n , 0], while the second one stems from the fact that both functions m̂(·) and Mp(µn(·)) are

non-negative. Thence, a standard application of Grönwall’s lemma yields

Mp(µn(t)) ≤ Cp
(

1 + Mp(µ
0)
)

(

1 + ‖m(·)‖L1([0,t])

)

× exp

(

C ′
p ‖m(·)‖pL1([0,t]) +Cp ‖m̂(·)‖L1([0,t+T/n]) exp

(

C ′
p ‖m(·)‖pL1([0,t])

)

)

.

In turn, upon noticing that
‖m̂(·)‖L1([0,t+T/n])≤ 2 ‖m(·)‖1

for all times t ∈ [0, t] and each n ≥ 1 as a consequence of (4.9), there further exists a constant C > 0
which only depends on the magnitudes of p,Mp(µ

0) and ‖m(·)‖1, such that

sup
t∈[0,T ]

Mp(µn(t)) ≤ C

for each n ≥ 1. Thus, the velocity fields vn : [0, T ] ×R
d → R

d satisfy the uniform sublinearity bounds

|vn(t, x)| ≤ (1 + C)m(t)
(

1 + |x|
)

(4.10)

for L 1-almost every t ∈ [0, T ], all x ∈ R
d and each n ≥ 1. In particular by Theorem 2.18, there exists

a constant cp > 0 depending only on the magnitudes of p,Mp(µ
0) and ‖m(·)‖1 such that

Wp(µn(τ), µn(t)) ≤ cp

∫ t

τ
m(s)ds

for all times 0 ≤ τ ≤ t ≤ T . To summarise, we have shown that the sequence of curves (µn(·)) ⊂
AC([0, T ],Pp(R

d)) satisfies the uniform momentum and absolute continuity estimates (4.4).
By invoking the momentum inequality (2.18) and the equi-integrability bounds (2.20) of Proposi-

tion 2.22 with possibly different constants CT > 0, we can deduce from Proposition 2.3 the existence
of a compact set K ⊂ Pp(R

d), depending only on µ0 and ‖m(·)‖1, such that

µn(t) ∈ K
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for all times t ∈ [0, T ]. Analogously, it follows from hypothesis (P)-(iii) and the Ascoli-Arzelà theorem
that for L 1-almost every t ∈ [0, T ] and each m ≥ 1, there exists a compact set Km

t ⊂ C0(B(0,m),Rd)
such that

vn(t)|B(0,m) ∈ Km
t

for each n ≥ 1. By repeating the compactness argument detailed in the proof of Theorem 3.6, there
exists a trajectory-selection pair (µ(·), v(·)) ∈ AC([0, T ],Pp(R

d)) × L ([0, T ], C0(Rd,Rd)) for which

sup
t∈[0,T ]

Wp(µn(t), µ(t)) −→
n→+∞

0 (4.11)

along a subsequence that we do not relabel, as well as

vn(·) ⇀
n→+∞

v(·) (4.12)

weakly in L1([0, T ], C0(B(0, R),Rd)), along adequate subsequences which depend on R > 0. In par-
ticular, the latter convergence property implies that

∫ T

0

〈

ν(t), v(t) − vn(t)
〉

C0(B(0,R),Rd)
dt −→

n→+∞
0, (4.13)

for each ν(·) ∈ L∞([0, T ],M (B(0, R),Rd)), again up to a subsequence.

Step 3 – Properties of the limit trajectory-selection pair. To conclude the proof of Theorem
4.1, there remains to show that the limit pair (µ(·), v(·)) solves the Cauchy problem (4.1). First, it
can be straightforwardly verified that

Mp(µ(t)) ≤ C and Wp(µ(τ), µ(t)) ≤ cp

∫ t

τ
m(s)ds

for all times t ∈ [0, T ] as a consequence of (4.11), while (4.10) and (4.12) yield by Mazur’s lemma that

|v(t, x)| ≤ (1 + C)m(t)
(

1 + |x|
)

,

for L 1-almost every t ∈ [0, T ] and all x ∈ R
d. Moreover, one can check that the limits (3.33) and

(3.36) derived within the proof of Theorem 3.6 are still valid in the present context for the sequence
(µn(·), vn(·)). Thus, the limit pair (µ(·), v(·)) ∈ AC([0, T ],Pp(R

d)) × L ([0, T ], C0(Rd,Rd)) will solve

{

∂tµ(t) + divx(v(t)µ(t)) = 0,

µ(0) = µ0,
(4.14)

provided that
∫ T

0

∫

Rd

〈

∇xφ(t, x), v(t, x) − vn(t, x)
〉

dµn(t)(x)dt −→
n→+∞

0 (4.15)

for each φ ∈ C∞
c ((0, T ) × R

d,R), along adequate subsequences. Proving so is however much trickier
than in Theorem 3.6, as we traded the strong global Lipschitz continuity assumption of (CI)-(iii) for
the much weaker local uniform equi-continuity of (P)-(iii).

To this end, we shall consider test functions φ ∈ C∞
c ((0, T ) × R

d,R) of the form

φ(t, x) := ζ(t)ψ(x)

for all (t, x) ∈ [0, T ] × R
d with (ζ, ψ) ∈ C∞

c ((0, T ),R) × C∞
c (Rd,R), whose linear span is dense in

C∞
c ((0, T ) × R

d,R). We fix such a pair (ζ, ψ) and let Rψ > 0 be such that supp(ψ) ⊂ B(0, Rψ).
By Step 2, there exists a subsequence of (vn(·)) that we do not relabel for which (4.12) holds in
L1([0, T ], C0(B(0, R),Rd)), with the radius

R := (1 +Rψ) max
{

1 , (1 + C) ‖m(·)‖1

}

exp
(

(1 + C) ‖m(·)‖1

)

, (4.16)
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and we claim that in that case, one has

sup
σ(·)∈AC([0,T ],Rd)

{

∣

∣

∣

∣

∫ T

0
ζ(t)

〈

∇ψ(σ(t)), v(t, σ(t)) − vn(t, σ(t))
〉

dt

∣

∣

∣

∣

s.t. σ̇(t) = vn(t, σ(t))

for L
1-almost every t ∈ [0, T ]

}

−→
n→+∞

0.

(4.17)
Indeed, suppose by contradiction that there exists ε > 0, a subsequence of Carathéodory vector fields
(vnk

(·)) ⊂ L ([0, T ], C0(Rd,Rd)) and a sequence of curves (σk(·)) ⊂ AC([0, T ],Rd) such that

σ̇k(t) = vnk
(t, σk(t))

for L 1-almost every t ∈ [0, T ], and

∣

∣

∣

∣

∫ T

0
ζ(t)

〈

∇ψ(σk(t)), v(t, σk(t)) − vnk
(t, σk(t))

〉∣

∣dt

∣

∣

∣

∣

≥ ε (4.18)

for each k ≥ 1. Then for every k ≥ 1, there must exist some τk ∈ supp(ζ) such that σk(τk) ∈ B(0, Rψ),
and it follows from (4.10) and Grönwall’s lemma that

|σk(t)| ≤ R and |σk(t) − σk(τ)| ≤ (1 + C)(1 +R)

∫ t

τ
m(s)ds

for all times 0 ≤ τ ≤ t ≤ T and each k ≥ 1, where R > 0 is defined in (4.16). Thence by the
Ascoli-Arzelà theorem, there exists a curve σ(·) ∈ AC([0, T ],Rd) such that

sup
t∈[0,T ]

|σ(t) − σk(t)| −→
k→+∞

0, (4.19)

along a subsequence that we do not relabel. Besides, it follows from hypothesis (P)-(iii) and
Lebesgue’s dominated convergence theorem that

sup
n≥1

∫ T

0
|vn(t, σk(t)) − vn(t, σ(t))|dt −→

k→+∞
0, (4.20)

which together with (4.18) and (4.19) further implies that

∣

∣

∣

∣

∫ T

0
ζ(t)

〈

∇ψ(σ(t)), v(t, σ(t)) − vnk
(t, σ(t))

〉

dt

∣

∣

∣

∣

≥
ε

2
, (4.21)

whenever k ≥ 1 is sufficiently large. However, by applying the weak-compactness property of (4.13)
with the measures ν(t) := ζ(t)∇ψ ·δσ(t) ∈ M (B(0, R),Rd) defined for all times t ∈ [0, T ], one has that

∫ T

0
ζ(t)

〈

∇ψ(σ(t)), v(t, σ(t)) − vnk
(t, σ(t))

〉

dt −→
k→+∞

0 (4.22)

along a subsequence that we do not relabel, which produces a contradiction with (4.21). To conclude,
we observe that by Theorem 2.20, there exists a sequence of superposition measures (ηn) ⊂ P(Rd×ΣT )
associated with the vector fields vn : [0, T ] × R

d → R
d in the sense of Definition 2.19, which satisfy

(πRd)♯η
n = µ0 and (et)♯η

n = µn(t),

for all times t ∈ [0, T ] and each n ≥ 1. Then, by (4.17) and Fubini’s theorem, one can check that

∣

∣

∣

∣

∫ T

0
ζ(t)

∫

Rd

〈

∇ψ(x), v(t, x) − vn(t, x)
〉

dµn(t)(x)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ T

0

∫

Rd×ΣT

ζ(t)
〈

∇ψ(σ(t)), v(t, σ(t)) − vn(t, σ(t))
〉

dηn(x, σ)dt

∣

∣

∣

∣

≤

∥

∥

∥

∥

∫ T

0
ζ(t)

〈

∇ψ(σ(t)), v(t, σ(t)) − vn(t, σ(t))
〉

dt

∥

∥

∥

∥

L∞(Rd×ΣT ,R; ηn)

−→
n→+∞

0,
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which implies (4.15) and thus that (µ(·), v(·)) solves (4.14) by what precedes.
Our goal is now to show that v(t) ∈ V (t, µ(t)) for L 1-almost every t ∈ [0, T ]. To this end, we recall

that the curves µn(·) ∈ AC([0, T ],Pp(R
d)) are uniformly equi-continuous by (4.4), which implies that

for each δ > 0, there exists an integer Nδ ≥ 1 such that

Wp

(

µn
(

t− T
n

)

, µn(t)
)

≤ δ,

for all times t ∈ [0, T ], whenever n ≥ Nδ. Consider now the curves µ̃n(·) ∈ AC([0, T ],Pp(R
d)) defined

by µ̃n(t) := µn(t − T
n ) for all times t ∈ [0, T ], and notice that by what precedes, one has that

sup
t∈[0,T ]

Wp(µ̃n(t), µ(t)) −→
n→+∞

0. (4.23)

as well as
vn(t) ∈ V (t, µ̃n(t)), (4.24)

for L 1-almost every t ∈ [0, T ]. Besides, observe that the set-valued map t ∈ [0, T ] ⇒ V (t, µ(t)) has
nonempty and compact images by hypotheses (P)-(ii) and (iii), and is L 1-measurable by Lemma
2.10-(c). Whence by Lemma 2.10-(a), there exists for each n ≥ 1 a measurable selection

t ∈ [0, T ] 7→ ṽn(t) ∈ V (t, µ(t)) (4.25)

which satisfies
dcc(ṽn(t), vn(t)) = distC0(Rd,Rd)

(

vn(t) ;V (t, µ(t))
)

−→
n→+∞

0,

for L 1-almost every t ∈ [0, T ], as a consequence of (4.23) and (4.24) together with hypothesis (P)-(i).
By Lebesgue’s dominated convergence theorem combined with (4.12), this further implies that

ṽn(·) ⇀
n→+∞

v(·) (4.26)

weakly in L1([0, T ], C0(B(0, R),Rd)), along subsequences that depend on R > 0. Following the rea-
soning outlined in the proof of Theorem 3.6, we consider the functional set defined by

VR :=

{

w(·) ∈ L1([0, T ], C0(B(0, R),Rd)) s.t. w(t) ∈ V (t, µ(t))|B(0,R) for L
1-almost every t ∈ [0, T ]

}

,

which are closed in the strong topology of L1([0, T ], C0(B(0, R),Rd)) under our working assumptions.
These latter are also convex by hypothesis (P)-(i), and therefore weakly closed by Mazur’s lemma,
which combined with (4.25) and the convergence results of (4.26) finally yields that v(t) ∈ V (t, µ(t))
for L 1-almost every t ∈ [0, T ].

Remark 4.2 (On the choice of proving Theorem 4.1 by means of an Euler scheme). To prove the
existence of solutions to a continuity inclusion with a Carathéodory right-hand side, a tempting strategy
– implemented e.g. in [11, Section 2.1 – Theorem 3] or [59, Theorem 2.9] – could be to consider
first a sufficiently regular exact or approximate velocity selection (t, µ) ∈ [0, T ] × Pp(R

d) 7→ v(t, µ) ∈
C0(Rd,Rd), and then to show that a continuity equation driven by this latter admits at least a solution.

While such a program may work in practice, carrying it out seemed difficult – and perhaps subop-
timal – for the following reasons. Firstly, the known results such as [12, Theorem 9.5.2] ensuring the
existence of Carathéodory selections for Carathéodory set-valued maps do not hold for multifunctions
valued in infinite-dimensional spaces. Even if an adequate counterpart were to be found in our context,
one would still then need to prove that the corresponding nonlocal continuity equations admit solutions,
most likely via an Euler scheme.via Secondly, even though results such as [12, Theorem 9.2.1] which
provide families of regular approximate selections for upper-semicontinuous set-valued maps may still
hold for Fréchet spaces instead of Banach ones, establishing the compactness of the underlying se-
quences may prove challenging, owing to the lack of uniformity with regard to their regularity.
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Appendices

In this auxiliary section, we detail the proofs of several technical results appearing in the manuscript.

A Proof of Lemma 2.10

In this first appendix, we detail for the sake of completeness parts of the proof of the measurable selec-
tion principles of Lemma 2.10, as the latter relies on general and somewhat non-standard assumptions.

Proof of Lemma 2.10. In what follows, we start with the proof of item (a), and proceed with that of
item (b). The proof of item (c) is completely standard and can be found e.g. in [12, Theorem 8.2.8].

The only delicate thing that needs proving in the statement of Lemma 2.10-(a) is the fact that the
set-valued map under consideration is indeed measurable. To this end, we consider the multifunctions

t ∈ [0, T ] ⇒ An(t) :=
{

y ∈ Y s.t. ϕn(t, y) ≤ L(t)
}

defined for each n ≥ 1, and which are L 1-measurable by [12, Theorem 8.2.9]. For each closed set
C ⊂ Y , this implies in particular by [12, Theorem 8.1.4] that

DC :=
⋂

n≥1

{

t ∈ [0, T ] s.t. F(t) ∩ An(t) ∩ C 6= ∅
}

is an L 1-measurable set. To conclude the proof of our claim, there remains to show that

DC =
{

t ∈ [0, T ] s.t. F(t) ∩ A(t) ∩ C 6= ∅
}

,

where A(t) :=
{

y ∈ Y s.t. ϕ(t, y) ≤ L(t)
}

for L 1-almost every t ∈ [0, T ]. By construction, one has
{

t ∈ [0, T ] s.t. F(τ) ∩ A(t) ∩ C 6= ∅
}

⊂ DC ,

as a consequence of (2.5). Conversely for any τ ∈ DC , remark that the sets defined for each n ≥ 1 by

Bn(τ) := F(τ) ∩ An(τ) ∩ C

form a non-increasing sequence since maps (ϕn(·, ·)) are pointwisely non-decreasing. Moreover under
our standing assumptions, the sets Bn(τ) ⊂ Y are compact and nonempty for each n ≥ 1. Whence, it
follows from Cantor’s intersection theorem (see e.g. [79, Theorem 2.6]) that

B(τ) :=
⋂

n≥1

Bn(τ) 6= ∅,

which together with the fact that B(τ) ⊂ F(τ) ∩ A(τ) ∩ C finally yields that

τ ∈
{

t ∈ [0, T ] s.t. F(t) ∩ A(t) ∩ C 6= ∅
}

,

which concludes the proof of our claim.
We now shift our focus to the statements of Lemma 2.10-(b), and start by observing that the

set-valued map appearing therein can be rewritten as

t ∈ [0, T ] ⇒ F(t) ∩

{

y ∈ Y s.t. ϕ(t, y) ≤ inf
z∈F (t)

ϕ(t, z)

}

.

Thus by what precedes, it is sufficient for our purpose to show that the map

t ∈ [0, T ] 7→ inf
z∈F (t)

ϕ(t, z) ∈ R+

is L 1-measurable. It follows from classical measurability results (see e.g. [12, Theorem 8.2.11]) that
for each n ≥ 1, the map

̟n : t ∈ [0, T ] 7→ inf
z∈F (t)

ϕn(t, z)

is L 1-measurable. Since the sequence (̟n(·)) is pointwisely non-decreasing and bounded, the limits

̟(t) := lim
n→+∞

̟n(t) = inf
z∈F (t)

ϕ(t, z)

exist for L 1-almost every t ∈ [0, T ], and the map ̟(·) is L 1-measurable by [12, Theorem 8.2.5].
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B Proof of Lemma 2.21

In this second appendix, we provide a proof of Lemma 2.21. The overall strategy is identical to that
developed in [17, Appendix A], up to some technical details in the compactness arguments.

Proof of Lemma 2.21. Let {tk}
+∞
k=1 ⊂ [0, T ] be an arbitrary countable and dense family, γ0 ∈ Γo(µ

0, ν0)
be given and ηµ,ην ∈ P(Rd × ΣT ) be the superposition measures associated with µ(·), ν(·) ∈
AC([0, T ],Pp(R

d)) according to Definition 2.19 respectively. By repeating the argument detailed
in [17, Appendix A] – which is based on iterative applications of the disintegration theorem and
gluing lemma (see e.g. [9, Theorem 5.3.1 and Lemma 5.3.2]) –, there exists for each n ≥ 1 a plan
η̂nµ,ν ∈ Γ(ηµ,ην) such that

(πRd , πRd)♯η̂
n
µ,ν = γ0 and (etk , etk )♯η̂

n
µ,ν ∈ Γo(µ(tk), ν(tk)),

for every k ∈ {1, . . . , n}.

Step 1 – Tightness of the sequence (η̂nµ,ν). Our first goal is to show that the sequence (η̂nµ,ν) ⊂

P((ΣT ×R
d)2) relatively compact for the narrow topology (2.2). Observing that Rd×ΣT is a complete

separable Banach space and invoking [9, Theorem 5.1.3 and Remark 5.1.5], this latter property is
tantamount to the existence of map Ψ : (Rd×ΣT )2 → [0,+∞] whose sublevels are compact, such that

sup
n≥1

∫

(Rd×ΣT )2
Ψ(x, σµ, y, σν)dη̂nµ,ν(x, σµ, y, σν) < +∞.

A classical candidate functional1 when working with superposition measures is provided by

ψ : (x, σ) 7→











|x| +

∫ T

0

|σ̇(t)|

1 + |σ(t)|
dt if σ(·) ∈ AC([0, T ],Rd) and |σ̇(t)| ≤ m(t)(1 + |σ(t)|),

+ ∞ otherwise,

(B.1)

whose sublevels are compact in R
d × ΣT as an easy consequence of the Ascoli-Arzelà compactness

theorem. Thus, by choosing

Ψ(x, σµ, y, σν) := ψ(x, σµ) + ψ(y, σν) < +∞, (B.2)

for ηµ-almost every (x, σµ) ∈ R
d × ΣT and ην-almost every (y, σν) ∈ R

d × ΣT while recalling that
ηµ,ην ∈ P(Rd×ΣT ) are concentrated on the characteristic curves generated by v,w : [0, T ]×R

d → R
d

which satisfy the sublinearity bound (2.17), one can infer from (B.1) and (B.2) that

sup
n≥1

∫

(Rd×ΣT )2
Ψ(x, σµ, y, σν)dη̂nµ,ν(x, σµ, y, σν)

≤
∫

Rd×ΣT

ψ(x, σµ)dηµ(x, σµ) +

∫

Rd×ΣT

ψ(y, σν)dην(y, σν)

≤ Mp(µ
0) +

∫ T

0

∫

Rd

|v(t, x)|

1 + |x|
dµ(t)(x)dt+ Mp(ν

0) +

∫ T

0

∫

Rd

|w(t, y)|

1 + |y|
dν(t)(y)dt < +∞,

where we used Fubini’s theorem along with the fact that (et)♯ηµ = µ(t) and (et)♯ην = ν(t) for all
times t ∈ [0, T ]. Whence, it follows that the sequence (η̂nµ,ν) ⊂ P((Rd × ΣT )2) admits cluster points
for the narrow topology.

1In [17], the proof of this compactness argument contains a small caveat in the definition of the functional ψ(·, ·),
which is not coercive as it is written therein. The result remains however correct, up to redefining the latter as in (B.1)
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Step 2 – Optimality of the limit plans. Let η̂µ,ν ∈ P((Rd × ΣT )2) be a cluster point of the
sequence (η̂nµ,ν). We recall that by construction, it holds

(etk , etk)♯η̂
n
µ,ν ∈ Γo(µ(tk), ν(tk)) (B.3)

for each n ≥ 1 and every k ∈ {1, . . . , n}. It then follows from the continuity of the evaluation maps
etk : Rd × ΣT → R

d together with standard convergence results for sequences of image measures (see
e.g. [9, Lemma 5.2.1]) that

(etk , etk )♯η̂
n
µ,ν ⇀∗

n→+∞
(etk , etk )♯η̂µ,ν, (B.4)

along a subsequence that we do not relabel. We recall that as a consequence of the pointwise sublin-
earity bound (2.17) satisfied by v(·, ·), w(·, ·), it follows from Grönwall’s lemma that

‖σµ(·)‖C0([0,T ],Rd) ≤ CT (1 + |x|) and ‖σν(·)‖C0([0,T ],Rd) ≤ CT (1 + |y|) (B.5)

for ηµ-almost every (x, σµ) ∈ R
d × ΣT and ην-almost every (y, σν) ∈ R

d × ΣT , where we recall that
CT = max{1, ‖m(·)‖1} exp(‖m(·)‖1). From this pointwise estimate, one can easily deduce that

(
∫

R2d
|x− y|pd

(

(etk , etk )♯η̂
n
µ,ν

)

(x, y)

)1/p

≤

(
∫

Rd×ΣT

|σµ(tk)|
pdηµ(x, σµ)

)1/p

+

(
∫

Rd×ΣT

|σν(tk)|
pdην(x, σν)

)1/p

≤ CT
(

2 + Mp(µ
0) + Mp(ν

0)
)

,

(B.6)

for all n ≥ 1. Thus, by invoking classical stability results under narrow convergence for sets of optimal
transport plans (see e.g. [9, Proposition 7.1.3]), it follows from (B.3), (B.4) and (B.6) that

(etk , etk )♯η̂µ,ν ∈ Γo(µ(tk), ν(tk)), (B.7)

for every k ≥ 1.
We fix now t ∈ [0, T ] and let (tkm) ⊂ [0, T ] be a subsequence satisfying tkm ≤ t for each m ≥ 1

and such that tkm → t as m → +∞. Owing to the narrow continuity of the curves µ(·), ν(·) ∈
AC([0, T ],Pp(R

d)), one has that

µ(tkm) ⇀∗

m→+∞
µ(t) and ν(tkm) ⇀∗

m→+∞
ν(t). (B.8)

Moreover, by combining the sublinearity bound (2.17) and norm estimate of (B.5), it holds that

|σµ(t) − σµ(tkm)| ≤
∫ t

tkm

m(s)(1 + |σµ(s)|)ds ≤ (1 + CT )
(

1 + |x|
)

∫ t

tkm

m(s)ds (B.9)

for ηµ-almost every (x, σµ) ∈ R
d × ΣT and each m ≥ 1, with a similar estimate for ην-almost every

(y, σν) ∈ R
d × ΣT . Thus, given a parameter ε > 0, it follows from Chebyshev’s inequality (see e.g. [7,

Remark 1.18]) combined with (B.9) that

η̂µ,ν

({

(x, σµ, y, σν) s.t.
∣

∣

∣

(

et − etkm
, et − etkm

)

(x, σµ, y, σν) > ε
∣

∣

∣

})1/p

≤
1

ε

(
∫

Rd×ΣT

|σµ(t) − σµ(tkm)|pdηµ(x, σµ)

)1/p

+
1

ε

(
∫

Rd×ΣT

|σν(t) − σν(tkm)|pdην(y, σν)

)1/p

≤
1

ε
CT
(

2 + Mp(µ
0) + Mp(ν

0)
)

∫ t

tkm

m(s)ds −→
m→+∞

0,

which implies that the sequence ((etkm
, etkm

)) ⊂ C0((Rd×ΣT )2,R2d) converges in η̂µ,ν-measure towards
(et, et) ∈ C0((Rd×ΣT )2,R2d). By classical convergence results on image measures (see e.g. [9, Lemma
5.4.1]), this further implies that

(etkm
, etkm

)♯η̂µ,ν ⇀∗

m→+∞
(et, et)♯η̂µ,ν .
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Again, by leveraging the estimate of (B.9), it can be shown straightforwardly that

sup
m≥1

∫

R2d
|x− y|pd

(

(etkm
, etkm

)♯η̂µ,ν
)

(x, y) < +∞,

which, combined with yet another application of [9, Proposition 7.1.3] along with (B.7) and (B.8),
finally yields that

(et, et)♯η̂µ,ν ∈ Γo(µ(t), ν(t)).

for all times t ∈ [0, T ]. By following the same procedure while observing that (π
Rd , πRd)♯η̂

n
µ,ν = γ0 for

each n ≥ 1, one can also conclude that (πRd , πRd)♯η̂µ,ν = γ0, which ends the proof of Lemma 2.21.

C Proof of Proposition 2.22

In this third appendix, we detail the proof of the momentum and equi-integrability bounds displayed
in Proposition 2.22, which both heavily rely on the superposition principle recalled in Theorem 2.20.

Proof of Proposition 2.22. Observe first that because v : [0, T ] × R
d → R

d satisfies the sublinearity
estimate (2.17), it directly follows that it complies with the integral bound (2.16). Hence, by Theorem
2.20, there exists a superposition measure ηµ ∈ P(Rd × ΣT ) such that (et)♯ηµ = µ(t) for all times
t ∈ [0, T ], which implies in particular that

Mp
p(µ(t)) =

∫

Rd
|x|pdµ(t)(x)

=

∫

Rd×ΣT

|et(x, σµ)|pdηµ(x, σµ)

≤
∫

Rd×ΣT

(

|x| +

∫ t

0
|v(s, σµ(s))|ds

)p

dηµ(x, σµ),

(C.1)

for all times t ∈ [0, T ]. In addition, by the very definition of a superposition measure, one can verify
that (2.17) in fact yields the following lifted estimate on the space of curves

|v(t, σµ(t))| ≤ m(t)(1 + |σµ(t)|), (C.2)

which holds for L 1-almost every t ∈ [0, T ] and ηµ-almost every (x, σµ) ∈ R
d×ΣT . Thus, by combining

(C.1) and (C.2), one further has that

Mp
p(µ(t)) ≤

∫

Rd×ΣT

(

|x| +

∫ t

0
m(s)(1 + |σµ(s)|)ds

)p

dηµ(x, σµ), (C.3)

for all times t ∈ [0, T ]. Observing that σµ(·) ∈ C0([0, T ],Rd) for ηµ-almost every (x, σµ) ∈ R
d × ΣT ,

one further has that
m(·)1/p|σµ(·)| ∈ Lp([0, T ],R+).

Hence, by applying Hölder’s inequality in (C.3) while recalling that (πRd)♯ηµ = µ0, we obtain that

Mp
p(µ(t)) ≤ 2p−1

∫

Rd

(

|x| +

∫ t

0
m(s)ds

)p

dµ0(x)

+ 2p−1 ‖m(·)‖
p/q
1

∫

Rd×ΣT

(
∫ t

0
m(s)|σµ(s)|pds

)

dηµ(x, σµ)

= 2p−1
∫

Rd

(

|x| +

∫ t

0
m(s)ds

)p

dµ0(x) + 2p−1 ‖m(·)‖
p/q
1

∫ t

0
m(s)Mp

p(µ(s))ds,

(C.4)

for all times t ∈ [0, T ], wherein q ∈ (1,+∞] is the conjugate exponent of p ∈ [1,+∞) and where we
used Fubini’s theorem to obtain the last equality. Thus, by applying Grönwall’s lemma in (C.4) and
the triangle inequality for the Lp(Rd,R;µ0)-norm, it finally holds that

Mp(µ(t)) ≤ Cp

(

Mp(µ
0) +

∫ t

0
m(s)ds

)

exp
(

C ′
p ‖m(·)‖p1

)

,
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for all times t ∈ [0, T ], which conclude the proof of the momentum bound (2.18).
We now turn our attention to the proof of the equi-integrability estimate (2.20). Start by observing

that as a consequence of the sublinearity estimate (C.2), it holds by Grönwall’s lemma that

|σµ(t)| ≤

(

|x| +

∫ t

0
m(s)ds

)

exp

(
∫ t

0
m(s)ds

)

≤ CT (1 + |x|), (C.5)

for all times t ∈ [0, T ] and ηµ-almost every (x, σ) ∈ R
d × ΣT , where CT = max{1, ‖m(·)‖1} exp(‖

m(·)‖1). In particular, for every R > 0, the latter inequality implies that

(
∫

{x s.t. |x|≥R}
|x|pdµ(t)(x)

)1/p

=

(
∫

{(x,σµ) s.t. |et(x,σµ)|≥R}
|et(x, σµ)|pdηµ(x, σµ)

)1/p

≤ CT

(
∫

{(x,σµ) s.t. CT (1+|x|)≥R}
(1 + |x|)pdηµ(x, σµ)

)1/p

= CT

(
∫

{x s.t. |x|≥R/CT −1}
(1 + |x|)pdµ0(x)

)1/p

for all times t ∈ [0, T ], which ends the proof of our claim.

D Proof of Proposition 2.24

In this fourth and last appendix, we detail the proof of the stability estimates of Proposition 2.24.
This time, we will also need to leverage the general result of Lemma 2.21 which provides the existence
of superposition plans inducing optimal transport plans.

Proof of Proposition 2.24. Observe first that, owing to the hypotheses satisfied by both v(·, ·) and
w(·, ·), there exists by Theorem 2.20 two superposition measures ηµ,ην ∈ P(Rd × ΣT ) such that
(et)♯ηµ = µ(t) and (et)♯ην = ν(t) for all times t ∈ [0, T ]. Choosing an element γ0 ∈ Γo(µ

0, ν0) and a
transport plan η̂µ,ν ∈ Γ(ηµ,ην) provided by Lemma 2.21, one has that

W p
p (µ(t), ν(t)) =

∫

(Rd×ΣT )2
|et(x, σµ) − et(y, σν)|

pdη̂µ,ν(x, σµ, y, σν)

≤
∫

(Rd×ΣT )2

(

|x− y| +

∫ t

0

∣

∣v(s, σµ(s)) − w(s, σν(s))
∣

∣ds

)p

dη̂µ,ν(x, σµ, y, σν)

≤
∫

(Rd×ΣT )2

(

|x− y| +

∫ t

0
l(s)|σµ(s) − σν(s)|ds

+

∫ t

0

∣

∣v(s, σν(s)) − w(s, σν(s))
∣

∣ds

)p

dη̂µ,ν(x, σµ, y, σν),

(D.1)

for all times t ∈ [0, T ]. Notice now that since ν(s) = (es)♯ην for all times s ∈ [0, t], one has

ν(s)
({

y ∈ R
d s.t. |v(s, y) −w(s, y)| > M

})

= ην

({

(y, σν) ∈ R
d × ΣT s.t. |v(s, σν(s)) −w(s, σν(s))| > M

})

,

for every M > 0. In particular, the latter identity implies that

|v(s, σν(s)) − w(s, σν(s))| ≤ ‖v(s) − w(s)‖L∞(Rd,Rd; ν(s)) (D.2)

for L 1-almost every s ∈ [0, t] and ην-almost every (y, σν) ∈ R
d×ΣT . Whence, by combining (D.1) and

(D.2) and applying Hölder’s inequality in a similar fashion to what we did in the proof of Proposition
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2.22 in Appendix C above, it further holds that

W p
p (µ(t), ν(t)) ≤ 2p−1

∫

R2d

(

|x− y| +

∫ t

0
‖v(s) − w(s)‖L∞(Rd,Rd; ν(s)) ds

)p

dγ0(x, y)

+ 2p−1 ‖l(·)‖
p/q
L1([0,t])

∫

(Rd×ΣT )2

(
∫ t

0
l(s)|σµ(s) − σν(s)|

pds

)

dη̂(x, σµ, y, σν)

= 2p−1
∫

R2d

(

|x− y| +

∫ t

0
‖v(s) − w(s)‖L∞(Rd,Rd; ν(s)) ds

)p

dγ0(x, y)

+ 2p−1 ‖l(·)‖
p/q
L1([0,t])

∫ t

0
l(s)W p

p (µ(s), ν(s))ds,

(D.3)

where the last inequality stems from an application of Fubini’s theorem. Thus, by applying Grönwall’s
lemma to (D.3) along with the triangle inequality of the Lp(Rd,R; γ0)-norm, we can conclude that

Wp(µ(t), ν(t)) ≤ Cp

(

Wp(µ
0, ν0) +

∫ t

0
‖v(s) − w(s)‖L∞(Rd,Rd; ν(s)) ds

)

exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

(D.4)

for all times t ∈ [0, T ], which yields the first stability estimate (2.22).
Fix next an element R > 0 and observe that under our working assumptions, the map

t ∈ [0, T ] 7→‖v(t) − w(t)‖L∞(B(0,R),Rd ; ν(t)),

is Lebesgue integrable. In that case, one can prove by repeating the series of computations leading to
(D.4) that

Wp(µ(t), ν(t)) ≤ Cp

(

Wp(µ
0, ν0) +

(
∫

Rd×ΣT

(
∫ t

0
|v(s, σν(s)) − w(s, σν(s))|ds

)p

dην(y, σν)

)1/p
)

× exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

,

(D.5)
for all times t ∈ [0, T ]. We focus our attention on the integral term appearing in the right-hand side
of (D.5), and observe that the latter can be split into two parts as

∫

Rd×ΣT

(
∫ t

0
|v(s, σν(s)) − w(s, σν(s))|ds

)p

dην(y, σν)

=

∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤R}

(
∫ t

0
|v(s, σν(s)) − w(s, σν(s))|ds

)p

dην(y, σν)

+

∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>R}

(
∫ t

0
|v(s, σν(s)) − w(s, σν(s))|ds

)p

dην(y, σν),

(D.6)

for all t ∈ [0, T ]. The first term in the right-hand side of (D.6) can be estimated straightforwardly as

∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

≤R}

(
∫ t

0
|v(s, σν(s)) − w(s, σν(s))|ds

)p

dην(y, σν)

≤

(
∫ t

0
‖v(s) − w(s)‖L∞(B(0,R),Rd ; ν(s)) ds

)p

,

(D.7)

for all times t ∈ [0, T ]. Concerning the second term in the right-hand side of (D.6), one has as a
consequence of the sublinearity assumptions made on v(·, ·) and w(·, ·) and Hölder’s inequality that

∫

{(y,σν ) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>R}

(
∫ t

0

∣

∣v(s, σν(s)) − w(s, σν(s))
∣

∣ds

)p

dην(y, σν)

≤ 2p
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>R}

(
∫ t

0
m(s)

(

1 + |σν(s)|
)

ds

)p

dην(y, σν)

≤ 2p ‖m(·)‖
p/q
L1([0,t])

∫ t

0
m(s)

(
∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>R}

(

1 + |σν(s)|
)p

dην(y, σν)

)

ds.

(D.8)
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Recall now that by (C.5) above, it also holds that

‖σν(·)‖C0([0,T ],Rd) ≤ CT (1 + |y|),

for ην-almost every (y, σν), which together with (D.8) then yields

∫

{(y,σν) s.t. ‖σν(·)‖
C0([0,T ],Rd)

>R}

(
∫ t

0

∣

∣v(s, σν(s)) − w(s, σν(s))
∣

∣ds

)p

dην(y, σν)

≤ 2p ‖m(·)‖pL1([0,t])

∫

{y s.t. |y|≥R/CT −1}

(

1 + CT (1 + |y|)
)p

dν0(y),

(D.9)

for all times t ∈ [0, T ]. Therefore, by merging (D.7) and (D.9) in (D.5) while applying Hölder’s
inequality, we finally obtain that

Wp(µ(t), ν(t)) ≤ Cp

(

Wp(µ
0, ν0) +

∫ t

0
‖v(s) − w(s)‖L∞(B(0,R),Rd ; ν(s)) ds

+ 2(1 + CT ) ‖m(·)‖L1([0,t])

(
∫

{y s.t. |y|≥R/CT −1}
(1 + |y|)pdν0(y)

)1/p
)

× exp
(

C ′
p ‖l(·)‖pL1([0,t])

)

,

for all times t ∈ [0, T ], which concludes the proof of our claim.
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