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When a cylinder is mounted on an elastic support within a current, vortex-induced
vibrations (VIV) may occur down to a Reynolds number (Re) close to 20, based on the
body diameter (D) and inflow velocity (U), i.e. below the critical value of 47 reported for
the onset of flow unsteadiness when to body is fixed. The impact of a forced rotation of the
elastically mounted cylinder on the system behavior is explored numerically for Re 6 30,
over wide ranges of values of the rotation rate (ratio between body surface velocity
and U , α ∈ [0, 5]) and reduced velocity (inverse of the oscillator natural frequency non-
dimensionalized by D and U , U⋆ ∈ [2, 30]). The influence of the rotation is not monotonic
but the most prominent effect uncovered in this work is a substantial enhancement of
the subcritical-Re, flow-induced vibrations beyond α = 2. This enhancement is twofold.
First, the rotation results in a considerable expansion of the vibration/flow unsteadiness
region in the (Re, U⋆) domain, down to Re = 4. Second, the elliptical orbits described
by the rotating body are subjected to a major amplification, with a transition from VIV
to responses whose magnitude tends to increase unboundedly with U⋆, even though still
synchronized with flow unsteadiness. The emergence of such galloping-like oscillations
close to the onset of vibrations disrupts the scenario of gradual vibration growth with
Re, as amplitudes larger than 10 body diameters may be observed at Re = 10.

1. Introduction

The flow past a fixed circular cylinder becomes unsteady beyond a critical Reynolds
number close to 47, with the formation of the alternating von Kármán vortices (Mathis
et al. 1984). The Reynolds number (Re) is based on the body diameter (D) and inflow
velocity (U). The above critical value is denoted by Refc in the following in reference to the
fixed body. When the cylinder is mounted on an elastic support, vortex-induced vibrations
(VIV) and thus flow unsteadiness may occur in the subcritical-Re range, i.e. for Re < Refc ,
possibly down to Re ≈ 20, depending on the system parameters (Cossu & Morino 2000;
Mittal & Singh 2005; Kou et al. 2017; Dolci & Carmo 2019; Boersma et al. 2021). Among
the different forms of flow-induced vibrations (FIV), VIV represent a paradigm of fluid-
structure interaction involving synchronization, or lock-in, between body motion and
flow unsteadiness. Due to their impact on engineering structures, they have been the
object of a number of studies at higher Re, as reviewed for example by Williamson &
Govardhan (2004). Regardless the Re value, VIV develop over a well-delimited range
of the reduced velocity, U⋆, defined as the inverse of the oscillator natural frequency
non-dimensionalized by D and U . Within this range where lock-in is established, VIV
amplitudes exhibit bell-shaped trends as functions of U⋆ and are generally of the order of
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Figure 1. Flow past a non-rotating, elastically mounted cylinder at Re = 25: instantaneous
iso-contours of spanwise vorticity (ωz ∈ [−0.4, 0.4]) for (a) U⋆ = 4 (no vibration) and (b)
U⋆ = 8 (cross-flow vibration amplitude equal to 0.31D). Positive/negative vorticity values are
plotted in red/blue. The trajectory of the cylinder center is indicated by a black line. Part of
the computational domain is shown.

D in the cross-flow direction and one or more orders of magnitude lower in the streamwise
direction. A typical case of VIV at subcritical Re is visualized in figure 1. The flow, which
is steady in the absence of vibration (figure 1(a)), becomes unsteady and synchronizes
with cylinder oscillation once VIV appear (figure 1(b)).

The present work explores the impact of a forced rotation of the elastically mounted
cylinder at subcritical Re. The rotation breaks the symmetry of the system and may re-
sult in a profound alteration of its behavior, as illustrated in prior studies for Re > Refc
(Stansby & Rainey 2001; Yogeswaran & Mittal 2011; Bourguet & Lo Jacono 2014; Zhao
et al. 2014; Seyed-Aghazadeh & Modarres-Sadeghi 2015; Wong et al. 2017; Bourguet
2020a; Munir et al. 2021). In particular, the rotation distorts the bell-shaped trends of
VIV amplitudes versus U⋆, as well as body trajectories, i.e. from figure-eight to ellipti-
cal orbits. It can also trigger responses that resemble the galloping oscillations usually
reported for non-axisymmetric bodies, with amplitudes increasing unlimitedly with U⋆.
Such responses are accompanied by a reconfiguration of the flow and a myriad of multi-
vortex wake patterns. These aspects remain to be examined at subcritical Re. In addition,
the boundaries of the vibration region in the (Re, U⋆) domain are expected to be reshaped
by the rotation and need to be determined; this includes the question of the evolution of
the lowest value of Re for the onset of flow unsteadiness. An attempt is proposed here
on the basis of numerical simulations.

The subcritical-Re behavior of the flow-structure system is investigated over a wide
range of values of the rotation rate, defined as the ratio between cylinder surface and
inflow velocities, α ∈ [0, 5], for reduced velocities up to U⋆ = 30. This parameter space
encompasses the appearance of the above mentioned galloping-like responses at higher
Re. Focus is placed on Re 6 30, for which the flow past a rigidly mounted cylinder
remains steady over the selected α range (Stojković et al. 2002).

2. Formulation and numerical method

A sketch of the physical system is presented in figure 2(a). The elastically mounted,
circular cylinder of diameter D and mass per unit length Mc, is parallel to the z axis and
placed in an incompressible, uniform cross-current of velocity U , density ρf , viscosity µ
and aligned with the x axis. The Reynolds number, Re = ρfUD/µ, is kept lower or equal
to 30. The flow is two-dimensional across the parameter space investigated. This point
has been verified via three-dimensional simulations initialized with three-dimensional
flow fields. The two-dimensional Navier–Stokes equations are employed to predict the
flow dynamics. The cylinder is free to translate in the in-line (IL, x axis) and cross-
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Figure 2. (a) Sketch of the physical system. (b) CF vibration amplitude and frequency as
functions of the polynomial order for (Re, α, U⋆) = (10, 5, 25). (c) CF force coefficient as a
function of α for a rigidly mounted cylinder, over a range of Re; the present results are compared
to those reported by Stojković et al. (2002).

flow (CF, y axis) directions. The structural stiffnesses (K) and damping ratios (ξ) of
the elastic support are the same in both directions. All the physical variables are non-
dimensionalized by D, U and ρf . The IL and CF displacements, non-dimensionalized by
D, are denoted by ζx and ζy. The IL and CF force coefficients are defined as C{x,y} =
2F{x,y}/(ρfDU2), where Fx and Fy are the dimensional fluid forces per unit length,
aligned with the x and y axes. The dynamics of the two-degree-of-freedom oscillator is
governed by the following equations:

ζ̈{x,y} +
4πξ

U⋆
ζ̇{x,y} +

(

2π

U⋆

)2

ζ{x,y} =
C{x,y}

2m
, (2.1)

where ˙ designates the non-dimensional time derivative. The non-dimensional mass of
the structure is defined as m = Mc/(ρfD

2). The ratio between the mass of the structure
and the mass of the displaced fluid is equal to 4m/π. The reduced velocity is defined as
U⋆ = 1/fn, where fn = D/(2πU)

√

K/Mc is the non-dimensional natural frequency in
vacuum. The cylinder is subjected to a forced, counter-clockwise, steady rotation about
its axis. The rotation is controlled by the rotation rate α = ΩD/(2U), where Ω is the
angular velocity of the cylinder. The values of m and ξ are set to 10 and 0, while U⋆ is
varied from 2 to 30 and α ranges from 0 to 5.
The numerical method is the same as in previous studies concerning comparable sys-

tems at higher Re (Bourguet & Lo Jacono 2014; Bourguet 2020a). It is briefly summa-
rized here and some additional convergence/validation results are presented. The coupled
flow-structure equations are solved by the parallelized code Nektar, which is based on the
spectral/hp element method (Karniadakis & Sherwin 1999). A large rectangular compu-
tational domain is considered (350D downstream and 250D in front, above, and below
the cylinder) to avoid any spurious blockage effects due to domain size. It is discretized
in 3975 spectral elements. A no-slip condition is applied on the cylinder surface. A con-
vergence study in a typical case of subcritical-Re vibrations at the highest rotation rate,
(Re, α, U⋆) = (10, 5, 25), is presented in figure 2(b). The evolutions of the CF vibration
amplitude (˜ designates the fluctuation about the time-averaged value) and frequency
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(fy) as functions of the spectral element polynomial order, show that an increase from
order 4 to 5 has no impact on the results; such convergence study was repeated up to
Re = 30 and a polynomial order equal to 4 was selected. A comparable procedure was
employed to set the non-dimensional time step to 0.005. In figure 2(c), a comparison of Cy

values over ranges of α and Re for a rigidly mounted cylinder, with the results reported
by Stojković et al. (2002), confirms the validity of the present numerical method.

Each simulation is initialized with the established flow past a fixed body at the selected
Re. Then the rotation is started and the body is released. The analysis is based on time
series collected after convergence, over 30 oscillation cycles in the unsteady cases.

3. Flow-structure system behavior at subcritical Reynolds number

The boundaries of the vibration/unsteady flow region are examined in §3.1. Vibra-
tion amplitudes and frequencies, as well as body trajectories are presented in §3.2. Flow
physics and synchronization with body motion are addressed in §3.3. Some salient prop-
erties of fluid forces are reported in §3.4.

3.1. Vibration/unsteady flow region

The evolution of the vibration region as α is increased from 0 to 5 is depicted in figure
3(a-h). The colored areas delimit the regions of the (Re, U⋆) domain where the body
oscillates and the flow is unsteady; out of these regions the flow-structure system is
steady. The impact of the rotation is not monotonic as the vibration region first tends
to shrink, up to α = 1, and then expands. For α = 5, it covers most of the parameter
space investigated.

The lowest value of Re where vibrations arise (Rec) and the corresponding value of U⋆

(U⋆
c ) are plotted as functions of α in figure 3(i,j); Rec is the critical Re in the elastically

mounted body case. It is recalled that the term subcritical employed in this paper refers
to the critical Re for flow unsteadiness in the fixed body case (Refc = 47). From a
value close to 20 in the absence of rotation, also reported in prior works (e.g. Mittal &
Singh 2005), Rec is found to slightly increase for low α and then decrease down to 4
approximately for α = 5. As shown in figure 3(k), the CF oscillation frequency at the
onset of vibrations (fc), which coincides with flow unsteadiness frequency as discussed in
§3.3, globally follows the trend of the natural frequency in vacuum (1/U⋆

c , plain gray line)
but remains lower. It also departs from the natural frequency modified by considering
the potential added mass coefficient Cm = 1 (i.e.

√

m/(m+ Cmπ/4)/U⋆
c , gray dashed-

dotted line). The frequency may substantially deviate from that observed in the wake of
a fixed cylinder at Refc (green dashed line; Cossu & Morino 2000).

3.2. Vibration properties

The vibration amplitudes are examined in figure 4(a-h), which represents the maximum
fluctuation of the CF displacement about its time-averaged value, as a function of U⋆

over a range of Re. Each panel corresponds to a given rotation rate, α ∈ [0, 5]. For
the non-rotating body, the gradual amplification of the bell-shaped curve, typical of
VIV, as Re is increased, is accompanied by a shift of the peak amplitude towards lower
U⋆ values. This is the onset of a trend that persists beyond the subcritical-Re range,
as illustrated by the results reported at Re = 100 in a prior work (blue dashed line;
Bourguet 2020a). The rotation modulates the width and magnitude of the amplitude
bell-shaped curve, but its regular evolution with Re remains comparable for each α,
up to α = 2. In particular, the shift of the peak amplitude towards lower U⋆ values
can be visualized in figure 3(a-e) (dotted lines). The influence of the rotation is more
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Figure 3. (a-h) Vibration/unsteady flow region as a function of Re and U⋆, for α ∈ [0, 5]; α
value is specified in each panel, a dotted line indicates the value of U⋆ where the peak amplitude
is reached and horizontal stripes denote vortex fragmentation region in (g,h). (i) Lowest value
of the Reynolds number where vibrations/flow unsteadiness occur, and corresponding values
of the (j) reduced velocity and (k) CF vibration frequency, as functions of α. The color code
associated with α ranges from dark brown (α = 0) to light yellow (α = 5). In (k), the natural
frequency in vacuum and the corrected natural frequency, with an added-mass coefficient of 1,
are indicated by plain and dash-dotted gray lines, respectively; a green dashed line represents
the critical frequency of flow unsteadiness in the fixed cylinder case (Cossu & Morino 2000).

pronounced for higher α: the U⋆ values associated with the peak amplitude and upper
boundary of the vibration region are found to rapidly increase with Re, and exceed the
limit of the parameter space under study, as also depicted in figure 3(f-h). Such behavior
was previously identified at supercritical Re and the responses were named galloping-like,
in reference to the seemingly unbounded growth of their amplitudes with U⋆; a typical
case is plotted in figure 4(h) (Re = 100, blue dashed line). The present results show
that these large amplitude oscillations may arise in the subcritical-Re range, close to
the onset of vibrations, e.g. amplitudes larger than 10D are observed at Re = 10 for
α = 5. Additional simulations indicate that this phenomenon persists when a low level
of structural damping is introduced (up to ξ = 5%) and m is varied between 5 and 20.

The ratio between the IL and CF vibration amplitudes is considerably impacted by the
rotation, as shown in figure 4(i) where this ratio is plotted for all vibrating body cases
as a function of U⋆. Compared to the influence of α, the effect of Re is found to remain
marginal within the subcritical range examined here. In the absence of rotation, the IL
responses are very small compared to the CF ones, as also noted in prior studies concern-
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Figure 4. (a-h) CF vibration amplitude as a function of U⋆, over a range of Re, for α ∈ [0, 5];
α value is specified in each panel. The amplitudes previously reported at Re = 100 (Bourguet
2020a) are represented by blue dashed lines in (a,h). In (g,h), green arrows indicate the irregular
evolutions associated with vortex fragmentation. (i) Ratio of IL and CF vibration amplitudes as
a function of U⋆, for all studied cases where vibrations develop; α is indicated by symbol shape
and Re by its color. A gray dotted arrow denotes the trend observed when α is increased.

ing subcritical-Re VIV (Mittal & Singh 2005). As indicated by the gray dotted arrow in
the plot, the amplitude ratio sharply increases with α and it reaches 1.5 approximately
in the high-U⋆ range.

The vibrations are periodic and dominated by a single frequency in each direction,
fx and fy. The CF vibration frequency normalized by the natural frequency in vacuum,
f⋆ = fy/fn, is plotted as a function of U⋆ in figure 5(a). Three elements can be noted.
First, the vibration frequency remains lower than fn. Second, f

⋆ globally decreases as
α is increased (gray dotted arrow); it reaches very low values for high α, especially
compared to the critical frequency in the wake of a fixed cylinder (green dashed line).
Third, the evolution of f⋆ with U⋆ at a given α progressively shifts from increasing
trends in the low-α range, to decreasing trends for higher α. The present subcritical-Re
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Figure 5. (a) CF vibration frequency normalized by fn and (b) IL/CF vibration phase difference
as functions of U⋆, over a range of Re, for α ∈ [0, 5]; α is indicated by symbol shape and Re by its
color. In (a), a green dashed line denotes the critical frequency of flow unsteadiness in the fixed
cylinder case (Cossu & Morino 2000), normalized by fn, and a gray dotted arrow represents the
trend observed when α is increased. In (b), the IL/CF vibration frequency ratio is specified and
three typical trajectories are depicted (not at scale); green dotted arrows indicate the direction
of motion.

vibrations generally exhibit lower frequencies than the responses encountered at higher
Re. However, the proximity of the above properties (second and third points) with those
reported at Re = 100 (Bourguet 2020a), emphasizes the continuity of the system behavior
between the subcritical and supercritical-Re ranges.

The rotation breaks the CF symmetry of the system, which induces a switch of fx/fy
from 2 to 1, and a transition from figure-eight trajectories of the body to elliptical
orbits. The shape and orientation of the trajectory is determined by the phase difference
Φxy = φx − nφy where φx and φy are the IL and CF response phases (n = 1 except for
α = 0 where n = 2). The evolution of Φxy is represented in figure 5(b), along with typical
trajectories. For α = 0, Φxy varies between 0◦ and 45◦: the figure-eight trajectories are
close to a crescent bent downstream and the body moves upstream when reaching CF
oscillation maxima. Similar orbits were noted for subcritical-Re VIV of flexible cylinders
(Bourguet 2020b). Once the body rotates, Φxy ranges from 180◦ to 270◦, and converges
close to the latter value for high α: the cylinder describes clockwise elliptical orbits, i.e.
counter-rotating relative to the forced rotation.

3.3. Flow-body synchronization and wake patterns

The emergence of large-amplitude, galloping-like vibrations (e.g. figure 4(h)) raises the
question of the synchronization with the flow, since galloping oscillations do not usu-
ally involve such lock-in condition. It appears that the frequency of flow unsteadiness
(determined from time series of the CF component of flow velocity in the wake) always
coincides with the vibration frequency (fy). Flow-body synchronization is thus estab-
lished in all cases. The persistence of lock-in and the fact that a quasi-steady approach,
similar to that described in Bourguet (2020a), fails to predict the responses, suggest that
the interaction with flow unsteadiness plays a role in sustaining body motion, even if the
vibrations resemble galloping oscillations.

In contrast with the fragmented, multi-vortex patterns reported at higher Re (e.g.
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Figure 6. Instantaneous iso-contours of spanwise vorticity for (a) (Re, α, U⋆) = (25, 2, 8)
(ωz ∈ [−0.3, 0.3]), (b) (Re, α, U⋆) = (5, 5, 12) (ωz ∈ [−0.03, 0.03]), (c) (Re, α, U⋆) = (10, 5, 25)
(ωz ∈ [−0.03, 0.03]) and (d) (Re, α, U⋆) = (25, 5, 25) (ωz ∈ [−0.05, 0.05]). Positive/negative vor-
ticity values are plotted in red/blue. The trajectory of the cylinder center is indicated by a black
line. Part of the computational domain is shown.

Munir et al. 2021), the present wakes are composed of a pair of counter-rotating vortices
formed per oscillation cycle over most of the vibration regions, including for large response
amplitudes (figure 6(a-c)). The anti-symmetrical organization observed for α = 0 (figure
1(b)) is significantly distorted and the vortical structures may reach very large scales.
Vortex fragmentation occurs close to the upper edge of the (Re, U⋆) domain for high α
(horizontally striped areas in figure 3(g,h)), as illustrated in figure 6(d). The transition
between fragmented patterns, typically the addition/subtraction of one vortex per cycle
as U⋆ is varied, is associated with irregular evolutions of vibration amplitudes (green
arrows in figure 4(g,h)).

3.4. Fluid forces

The vibrations are accompanied by the appearance of fluctuations of fluid forces and by
a modulation of their time-averaged values (denoted by ). For example, Cx, which is
slightly negative in the absence of vibration for α = 5 at Re = 15, is amplified up to 3.4.
Special attention is paid to the alteration of the Magnus effect, i.e. the CF force induced
by the rotation. No major modification of Cy is observed for low α. For each α > 1, Cy

is found to consistently increase with the time-averaged magnitude of the relative flow
velocity seen by the moving body, defined as V = {1 − ζ̇x,−ζ̇y}

T . This trend can be
visualized in figure 7(a). The values of Cy for a rigidly mounted cylinder are indicated
by green areas. As shown in figure 7(b), a normalization of α by the time-averaged
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Figure 7. Time-averaged CF force coefficient as a function of (a) the time-averaged magnitude of
the relative flow velocity seen by the body and (b) α normalized by the time-averaged magnitude
of the relative flow velocity, over a range of Re, for α ∈ [0, 5]; α is indicated by symbol shape and
Re by its color. The green areas encompass Cy values for a rigidly mounted body, over the range
of Re investigated. In (b), a gray dashed line represents the potential flow value (Cy = −2πα).

magnitude of the relative velocity tends to collapse Cy values close to those measured in
the absence of vibration (green area; a gray dashed line denotes the potential flow value,
Cy = −2πα, for comparison). A reasonable estimate of Cy can thus be obtained based
on the only knowledge of body dynamics. The above collapse does not persist at higher
Re (e.g. Re = 100); some deviations can already be noted at Re > 25. It appears to be
a specific property of the low, subcritical-Re range.

Another typical property relates to force-displacement phasing. For periodic vibrations
without structural damping, the system may exhibit two possible states where the force
is either in phase with the displacement, when f{x,y} < fn, or in phase opposition, when
f{x,y} > fn. While both phasing states are usually encountered at higher Re once the
body rotates (i.e. fx = fy; Bourguet 2020a), here, only the former state is observed.

4. Conclusions

The subcritical-Re FIV of a cylinder subjected to a forced rotation have been investi-
gated numerically for Re 6 30, over wide ranges of α and U⋆ values. Compared to the
non-rotating body case, the region of the (Re, U⋆) domain where vibrations and flow
unsteadiness occur, shrinks for low rotation rates and then expands for higher α. From a
value close to 20 in the absence of rotation, the Re associated with the onset of vibrations
is found to decrease down to 4 approximately for α = 5.

Under forced rotation, the vibration amplitudes are comparable in both directions,
and even larger in the IL direction than in the CF direction for high U⋆, which contrasts
with the non-rotating body case. The typical trajectory of the rotating cylinder is an
elliptical orbit, oriented in the opposite direction relative to the forced rotation, with a
frequency lower than fn. Up to α = 2, the bell-shaped curves of vibration amplitudes
versus U⋆, typical of VIV, are modulated by the rotation but their regular growth with
Re remains analogous to that reported for α = 0. The impact of the rotation on the
scenario of vibration growth with Re is more pronounced for α > 2: while the upper-U⋆

boundary of the vibration region rapidly increases with Re, vibration amplitudes seem to
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grow unboundedly with U⋆ and their frequencies reach very low values. These galloping-
like responses, previously identified at higher Re, thus arise in the subcritical-Re range,
close to the onset of vibrations. For example, amplitudes larger than 10 diameters are
encountered at Re = 10 for α = 5.

Body motion and flow unsteadiness are synchronized in all cases, regardless vibration
amplitudes. Except close to the upper edge of the (Re, U⋆) domain, where vortices tend
to fragment, the wake is composed of a pair of counter-rotating and possibly very large
vortices per oscillation cycle. The occurrence of FIV is accompanied by the appearance of
fluid force fluctuations and by a modification of their time-averaged values. In particular,
the alteration of the Magnus effect at subcritical Re is found to be closely connected to
the relative flow velocity seen by the vibrating body.

To summarize, the influence of the rotation on the flow-structure system behavior is not
monotonic, but the most prominent effect uncovered here is a substantial enhancement
of subcritical-Re FIV for high α. This enhancement is twofold: a considerable expansion
of the vibration region, down to very low Re, and a major amplification of the structural
responses, with the emergence of galloping-like oscillations.
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