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Abstract-Low information transfer rate is a major bottleneck for brain-computer interfaces based on non-invasive electroencephalography (EEG) for clinical applications. This led to the development of more robust and accurate classifiers. In this study, we investigate the performance of quantum-enhanced support vector classifier (QSVC). Training (predicting) balanced accuracy of QSVC was 83.17 (50.25) %. This result shows that the classifier was able to learn from EEG data, but that more research is required to obtain higher predicting accuracy. This could be achieved by a better configuration of the classifier, such as increasing the number of shots.

Résumé-Le faible taux de transfert d'information des interfaces cerveau-machines basées sur l'électroencéphalographie non invasive (EEG) est un obstacle majeur pour les applications cliniques. Cela a conduit au développement de classifieurs plus robustes et plus précis. Dans cette étude, nous étudions les performances d'un classifieur a vecteurs de support quantiquement amélioré (QSVC). La précision équilibrée obtenue lors de la phase d'entrainement (prédiction) avec QSVC était de 83,17 (50,25) %. Ce résultat montre que le classifieur est en mesure d'apprendre à partir des données EEG, mais que des recherches supplémentaires sont nécessaires pour obtenir une plus grande précision de prédiction. Cela pourrait être réalisé par une meilleure configuration du classifieur, comme l'augmentation du nombre d'essais.

Introduction

Les potentiels évoqués cognitifs (PEC) sont des potentiels de faibles amplitudes produits par le cerveau suite à une stimulation. Les interfaces cerveau-machines (ICM) basées sur les PEC reposent sur la détection de ces potentiels dans l'électroencéphalogramme (EEG) en réponse à une stimulation planifiée, afin de détecter l'intention de l'utilisateur d'interagir avec une action proposée. Ce type d'interface, imaginé au début des années 1970 par Vidal [START_REF] Vidal | Toward Direct Brain-Computer Communication[END_REF] permet aux personnes paralysées d'interagir avec un ordinateur -l'utilisation de ces interfaces ne nécessitant aucune interaction musculaire (e.g. [START_REF] Guy | Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis[END_REF]). Ces interfaces reposent sur la présentation d'une stimulation visuelle attendue mais imprévisible et très distinctive à l'écran (paradigme oddball). D'autres paradigmes existent, comme l'imagerie motrice dans laquelle l'utilisateur imagine une action, ou les steady-state visually evoked potentials qui consistent en la présentation de stimulations clignotant à différentes fréquences (e.g., [START_REF] Norcia | The steadystate visual evoked potential in vision research: A review[END_REF], [START_REF] Sepulveda | Brain-actuated Control of Robot Navigation[END_REF]). En général, les ICM basées sur le paradigme oddball offrent un bon compromis entre performance, et fatigue de l'utilisateur (notamment visuelle). Bien que nous nous concentrions ici sur la classification des données EEG, obtenues de façon non invasives avec le paradigme oddball, il convient de noter que les techniques de classification sont similaires pour tous les paradigmes.

Les performances des ICM restent limitées pour trois raisons. Tout d'abord, dans le cas de l'EEG non-invasive, les électrodes ne perçoivent qu'un signal de faible amplitude par l'intermédiaire du crâne et restent extrêmement sensibles aux artefacts électromagnétiques et musculaires (induits par exemple par des mouvements ou des lignes de puissance). Ensuite, nous observons un phénomène connu sous le nom d'analphabétisme, qui décrit le fait qu'un pourcentage variant entre 15 et 30% des personnes ne peuvent pas écrire en utilisant les ICM. Le concept d'analphabétisme suggère qu'il s'agit d'un trait physiologique des participants (e.g. [START_REF] Ahn | High Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery[END_REF]), bien que cette conception soit critiquée dans la littérature récente qui pointe plutôt un défaut dans les méthodes de stimulation [START_REF] Thompson | Critiquing the Concept of BCI Illiteracy[END_REF], [START_REF] Volosyak | Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces[END_REF]. Enfin, le taux de transfert d'information de ces interfaces est très faible, avec une vitesse d'écriture d'environ cinq mots par minute [START_REF] Guy | Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis[END_REF]. En raison de leur faible performance par rapport aux interfaces mécaniques, les ICM sont donc davantage adaptées au domaine clinique (e.g. [START_REF] Polich | Clinical application of the P300 event-related brain potential[END_REF]), où elles peuvent malgré tout offrir une alternative précieuse aux personnes souffrant de paralysie généralisée. Notez qu'il existe toutefois des expériences d'utilisation des ICM auprès du grand public. Dans ce cas, l'accent est davantage mis sur des caractéristiques comme l'usabilité, la jouabilité ou l'ergonomie, afin de compenser le manque de fiabilité de ces interfaces [START_REF] Cattan | The Use of Brain-Computer Interfaces in Games Is Not Ready for the General Public[END_REF]- [START_REF] Lotte | Les Interfaces Cerveau-Ordinateur: Conception et Utilisation en Réalité Virtuelle[END_REF].

Pour améliorer les performances des ICM, beaucoup d'efforts ont donc été consacrés à la recherche de classifieurs fiables, tels que l'analyse discriminante, la classification par vecteurs de support (SVC pour Support Vector Classification en anglais), les réseau neuronaux [START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces[END_REF], les forêts d'arbre décisionnelles [START_REF] Steyrl | Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical and convenient non-linear classifier[END_REF], ou la géométrie riemannienne [START_REF] Congedo | Riemannian geometry for EEG-based braincomputer interfaces; a primer and a review[END_REF]. À notre connaissance, les approches s'appuyant sur la géométrie riemannienne, notamment les classifieurs dit MDM (pour Mean Distance to Means en anglais) ont obtenu les meilleures performances lors des compétitions internationales, avec des précisions rapportées proches de 90% en quelques secondes [START_REF] Congedo | Riemannian geometry for EEG-based braincomputer interfaces; a primer and a review[END_REF]- [START_REF] Corsi | Riemannian Geometry on Connectivity for Clinical BCI[END_REF].

En complément de ces études, nous avons étudié l'utilisation de SVC quantiquement améliorés.

(QSVC), en utilisant l'implémentation de Havlíček et al. [18], qui est contenue dans la librairie Qiskit (IBM, Armonk, the US) [START_REF] Abraham | Qiskit: An Open-source Framework for Quantum Computing[END_REF]. QSVC est semblable à SVC excepté que l'optimisation quantique est utilisée à deux moments. Dans un premier temps, afin d'estimer le noyau pour toutes les paires de données d'entraînement. Deuxièmement, pour estimer le noyau après l'ajout d'une nouvelle donnée. QSVC a montré des résultats encourageants par rapport à la classification traditionnelle (e.g. [18], [START_REF] Havenstein | Comparisons of Performance between Quantum and Classical Machine Learning[END_REF]). Ceci, associé au développement de services informatiques Les signaux EEG ont été acquis au moyen du NeXus-32 (MindMedia, Herten, Allemagne), équipé de 16 électrodes humides, placées selon le système international 10-20 (Figure 2). Les signaux ont été enregistrés à une fréquence d'échantillonnage de 128 Hz. Une description complète de l'ensemble de données est disponible dans Van Veen et al. [START_REF] Van Veen | Building Brain Invaders: EEG data of an experimental validation[END_REF]. Le traitement du signal a été réalisé grâce à MNE [START_REF] Gramfort | MNE software for processing MEG and EEG data[END_REF], et nous avons utilisé pyRiemann [START_REF] Barachant | pyRiemann/pyRiemann: v0.3[END_REF] pour le filtrage spatial et la manipulation de matrices de covariance à l'aide de la géométrie Riemannienne. Nous avons utilisé Qiskit [START_REF] Abraham | Qiskit: An Open-source Framework for Quantum Computing[END_REF] pour les opérations quantique. L'évaluation des classifieurs a été réalisée à l'aide de scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF].

Résultats

QSVC a atteint une précision équilibrée moyenne (std) de 83,17 (1,04) %. Comme indiqué dans la 

  quantiques disponible sur le cloud (tels que l'expérience quantique IBM d'IBM, Armonk, États-Unis) et avec l'amélioration continue du volume quantique, a fait de la classification quantique une alternative prometteuse, du moins complémentaire, à l'informatique classique. Dans ce travail, nous avons mesuré la précision équilibrée et le score F1 de QSVC, et les avons comparés aux valeurs obtenues par classifieurs de l'état de l'art, SVC et MDM. Ces deux métriques (précision équilibrée et score F1) sont adaptées pour mesurer la performance d'un jeu de données déséquilibré. Les résultats montrent que QSVC a pu apprendre des données (précision lors de l'entrainement = 83,17 %). Cependant, d'autres recherches sont nécessaires pour améliorer la précision de prédiction du classifieur. Le présent document est structuré comme suit. La deuxième section décrit les données que nous utilisons pour cette analyse. La troisième section décrit les méthodes que nous avons utilisées pour évaluer la performance de QSVC. La quatrième section contient le résultat de cette expérience. La dernière section contient notre discussion et notre conclusion. Données Nous avons utilisé les données enregistrées au GIPSA-lab (Saint-Martin-d'Hères, France), et /zenodo.org/record/2649069. Le jeu de données contient les enregistrements EEG de 26 participants (7 femmes) âgés en moyenne (std) de 24,4 (2,76) ans, et participant à une expérience visuelle P300 TARGET/NON-TARGET. Le P300 visuel est un PEC endogène culminant entre 240 et 600 ms après l'apparition d'une stimulation visuelle à l'écran. Contrairement aux composants exogènes à courte latence, qui sont des réponses automatisées et sensorielles à une stimulation, les composants endogènes reflètent le traitement neuronal induit de façon spécifique par la tache réalisée [21]. En particulier, le P300 est suscité par l'apparition d'une stimulation improbable et très distinctive (paradigme oddball). Les participants jouaient à Brain Invaders, une version du célèbre jeu vintage Space Invaders (Taito, Tokyo, Japon) pour les ICM. Le jeu est composé de 36 extraterrestres affichés dans une matrice 6x6 (Figure 1). La tâche des participants consistait à compter le nombre de flashs d'un extraterrestre TARGET, désigné au début de chaque huit répétitions. Dans le paradigme Brain Invaders P300, une répétition est composée de 12 flashs dont deux incluent l'extraterrestre TARGET et 10 ne le font pas (NON-TARGET). Pour chaque participant, il y avait un total de huit extraterrestres TARGET prédéfinis aléatoirement avant expérience. Par conséquent, un total de (resp.) 128 (8x8x2) et 640 (8x8x10) essais TARGET et NON-TARGET ont été enregistrés pour chaque participant au cours de l'expérience.
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 1 Figure 1. Interface de Brain Invaders au moment où un groupe de six symboles NON-TARGET clignote (en blanc). Le symbole rouge est la cible. Les NON-TARGET qui ne clignotent pas sont en gris. (Figure adaptée de Van Veen et al. [22]).

Figure 2 .)

 2 Figure 2. En rouge, les 16 électrodes placées selon le système international 10-20. Fz (en jaune) est la terre. Notez que le casque NeXus-32 n'utilise pas d'électrode comme référence, mais qu'une référence moyenne commune et déterminée par le matériel est utilisée. (Figure modifiée à partir de Van Veen et al. [22]).
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 3 Figure 3, cette valeur est proche de celle obtenue par SVC et montre que le classifieur a pu apprendre des données.
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 3 Figure 3. Diagramme en boîte des précisions équilibrées obtenues lors de l'entrainement de QSVC et SVC.
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 4 Figure 4. Précisions équilibrées (à gauche) et scores F1 (à droite) obtenus lors de la prédiction des classifieurs QSVC, SVC et MDM. Les précisions et les scores sont exprimés en pourcentage.