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Abstract.

We propose a new class of models for variable clustering called Asymptotic Independent block (AI-block)
models, which defines population-level clusters based on the independence of the maxima of a multivariate
stationary mixing random process among clusters. This class of models is identifiable, meaning that
there exists a maximal element with a partial order between partitions, allowing for statistical inference.
We also present an algorithm for recovering the clusters of variables without specifying the number of
clusters a priori. Our work provides some theoritical insights into the consistency of our algorithm,
demonstrating that under certain conditions it can effectively identify clusters in the data with a
computational complexity that is polynomial in the dimension. This implies that groups can be learned
nonparametrically in which block maxima of a dependent process are only sub-asymptotic.
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1. Introduction

Multivariate extremes arise when two or more extreme events occur simultaneously. These events
are of prime interest to assess natural hazard, stemming from heavy rainfall, wind storms and
earthquakes since they are driven by joint extremes of several of meteorological variables. It is well
known from Sklar’s theory (Sklar 1959) that multivariate distributions can be decomposed into two
distinct parts: the analysis of marginal distributions and the analysis of the dependence structure
described by the copula function. Results from multivariate extreme value theory show that the
possible dependence structure of extremes satisfy certain constraints. Indeed, the dependence
structure may be described in various equivalent ways (Beirlant et al. 2004; De Haan and Ferreira
2006; Resnick 2008): by the exponent measure (Balkema and Resnick 1977), by the Pickands
dependence function (Pickands 1981), by the stable tail dependence function (Huang 1992), by the
madogram (Naveau et al. 2009; Boulin et al. 2022), and by the extreme value copula (Gudendorf
and Segers 2010).

While the modeling of univariate and low-dimensional extreme events has been well-studied,
it remains a challenge to model multivariate extremes, particularly when multiple rare events
may occur simultaneously. Recent research in this area has focused on connecting the study of
multivariate extremes to modern statistical and machine learning techniques. This has involved the
development of new methods for characterizing complex dependence structures between extreme
observations, such as sparsity-based approaches (Goix, Sabourin, Clémençon, et al. 2015; Meyer
and Wintenberger 2021; Simpson, Wadsworth, and Tawn 2020), conditional independence and
graphical models (Engelke and Hitz 2020; Gissibl and Klüppelberg 2018; Segers 2020), dimensionality
reduction (Chautru 2015; Drees and Sabourin 2021), and clustering methods (Cooley and Thibaud
2019; Fomichov and Ivanovs 2022; Janßen and Wan 2020). Our work is aligned with this direction of
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research as we propose a clustering algorithm for learning the dependence structure of multivariate
extremes and, withal, to bridge important ideas from modern statistics and machine learning to the
framework of extreme-value theory. Our approach is remotely related to extremal graphical models.
The probabilistic framework of this paper can effectively be seen as a disconnected extremal graph
where the connected components are mutually independent of each other (see for example section 8
in Engelke, Ivanovs, and Strokorb 2022).

It is possible to perform clustering on X1, . . . ,Xn, where n is the number of observations of a
random vector X ∈ Rd, through two different approaches: by partitioning the set of row indices
{1, . . . , n} or by partitioning the set of column indices {1, . . . , d}. The first problem is known as the
data clustering problem, while the second is called the variable clustering problem, which is the
focus of this paper. In data clustering, observations are drawn from a mixture distribution, and
clusters correspond to different realizations of the mixing distribution, which is a distribution over
all of Rd. In the framework of independent and identically distributed (i.i.d.) replications, (Pollard
1981) showed that k-means clustering is strongly consistent, and this result was replicated in the
context of extremes by (Janßen and Wan 2020) for spherical k-means.

The problem of variable clustering (see, e.g., Bunea et al. 2020; Eisenach et al. 2020) involves
grouping similar components of a random vector X = (X(1), . . . , X(d)) into clusters. The goal is
to recover these clusters from observations X1, . . . ,Xn. Instead of clustering similar observations
based on a dissimilarity measure, the focus is on defining cluster models that correspond to subsets
of the components X(j) of X ∈ Rd. The goal is to cluster similar variables such that variables
within the same cluster are more similar to each other than they are to variables in other clusters.
Variable clustering is of particular interest in the study of weather extremes, with examples in the
literature on regionalization (Bador et al. 2015; Bernard et al. 2013; Saunders, Stephenson, and
Karoly 2021), where spatial phenomena are observed at a limited number of sites. A specific case
of interest is clustering these sites according to their extremal dependencies. This can be done
using techniques such as k-means or hierarchical clustering with a dissimilarity measure designed
for extremes. However, the statistical properties of these procedures have not been extensively
studied, and it is not currently known which probabilistic models on X can be estimated using these
techniques. In this paper, we consider model-based clustering, where the population-level clusters
are well-defined, offering interpretability and a benchmark to evaluate the performance of a specific
clustering algorithm.

The assumption that data are realizations of independent and identically distributed (i.i.d.)
random variables is a fundamental assumption in statistical theory and modeling. However, this
assumption is often unrealistic for modern datasets or the study of time series. Developing methods
and theory to handle departures from this assumption is an important area of research in statistics.
One common approach is to assume that the data are drawn from a multivariate stationary and
mixing random process, which implies that the dependence between observations weakens over the
trajectory. This assumption is widely used in the study of non-i.i.d. processes.

Our contribution is twofold. First, we develop a probabilistic setting for Asymptotic Independent
block (AI-block) models to address the problem of clustering extreme values of the target vector.
These models are based on the assumption that clusters of components of a multivariate random
process are independent relative to their extremes. This approach has the added benefit of being
amenable to theoretical analysis, and we show that these models are identifiable (see Theorem 1).
Second, we motivate and derive an algorithm specifically designed for these models (see Algorithm
(ECO)). We analyze its performance in terms of exact cluster recovery for minimally separated
clusters, using a cluster separation metric (see Theorem 4). The issue is investigated in the context
of nonparametric estimation using the block maxima method, where the block length is a tuning
parameter.
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Notations All bold letters x correspond to vector in Rd. By considering B ⊆ {1, . . . , d}, we denote
the |B|-subvector of x by x(B) = (X(j))j∈B. We define by X ∈ Rd a random vector with law H and
X(B) a random subvector of X with law

H(B)(x(B)) = H(1,x(B),1), (X(j))j∈B ∈ [0, 1]|B|,

where (1,x(B),1) has its jth component equal to x(j)1{j∈B} + 1{j /∈B}. In a similar way, we note

(0,x(B),0) the vector in Rd which equals x(j) if j ∈ B and 0 otherwise. When B = {1, . . . , d},
we will write H instead of H({1,...,d}). Classical inequalities of vectors such as x > 0 should be
understand componentwise. Weak convergence of processes are denoted by ’⇝’. The notation
δx corresponds to the Dirac measure at x. Let O = {Og}g=1,...,G be a partition of {1, . . . , d}
into G groups and let s : {1, . . . , d} → {1, . . . , G} be a variable index assignement function, thus
Og = {a ∈ {1, . . . , d} : s(a) = g} = {ig,1, . . . , ig,dg} with d1 + · · ·+ dG = d. Using these notations,

the variable X(ig,ℓ) should be read as the ℓth element from the gth cluster. Let X(Og), g ∈ {1, . . . , G}
be extreme value random vectors with X = (X(O1), . . . ,X(OG)), we say that X(O1), . . . ,X(OG) are
independent if and only if

H(x) = ΠGg=1H
(Og)

(
x(Og)

)
, x ∈ Rd.

The structure of this paper is as follows. In Section 2, we provide background on extreme-
value theory and weakly dependent random processes, and describe the probabilistic framework
of AI-block models. We show that these models are identifiable and provide a series of equivalent
characterizations. In Section 3, we develop a new clustering algorithm for AI-block models and prove
that it can recover the target partition with high probability. We provide a process that satisfies
our probabilistic and statistical assumptions in Section 4, and compare our approach to existing
state-of-the-art methods in Section 5. We illustrate the finite sample performance of our approach
on simulated datasets in Section 6. The proofs of our main, auxiliary, and supplementary results are
provided in Appendix A, Appendix B, and Appendix C of the supplementary material, respectively.
Additional figures and numerical results are presented in Appendix C.3. Throughout the paper,
readers will be directed to appendices Appendix B or Appendix C for additional materials when
necessary. Otherwise, all the necessary materials can be found in Appendix A.

2. A model for variable clustering

2.1 Background setting

Consider Z = (Z(1), . . . , Z(d)) and Zt = (Z
(1)
t , . . . , Z

(d)
t ), where t ∈ Z be respectively a d-dimensional

random vector with law F and a strictly stationary multivariate random process distributed according
to Z. For the process (Zt, t ∈ Z), let

Fk = σ(Zt, t ≤ k), and Gk = σ(Zt, t ≥ k),

be respectively the natural filtration and “reverse” filtration of (Zt, t ∈ Z). Many types of mixing
conditions exist in the literature. The weakest among those most commonly used is called strong
or α-mixing. Specifically, for two σ-fields A1 and A2 of a probability space (Ω,A,P) the α-mixing
coefficient of a multivariate random process is defined for ℓ ≥ 1

α(ℓ) = sup
t∈Z

α (Ft,Gt+ℓ) , (1)

where
α (A1,A2) = sup

A1∈A1,A2∈A2

|P(A1 ∩A2)− P(A1)P(A2)| .
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For any process (Zt, t ∈ Z), let

β(A1,A2) = sup
1

2

∑
i,j∈I×J

|P(Ai ∩Bj)− P(Ai)P(Bj)| ,

where the sup is taken over all finite partitions (Ai)i∈I and (Bj)j∈J of Ω with the sets Ai in A1 and
the sets Bj in A2. The β-mixing (or completely regular) coefficient is defined as follows

β(ℓ) = sup
t∈Z

β(Ft,Gt+ℓ). (2)

By considering
φ(A1,A2) = sup

A1,A2∈A1×A2,P(A1 )̸=0
|P(A2|A1)− P(A1)| ,

the φ-mixing coefficient is defined by

φ(ℓ) = sup
t∈Z

φ(Ft,Gt+ℓ) (3)

It should be noted that if the original process (Zt, t ∈ Z) satisfies an α- or β- or φ-mixing condition,
then the stationary process (f(Zt), t ∈ Z) for a measurable function f also satisfies the same mixing
condition. The α-mixing rate, β-mixing rate, and φ-mixing rate of the stationary process are all
bounded by the corresponding rate of the original process. In terms of their order, the three mixing
coefficients are related as follows:

α(ℓ) ≤ β(ℓ) ≤ φ(ℓ). (4)

This means that the α-mixing coefficient is the weakest, followed by the β-mixing coefficient, and
finally the φ-mixing coefficient is the strongest.

Let Mm = (M
(1)
m , . . . ,M

(d)
m ) be the vector of component-wise maxima, where we denote by

Mm,j = maxi=1,...,m Z
(j)
i . Consider a random vector X = (X(1), . . . , X(d)) with distribution H. A

normalizing function a on R is a non-decreasing, right continuous function that goes to ±∞ as
x→ ±∞. In extreme value theory, a fundamental problem is to characterize the limit distribution
H in the following limit:

lim
m→∞

P {Mm ≤ am(x)} = H(x), (5)

where am = (a
(1)
m , . . . , a

(d)
m ) with a

(j)
m , 1 ≤ j ≤ d are normalizing functions and H is a non-degenerate

distribution. Typically, H is an extreme value distribution, and X is a max-stable random vector
with generalized extreme value margins. In this case, we can write:

P {X ≤ x} = exp {−Λ(E \ [0,x])} ,

where Λ is a Radon measure on the cone E = [0,∞)d \ {0}. When (5) holds with H an extreme
value distribution, the vector Z is said to be in max-domain of attraction of the random vector X
with law H, denoted as F ∈ D(H). In our context of a dependent process (Zt, t ∈ Z), the limit in
(5) will in general be different from a multivariate extremal types distribution and further conditions
over the regularity (or mixing conditions) are thus needed to obtain an extremal distribution. In
particular, if the random process (Zt, t ∈ Z) is α-mixing that is α(ℓ) → 0 as ℓ → ∞, then a
Fisher-Tippett-Gnedenko’s type theorem holds for multivariate stationary random processes (see
Theorem 4.2 of Hsing 1989).

The max-domain of attraction can be translated into terms of copulae. Let Cm be the copula of
Mm. In this context, the domain of attraction condition can be written as:

lim
m→∞

Cm(u) = C(u).
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Under the same mixing condition, i.e., α(ℓ) → 0 as ℓ→ ∞, C is an extreme value copula and it can
be expressed as follows for u ∈ [0, 1]d:

C(u) = exp
{
−L

(
− ln(u(1)), . . . ,− ln(u(d))

)}
,

where L is known as the stable tail dependence function (see Gudendorf and Segers 2010 for an
overview of extreme value copulae). As it is a homogeneous function of order 1, i.e., L(az) = aL(z)
for all a > 0, we have, for all z ∈ [0,∞)d,

L(z) = (z(1) + · · ·+ z(d))A(t),

with t(j) = z(j)/(z(1) + · · · + z(d)) for j ∈ {2, . . . , d}, t(1) = 1 − (t(2) + · · · + t(d)), and A is the
restriction of L into the d-dimensional unit simplex, viz.

∆d−1 = {(v(1), . . . , v(d)) ∈ [0, 1]d : v(1) + · · ·+ v(d) = 1}.

The function A is known as the Pickands dependence function and is often used to quantify
the extremal dependence among the elements of X. Indeed, A satisfies the constraints 1/d ≤
max(t(1), . . . , t(d)) ≤ A(t) ≤ 1 for all t ∈ ∆d−1, with lower and upper bounds corresponding to the
complete dependence and independence among maxima. For the latter, it is commonly said that
the stationary random process (Zt, t ∈ Z) exhibits asymptotic independence, i.e., the multivariate
extreme value distribution H in the max-domain of attraction is equal to the product of its marginal
extreme value distributions.

2.2 Proposed AI-block models

In this paper, we focus on the concept of asymptotic independence, which has been observed in
various applications, such as the analysis of spatial precipitation patterns (see Lalancette, Engelke,
and Volgushev 2021; Le et al. 2018) and water discharges in river networks (Fomichov and Ivanovs
2022). Motivated by these applications, we introduce a new class of models for variable clustering, AI-
block models, in which population-level clusters are defined as groups of variables that are dependent
within clusters and independent from other clusters relative to their extremes. Formally, the variables
of the distribution in the domain of attraction of observed processes can be partitioned into G
unknown clusters O = {O1, . . . , OG}, such that variables within the same cluster are dependent,
and the clusters are asymptotically independent. In this section, we focus on the identifiability of
the model, specifically the existence of a unique maximal element with respect to a certain partial
order on partition. We explicitly construct this maximal element, which corresponds to the thinnest
partition where this property holds and serves as a target for statistical inference.

Let us consider X(O1), . . . ,X(OG) to be extreme value random vectors with extreme value copulae
C(O1), . . . , C(OG) respectively. Under condition of independence between X(O1), . . . ,X(OG), the
random vector X = (X(O1), . . . ,X(OG)) is again extreme and one can detail the expression of its
extreme value copula. The formal statement of this result is stated in the next proposition.

Proposition 1. Let X(O1), . . . ,X(OG) be independent extreme value random vectors with extreme
value copulae C(O1), . . . , C(OG). Then the function C defined as

C : [0, 1]d −→ [0, 1]

u 7−→ ΠGg=1C
(Og)(u(ig,1), . . . , u(ig,dg )),

is an extreme value copula associated to the random vector X = (X(O1), . . . ,X(OG)).
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As a result, a random vector X that exhibits asymptotic independence between extreme-valued
subvectors therefore inherits this extreme-valued property. Using the definitions and notations so
far introduced in this work, we now present the definition of our model.

Definition 1 (Asymptotic Independent-block model). Let (Zt, t ∈ Z) be a d-variate stationary
random process with law F and X a random vector with extreme value distribution H. The
random process Zt is said to follow an AI-block model if F ∈ D(H) and for every g ∈ {1, . . . , G},
X(Og) = (X(ig,1), . . . , X(ig,dg )) are extreme value random vectors and X(O1), . . . ,X(OG) are indepen-
dent, that is H = ΠGg=1H

(Og).

Notice that, when G = 1, the definition of AI-block models thus reduces to the process (Zt, t ∈ Z)
is in the domain of attraction of an extreme value distribution H.

Following Bunea et al. 2020, we introduce the following notation in our framework. We
say that Z follows an AI-block model with a partition O, denoted Z ∼ O. We define the set
L(Z) = {O : O is a partition of {1, . . . , d} and Z ∼ O}, which is nonempty and finite, and therefore
has maximal elements. We introduce a partial order on partitions as follows: let O = {Og}g and
{Sg′}g′ be two partitions of {1, . . . , d}. We say that S is a sub-partition of O if, for each g′, there
exists g such that Sg′ ⊆ Og. We define the partial order ≤ between two partitions O and S of
{1, . . . , d} as follows:

O ≤ S, if S is a sub-partition of O. (6)

For any partition O = {Og}1≤g≤G, we write a
O∼ b where a, b ∈ {1, . . . , d} if there exists g ∈

{1, . . . , G} such that a, b ∈ Og.

Definition 2. For any two partitions O,S of {1, . . . , d}, we define O ∩ S as the partition induced

by the equivalence relation a
O∩S∼ b if and only if a

O∼ b and a
S∼ b.

Checking that a
O∩S∼ b is an equivalence relation is straightforward. With this definition, we have

the following interesting properties that lead to the desired result, the identifiability of AI-block
models.

Theorem 1. Let (Zt, t ∈ Z) be a stationary random process, then the following properties hold:

(i) Consider O ≤ S. Then Z ∼ S implies Z ∼ O,
(ii) O ≤ O ∩ S and S ≤ O ∩ S,
(iii) Z ∼ O and Z ∼ S is equivalent to Z ∼ O ∩ S,
(iv) The set L(Z) has a unique maximum Ō(Z), with respect to the partition partial order ≤ in (6).

The proof demonstrates that for any partition such that Z follows an AI-block model, there
exists a maximal partition, denoted by Ō, and its structure is intrinsic of the definition of the
extreme value random vector X. This partition, which represents the thinnest partition of Z where
X is independent per block, matches our expectations for a reasonable clustering target in these
models. With a slight abuse of notation, we will refer to Ō(Z) as Ō throughout the rest of this
paper.

2.3 Extremal dependence structure for AI-block models

Under the conditions stated in Proposition 1, X is an extreme value random vector with a stable
tail dependence function L. This function can be expressed in the following form:

L
(
z(1), . . . , z(d)

)
=

G∑
g=1

L(Og)
(
z(Og)

)
, z ∈ [0,∞)d, (7)
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where L(O1), . . . , L(OG) are the stable tail dependence functions with copulae C(O1), . . . , C(OG),
respectively. This model is a specific form of the nested extreme value copula, as mentioned in the
remark below and discussed in further detail in Hofert, Huser, and Prasad 2018.

Remark 1. Equation (7) can be rewritten as

L(z) = LΠ

(
L(O1)

(
z(O1)

)
, . . . , L(OG)

(
z(OG)

))
,

where LΠ(z
(1), . . . , z(G)) =

∑G
g=1 z

(g) is a stable tail dependence function corresponding to asymptotic
independence. According to Proposition 1, C is an extreme value copula. Therefore, it follows that
C, which has the representation

C(u) = CΠ

(
C(O1)(u(O1)), . . . , C(OG)(u(OG))

)
, CΠ = ΠGg=1u

(g),

is also a nested extreme value copula, as defined in Hofert, Huser, and Prasad 2018.

Equation (7) can be restricted to the simplex, allowing us to express the stable tail dependence
function in terms of the Pickands dependence function. Specifically, the Pickands dependence function
A can be written as a convex combination of the Pickands dependence functions A(O1), . . . , A(OG)

as follows:

A(t(1), . . . , t(d)) =
1

z(1) + · · ·+ z(d)

 G∑
g=1

(z(ig,1) + · · ·+ z(ig,dg ))A(Og)(t(Og))


=

G∑
g=1

w(Og)(t)A(Og)(t(Og)) =: A(O)(t(1), . . . , t(d)), (8)

with t(j) = z(j)/(z(1) + · · · + z(d)) for j ∈ {2, . . . , d} and t(1) = 1 − (t(2) + · · · + t(d)), w(Og)(t) =
(z(ig,1)+· · ·+z(ig,dg ))/(z(1)+· · ·+z(d)) for g ∈ {2, . . . , G} and w(O1)(t) = 1−(w(O2)(t)+· · ·+w(OG)(t)),
t(Og) = (t(ig,1), . . . , t(ig,dg )) where t(ig,ℓ) = z(ig,ℓ)/(z(ig,1) + · · ·+ z(ig,dg )) and (ig,ℓ) designates the ℓth
variable in the gth cluster for ℓ ∈ {1, . . . , dg} and g ∈ {1, . . . , G}. As a convex combination of
Pickands dependence functions, A is itself a Pickands dependence function (see page 123 of Falk,
Hüsler, and Reiss 2010).

In the context of independence between extreme random variables, it is well-known that the
inequality A(t) ≤ 1 holds for t ∈ ∆d−1, where A is the Pickands dependence function and equality
stands if and only if the random variables are independent. This result extends to the case of
random vectors, with the former case being a special case where d1 = · · · = dG = 1.

Proposition 2. Consider an extreme value random vector X ∈ Rd with Pickands dependence
function A. Let A(O) be as defined in (8). For all t ∈ ∆d−1, we have:(

A(O) −A
)
(t) ≥ 0,

with equality if and only if X(O1), . . . ,X(OG) are independent.

This proposition states that the difference between the convex combinations of the Pickands
dependence functions denoted by A(O) and the Pickands dependence function A is always nonnegative.
Equality holds if and only if the subvectors X(O1), . . . ,X(OG) are independent. The next proposition
gives the form of the exponent measure when the random vectors X(O1), . . . ,X(OG) are independent.
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Proposition 3. Suppose X is an extreme-value random vector with exponent measure Λ concen-
trating on E \ [0,x] where E = [0,∞]d \ {0}. The following properties are equivalent:

(i) The vectors X(O1), . . . ,X(OG) are independent.
(ii) The vectors are blockwise independent: for every 1 ≤ g < h ≤ G

X(Og) and X(Oh), are independent random vectors.

(iii) The exponent measure Λ concentrates on

G⋃
g=1

{0}d1 × · · ·×]0,∞[dg× · · · × {0}dG , (9)

so that for y > 0,

Λ

 ⋃
1≤g<h≤G

{
x ∈ E,∃a ∈ Og, x

(a) > y(a), ∃b ∈ Oh, x
(b) > y(b)

} = 0

.

These conditions generalize straightforwardly those stated in Proposition 5.24 of Resnick 2008
(see Exercise 5.5.1 of the book aforementioned or the Lemma in Strokorb 2020), we refer to
Appendix B.1 for a proof. Furthermore, Equation (9) is geometrically involving: the exponent
measure concentrates only the positive orthants where maxima are dependent, we refer to Fig. 3 in
Appendix C.3.1 to clarify this statement.

In higher dimensions, the translation of asymptotic independence for random vectors can be
computationally expensive and may require parametric assumptions to be tractable. Ideally, we
would like a summary statistic that can be estimated empirically and that accurately reflects the
underlying clusters. In extreme value theory, independence between the componentsX(1), . . . , X(d) of
an extreme-value random vector X ∈ Rd can be characterized in a useful way: according to Takahashi
1987, 1994, total independence of X is equivalent to the existence of a vector x = (x(1), . . . , x(d)) ∈ Rd
such that H(x) = H(1)(x(1)) . . . H(d)(x(d)). In the following, we find conditions on F such that
F ∈ D(H) and H = ΠGg=1H

(Og) where H(Og) are extreme value distributions for g ∈ {1, . . . , G} to
obtain a similar statement of Takahashi 1987, 1994 translated to our framework.

Condition A. There exist sequences rm, ℓm such that the following statements hold:

(i) rm → ∞ and rm = o(m),
(ii) ℓm → ∞ and ℓm = o(rm),
(iii) (rm/lm)α(lm) = o(1), where the coefficient α is given in (1).

Theorem 2. Suppose that H and H(Og) are respectively d and dg continuous extreme value
distributions, for g ∈ {1, . . . , G}. Suppose that Conditions A holds for (Zt, t ∈ Z), then

P {Mm ≤ am(x)} −→
m→∞

ΠGg=1H
(Og)(x(Og)), ∀x ∈ Rd,

if and only if
P{Mm ≤ am(x)} −→

m→∞
H(x), ∀x ∈ Rd (10)

and there exists a p = (p(O1), . . . ,p(OG)) ∈ Rd such that 0 < H(Og)(p(Og)) < 1 and

P {Mm ≤ am(p)} −→
m→∞

ΠGg=1H
(Og)(p(Og)). (11)
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Notice that condition in (10) is natural in the study of the multivariate dependence of extreme.
Indeed, this condition in AI-block model is directly obtained when subvectors Z(Og), g ∈ {1, . . . , G}
are in the max-domain of attraction of an extreme value distribution as asked in Definition 1. The
random vector Z is thus in the max-domain of attraction of a multivariate extreme value distribution
which is the product of the corresponding subvectors as precisely written in Proposition 1.

The interested reader may find the proof in Appendix B.2. One direct application of this result
in AI-block models is that X(O1), . . . ,X(OG) are independent if and only if there exists an extreme
value distribution H such that the process (Zt, t ∈ Z) is in the max-domain of attraction and the
following holds:

A

(
1

d
, . . . ,

1

d

)
=

G∑
g=1

dg
d
A(Og)

(
1

dg
, . . . ,

1

dg

)
.

Definition 3 (Sum of Extremal COefficients (SECO)). The extremal coefficient of an extreme
value random vector X is defined as (see Smith 1990):

θ := θ({1,...,d}) = dA(d−1, . . . , d−1), (12)

where A is the Pickands dependence function. For a partition O = {O1, . . . , OG} of {1, . . . , d}, we
also define the extremal coefficient of the subvectors X(Og) as θ(Og) = dgA

(Og)(d−1
g , . . . , d−1

g ), where

dg = |Og| is the size of the set Og and A(Og) is the Pickands dependence function of X(Og). Using
these coefficients, we define the following quantity SECO as

SECO(O) =
G∑
g=1

θ(Og) − θ. (13)

The SECO is a measure that quantifies the deviation of the sum of extremal coefficient of the
subvectors X(Og) from the extremal coefficient of the full vector X. When this measure is 0, it
indicates that the subvectors X(O1), . . . ,X(OG) constitute an independent partition. This means
that the SECO in (13) captures the asymptotic independent block structure of the random vector X,
regardless of any distributional assumptions.

To perform statistical inference, we state a condition based on the extremal dependence of
each cluster. This condition allows to present a simple, yet powerful, algorithm which compare
the pairwise extreme dependence between components of the vector, enabling us to make informed
conclusions about the dependence structures present in the data.

Condition B. For every g ∈ {1, . . . , G}, the extreme value random vector X(Ōg), where Ōg is the
maximal element of L(Z), exhibits dependence between all components.

One sufficient condition to satisfy Condition B is to suppose that exponent measures of the
extreme value random vectors X(Ōg) have nonnegative Lebesgue densities on the nonnegative orthant
[0,∞)dg \{0(Ōg)} for every g ∈ {1, . . . , G}. The domination of the exponent measure by the Lebesgue
measure is a prequisite assumption to define conditional independence between nodes of an extremal
graphical models, (see, e.g., Engelke and Hitz 2020; Engelke and Volgushev 2022) and Section 7 for a
more detailed discussion on this condition). Various classes of tractable extreme value distributions
satisfy Condition B. These popular models, commonly used for statistical inference, include the
asymmetric logistic model (Tawn 1990), the asymmetric Dirichlet model (Coles and Tawn 1991),
the pairwise Beta model (Cooley, Davis, and Naveau 2010) or the Hüsler Reiss model (Hüsler and
Reiss 1989).
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3. Consistent estimation of minimaly separated clusters

3.1 Multivariate tail coefficient

Throughout this section assume that we observe copies Z1 . . . ,Zn of the d-dimensional stationary
random process (Zt, t ∈ Z), which is in the max-domain of attraction of X, an AI-block model as
in Definition 1. The sample of size n of (Zt, t ∈ Z) is divided into k blocks of length m, so that
k = ⌊n/m⌋, the integer part of n/m and there may be a remaining block of length n− km. For the
i-th block, the maximum value in the j-th component is denoted by

M
(j)
m,i = max

{
Z

(j)
t : t ∈ (im−m, im] ∩ Z

}
.

Let us denote by Mm,i = (M
(1)
m,i, . . . ,M

(d)
m,i) the vector of the componentwise maxima in the i-th

block. For a fixed block length m, the sequence of block maxima (Mm,i)i forms a stationary process
that exhibits the same regularity of the process (Zt, t ∈ Z). The distribution functions of block
maxima are denoted by

Fm(x) = P {Mm,1 ≤ x} , F (j)
m (X(j)) = P

{
M

(j)
m,i ≤ X(j)

}
,

with x ∈ Rd and j ∈ {1, . . . , d}. Denote by U
(j)
m,1 = F

(j)
m (M

(j)
m,1) the unknown uniform margin of

M
(j)
m,1 with j ∈ {1, . . . , d}. Let Cm be the unique (as the margins of Mm,1 are continuous) copula of

Fm. In the present context of serial dependence, the domain of attraction condition reads as follows.

Condition C. There exists a copula C such that

lim
m→∞

Cm(u) = C(u), u ∈ [0, 1]d.

One way to measure tail dependence for a d-dimensional extreme value random vector is through
the use of the extremal coefficient, as defined in Equation (12). According to Schlather and Tawn
2002, the coefficient θ can be interpreted as the number of independent variables that are involved
in the given random vector. Let x ∈ R be the coefficient θm(x) for the vector of maxima Mm,1,
which is defined by the following relation:

P


d∨
j=1

U
(j)
m,1 ≤ x

 = P{U (1)
m,1 ≤ x}θm(x).

Under Condition C, the coefficient θm(x) of the componentwise maxima Mm,1 converges to the
extremal coefficient θ of the random vector X, that is:

θm(x) −→
m→∞

θ, ∀x ∈ R.

It is worth noting that θ is a constant since X is a multivariate extreme value distribution. To
generalize the bivariate madogram for the random vectors Mm,1 we follow the same approach as in
Marcon et al. 2017; Boulin et al. 2022 and define:

νm = E

 d∨
j=1

U
(j)
m,1 −

1

d

d∑
j=1

U
(j)
m,1

 , ν = E

 d∨
j=1

H(j)(X(j))− 1

d

d∑
j=1

H(j)(X(j))

 . (14)

Condition C implies that the distribution of Mm,1 is sub-asymptotically extreme valued. A common
approach for estimating the extremal coefficient in this scenario consists of supposing that the
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sample follows exactly the extreme value distribution and to consider θm(x) := θm a sub-asymptotic
extremal coefficient which is constant for every x. Thus, we have

θm =
1/2 + νm
1/2− νm

, 1 ≤ θm ≤ d.

One issue with the sub-asymptotic extremal coefficient is that it is misspecified, as extreme value
distributions only arise in the limit as the block size m tends to infinity, while in practice we must
use a finite sample size. We study this misspecification error in Section 3.3. A plug-in estimation
process can be obtained using:

θ̂n,m =
1/2 + ν̂n,m
1/2− ν̂n,m

, (15)

where ν̂n,m is an estimate of νm obtained using:

ν̂n,m =
1

k

k∑
i=1

 d∨
j=1

Û
(j)
n,m,i −

1

d

d∑
j=1

Û
(j)
n,m,i

 , (16)

and (Û
(j)
n,m,1, . . . , Û

(j)
n,m,k) are the empirical counterparts of (U

(j)
m,1, . . . , U

(j)
m,k) or, equivalently, scaled

ranks of the sample. To establish the strong consistency of this estimator, certain conditions on the
mixing coefficients must be satisfied.

Condition D. Let mn = o(n). The series
∑

n≥1 β(mn) is convergent, where β is defined in (2).

For the sake of notational simplicity, we will write m = mn, k = kn. The convergence of the
series of β-mixing coefficients in Condition D is necessary to obtain the strong consistency of ν̂n,m,
and it can be achieved through the sufficiency condition of the Glivencko-Cantelli lemma for almost
sure convergence.

Proposition 4. Let (Zt, t ∈ Z) be a stationary multivariate random process. Under Conditions C
and D, the madogram estimator in (16) is strongly consistent, i.e.,

|ν̂n,m − ν| a.s.−→
n→∞

0,

with ν the theoretical madogram of the extreme value random vector X given in (14).

The consistency stated above is derived for data of fixed dimension d with the sample size n
increases to infinity. In the following, we provide non-asymptotic bounds for the error |ν̂n,m − νm|.

Proposition 5. Let (Zt, t ∈ Z) be a stationary process with algebraic φ-mixing distribution,
φ(n) ≤ λn−ζ where λ > 0, and ζ > 1 and φ defined in Equation (3). Then the following
concentration bound holds

P
{
|ν̂n,m − νm| ≥ C1k

−1/2 + C2k
−1 + t

}
≤ (d+ 2

√
e) exp

{
− t

2k

C3

}
,

where k is the number of block maxima and C1, C2 and C3 are constants depending only on ζ and λ.

In Proposition 4, we require (Zt, t ∈ Z) to be absolutely regular, or β-mixing, in order to
apply the coupling lemma of Berbee 1979, which is sufficient for the asymptotic analysis. The
non-asymptotic analysis in Proposition 5 is more stringent and requires the use of φ-mixing in
order to apply Hoeffding and McDiarmid inequalities in a dependent setting, as described in Mohri
and Rostamizadeh 2010; Rio 2017. By using the chain of inequalities in (4), the conditions in
Proposition 5 therefore imply Conditions A and D.
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3.2 Inference in AI-block models

In this section, we present an adapted version of the algorithm developed in Bunea et al. 2020
for clustering variables based on a metric on their covariances, named as CORD. Our adaptation
involves the use of the extremal correlation as a measure of dependence between the extremes of
two variables.

The SECO in (13) can be written in the bivariate setting as

SECO({a, b}) = 2− θ(a, b),

where for notational convenience, θ(a, b) := θ({a,b}) is the bivariate extremal coefficient between X(a)

and X(b) as defined in (12). This metric has a range between 0 and 1, with the boundary cases
representing asymptotic independence and comonotonic extremal dependence, respectively. In fact,
the bivariate SECO is exactly equal to the extremal correlation χ defined in Coles, Heffernan, and
Tawn 1999 as

χ(a, b) = lim
q→0

χq(a, b), where χq(a, b) = P
{
H(a)(X(a)) > 1− q|H(b)(X(b)) > 1− q

}
,

whenever the limit exists. In particular, if X is a multivariate extreme-value distribution, then
χ(a, b) = χq(a, b) for q ∈ (0, 1). In an AI-block model, the statement

X(Og) ⊥⊥ X(Oh), g ̸= h,

is equivalent to
χ(a, b) = χ(b, a) = 0, ∀a ∈ Og, ∀ b ∈ Oh, g ̸= h. (17)

Thus using Proposition 3, Condition B and Equation (17), the extremal correlation is a sufficient
statistic to recover clusters in an AI-block model. Indeed, by Condition B and Equation (17), two
variables X(a) and X(b) belong to the same cluster of an AI-block model if and only if χ(a, b) > 0.
For the estimation procedure, using tools introduced in the previous section, we give a sample

version of the extremal correlation associated to M
(a)
m,1 and M

(b)
m,1 by

χ̂n,m(a, b) = 2− θ̂n,m(a, b), a, b ∈ {1, . . . , d},

where θ̂n,m(a, b) is the sampling version defined in (15) of θ(a, b). The strong consistency of this
estimate follows directly from Proposition 4.

Let us denote by X = (χ(a, b))a,b∈{1,...,d} be the matrix of all extremal correlations and X̂ =
(χ̂n,m(a, b))a,b∈{1,...,d} be its sampling version. We present an algorithm, named ECO (Extremal
COrrelation), for estimating the partition Ō using a dissimilarity metric based on the extremal
correlation. This algorithm, outlined in Algorithm (ECO), does not require the specification of the
number of groups G, as it is automatically estimated by the procedure. The algorithm complexity

for computing the k vectors Ûn,m,i = (Û
(1)
n,m,i, . . . , Û

(d)
n,m,i) for i ∈ {1, . . . , k} is of order O(dk ln(k))

(Cormen et al. 2022, Section 2). Given the empirical ranks, computing X̂ and performing the
algorithm require O(d2 ∨ dn ln(k)) and O(d3) computations, respectively. So the overall complexity
of the estimation procedure is O(d2(d ∨ k ln(k)))).

In the following, we provide conditions ensuring that our algorithm is consistent.

Theorem 3. Consider the AI-block model as defined in Definition 1 under Condition B and
(Zt, t ∈ Z) be a stationary multivariate random process. For a given X and its corresponding
estimator X̂ , if Conditions C and D holds, then for any τ > 0

P
{
Ô = Ō

}
= 1, as n→ ∞.
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Algorithm (ECO) Clustering procedure for AI-block models

1: procedure ECO(S, τ , X̂ )
2: Initialize: S = {1, . . . , d}, χ̂n,m(a, b) for a, b ∈ {1, . . . , d} and l = 0
3: while S ̸= ∅ do
4: l = l + 1
5: if |S| = 1 then
6: Ôl = S

7: if |S| > 1 then
8: (al, bl) = arg max

a,b∈S
χ̂n,m(a, b)

9: if χ̂n,m(al, bl) ≤ τ then
10: Ôl = {al}
11: if χ̂n,m(al, bl) > τ then
12: Ôl = {s ∈ S : χ̂n,m(al, s) ∧ χ̂n,m(bl, s) ≥ τ}
13: S = S \ Ôl
14: return Ô = (Ôl)l

A key consideration is the choice of the threshold τ . If τ ≈ 0, the algorithm is likely to return
the unique cluster {1, . . . , d}, while if τ ≈ 1, it is likely to return the greatest cluster {{1}, . . . , {d}}.
However, this issue can be addressed through a non-asymptotic analysis of the algorithm, which we
present in the next section.

3.3 Estimation in growing dimensions

We provide an extension of Theorem 3, allowing estimation in the case of growing dimensions, by
adding non asymptotic bounds on the probability of consistently estimating the maximal element
Ō of an AI-block model. Furthermore, this result provides an answer for how to leverage τ in
Algorithm (ECO). The difficulty of clustering in AI-block models can be assessed via the size of the
Minimal Extremal COrrelation (MECO) separation between two variables in a same cluster:

MECO(X ) := min
a
Ō∼b
χ(a, b).

In AI-block models, with Condition B, we always have MECO(X ) > η with η = 0. However, a large
value of η will be needed for retrieving consistently the partition Ō from identical and independent
observations.

We are now ready to state the main result of this section.

Theorem 4. We consider the AI-block model as defined in Definition 1 under Condition B, and
(Zt, t ∈ Z) be a d-multivariate stationary process with algebraic φ-mixing distribution, φ(n) ≤ λn−ζ

where λ > 0 and ζ > 1 and φ defined in Equation (3). Define

dm = max
a̸=b

|χm(a, b)− χ(a, b)| .

Let (τ, η) be parameters fulfilling

τ ≥ dm + C1k
−1/2 + C2k

−1 + C3

√
(1 + γ) ln(d)

k
,

η ≥ dm + C1k
−1/2 + C2k

−1 + C3

√
(1 + γ) ln(d)

k
+ τ,
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where C1, C2, C3 are universal constants depending only on λ and ζ, k is the number of block maxima,
and γ > 0. For a given X and its corresponding estimator X̂ , if MECO(X ) > η, then the output of
Algorithm (ECO) is consistent, i.e.,

P
{
Ô = Ō

}
≥ 1− 2(1 +

√
e)d−2γ .

Unsurprising, as Theorem 4 is not concerned with asymptotics, we did not actually assume
Condition C. A link between Z and X is implicitly provided through the bias term dm which
measures the distance between χm(a, b) and χ(a, b). This quantity vanishes when Condition C holds
as m→ ∞.

Some comments on the implications of Theorem 4 are in order. On a high level, larger dimension
d and bias dm lead to a higher threshold τ . The effects of the dimension d and the bias dm are
intuitive: larger dimension or more bias make the partition recovery problem more difficult. It is
clear that the partition recovery problem becomes more difficult as the dimension or bias increases.
This is reflected in the bound of the MECO value below which distinguish between noise and
asymptotic independence is impossible by our algorithm. Thus, whereas the dimension d increases,
the dependence between each component should be stronger in order to distinguish between the two.
In other words, for alternatives that are sufficiently separated from the asymptotic independence
case, the algorithm will be able to distinguish between asymptotic independence and noise at the√
ln(d)k−1 scale. For a more quantitative discussion, our algorithm is able to recover clusters when

the data dimension scales at a polynomial rate, i.e. d = o(np), with p > 1 as η in Theorem 4
decreases with increasing n.

Remark 2. According to Theorem 4, when the bias term is zero (dm = 0), the threshold τ is of
order

√
ln(d)k−1. Thresholding χ̂n,m(a, b) at this level guarantees exact recovery if the separation

MECO is at least 2τ . These results are similar to those for the hard thresholding estimator in
Gaussian sequence models, as demonstrated in Section 4.1 of Tsybakov 2014.

3.4 Data-driven selection of the threshold parameter

The performance of Algorithm (ECO) depends crucially on the value of the threshold parameter
τ . This threshold involves known quantities such as d and k and a unknown parameter dm (see
Theorem 4). For the latter, there is no simple manner to choose optimally this parameter, as there is
no simple way to determine how fast is the convergence to the asymptotic extreme behavior, or how
far into the tail the asymptotic block dependence structure appears. Second order conditions, which
are commonly used in the literature to ensure convergence to the stable tail dependence function at
a certain rate, are theoretically relevant (see Dombry and Ferreira 2019; Einmahl, Krajina, and
Segers 2012; Fougères, De Haan, and Mercadier 2015 for examples). However, finding the optimal
value for the block length parameter remains a challenging task. In practice, it is advisable to use a
data-driven procedure to select the threshold in Algorithm (ECO). We propose to use the following
type of cross-validation for this purpose. The idea is to use the SECO criteria presented in Equation
(13). Let Z ∼ O, given a partition Ô = {Ôg}g, we know from Theorem 2 that the SECO similarity
given by

SECO(Ô) =
∑
g

θ(Ôg) − θ (18)

is equal to 0 if and only if Ô ≤ Ō. We thus construct a loss function given by the SECO where
we evaluate its value over a grid of the τ values. The value of τ which the SECO similarity has
minimum values is also the value of τ for which we have consistent recovery of our communities. Our
procedure ask to split the data in three subsamples: on one subset, we construct a set of candidate
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partitions. The other two subsamples are used to estimate the extremal dependence coefficient for

the sub-vector of the candidate partition X(Ôg) and for the whole distribution X. We denote θ̂
(Ôg)
(1)

and θ̂(2) the two madogram-based estimators in the spirit of (15) of θ(Ôg) and θ in (18) based on
the two independent samples of size n. The cross-validation based estimator of the SECO in (18) is
thus defined as

ŜECO(Ô) =
∑
g

θ̂
(Ôg)
(1) − θ̂(2). (19)

Let Ô be a collection of partitions computed with Algorithm (ECO) from one subsample, by varying
τ around its theoretical optimal value, of order (dm +

√
ln(d)k−1), on a fine grid. For any Ô ∈ Ô,

we evaluate our cross-validation SECO in (19). Proposition 6 offers theoretical support for this
procedure, for large n. It shows that, in expectation, the minimum of the proposed criterion is
asymptotically attained for subpartitions of Ō.

Proposition 6. We consider an AI-block model as in Definition 1 and the partial order ≤ between
two partitions in (6). If Assumptions C and D hold, thus

lim
n→∞

E
[
ŜECO(Ō)

]
< lim

n→∞
E
[
ŜECO(Ô)

]
, Ô ̸≤ Ō.

Moreover, we give the weak convergence of an estimator of SECO(O) where Z ∼ O (see Appendix
C.2, for details).

4. Hypotheses discussion for a multivariate random persistent process

A trivial example of an AI-block model is given by a partition O such that Z(Og) is in domain of
attraction of an extreme value random vector H(Og), g ∈ {1, . . . , G} such that Z(O1), . . . ,Z(OG) are
independent. In this simple model, block independent clusters are sub-asymptotic hence asymptotic
and the peculiar dependence structure under study is not inherent of the tail behaviour of the
random vector.

More interestingly, in this section we will focus on a process where the dependence between
clusters disappears in the distribution tails. To this aim, we recall here a φ-algebraically mixing
process. The interested reader is referred for instance to Bücher and Segers 2014. This process
satisfies Conditions A and D. We show that Conditions B and C hold with a bit more work.

Consider i.i.d d-dimensional random vectors Z0, ξ1, ξ2, . . . and independent Bernoulli random
variables I1, I2, . . . i.i.d. with P{It = 1} = p ∈ (0, 1]. For t = 1, 2, . . . , define the stationary random
process (Zt, t ∈ Z) by

Zt = ξtδ1(It) +Zt−1δ0(It), (20)

where we suppose without loss of generality that the process is defined for all t ∈ Z using stationarity.
The persistence of the process (Zt, t ∈ Z) arises from repeatable values in (20). From this persistence,
(Zt, t ∈ Z) is φ-mixing with coefficient of order O((1− p)n) (see Lemma B.1 of Bücher and Segers
2014), hence algebraically mixing. Using Proposition 4.2 of Bücher and Segers 2014, if C1, i.e. the
copula of Z1, is in the copula domain of attraction of an extreme value copula C, i.e.,{

C1

(
{u(1)}1/m, . . . , {u(d)}1/m

)}m
−→
m→∞

C(u(1), . . . , u(d)), u ∈ [0, 1]d,

then also Cm as m→ ∞ with Cm the copula of the maxima of Z1, . . . ,Zm. For θ > 0 and β ≥ 1,
let us consider the multivariate outer power transform of a Clayton copula defined such as

Cθ,β(u) =

1 +


d∑
j=1

({u(j)}−θ − 1)β


1/β

−1/θ

, u ∈ [0, 1]d.
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The copula of multivariate componentwise maxima of an i.i.d. sample of size m from a continuous
distribution with copula Cθ,β is equal to{

Cθ,β({u(1)}1/m, . . . , {u(d)}1/m)
}m

= Cθ/m,β(u
(1), . . . , u(d)). (21)

As m→ ∞, this copula converges to the Gumbel copula with shape parameter β ≥ 1

C0,β(u
(1), . . . , u(d)) := lim

m→∞
Cθ/m,β(u

(1), . . . , u(d)) = exp

−


d∑
j=1

(− lnu(j))β


1/β
 ,

uniformly in u ∈ [0, 1]d. This result is initially stated in Proposition 4.3 in Bücher and Segers 2014
for the bivariate case. The extension to an arbitrary dimension implies no further arguments, the
proof is thus omitted. Now let us consider the nested Archimedean copula given by

Cθ,β0

(
C

(O1)
θ,β1

(u(O1)), . . . , C
(OG)
θ,βG

(u(Og))
)
. (22)

We aim to show that this copula is in the domain of attraction of an AI-block model. That is the
purpose of the proposition stated below.

Proposition 7. Consider 1 ≤ β0 ≤ min{β1, . . . , βG}, then the nested Archimedean copula given in
(22) is in the copula domain of attraction of an extreme value copula given by

C0,β0

(
C

(O1)
0,β1

(u(O1)), . . . , C
(OG)
0,βG

(u(OG))
)
.

In particular, taking β0 = 1 gives an AI-block model where each extreme value random vector X(Og)

dependencies correspond to a Gumbel copula with parameter shape βg.

From the last conclusion of Proposition 7, we obtain Condition C, that is (Zt, t ∈ Z) in (20) is
in max-domain of attraction of an AI-block model. Noticing that the exponent measure of each
cluster is absolutely continuous with respect to the Lebesgue measure, Condition B is thus valid.

Remark 3. Notice that, using results from Bücher and Segers 2014, one can show that the bias dm
in Theorem 4 is of order 1/m in the i.i.d. case, i.e. when p = 1, see Appendix A.3 for details.

5. Competitor clustering algorithms for extremes

In this section, we present some competitor algorithms: the spherical k-means (Chautru 2015;
Fomichov and Ivanovs 2022; Janßen and Wan 2020), k-means and hierarchical clustering using
madogram as a dissimilarity (Bador et al. 2015; Bernard et al. 2013; Saunders, Stephenson, and
Karoly 2021). The performance of the spherical k-means and hierarchical clustering will be compared
with our Algorithm (ECO) in Section 6.

The k-means procedure is a way to identify distinct groups within a population. This procedure
involves partitioning a set of data into G groups (to be consistent with our notation). To do this,
we first choose cluster centers ψ1, . . . , ψG for the points Z1, . . . ,Zn ∈ Rd in order to minimize

Wn :=
1

n

n∑
i=1

min
g∈{1,...,G}

d(Zi, ψg),

where d : Rd × Rd → [0,∞) is a distance function or, more generally, a dissimilarity function in Rd.
The motivation is to identify cluster centers such that distances of the observations to their nearest
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cluster center are minimized. Accordingly, all observations which are closest to the same cluster
center are viewed as belonging to the same group.

While the original version of k-means uses the Euclidean distance, several alternatives choices of
d have been suggested. As the extremal dependence structure can be described with the angular
measure S (see Resnick 2008, section 5 for details), a natural way to measure the distance between
two points is by their angle. This corresponds to the spherical k-means clustering which is described
as follow: for a given integer G, solve the following optimization problem

1

n

n∑
i=1

min
g∈{1,...,G}

d(Yi, ψg),

with Yi, i.i.d. observations from Y, a random variable living on the unit sphere with law S.
Consistency results with i.i.d. observations and for sufficiently many large observations had been
proved for this algorithm in Janßen and Wan 2020. The consistency result gives that the centroids
obtained by minimizing the program above are close to the true centroids of the angular distribution.

In the framework of Bador et al. 2015; Bernard et al. 2013; Saunders, Stephenson, and Karoly
2021, the madogram is considered as a dissimilarity measure. This criterion can be read in the
present context of block maxima method as

Wn =
1

k

k∑
i=1

min
g∈{1,...,G}

1

2

∣∣∣Ûn,m,i − ψg

∣∣∣ = ∫
[0,1]d

min
g∈{1,...,G}

1

2
|u− ψg| dĈn,m(u),

where Ĉn,m is the empirical copula defined as

Ĉn,m(u) =
1

k

k∑
i=1

1{Ûn,m,i≤u}, u ∈ [0, 1]d. (23)

For a copula Cm in the domain of attraction of an extreme value copula C, let Ψ = {ψ1, . . . , ψG},
be a set of cluster centers with ψg ∈ Rd, g ∈ {1, . . . , G} and consider the averaged distance from
any observation to the closest element of Ψ as

W (Ψ, C) =

∫
[0,1]d

min
ψ∈Ψ

1

2
|u− ψ|dC(u).

To the best of our knowledge, consistency results for k-means procedure using the madogram
have not yet been established. The following proposition tries to bridge this gap.

Proposition 8. Let (Zt, t ∈ Z) be a stationary multivariate random process with continuous uni-
variate margins such that Conditions C and D hold. For each Ĉn,m in (23) and a given value G ∈ N,
denote by Ψn

G a random set which minimizes

W (Ψ, Ĉn,m) =

∫
[0,1]d

min
ψ∈Ψ

1

2
|u− ψ|dĈn,m(u),

among all sets Ψ ⊂ [0, 1]d with at most G elements. Accordingly, let us define ΨG the optimal
set when we replace Ĉn,m by C and assume that for a given value of G, the set ΨG is uniquely
determined. Thus Ψn

G converges almost surely to ΨG as n→ ∞.

From Proposition 8, the madogram seems to be a relevant dissimilarity to estimate the set
of theoretical cluster centers with respect to the extreme value copula of X. As far as we know,
the madogram was used for clustering using the partitioning around medoids algorithm (Bador
et al. 2015; Bernard et al. 2013) and the hierarchical clustering (Saunders, Stephenson, and Karoly
2021). For computational convenience, only the hierarchical clustering and spherical k-means are
considered in the next Section 6.
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6. Numerical results

In this section, we investigate the finite-sample performance of our algorithm to retrieve clusters
in AI-block models. We consider a number of AI-block models of increasing complexity where
we compare the performance of our algorithm with state-of-the-art methods in literature, the
Hierarchical Clustering (HC) using the madogram as dissimilarity and the spherical k-means
(SKmeans) algorithms. We design three resulting partitions in the limit model:

E1 X is composed of two blocks O1 and O2, of equal lengths where X(O1) and X(O2) are extreme-
valued random vectors with a Logistic distribution and β1 = β2 = 10/7.

E2 X is composed of G = 5 blocks of random sample sizes d1, . . . , d5 from a multinomial distribution
with parameter qg = 0.5g for g ∈ {1, . . . , 4} and q5 = 1 −

∑4
g=1 qg. Each random vector is

distributed according to a Logistic distribution where parameters βg = 10/7 for g ∈ {1, . . . , 5}.
E3 We consider the same model as E2 where we add 5 singletons. Then we have 10 resulting

clusters. Model with singletons are known to be the hardest model to recover in the clustering
literature.

We consider observations from the model in (20) in Section 4, where we simulate them with a
nested Archimedean copula as in (22) using the method proposed by the copula R package (Marius
Hofert and Martin Mächler 2011). The goal of our algorithm is to cluster d variables in Rn. Thus, to
make comparisons, we transpose the dataset for the k-means algorithm in order to obtain centroids
in Rd. In contrast to our “blindfolded” algorithm that automatically infers the number of clusters,
we need to specify it for SKmeans and HC. These procedures with this wisely chosen parameter are
called “oracles”. Several simulation frameworks are considered and detailed in the following.

F1 We first investigate the choice of the intermediate sequence m of the block length used for
estimation. We let m ∈ {3, 6, . . . , 30} with a fixed sample size n = 10000 and k = ⌊n/m⌋.

F2 We compute the performance of the structure learning method for varying sample size n. Since
the value of m which is required for consistent estimation is unknown in practice we choose
m = 20.

F3 We show the relationship between the average SECO and exact recovery rate of the method
presented in Section 3.4. We use the case n = 16000, k = 800 and d = 1600 to study the “large
k, large d” of our cross-validation approach.

In the simulation study, we use the fixed threshold α = 2 × (1/m +
√
ln(d)/k) for F1 and

F2 since our theoretical results given in Theorem 4 suggest the usage of a threshold proportional
dm +

√
ln(d)/k and we can show, in the i.i.d. settings (where p = 1) that dm = O(1/m) (see details

in Section Appendix A.3). For F3, we vary α around its theoretical optimal value, on a fine grid.

Figure 1 states all the results we obtain from each experiment and framework considered in
this numerical section. We plot exact recovery rate for Algorithm (ECO) with dimensions d = 200
and d = 1600. In the “large d” setting with d = 1600, we consider the performance of the HC
algorithm using the madogram as a dissimilarity measure and the spherical k-means in the first two
frameworks. Each experiment is performed using p = 0.9. We refer the reader to Appendix C.3.2 for
numerical results using p ∈ {0.5, 0.7, 1.0}. As expected, the performance of our algorithm in F1 (see
Figure 1, first row) is initially increasing in m, reaches a peak, and then decreases. This phenomenon
depicts a trade-off between the sub-asymptotically regime and the accuracy of inference. Indeed, a
large block’s length m induces a lesser bias as we reach the domain of attraction. However, the
number of block k is consequently decreasing and implies a high variance for the inference process.
These joint phenomenona explain the parabolic form of the exact recovery rate for our algorithms
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for d ∈ {200, 1600}. Considering the framework F2 the performance of our algorithm is better as
the number of block-maxima increases (see Figure 1, second row).

A classical pitfall for learning algorithms is high dimensional settings. Here, when the dimension
increases from 200 to 1600, our algorithm consistently reports the maximal element Ō with a
reasonable number of blocks. This is in accordance with our theoretical findings, as the difficulty
of clustering in AI-block models, as quantified by η in Theorem 4, scales at a rate of

√
ln(d)k−1.

This rate has a moderate impact on the dimension d. In the framework F3, the numerical studies in
Figure 1 (third row) shows that the optimal ranges of τ values, for high exact recovery percentages,
are also associated with low average SECO losses. This supports our data-driven choices of τ
provided in Section 3.4.

We notice that the HC algorithm using the madogram as dissimilarity performs very well in
each configuration even when the inference is strongly biased, i.e., the block length m is small hence
we are far from the domain of attraction. This can be explained by the fact that madograms are

lower when a
Ō∼ b and higher when a

Ō
̸∼ b. This is effectively true by construction of the madogram

in the domain of attraction of X but it is even true in our considered sub-asymptotic framework.
Hence, by construction of the HC, i.e., by merging the two closest centroids in terms of madogram,
we obtain the correct partitioning of X even when the domain of attraction is not reached. To
compare, our algorithm gives one and unique cluster, i.e., the vector is completely dependent, when
the block’s length m is too small and we are not yet in the domain of attraction of X. This behavior
is desirable as it corresponds to what it is effectively observed, the whole vector is dependent. This
is a leading argument for model-based clustering which are designed for a specific model and where
the inference remains coherent with the constructed target. One drawback of using HC with the
madogram, as previously described, is the need to specify the number of groups G beforehand,
which is not always straightforward. Despite this limitation, the HC procedure with the madogram
performs well in retrieving clusters in AI-block models when the true number of clusters is known.
Further researches can be lead in order to adapt our algorithm with a hierarchical design as proposed
by Lee, Deng, and Ning 2021 for the algorithm of Bunea et al. 2020.

For the same reasons as for the HC case, the SKmeans performs well for Experiment (E1) and
Experiment (E2) for all considered values of m. However, when we consider Experiment (E3), its
performance drastically decreases. Furthermore, the exact recovery rate decreases as m increases,
which is not desirable in extreme settings. However, a rigorous method for choosing G is currently
lacking and it remains an hyperparameter that must be chosen by the statistician. When the
hyperparameter is known and equal to the true value, clusters are correctly inferred for Experiments
E1 and E2 for the HC algorithm and the SKmeans, but not for Experiment E3 for the SKmeans.
Our algorithm, with the threshold specified in Theorem 4, can reach this level of performance
depicted by the HC with madogram without specifying the number of clusters.

7. Conclusions

Our main focus in this work was to develop and analyze an algorithm for recovering clusters in AI-
block models, and to understand how the dependence structure of maxima impacts the difficulty of
clustering in these models. This is particularly challenging when we are dealing with high-dimensional
data and weakly dependent observations that are sub-asymptotically distributed. In order to better
understand these phenomena, we ask stronger assumptions about the extremal dependence structure
in our theoretical analysis. Specifically, we assume the asymptotic independence between blocks,
which is the central assumption of AI-block models. This assumption allows us to study the effects
of the dependence structure and to develop and analyze an efficient algorithm for recovering clusters
in these AI-block models. This procedure can recover the clusters with high probability by setting
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Figure 1. Simulation results with p = 0.9. From top to bottom: Framework F1, Framework F2, Framework F3. From left
to right: Experiment E1, Experiment E2, Experiment E3. Exact recovery rate for our algorithm (red, diamond points), for
the HC (blue, plus points) and the SKmeans (green, star points) for F1 and F2 across 100 runs. Dotted lines correspond to
d = 200, solid lines to d = 1600. The threshold τ is taken as 2× (1/m+

√
ln(d)/k). For F3, average SECO losses (red

solid lines, circle points) and exact recovery percentages (blue dotted lines, diamond points) across 100 simulations. For
better illustration, the SECO losses are standardized first by subtracting the minimal SECO loss in each figure, and the
standardized SECO losses plus 1 are then plotted on the logarithmic scale.

a threshold that is only logarithmic in the dimension d. However, it is still of interest to relax
assumptions to cover a wider range of scenarios and problems that might be encountered in practice.
We outline some potential directions for further researches below.

In this paper, we find a bound for the minimal extremal correlation separation η > 0. A further
goal is to find the minimum value η∗ below which it is impossible, with high probability, to exactly



High-dimensional clustering of sub-asymptotic maxima of a weakly dependent process 21

recover Ō by any method. This question can be formally expressed using Le Cam’s theory as follows:

inf
Ô

sup
X∈X(η)

PX (Ô ̸= Ō) ≥ constant > 0, ∀ η < η∗,

with X(η) = {X ,MECO(X ) > η} and the infimum is taken over all possible estimators. One possible
direction to obtain such a result is to follow methods introduced by Drees 2001 for risk bounds of
extreme value index. An interesting consequence of this result is to determine whether our procedure
is optimal (in a minimax sense), i.e., whether the order of η∗ and the one found in Theorem 4 are
the same.

In practice, the dependence structure can be much more complicated and Condition B may
not hold. In its seminal work Ryabko 2017 proposed a conditional independence test to determine
whether an element j belongs to a cluster Ô1 without considering pairwise dependence between all
components of the cluster. Specifically, it is asked whether

X(Ô1) ⊥⊥ X(j)|
(
{1, . . . , d} \ (Ô1 ∪ {j})

)
.

Defining a suitable conditional independence for extreme modeling is involving, as noted in Papas-
tathopoulos and Strokorb 2016, because the classical definition of conditional independence leads to
trivial structure for max-stable distributions. To overcome this hindrance, conditional independence
for extremes often involves the distribution of a random vector

(X, Y ) = (X(1), . . . , X(d), Y ),

where the conditional limit of X given Y is large (see, e.g., Heffernan and Tawn 2004; Heffernan
and Resnick 2007 or Aghbalou et al. 2021 for a different approach designed for supervised learning).
A notion of multivariate conditional independence for extremes, which is used for graph inference,
is relatively new. Engelke and Hitz 2020 define such a notion for multivariate Pareto and requires
absolute continuity with respect to the Lebesgue measure of the exponent measure, hence our
Condition B. The graphical model introduced in Segers 2020 only requires the existence of a density
in the vector tree X and this can exhibit asymptotic independence. However, when applied in
practice (see e.g. Asenova, Mazo, and Segers 2021), an Hüsler-Reiss density is asked, which implies
Condition B. This leads to a trivial maximal element, Ō = {1, . . . , d}. In Gissibl and Klüppelberg
2018, a causal-max linear Bayesian network is proposed and leads to graphical models with discrete
dependence structure on a directed acyclic graph. Considering our framework in directed acyclic
graph points out new research directions and possible future works. We may also drop Condition B
by taking advantage of the specific geometry of the angular measure in AI-block models by infering
clusters with methods from topological data analysis.

A more general version of the extremal conditional independence notion in Engelke and Hitz
2020 is given in Definition 3.1 in Engelke, Ivanovs, and Strokorb 2022, which naturally translates
to a forest of asymptotically independent trees in the context of graphs. Motivated by modern
applications in which extremal graphs are constructed based on a pre-clustering method such as
k-medoids (see, e.g., Hentschel, Engelke, and Segers 2022), we see our work as a dedicated tool for
this purpose, as the target clusters of our model have an interpretation in terms of extremal graphs.
Therefore, combining our work on threshold exceedances (specifically the result of Theorem 4) and
extending Theorem 3 of Engelke and Volgushev 2022 to handle mixing observations can lead to
a strongly consistent method for learning extremal forests based on the maxima of a multivariate
weakly dependent random process.
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Appendix A. Proofs of main results

Appendix A.1 Proofs of Section 2

In Proposition 1, we prove that the function introduced in Section 2.2 is an extreme-value copula.
We do this by showing that its margins are distributed uniformly on the unit interval [0,1] and that
it is max-stable, which is a defining characteristic of extreme-value copulae.

Proof of Proposition 1 We first show that C is a copula function. It is clear that C(u) ∈ [0, 1]
for every u ∈ [0, 1]d. We check that its univariate margins are uniformly distributed on [0, 1].
Without loss of generality, take u(i1,1) ∈ [0, 1] and let us compute

C(1, . . . , u(i1,1), . . . , 1) = C(O1)(u(i1,1), 1, . . . , 1) = u(i1,1).

So C is a copula function. We now have to prove that C is an extreme-value copula. We recall that
C is an extreme-value copula if and only if C is max-stable, that is for every m ≥ 1

C(u(1), . . . , u(d)) = C({u(1)}1/m, . . . , {u(d)}1/m)m.

By definition, we have

C({u(1)}1/m, . . . , {u(d)}1/m)m = ΠGg=1

{
C(Og)

(
{u(ig,1)}1/m, . . . , {u(ig,dg )}1/m

)}m
.

Using that C(O1), . . . , C(OG) are extreme-value copulae, thus max stable, we obtain

C({u(1)}1/m, . . . , {u(d)}1/m)m = ΠGg=1C
(Og)

(
u(ig,1), . . . , u(ig,dg )

)
= C(u(1), . . . , u(d)).

Thus C is an extreme-value copula. Finally, we prove that C is associated to the random vector
X = (X(O1), . . . ,X(OG)), that is

P {X ≤ x} = C(H(1)(x(1)), . . . ,H(d)(x(d))), x ∈ Rd.

Using mutual independence between random vectors, we have

P {X ≤ x} = ΠGg=1P
{
X(ig,1) ≤ x(ig,1), . . . , X(ig,dg ) ≤ x(ig,dg )

}
= ΠGg=1C

(Og)
(
H(ig,1)(x(ig,1)), . . . ,H(ig,dg )(x(ig,dg ))

)
= C(H(1)(x(1)), . . . ,H(d)(x(d))).

Hence the result.
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Theorem 1, proved below, establishes several fundamental properties of the set L(Z), including
the fact that subpartitions of an element O ∈ L(Z) also belong to L(Z) (item (i)), the ordering of
partitions and their intersections (item (ii)) and the stability of the intersection of two elements
O,S ∈ L(Z) (item (iii)). Using these results, the theorem also provides an explicit construction of
the unique maximal element Ō(Z) of L(Z) (see item (iv)).

Proof of Theorem 1 For (i), if Z ∼ S, then there exist an extreme value random vector
with distribution H such that F ∈ D(H) and a partition S = {S1, . . . , SG} of {1, . . . , d} which
induces mutually independent random vectors X(S1), . . . ,X(SG). As S is a sub-partition of O, it
also generates a partition where vectors are mutually independent.

Now let us prove (ii), take g ∈ {1, . . . , G} and a, b ∈ (O ∩ S)g, in particular a
O∼ b, thus there

exists g′ ∈ {1, . . . , G′} such that a, b ∈ Og′ . The following inclusion (O∩S)g ⊆ Og′ is hence obtained
and the second statement follows.

The third result (iii) comes down from the definition for the direct sense and by (i) and (ii)
for the reverse one. We now go to the last item of the theorem, i.e. item (iv). The set L(Z) is
non-empty since the trivial partition O = {1, . . . , d} belongs to L(Z). It is also a finite set, and we
can enumerate it L(Z) = {O1, . . . , OM}. Define the sequence O′

1, . . . , O
′
M recursively according to

• O′
1 = O1,

• O′
g = Og ∩O′

g−1 for g = 2, . . . ,M .

According to (iii), we have that by induction O′
1, . . . O

′
M ∈ L(Z). In addition, we have both

O′
g−1 ≤ O′

g and Og ≤ O′
g, so by induction O1, . . . , Og ≤ O′

g. Hence the partition Ō(Z) := O′
M =

O1 ∩ · · · ∩OM−1 is the maximum of L(Z).

We extend the well-known inequality A ≤ 1, which holds if and only ifX1, . . . , Xd are independent
random variables, to the case of random vectors. Specifically, X(O1), . . . ,X(OG) are independent if
and only if A = A(O) (see Equation (8)). We provide two methods for establishing this result: the
first leverages the convexity and homogeneity of order one of the stable tail dependence function,
while the second takes advantage of the associativity of extreme-value random vectors.

Proof of Proposition 2 For the first method, the stable tail dependence function L is subadditive
as an homogeneous convex function under a cone, i.e.,

L(x+ y) ≤ L(x) + L(y),

for every x,y ∈ [0,∞)d. In particular, we obtain by induction on G

L

 G∑
g=1

x(g)

 ≤
G∑
g=1

L(x(g)),

where x(g) ∈ [0,∞)d and g ∈ {1, . . . , G}. Consider now z(Og) = (0, z(ig,1), . . . , z(ig,dg ),0), we directly
obtain using the equation above

L(z) = L

 G∑
g=1

z(Og)

 ≤
G∑
g=1

L(z(Og)) =
G∑
g=1

L(Og)(z(ig,1), . . . , z(ig,dg )).
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Translating the above inequality in terms of Pickands dependence function results on

A(t) ≤
G∑
g=1

1

z(1) + · · ·+ z(d)
L(Og)(z(ig,1), . . . , z(ig,dg ))

=
G∑
g=1

z(ig,1) + · · ·+ z(ig,dg )

z(1) + · · ·+ z(d)
A(Og)(t(ig,1), . . . , t(ig,dg )),

where t(i) = z(i)/(z(1) + · · ·+ z(d)). Hence the result.

We can also prove this result by using the associativity of extreme-value distributions (see
Proposition 5.1 of Marshall and Olkin 1983 or Section 5.4.1 of Resnick 2008), i.e.,

E [f(X)g(X)] ≥ E [f(X)]E [g(X)] ,

for every increasing (or decreasing) functions f, g. By induction on G ∈ N∗,

E
[
ΠGg=1f

(g)(X)
]
≥ ΠGg=1E

[
f (g)(X)

]
. (24)

Take f (g)(x) = 1{]−∞,x(Og)]} for each g ∈ {1, . . . G}, thus Equation (24) gives

C(H(1)(x(1)), . . . ,H(d)(x(d))) ≥ ΠGg=1C
(Og)

(
H(Og)

(
x(Og)

))
,

which can be restated in terms of stable tail dependence function as

L(z) ≤
G∑
g=1

L(Og)(z(Og)).

We obtain the statement expressing this inequality with Pickands dependence function. Finally,
notice that (24) with f (g)(x) = 1{]−∞,x(Og)]} for each g ∈ {1, . . . G} holds as an equality if and only

if X(O1), . . . ,X(OG) are independent random vectors.

Appendix A.2 Proofs of Section 3

In analogy to Equation (23) in the main text, let Con,m be the empirical estimator of the copula Cm

based on the (unobservable) sample (U
(j)
m,1, . . . , U

(j)
m,k) for j ∈ {1, . . . , d}. The proof of Proposition 4

will use twice Lemma 4, which shows that ||Con,m −C||∞ converges almost surely to 0. The proof of
this lemma is postponed to Section Appendix C.1 of supplementary results.

Proof of Proposition 4 We aim to show the following convergence

|ν̂n,m − ν| a.s.−→
n→∞

0,

where ν is the theoretical madogram of the extreme value random vector X given in (14) and ν̂n,m
the madogram estimator in (16). Let us define the following quantity

ν̂on,m =
1

k

k∑
i=1

 d∨
j=1

U
(j)
m,i −

1

d

d∑
j=1

U
(j)
m,i

 , (25)
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that is the madogram estimated through the sample Um,1, . . . ,Um,k. Following Lemma A.1 of
Marcon et al. 2017, we can show that

ν̂on,m − ν = ϕ(Con,m − C),

with ϕ : ℓ∞([0, 1]d) → ℓ∞(∆d−1), f 7→ ϕ(f) defined by

ϕ(f) =
1

d

d∑
j=1

∫
[0,1]

f(1, . . . , 1, u︸︷︷︸
j-th component

, 1, . . . , 1)du−
∫
[0,1]

f(u, . . . , u)du.

Using Conditions C and D, by Lemma 4 in Section Appendix C.1, as ||Con,m−C||∞ converges almost
surely to 0, we obtain that ∣∣ν̂on,m − ν

∣∣ a.s.−→
n→∞

0. (26)

Furthermore, using the chain of inequalities and again Lemma 4 in Section Appendix C.1,∣∣ν̂n,m − ν̂on,m
∣∣ ≤ 2 sup

j∈{1,...,d}
sup
x∈R

∣∣∣F̂ (j)
n,m(x)− F (j)

m (x)
∣∣∣

≤ 2 sup
j∈{1,...,d}

sup
u∈[0,1]

∣∣∣∣∣1k
k∑
i=1

1{U(j)
m,i≤u}

− u

∣∣∣∣∣ .
Then we obtain that ∣∣ν̂n,m − ν̂on,m

∣∣ a.s.−→
n→∞

0. (27)

Now, write
|ν̂n,m − ν| ≤

∣∣ν̂n,m − νon,m
∣∣+ ∣∣ν̂on,m − ν

∣∣ ,
and use Equations (26) and (27) to obtain the statement.

In Proposition 5 we state a concentration inequality for the madogram estimator. This inequality
is obtained through two main steps, that are using classical concentration inequalities, such as Ho-
effding and McDiarmid inequalites and chaining arguments in our specific framework of multivariate
mixing random process.

Proof of Proposition 5 As in the proof of Proposition 4, we consider ν̂on,m (see Equation (25))
be the madogram using the sample Um,1, . . . ,Um,k. By the triangle inequality, we have

|ν̂n,m − νm| ≤
∣∣ν̂n,m − ν̂on,m

∣∣+ ∣∣ν̂on,m − νm
∣∣ .

For the second term, using the triangle inequality, we obtain

∣∣ν̂on,m − νm
∣∣ ≤ 1

k

k∑
i=1


∣∣∣∣∣∣
d∨
j=1

U
(j)
m,i − E

 d∨
j=1

U
(j)
m,i

∣∣∣∣∣∣+
∣∣∣∣∣∣1d

d∑
j=1

U
(j)
m,i − E

1
d

d∑
j=1

U
(j)
m,i

∣∣∣∣∣∣


≜ E1 + E2,

and for the first term,∣∣ν̂n,m − ν̂on,m
∣∣ ≤ 2 sup

j∈{1,...,d}
sup
x∈R

∣∣∣F̂ (j)
n,m(x)− F (j)

m (x)
∣∣∣ ≜ E3.

The rest of this proof is devoted to control each term: E1, E2 and E3. Notice that the sequences

(
∨d
j=1 U

(j)
n,m,i)

k
i=1, (d

−1
∑d

j=1 U
(j)
n,m,i)

k
i=1 and (1{M(j)

n,m,i≤x}
)ki=1 share the same mixing regularity as

(Zt)t∈Z as measurable transformation of this process. Thus, they are in particular algebraically
φ-mixing.
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Control of the term E1. For every i ∈ {1, . . . , k}, we have that ||
∨d
j=1 U

(j)
n,m,i||∞ ≤ 1, by applying

the Hoeffding’s inequality for algebraically φ-mixing sequences (see Corollary 2.1 of Rio 2017) we
can control the following event, for t > 0,

P {E1 ≥ t} ≤
√
e exp

{
− t2k

2||∆k||2∞

}
,

with ||∆k||2∞ = (1+4
∑k

i=1 φ(i))
2 ≥ 1+4

∑k−1
i=1 φ(i). The term in the numerator can be bounded as

1 + 4
k∑
i=1

φ(k) ≤ 1 + 4
k∑
i=1

λi−ζ ≤ 1 + 4λ

(
1 +

∫ k

1
x−ζdx

)
= 1 + 4λ

(
1 +

k1−ζ − 1

1− ζ

)
.

Using the assumption ζ > 1, we can upper bound k1−ζ by 1 and obtain

1 + 4λ

(
1 +

k1−ζ − 1

1− ζ

)
≤ 1 + 4λ

(
1 +

1

ζ − 1

)
= 1 +

4λζ

ζ − 1
.

We thus obtain

P
{
E1 ≥

t

3

}
≤

√
e exp

{
− t

2k

C3

}
,

where C3 > 0 is a constant depending on ζ and λ.

Control of the term E2. This control is obtained with the same arguments used for E1. Thus, we
obtain, for t > 0,

P
{
E2 ≥

t

3

}
≤

√
e exp

{
− t

2k

C3

}
.

Control of the term E3. This bound is more technical. Before proceeding, we introduce some
notations. For every j ∈ {1, . . . , d}, we define

α(j)
n,m =

(
P(j)
n,m − P(j)

m

)
, β(j)n,m(x) = α(j)

n,m(]−∞, x]), x ∈ R,

where P(j)
n,m corresponds to the empirical measure for the sample (M

(j)
m,1, . . . ,M

(j)
m,k) and P(j)

m is the

law of the random variable M
(j)
m . To control the term E3, we introduce chaining arguments as used

in the proof of Proposition 7.1 of Rio 2017. Let be j ∈ {1, . . . , d} fixed and N be some positive

integer to be chosen later. For any real x such that F
(j)
m (x) ̸= 0 and F

(j)
m (x) ̸= 1, let us write F

(j)
m (x)

in base 2 :

F (j)
m (x) =

N∑
l=1

bl(x)2
−l + rN (x), with rN (x) ∈ [0, 2−N [

where bl = 0 or bl = 1. For any L in [1, . . . , N ], set

ΠL(x) =

L∑
l=1

bl(x)2
−l and iL = ΠL(x)2

L.

Let the reals (xL)L be chosen in such a way that F
(j)
m (xL) = ΠL(x). With these notations

β(j)n,m(x) =β
(j)
n,m(Π1(x)) + β(j)n,m(x)− β(j)n,m(ΠN (x))

+
N∑
L=2

[
β(j)n,m(ΠL(x))− β(j)n,m(ΠL−1(x))

]
.
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Let the reals xL,i be defined by F
(j)
m (xL,i) = i2−L. Using the above equality, we get that

sup
x∈R

∣∣∣β(j)n,m(x)∣∣∣ ≤ N∑
L=1

∆L +∆∗
N ,

with
∆L = sup

i∈[1,2L]

∣∣∣α(j)
n,m(]xL,i−1, xL,i])

∣∣∣ and ∆∗
N = sup

x∈R

∣∣∣α(j)
n,m(]ΠN (x), x])

∣∣∣ .
From the inequalities

−2−N ≤ α(j)
n,m(]ΠN (x), x]) ≤ α(j)

n,m(]ΠN (x),ΠN (x) + 2−N ]) + 2−N ,

we get that

∆∗
N ≤ ∆N + 2−N and E

[
sup
x∈R

|β(j)n,m(x)|
]
≤ 2

N∑
L=1

||∆L||1 + 2−N ,

where ||∆L||1 is the L1-norm of ∆L. Let N be the natural number such that 2N−1 < k ≤ 2N . For
this choice of N , we obtain

E
[
sup
x∈R

|β(j)n,m(x)|
]
≤ 2

N∑
L=1

||∆L||1 + k−1.

Hence, using Lemma 7.1 of Rio 2017 (where we divide by
√
k the considering inequality in the

lemma), we obtain that

E
[
sup
x∈R

|β(j)n,m(x)|
]
≤ 2

C0√
k

N∑
L=1

(
2
− (ζ−1)2

(4ζ)2

)L
+ k−1

≤ 2√
k

C0

1− 2
− (ζ−1)2

(4ζ)2

+ k−1 ≜ C1k
−1/2 + k−1,

where C0 and C1 are constants depending on ζ and λ.
Now, fix x ∈ R and denote by Φ : Rk 7→ [0, 1], the function defined by

Φ(x1, . . . , xk) = sup
x∈R

∣∣∣∣∣1k
k∑
i=1

1{xi≤x} − F (j)
m (x)

∣∣∣∣∣ .
For x,y ∈ Rk, we obtain with some calculations:

|Φ(x)− Φ(y)| ≤ sup
x∈R

1

k

k∑
i=1

∣∣1{xi≤x} − 1{yi≤x}
∣∣ ≤ 1

k

k∑
i=1

1{xi ̸=yi}.

Thus, Φ is k−1-Lipschitz with respect to the Hamming distance. Under algebraically φ-mixing

process, we may apply Theorem 8 of Mohri and Rostamizadeh 2010 with (M
(j)
m,1, . . . ,M

(j)
m,k), we

obtain with probability at least 1− exp{−t2k/C3}

sup
x∈R

∣∣∣F̂ (j)
n,m(x)− F (j)

m (x)
∣∣∣ ≤ E

[
sup
x∈R

∣∣∣β(j)n,m(x)∣∣∣]+ t

3
≤ C1k

−1/2 + C2k
−1 +

t

3
.
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Thus, with probability at most exp{−t2k/C3}

sup
x∈R

∣∣∣F̂ (j)
n,m(x)− F (j)

m (x)
∣∣∣ ≥ C1k

−1/2 + k−1 +
t

3
.

Using Bonferroni inequality

P
{
E3 ≥

t

3

}
≤ dP

{
sup
x∈R

∣∣∣F̂ (j)
n,m(x)− F (j)

m (x)
∣∣∣ ≥ t

}
,

we thus obtain a control bound for E3. Assembling all the controls obtained for E1, E2 and E3, we
obtain the desired result.

We present here the strong consistency of our procedure when the dimension d is fixed the
sample size n grows at infinity. The main technicality of the proof has already been tackled in
Proposition 4.

Proof of Theorem 3 If a and b are not in the same cluster according to Ō, i.e. a
Ō
̸∼ b, then with

Condition B satisfied, χ(a, b) = 0. Therefore, using Proposition 4 along with Conditions C and D,
we can conclude that almost surely

lim
n→∞

χ̂n,m(a, b) = 0 ≤ τ.

Now, if a
Ō∼ b, then χ(a, b) > 0 and again by Propositions 4 and Conditions C and D, we the almost

sure convergence
lim
n→∞

χ̂n,m(a, b) = χ(a, b) > 0,

hence

a
Ō∼ b ⇐⇒ lim

n→∞
χ̂n,m(a, b) > 0.

Let us prove Theorem 3 by induction on the algorithm step l. We consider the algorithm at some step
l− 1 and assume that the algorithm was consistent up to this step, i.e. Ôj = Ōj for j = 1, . . . , l− 1.

If lim
n→∞

χ̂n,m(al, bl) = 0, then no b ∈ S is in the same group of al. Since the algorithm has been

consistent up to this step l, it means that al is a singleton and Ôl = {al}.
If lim
n→∞

χ̂n,m(al, bl) > 0, then al
Ō∼ b. The equivalence above implies that Ôl = S ∩ Ōl. Since the

algorithm has been consistent up until this step, we know that Ôl = Ōl. Therefore, the algorithm
remains consistent at step l with probability tending to one as n→ ∞, and Theorem 3 follows by
induction.

The proof of Theorem 4 needs the following results : (1) an upper bound over the quantity
|θ̂n,m(a, b) − θm(a, b)| with respect to |ν̂n,m(a, b) − νm(a, b)| to use the concentration inequality
introduced in Proposition 5, (2) exhibit an event such that {Ô = Ō}. Lemmas 1 and 2 below
address these two questions. Then, taking benefits of these results, we show that the probability of
the exhibited event such that {Ô = Ō} holds with high probability, as stated in Theorem 4.

Lemma 1. Consider a pair (a, b) ∈ {1, . . . , d}2, the following inequality holds:

|θ̂n,m(a, b)− θm(a, b)| ≤ 9|ν̂n,m(a, b)− νm(a, b)|.
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Proof of Lemma 1 We may write the respective quantities as θ = f(ν(a, b)) and θ̂n,m =
f(ν̂n,m(a, b)) where f is a function defined as follows,

f : [0, 1/6] → [1, 2]

x 7→ 1/2+x
1/2−x ,

with f(x) ∈ [1, 2] by definition of the sub-asymptotic extremal coefficient θm. The domain of this
function is restricted to the interval [0, 1/6] because we have f(x) ≤ 2, or

x+
1

2
≤ 1− 2x,

which holds if x ≤ 1/6. The inequality f(x) ≥ 1 gives the positivity of the domain. In particular,
x < 1/2 and thus 2−1 − x ≥ 3−1 > 0. Taking derivative of f , we find that

|f ′(x)| = 1

(1/2− x)2
≤ 32, x ∈ [0, 1/6] .

Therefore, f is 9-Lipschitz continuous and we have

|θ̂n,m(a, b)− θm(a, b)| = |f(ν̂n,m(a, b))− f(νm(a, b))| ≤ 9|ν̂n,m(a, b)− νm(a, b)|.

This completes the proof.

Lemma 2. Consider the AI-block model in Definition 1 under Condition B. Define

κ = sup
a,b∈{1,...,d}

|χ̂n,m(a, b)− χ(a, b)|.

Consider parameters (τ, η) fulfilling

τ ≥ κ, η ≥ κ+ τ. (28)

If MECO(X ) > η, then Algorithm (ECO) yields Ô = Ō.

Proof of Lemma 2 If a
Ō
̸∼ b, then χ(a, b) = 0 by Condition B and

χ̂n,m(a, b) = χ̂n,m(a, b)− χ(a, b) ≤ κ ≤ τ.

Now, if a
Ō∼ b, if X ∈ X(η) then χ(a, b) > κ+ α and

κ+ τ < χ(a, b)− χ̂n,m(a, b) + χ̂n,m(a, b),

and thus χ̂n,m(a, b) > τ . In particular, under (28) and the separation condition MECO(X ) > η, we
have

a
Ō∼ b ⇐⇒ χ̂n,m(a, b) > τ. (29)

Let us prove the lemma by induction on the algorithm step l. We consider the algorithm at some step
l− 1 and assume that the algorithm was consistent up to this step, i.e. Ôj = Ōj for j = 1, . . . , l− 1.

If χ̂n,m(al, bl) ≤ τ , then according to (29), no b ∈ S is in the same group of al. Since the
algorithm has been consistent up to this step l, it means that al is a singleton and Ôl = {al}.

If χ̂n,m(al, bl) > τ , then al
Ō∼ b according to (29). Furthermore, the equivalence implies that

Ôl = S ∩ Ōl. Since the algorithm has been consistent up to this step, we have Ôl = Ōl. To conclude,
the algorithm remains consistent at the step l and the result follows by induction.
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Proof of Theorem 4 We have that for t > 0 :

P

{
sup

a,b∈{1,...,d}
|θ̂n,m(a, b)− θm(a, b)| ≥ t

}
≤ d2P

{
|θ̂n,m(a, b)− θm(a, b)| ≥ t

}
.

With probability at least 1− 2(1+
√
e)d2 exp{−t2k/C3}, using Proposition 5 and Lemma 1, one has

sup
a,b∈{1,...,d}

∣∣∣θ̂n,m(a, b)− θ(a, b)
∣∣∣ ≤ dm + C1k

−1/2 + C2k
−1 + t,

By considering δ ∈]0, 1[ and solve the following equation

δ

d2
= 2(1 +

√
e) exp

{
−kt

2

C3

}
,

with respect to t gives that the event

sup
a,b∈{1,...,d}

∣∣∣θ̂n,m(a, b)− θ(a, b)
∣∣∣ ≥ dm + C1k

−1/2 + C2k
−1 + C3

√
1

k
ln

(
2(1 +

√
e)d2

δ

)
,

is of probability at most δ. Now, taking δ = 2(1 +
√
e)d−2γ , with γ > 0, we have

sup
a,b∈{1,...,d}

∣∣∣θ̂n,m(a, b)− θ(a, b)
∣∣∣ ≤ dm + C1k

−1/2 + C2k
−1 + C3

√
(1 + γ) ln(d)

k
,

with probability at least 1− 2(1 +
√
e)d−2γ for C3 sufficiently large. The result then follows from

Lemma 2 along with Condition B and algebraically φ-mixing random process, since

P

{
κ ≤ dm + C1k

−1/2 + C2k
−1 + C3

√
(1 + γ) ln(d)

k

}
≥ 1− 2(1 +

√
e)d−2γ ,

and MECO(X ) > η by assumption.

Now, we prove the theoretical result giving support to our cross validation process.

Proof of Proposition 6 Notice that, by using Proposition 4 along with Conditions C and D,

θ̂
(Og)
(1) for g ∈ {1, . . . , G} and θ̂(2) are strongly consistent. Then it holds that

ŜECO(Ō)
a.s.−→
n→∞

SECO(Ō) = 0

Using Lebesgue’s theorem, we obtain

lim
n→∞

E
[
ŜECO(Ō)

]
= 0.

Furthermore, applying again Lebesgue theorem

0 < E
[
SECO(Ô)

]
= lim

n→∞
E
[
ŜECO(Ô)

]
.

To conclude,

lim
n→∞

E
[
ŜECO(Ō)

]
< lim

n→∞
E
[
ŜECO(Ô)

]
.

Hence the result.
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Appendix A.3 Proofs of Section 4

In the following we prove that the model introduced in Section 4 is in the domain of attraction of an
AI-block model. This comes down from some elementary algebra where the fundamental argument
is given by Proposition 4.2 in Bücher and Segers 2014, from which the inspiration for the model was
drawn thereof.

Proof of Proposition 7 We aim to show that the following quantity∣∣∣∣Cθ,β0 (C(O1)
θ,β1

({u(O1)}1/m), . . . , C(OG)
θ,βG

({u(OG)}1/m)
)m

− C0,β0

(
C

(O1)
0,β1

(u(O1)), . . . , C
(OG)
0,βG

(u(OG))
) ∣∣∣∣,

converges to 0 uniformly in u ∈ [0, 1]d. Using Equation (21) in the main article, the latter term is
equal to

E0,m :=

∣∣∣∣Cθ,β0 (C(O1)
θ/m,β1

(u(O1))1/m, . . . , C
(OG)
θ/m,βG

(u(OG))1/m
)m

− C0,β0

(
C

(O1)
0,β1

(u(O1)), . . . , C
(OG)
0,βG

(u(OG))
) ∣∣∣∣.

Thus, again with Equation (21) and triangle inequality

E0,m ≤
∣∣∣∣Cθ/m,β0 (C(O1)

θ/m,β1
(u(O1)), . . . , C

(OG)
θ/m,βG

(u(OG))
)

− C0,β0

(
C

(O1)
θ/m,β1

(u(O1)), . . . , C
(OG)
θ/m,βG

(u(OG))
) ∣∣∣∣

+

∣∣∣∣C0,β0

(
C

(O1)
θ/m,β1

(u(O1)), . . . , C
(OG)
θ/m,βG

(u(OG))
)

− C0,β0

(
C

(O1)
0,β1

(u(O1)), . . . , C
(OG)
0,βG

(u(OG))
) ∣∣∣∣

=: E1,m + E2,m.

As Cθ/m,β0 converges uniformly to C0,β0 , then, uniformly in u ∈ [0, 1]d, E1,m −→
m→∞

0. Now, using

Lipschitz property of the copula function, one has

E2,m ≤
G∑
g=1

∣∣∣C(Og)
θ/m,βg

(u(Og))− C
(Og)
0,βg

(u(Og))
∣∣∣ ,

which converges almost surely to 0 as m→ ∞. The limiting copula is an extreme value copula by
β0 ≤ min{β1, . . . , βG}, see Example 3.8 of Hofert, Huser, and Prasad 2018. Hence the result.

Proof of Remark 3 Take a ̸= b fixed, we have, using Lemma 1

|χm(a, b)− χ(a, b)| = |θm(a, b)− θ(a, b)| ≤ 9 |νm(a, b)− ν(a, b)| ,

where νm(a, b) (resp. ν(a, b)) is the madogram computed between M
(a)
m and M

(b)
m (resp. between

X(a) and X(b)) and we use Lemma 1 to obtain the inequality. Using the results of Lemma 1 of
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Marcon et al. 2017, we have

νm(a, b)− ν(a, b) =
1

2

(∫
[0,1]

(Cm − C)(1, x(a),1)dx(a) +

∫
[0,1]

(Cm − C)(1, x(b),1)dx(b)

)

−
∫
[0,1]

(Cm − C)(1, . . . , x︸︷︷︸
ath index

, 1, . . . , 1, x︸︷︷︸
bth index

, . . . , 1)dx,

where the integration is taken respectively for the a-th, b-th and a,b-th components. Hence

|νm(a, b)− ν(a, b)| ≤ 1

2

(∫
[0,1]

|(Cm − C)(1, x(a),1)|dx(a) +
∫
[0,1]

|(Cm − C)(1, x(b),1)|dx(b)
)

+

∫
[0,1]

|(Cm − C)(1, . . . , x︸︷︷︸
ath index

, 1, . . . , 1, x︸︷︷︸
bth index

, . . . , 1)|dx.

Using Proposition 4.3 in Bücher and Segers 2014 we obtain that |Cm − C|(u) = O(1/m),
uniformly in u ∈ [0, 1]d. Hence the statement.

Appendix A.4 Proof of Proposition 8 in Section 5

Proofs of consistency theorems for k-means clustering oftenly needs a uniform strong law of large
numbers (SLLN) stated as

sup
g∈G

∣∣∣∣∫ gd(Pn − P)
∣∣∣∣ a.s.−→
n→∞

0, (30)

(see Section 4 of Pollard 1981), where P is a probability measure on B(Rd), Pn the empirical measure
and G a class of functions. Equation (30) is also stated as the class of functions G is Glivenko-Cantelli
(see Chapter 2 of Vaart and Wellner 1996). In Proposition 3.3 of Janßen and Wan 2020, where
P and Pn are replaced respectively by the angular measure S and its empirical counterpart Sn, it
is shown that condition (30) holds. In our framework, we consider the extreme value copula C,
the copula of block maxima Cm, its empirical counterpart Ĉn,m where the second is in the copula
domain of attraction of C. The consistency of k-means clustering using madogram directly comes
down from argments given in Janßen and Wan 2020 if we are able to state Equation (30) for a
specific class of function G where the madogram belongs to.

For this purpose, the notion of bounded variation of functions and in particular the integration
by part formula for Lebesgue-Stieltjes integral are of prime interest (see, for example, Theorem 6 of
Fermanian, Radulovic, and Wegkamp 2004). We will say that a function f is of bounded variation
in the sense of Hardy-Krause if VHK(f) <∞ (see Section 2 of Radulović, Wegkamp, and Zhao 2017
for a definition). Let us consider G as the class of functions which are continuous and VHK(g) <∞.

Proof of Proposition 8 We want to prove that for every g ∈ G∫
gdĈn,m

a.s.−→
n→∞

∫
gdC. (31)

Using integration by parts, we have that∫
gdĈn,m = Γ(Ĉn,m, g),
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where Γ(·, g) is a linear and Lipschitz function, hence continuous. Now, if we can state that

||Ĉn,m − C||∞
a.s.−→
n→∞

0, (32)

we obtain that Γ(Ĉn,m, g)
a.s.−→
n→∞

Γ(C, g), using continuity, hence (31). Let us prove Equation (32).

Using triangle inequality, we have

||Ĉn,m − C||∞ ≤ ||Ĉn,m − Con,m||∞ + ||Con,m − C||∞.

The second term in the right hand side converges almost surely to 0 by Lemma 4 (see Section
Appendix C.1) with Conditions C and D. It remains to work on the first term. Now, we have

||Ĉn,m − Con,m||∞ ≤ 1

k

k∑
i=1

|1{Û(j)
n,m,i≤u(j),1≤j≤d}

− 1{U(j)
m,i≤u(j),1≤j≤d}

|

≤ 1

k

k∑
i=1

Πd
j=11{Û(j)

n,m,i ̸=U
(j)
m,i}

.

Notice that, for every i ∈ {1, . . . , k} and j ∈ {1, . . . , d}

1{Û(j)
n,m,i ̸=U

(j)
m,i}

= 1{|Û(j)
n,m,i−U

(j)
m,i|>0}

≤ 1{sup
x∈R

|F̂ (j)
n,m(x)−F (j)

m (x)|>0} = 1{ sup
u∈[0,1]

| 1
k

∑k
i=1 1{U(j)

m,i
≤u}

−u|>0}.

Thus
||Ĉn,m − Con,m||∞ ≤ 1{ sup

u∈[0,1]
| 1
k

∑k
i=1 1{U(j)

m,i
≤u}

−u|>0}.

Denote by

An =

{
ω ∈ Ω : sup

u∈[0,1]

∣∣∣∣∣1k
k∑
i=1

1{U(j)
m,i≤u}

− u

∣∣∣∣∣ (ω) > 0

}
,

An,ϵ =

{
ω ∈ Ω : sup

u∈[0,1]

∣∣∣∣∣1k
k∑
i=1

1{U(j)
m,i≤u}

− u

∣∣∣∣∣ (ω) > ϵ

}
,

where ϵ > 0. Using Lemma 4 in Section Appendix C.1, we have that

P
{
lim sup
n→∞

An,ϵ

}
= 0.

Now, remark that An =
⋃
N≥1An,1/N . We thus have

P
{
lim sup
n→∞

An

}
= P

lim sup
n→∞

⋃
N≥1

An,1/N

 = P

⋃
N≥1

lim sup
n→∞

An,1/N

 .

Using σ-subadditivity of measures, we have

P
{
lim sup
n→∞

An

}
≤
∑
N≥1

P
{
lim sup
n→∞

An,1/N

}
= 0.
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Hence 1An = 0 almost surely as n→ ∞ which results on ||Ĉn,m − Con,m||∞ converges almost surely
to 0. We thus obtain (32) hence (31).

In order to prove Proposition 8, we prove in the following that the function

g(u) = min
g∈{1,...,G}

1

2

d∑
j=1

|u(j) − ψ(j)
g |, ψg ∈ [0, 1]d, g ∈ {1, . . . , G}.

is of bounded variations in the sens of Hardy Krause (BHKV). Indeed, for every j ∈ {1, . . . , d}, the
functions (u,v) 7→ u(j) and (u,v) 7→ v(j) are BHKV on [0, 1]d × [0, 1]d since it depends only on one
variable and is monotone in this variable. As the difference between two BHKV functions are BHKV,
it follows ∀j ∈ {1, . . . , d} the function (u,v) 7→ u(j) − v(j) is BHKV on [0, 1]d × [0, 1]d. Taking the
absolute value preserves the BHKV property on [0, 1]d. It follows that (u,v) 7→

∑d
j=1 |u(j) − v(j)| is

BHKV as a sum of functions that are BHKV. Multiplying by a constant preserves the bounded
variation property of the function. Finally, taking the min over a finite set of values in [0, 1]d

maintains the BHKV property as it holds for every (u,v) ∈ [0, 1]d × [0, 1]d. Hence g is BHKV and
clearly a continuous function. Thus using Equation (31) along with arguments from Theorem 3.1 in
Janßen and Wan 2020 we obtain the consistency the result.

Appendix B. Proofs of additional results from Section 2

Appendix B.1 Proof of Proposition 3

We will establish the result proceeding as (iii) =⇒ (i) =⇒ (ii) =⇒ (iii) where we directly have
(i) =⇒ (ii). Now for (iii) =⇒ (i), suppose Λ concentrates on the set (9). Then for x > 0, noting
Ag(x) = {u ∈ E,∃a ∈ Og, ua > xa} for g ∈ {1, . . . , G}, we obtain

− lnH(x) = Λ(E \ [0,x]) = Λ

 G⋃
g=1

Ag(x)


=

G∑
g=1

Λ(Ag(x)) +
G∑
g=2

(−1)g+1
∑

1≤i1<i2<···<il≤G
Λ(Ai1(x) ∩ · · · ∩Ail(x)),

so that because of Equation (9) in the main paper,

− lnH(x) =

G∑
g=1

Λ(Ag(x)),

and we have H(x) = ΠGg=1 exp {−Λ ({u ∈ E,∃a ∈ Og, ua > xa})} = ΠGg=1H
(Og)(x(Og)).

Thus H is a written as a product of the G distributions corresponding to random vectors
X(O1), . . . ,X(OG), as desired.

It remains to show (ii) =⇒ (iii). Set Q(Ok)(y(Ok)) = − lnP{X(Ok) ≤ y(Og)} for k ∈ {1, . . . , G}.
We have for y > 0 that blockwise independence implies, with k ̸= l,

Q(Ok)(y(Ok)) +Q(Ol)(y(Ol)) = − lnP{X(Ok) ≤ y(Ok),X(Ol) ≤ y(Ol)}.
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Since H(x) = exp{−Λ(E \ [0,x])} for x > 0, we have

Q(Ok)(y(Ok)) +Q(Ol)(y(Ol)) = Λ({x,∃a ∈ Ok, xa > ya} ∪ {x,∃b ∈ Ol, xb > yb})
= Λ({x,∃a ∈ Ok, xa > ya}) + Λ({x, ∃b ∈ Ol, xa > ya})
− Λ({x,∃a ∈ Ok, xa > ya, ∃b ∈ Ol, xb > yb})
= Q(Ok)(y(Ok)) +Q(Ol)(y(Ol))

− Λ({x,∃a ∈ Ok, xa > ya, ∃b ∈ Ol, xb > yb}),

and thus

Λ({x,∃a ∈ Ok, xa > ya,∃b ∈ Ol, xb > yb}) = 0,

so that (iii) holds. This is equivalent to Λ concentrates on the set in Equation (9) in the main paper.

Appendix B.2 Proof of Theorem 2

In this section, we will exhibit conditions under which subvectors X(O1), . . . ,X(OG) of an extreme
value random vector X with law H are independent whence (Zt, t ∈ Z) is a multivariate random
process in the domain of attraction of X, i.e., Z ∈ D(F ). It is known, by Remark 3 that independence
of X(O1), . . . ,X(OG) is equivalent to blockwise independence. So we first consider the case for G = 2.
As we consider a stationary mixing random process, the main technical issue is to approximate the
quantity P{Mm ≤ am(x)} with the quantity P{Mrm ≤ am(x)}k for a fixed integers k and an integer
sequence rm → ∞, which might be expected intuitively. We state below conditions to obtain such
an approximation. Specifically, let k be a fixed integer, we consider the maximum of 2k sub-blocks
as follows

M
odd,(j)
rm,1

,M
even,(j)
ℓm,1

, . . . ,M
odd,(j)
rm,k

,M
even,(j)
ℓm,k

, j ∈ {1, . . . , d}

such that M
odd,(j)
rm,i

,M
even,(j)
ℓm,i

, i ∈ {1, . . . , k} alternatively have length rm and ℓm. We so have the
following equality m = (rm + ℓm)k.

Lemma 3. Suppose Condition A holds for the stationary process (Zt, t ∈ Z). Fix x ∈ Rd, then the
following statements are equivalent:

(i) P{Mm ≤ am(x)} → c, as m→ ∞,
(ii) P{Modd

rm,1 ≤ am(x)}k → c, as m→ ∞,

(iii) k(1− P{Modd
rm,1 ≤ am(x)}) → − ln(c), as m→ ∞.

Proof of Lemma 3 Let 1 ≤ j ≤ d, we are going to show that∣∣∣∣∣P {Mm ≤ am(x)} − P

{
k∨
i=1

Modd
rm,i ≤ am(x)

}∣∣∣∣∣→ 0.

As
∨k
i=1M

odd,(j)
rm,i

≤M
(j)
m , we have∣∣∣1{Mm≤am(x)} − 1{

∨k
i=1 M

odd
rm,1≤am(x)}

∣∣∣
≤

d∑
j=1

1{
∨k

i=1M
odd,(j)
rm,i ≤a(j)m (x(j))<

∨k
i=1M

even,(j)
ℓm,i }.
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Taking the expectation and using stationarity, we obtain∣∣∣∣∣P{Mm ≤ am(x)} − P

{
k∨
i=1

Modd
rm,1 ≤ am(x)

}∣∣∣∣∣
≤

d∑
j=1

k P{Modd,(j)
rm,1

≤ a(j)m (x(j)) < M
even,(j)
ℓm,1

}.

Now, if m is sufficiently large we may choose ⌊rm/ℓm⌋ sub-blocks of size ℓm contained within the
first odd block of length rm

Mℓm,1,j , . . . ,Mℓm,⌊rm/ℓm⌋,j , j ∈ {1, . . . , d}

when we, again, keep the ones with odd index so that they are separated from each other and from

M
even,(j)
ℓm,1

by at least ℓm observations (if ⌊rm/ℓm⌋ is odd, we can drop the last block in order that
this condition holds). Then for every j ∈ {1, . . . , d}

P{Modd,(j)
rm,1

≤ a(j)m (x(j)) < M
even,(j)
ℓm,1

} ≤ P


⌊rm/ℓm⌋⋂
s=1

Modd
ℓm,s,j ≤ a(j)m (x(j)) < M

even,(j)
ℓm,1


= P


⌊rm/ℓm⌋⋂
s=1

Modd
ℓm,s,j ≤ a(j)m (x(j))


− P


⌊rm/ℓm⌋⋂
s=1

Modd
ℓm,s,j ≤ a(j)m (x(j)),M

even,(j)
ℓm,1

≤ a(j)m (x(j))

 .

By stationarity, P{Modd,(j)
ℓm,1

≤ a
(j)
m (x(j))} = P{M even,(j)

ℓm,1
≤ a

(j)
m (x(j))} =: pj , and by tools given in

the proof of Lemma 2.5 in Leadbetter 1974, the two terms of the right hand side differ from pℓmj
and pℓm+1

j by no more than (⌊rm/ℓm⌋ − 1)α(ℓm), (⌊rm/ℓm⌋)α(ℓm) respectively. Hence

P{Modd,(j)
rm,i

≤ a(j)m (x(j)) < M even
rm,i,j} ≤ 1

rm
ℓm

+ 1
+ 2

rm
ℓm
α(ℓm).

Thus, by Condition A as m→ ∞

kP{Modd,(j)
rm,1

≤ a(j)m (x(j)) < M
even,(j)
ℓm,1

} → 0.

Hence the first result. Now we will prove that∣∣∣∣∣P
{

k∨
i=1

Modd
rm,i ≤ am(x)

}
−Πk

i=1P
{
Modd

rm,i ≤ am(x)
}∣∣∣∣∣→ 0,

as m→ ∞. Write ψi,m = 1{Modd
rm,i≤am(x)} and note that

P

{
k∨
i=1

Modd
rm,i ≤ am(x)

}
= E

[
Πki=1ψi,m

]
.
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Proceding as in proof of Theorem 3.1 in Bücher and Segers 2014, one can show that∣∣∣E [Πki=1ψi,m

]
−Πki=1E[ψi,m]

∣∣∣ ≤ 4maxα
(
σ(ψi,m), σ(Π

k
i′=i+1ψi′,m)

)
,

where (σ(ψi,m), σ(Π
k
i′=i+1ψi′,m) denotes respectively the sigma-field induced by the random variables

ψi,m, Π
k
i′=i+1ψi′,m. Since the maxima M

odd,(j)
rm,i

over different blocks i ̸= i′ are based on observations
that are at least ℓm observations apart, the right hand size of the last display is of the order k α(ℓm).
The latter converges to 0 by Condition A. Using that, we obtain by stationarity that

P
{
Modd

rm,1 ≤ am(x)
}k

→ c, as m→ ∞.

The last equivalence follows straightforwardly with the last expression.

Proof of Theorem 2 As announced at the beginning of this section, we prove the result for
G = 2. Then Proposition 3 and the algebra involved in the proof of Theorem 2.2 of Takahashi 1994
give the statement of Theorem 2 for G > 2.

For any x ∈ Rd, 0 < H(O1)(x(O1)), H(O2)(x(O2)) < 1, there exists a finite cx > 0 such that
{H(O1)(x(O1))}1/s > H(O1)(p(O1)), {H(O2)(x(O2))}1/s > H(O2)(p(O2)), for every s ≥ cx, where p is
an element of Rd such that Equation (11) in the main text holds. Such a cx can be taken as:

cx = inf

{
c > 0,

{
H(Oi)(x(Oi))

}1/c
> H(Oi)(p(Oi)), i = 1, 2

}
Recall that by the decided subdivision of maxima stated at the begining of this section we have

m = (rm + ℓm)k. In particular, by Equation (10) in the main text with Lemma 3 gives

P
{
M

odd,(Oi)
rm,1

≤ a
(Oi)
(rm+ℓm)⌈sk⌉(x

(Oi))
}sk

−→
m→∞

H(Oi)(x(Oi))

where ⌈sk⌉ is the greatest integer less than or equal to sk. Thus

P
{
M

odd,(Oi)
rm,1

≤ a
(Oi)
(rm+ℓm)⌈sk⌉(x

(Oi))
}k

−→
m→∞

{
H(Oi)(x(Oi))

}1/s
, i = 1, 2. (33)

From the continuity of H(Oi), ∀s ≥ cx, we can find a q(Oi) ≥ p(Oi) such that

H(Oi)(q(Oi)) =
{
H(Oi)(x(Oi))

}1/s
, i = 1, 2

Denoting by q = (q(O1),q(O2)) with, by construction, q ≥ p.
From Equation (10) in the main text and Lemma 3, we obtain

P
{
M

odd,(Oi)
rm,1

≤ a(Oi)
m (q(Oi))

}k
→ H(Oi)(q(Oi)) =

{
H(Oi)(x(Oi))

}1/s
, i = 1, 2. (34)

Denoting by

A1(x) =
{
M

odd,(O1)
rm,1

≤ a(O1)
m (x(O1))

}
, A2(x) =

{
M

odd,(O2)
rm,1

≤ a(O2)
m (x(O2))

}
,

one has for a given x

P {[A1(x) ∩A2(x)]
c} = P {A1(x)

c ∪A2(x)
c}

= P {A1(x)
c}+ P {A2(x)

c} − P {A1(x)
c ∩A2(x)

c} .



High-dimensional clustering of sub-asymptotic maxima of a weakly dependent process 41

We thus obtain

P {A1(x)
c ∩A2(x)

c} = [1− P {A1(x)}] + [1− P {A2(x)}]
− [1− P {A1(x) ∩A2(x)}] . (35)

Then by hypothesis we have in both hands with Lemma 3

k [1− P {Ai(p)}] −→
m→∞

− lnH(Oi)(p(Oi)), i ∈ {1, 2}

k [1− P {A1(p) ∩A2(p)}] −→
m→∞

− lnH(O1)(p(O1))H(O2)(p(O2)).

Thus using the identity in (35) with x = p, we obtain.

k P {A1(p)
c ∩A2(p)

c} −→
m→∞

0.

By q ≥ p and using that A1(q)
c ∩A2(q)

c ⊂ A1(p)
c ∩A2(p)

c as a is non-decreasing, we have

k P {A1(q)
c ∩A2(q)

c} −→
m→∞

0.

Thus we have along with equality (35) (taking x = q) and Lemma 3

P
{
Modd

rm,1 ≤ am(q)
}k

−→
m→∞

H(O1)
(
q(O1)

)
H(O2)

(
q(O2)

)
. (36)

The RHS of the equation above is equal to{
H(O1)(x(O1))

}1/s {
H(O2)(x(O2))

}1/s
.

We now want to prove the following fact: ∀x ∈ Rd, ∃s ≥ cx such that[
∃p ≥ q, H(Oi)(q(Oi)) =

{
H(Oi)(x(Oi))

}1/s
]

implies [
lim
m→∞

∣∣∣∣P{Modd
rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)

}k
− P

{
Modd

rm,1 ≤ am(q)
}k∣∣∣∣ = 0

]
.

Reducing the propositon ad absurdum gives that ∃x ∈ Rd, ∀s ≥ cx such that[
∃p ≥ q, H(Oi)(q(Oi)) =

{
H(Oi)(x(Oi))

}1/s
]

and [
lim
m→∞

∣∣∣∣P{Modd
rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)

}k
− P

{
Modd

rm,1 ≤ am(q)
}k∣∣∣∣ ̸= 0

]
.

Under the conditions of the theorem and all the work done above, we know that the first statement
under bracket is true and gives important convergence results given in Equations (33), (36). It
remains to show that the second statement under bracket cannot be true. Using Equations (10) in
the main text, Equation (36), one has

lim
m→∞

P
{
Modd

rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)
}k

− P
{
Modd

rm,1 ≤ am(q)
}k

=

{H(x)}1/s −
{
H(O1)(x(O1))

}1/s {
H(O2)(x(O2))

}1/s
.
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As H is an extreme value distribution, hence associated (see the proof of Proposition 1 for more
details), we have

H(x) ≥ H(O1)(x(O1))H(O2)(x(O2)).

Then

lim
m→∞

P
{
Modd

rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)
}k

− P
{
Modd

rm,1 ≤ am(q)
}k

≥ 0.

Thus if the above limit is different from 0, then

lim
m→∞

P
{
Modd

rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)
}k

− P
{
Modd

rm,1 ≤ am(q)
}k

> ϵ1 > 0,

with ϵ1 a positive constant. Of course, for every m, we have

P
{
Modd

rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)
}
≤ P

{
M

odd,(O1)
rm,1

≤ a
(O1)
(rm+ℓm)⌈sk⌉(x

(O1))
}
.

Hence

lim
m→∞

P
{
Modd

rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)
}k

− P
{
Modd

rm,1 ≤ am(q)
}k

≤

lim
m→∞

P
{
M

odd,(O1)
rm,1

≤ a
(O1)
(rm+ℓm)⌈sk⌉(x

(O1))
}k

− P
{
Modd

rm,1 ≤ am(q)
}k

.

The RHS of the inequality is equal to by Equations 33 and 36{
H(O1)(x(O1))

}1/s
(
1−

{
H(O2)(x(O2))

}1/s
)
.

Since 0 < H(O1)(x(O1)), H(O2)(x(O2)) < 1, the above quantity goes to 0 as s→ ∞, we can thus pick
an ϵ2 < ϵ1 and we know that there exists a C > cx such that if s ≥ C, then

ϵ1 < lim
m→∞

P
{
Modd

rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)
}k

− P
{
Modd

rm,1 ≤ am(q)
}k

≤ ϵ2 < ϵ1

which reduces to an absurdity. So the desired fact is true and we have ∀x ∈ Rd, ∃s ≥ cx and the
following convergence result holds

lim
m→∞

∣∣∣∣P{Modd
rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)

}k
− P

{
Modd

rm,1 ≤ am(q)
}k∣∣∣∣ = 0.

So by (36),

P
{
Modd

rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)
}k

−→
m→∞

H(O1)(q(O1))H(O2)(q(O2)),

where the RHS is equal to {
H(O1)(x(O1))

}1/s {
H(O2)(x(O2))

}1/s
.

Hence

P
{
Modd

rm,1 ≤ a(rm+ℓm)⌈sk⌉(x)
}sk

−→
m→∞

H(O1)(x(O1))H(O2)(x(O2)).

Applying Lemma 1.3 of Takahashi 1994 gives

P
{
Modd

rm,1 ≤ am(x)
}k

−→
m→∞

H(O1)(x(O1))H(O2)(x(O2)).

The proof is completed by applying Lemma 3.
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Appendix C. Further results

Appendix C.1 A usefull Glivenko-Cantelli result for the copula with known margins in a weakly
dependent setting

In this section, we will prove an important auxiliary result: the empirical copula estimator Ĉon,m
based on the weakly dependent sample Um,1, . . . ,Um,k is uniformly strongly consistent towards the
extreme value copula C. This result is a main tool to obtain important results in the paper such as
Proposition 4, Theorem 3 and Proposition 8. For that purpose, the Berbee’s coupling lemma is
of prime interest (see, e.g., Chapter 5 in Rio 2017) which gives an approximation of the original
process by conveniently defined independent random variables.

Lemma 4. Under conditions of Proposition 4, we have

||Con,m − C||∞
a.s.−→
n→∞

0.

Proof of Lemma 4 Using triangle inequality, one obtain the following bound

||Con,m − C||∞ ≤ ||Con,m − Cm||∞ + ||Cm − C||∞. (37)

As {Cm, n ∈ N} is an equicontinuous class of functions (for every m, Cm is a copula hence a
1-Lipschitz function), defined on the compact set [0, 1]d (by Tychonov’s theorem) which converges
pointwise to C by Condition C. Then the convergence is uniform over [0, 1]d. Thus the second term
of the RHS of Equation (37) converges to 0 almost surely.

Now, let us prove that ||Con,m−Cm||∞ converges almost surely to 0. By Berbee’s coupling lemma
(see Theorem 6.1 in Rio 2017 or Theorem 3.1 in Bücher and Segers 2014 for similar applications), we
can construct inductively a sequence (Z̄im+1, . . . , Z̄im+m)i≥0 such that the following three properties
hold:

(i) (Z̄im+1, . . . , Z̄im+m)
d
= (Zim+1, . . . ,Zim+m) for any i ≥ 0;

(ii) both (Z̄2im+1, . . . , Z̄2im+m)i≥0 and (Z̄(2i+1)m+1, . . . , Z̄(2i+1)m+m)i≥0 sequences are independent
and identically distributed;

(iii) P{(Z̄im+1, . . . , Z̄im+m) ̸= (Zim+1, . . . ,Zim+m)} ≤ β(m).

Let C̄on,m and Ūm,i be defined analogously to Con,m and Um,i respectively but with Z1, . . . ,Zn
replaced with Z̄1, . . . , Z̄n. Now write

Con,m(u) = C̄on,m(u) +
{
Con,m(u)− C̄on,m(u)

}
. (38)

We will show below that the term under brackets converges uniformly to 0 almost surely. Write
C̄on,m(u) = C̄o,oddn,m (u) + C̄o,evenn,m (u) where C̄o,oddn,m (u) and C̄o,evenn,m (u) are defined as sums over the odd
and even summands of C̄on,m(u), respectively. Since both of these sums are based on i.i.d. summands

by properties (i) and (ii), we have ||C̄on,m − Cm||∞
a.s.−→
n→∞

0 using Glivenko-Cantelli (see Chapter 2.5

of Vaart and Wellner 1996).
It remains to control the term under brackets on the right hand side of Equation (38), we have

that

∣∣Con,m(u)− C̄on,m(u)
∣∣ ≤ 1

k

k∑
i=1

∣∣∣1{Ūm,i≤u} − 1{Um,i≤u}

∣∣∣
≤ 1

k

k∑
i=1

1{(X̄im+1,...,X̄im+m )̸=(Xim+1,...,Xim+m)}.
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Hence, using Markov’s inequality and property (iii), we have

P

{
sup

u∈[0,1]d

∣∣C̄on,m(u)− Con,m(u)
∣∣ > ϵ

}
≤ β(m)

ϵ
.

Thus by Condition D,

∑
n≥1

P

{
sup

u∈[0,1]d

∣∣C̄on,m(u)− Con,m(u)
∣∣ > ϵ

}
<∞.

Applying Borel-Cantelli gives the desired convergence to 0 almost surely of the term under bracket
in Equation (38). Gathering all results gives that the term ||Con,m − Cm||∞ converges almost surely
to 0. Hence the statement using Equation (37).

Appendix C.2 Weak convergence of an estimator of A(O) −A

We now state conditions on the block size m and the number of blocks k, as in Bücher and
Segers 2014, to demonstrate the weak convergence of the empirical copula process based on the

(unobservable) sample (U
(j)
n,m,1, . . . , U

(j)
n,m,k) for every j ∈ {1, . . . , d} under mixing conditions. An

additional condition will be required within the theorem to establish the weak convergence of the
rank-based copula estimator under the same mixing conditions.

Condition F . There exists a positive integer sequence ℓn such that the following statement holds:

(i) mn → ∞ and mn = o(n)
(ii) ℓn → ∞ and ℓn = o(mn)
(iii) knα(ℓn) = o(1) and (mn/ℓn)α(ℓn) = o(1)
(iv)

√
knβ(mn) = o(1)

For notational conveniency, we will write in the following mn = m, kn = k, ℓn = ℓ. Note
that Condition F (iii) guarantees that the limit C is an extreme value copula by Theorem 4.2 of
Hsing 1989. As usual, the weak convergence of the empirical copula process stems down from the
finite dimensional convergence and the asymptotic tightness of the process which then hold from
Condition F (iii) and (iv) respectively. In order to apply Hadamard’s differentiability to obtain the
weak convergence of the empirical copula based on the sample’s scaled ranks, we need a classical
condition over the derivatives of the limit copula stated as follows.

Condition G. For any j ∈ {1, . . . , d}, the jth first order partial derivative Ċ(j) = ∂C/∂u(j) exists
and is continuous on {u ∈ [0, 1]d, u(j) ∈ (0, 1)}.

The estimator of the Pickands dependence function that we present is based on the madogram
concept (Cooley, Naveau, and Poncet 2006; Marcon et al. 2017), a notion borrowed from geostatistics
in order to capture the spatial dependence structure. Our estimator is defined as

Ân,m(t) =
ν̂n,m(t) + c(t)

1− ν̂n,m(t)− c(t)
,

where

ν̂n,m(t) =
1

k

k∑
i=1

 d∨
j=1

{
Û

(j)
n,m,j

}1/t(j)

− 1

d

d∑
j=1

{
Û

(j)
n,m,i

}1/t(j)
 , c(t) =

1

d

d∑
j=1

t(j)

1 + t(j)
,
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and Û
(j)
n,m,i = F̂

(j)
n,m(M

(j)
m,i) corresponds to ranks scaled by k−1. By convention, here u1/0 = 0 for

u ∈ (0, 1). Let g ∈ {1, . . . , G} and define

Â
(Og)
n,m

(
t(Og)

)
= Ân,m

(
0, t(Og),0

)
the empirical Pickands dependence function associated to the k-th subvector of Xp. We consider
the empirical process of the difference between estimates of the Pickands dependence functions of
subvectors X(Og), g ∈ {1, . . . , G}, and the estimator of the Pickands dependence function of X:

EnG(t) =
√
k
(
Â(O)
n,m(t)− Ân,m(t)

)
,

where Â
(O)
n,m(t) =

∑G
g=1w

(Og)(t)Â
(Og)
n,m (t(Og)). Noticing that multiplying the above process by d and

taking t = (d−1, . . . , d−1) gives

√
kŜECO(O) =

√
k

 G∑
g=1

θ̂
(Og)
n,m − θ̂n,m

 .

Hence, the weak convergence of the above empirical process will immediately comes down from the
one of the empirical process in EnG, as stated in the theorem below.

Theorem 5. Consider the AI-block model in Definition 1 with a given partition O, i.e., A = A(O).
Under Conditions C, F , G and

√
k(Cm − C) ⇝ Γ, the empirical process EnG converges weakly in

ℓ∞(∆d−1) to a tight Gaussian process having representation

EG(t) = (1 +A(t))2
∫
[0,1]

(NC + Γ)(ut
(1)
, . . . , ut

(d)
)du

−
G∑
g=1

w(Og)(t)
(
1 +A(Og)(t(Og))

)2 ∫
[0,1]

(NC + Γ)(1, ut
(ig,1)

, . . . , ut
(ig,dg

)

,1)du,

where NC is a continuous tight Gaussian process with representation

NC(u
(1), . . . , u(d)) = BC(u

(1), . . . , u(d))−
d∑
j=1

Ċj(u
(1), . . . , u(d))BC(1, u

(j),1),

and BC is a continuous tight Gaussian process with covariance function

Cov(BC(u), BC(v)) = C(u ∧ v)− C(u)C(v)
H0= CΠ(u ∧ v)− CΠ(u)CΠ(v).

Proof of Theorem 5 The proof is straightforward, notice that by the triangle diagram in Figure
2

EnG = ψ ◦ ϕ
(√

k(Ân,m −A)
)
,

where ϕ is detailed as

ϕ : ℓ∞(∆d−1) → ℓ∞(∆d−1)⊗ (ℓ∞(∆d−1), . . . , ℓ
∞(∆d−1))

x 7→ (x, ϕ1(x), . . . , ϕG(x)),

with for every g ∈ {1, . . . , G}

ϕg : ℓ∞(∆d−1) → ℓ∞(Sd)

x 7→ w(Og)(t(1), . . . , t(G))x(0, t(ig,1), . . . , t(ig,dg ),0),
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√
k
(
Ân,m −A

)
EnG

(√
k
(
Ân,m −A

)
;w(O1)

√
k
(
Â

(O1)
n,m −A(O1)

)
, . . . , w(OG)

√
k
(
Â

(OG)
n,m −A(OG)

))ϕ
ψ

Figure 2. Commutative diagram of composition of function.

and also
ψ : ℓ∞(∆d−1)⊗ (ℓ∞(∆d−1), . . . , ℓ

∞(∆d−1)) → ℓ∞(∆d−1)

(x, ϕ1(x), . . . , ϕG(x)) 7→
∑G

g=1 ϕg(x)− x.

The function ϕg is a linear and bounded function hence continuous for every g, it follows that ϕ
is continuous since each coordinate functions is continuous. As a linear and bounded function, ψ is
also a continuous function. Noticing that,

(Cm − C)(1, u,1) = 0, ∀n ∈ N,

where m = mn is the block length for a sample size n. We thus have

√
k(Cm − C)(1, u,1) −→

n→∞
0,

with k = kn the number of blocks. Therefore Γ(1, u,1) = 0. Combining this equality with Corollary
3.6 of Bücher and Segers 2014 and the same techniques as in the proof of Theorem 2.4 in Marcon
et al. 2017, we obtain along with Conditions C, F , G

√
k(Ân,m(t)−A(t))⇝ − (1 +A(t))2

∫
[0,1]

(NC + Γ)(ut
(1)
, . . . , ut

(d)
)du.

Applying the continuous mapping theorem for the weak convergence in ℓ∞(∆d−1) (Theorem 1.3.6
of Vaart and Wellner 1996) leads the result.

Appendix C.3 Supplementary figures

In this section are gathered supplementary figures to intuit or enrich our findings. Section Appendix
C.3.1 contains an illustration of the main idea of Proposition 3. Section Appendix C.3.2 completes
numerical results of Section 6 by taking p ∈ {0.5, 0.7, 1.0}. Notice that p = 1.0 corresponds to the
serially independent case.

Appendix C.3.1 Additional figure for Section 2

When asymptotic independence between subvectors of a multivariate extreme value distribution
occurs, the exponent measure charges disjoint sets of E \ [0,x], as stated in Equation (9) and
Proposition 3, (iii) in the main text. The form of the support of the exponent measure can be
represented by the following union of sets:

G⋃
g=1

0d1 × · · ·×]0,∞[dg× · · · × 0dG .

To better understand this concept, we have provided an example in R3 in Figure 3.
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x₁

x₂

x₃

0

Figure 3. Support of the exponent measure of an AI-block model with partition O = {{1, 2}, {3}}. The measure charges
the positive orthant draws by the axes x1, x2 (in grey) and the positive axis x3 (in black), the intersection of those two sets
is empty.

Appendix C.3.2 Additional numerical results for Section 6

In Section 6 of the main text, we demonstrate that a specific random process is in the max domain
of attraction of an AI-block model. This model is characterized by the persistence parameter, p,
which corresponds to the probability that the current observation is equal to the previous one.
We use observations drawn from this process to evaluate the performance of our algorithm and
state-of-the-art algorithms for clustering extremes in terms of their ability to recover the maximal
element of an AI-block model of a weakly dependent multivariate random process.

The specific parameter setting p = 0.9 used in these experiments are detailed in Section 6 of the
main text. In this auxilairy section, we present the results of these evaluations in Figures 4, 5, 6,
where we display the exact recovery rate for each algorithm for varying values of p ∈ {0.5, 0.7, 1.0},
respectively. We recall that observations are serially independent when p = 1.0.
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Figure 4. Simulation results for p = 0.5. From top to bottom: Framework F1, Framework F2, Framework F3. From left to
right: Experiment E1, Experiment E2, Experiment E3. Exact recovery rate for our algorithm (red, diamond points), for
the HC k-means (blue, plus points) and the SKmeans (green, star points) for F1 and F2 across 100 runs. Dotted lines
correspond to d = 200, solid lines to d = 1600. The threshold τ is taken as 2 × (1/m +

√
ln(d)/k). For F3, average

SECO losses (red solid lines, circle points) and exact recovery percentages (blue dotted lines, diamond points) across 100
simulations. For better illustration, the SECO losses are standardized first by subtracting the minimal SECO loss in each
figure, and the standardized SECO losses plus 1 are then plotted on the logarithmic scale.
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Figure 5. Simulation results for p = 0.7. From top to bottom: Framework F1, Framework F2, Framework F3. From left to
right: Experiment E1, Experiment E2, Experiment E3. Exact recovery rate for our algorithm (red, diamond points), for
the HC k-means (blue, plus points) and the SKmeans (green, star points) for F1 and F2 across 100 runs. Dotted lines
correspond to d = 200, solid lines to d = 1600. The threshold τ is taken as 2 × (1/m +

√
ln(d)/k). For F3, average

SECO losses (red solid lines, circle points) and exact recovery percentages (blue dotted lines, diamond points) across 100
simulations. For better illustration, the SECO losses are standardized first by subtracting the minimal SECO loss in each
figure, and the standardized SECO losses plus 1 are then plotted on the logarithmic scale.
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Figure 6. Simulation results for p = 1.0 (serially independent case). From top to bottom: Framework F1, Framework F2,
Framework F3. From left to right: Experiment E1, Experiment E2, Experiment E3. Exact recovery rate for our algorithm
(red, diamond points), for the HC k-means (blue, plus points) and the SKmeans (green, star points) for F1 and F2 across
100 runs. Dotted lines correspond to d = 200, solid lines to d = 1600. The threshold τ is taken as 2× (1/m+

√
ln(d)/k).

For F3, average SECO losses (red solid lines, circle points) and exact recovery percentages (blue dotted lines, diamond
points) across 100 simulations. For better illustration, the SECO losses are standardized first by subtracting the minimal
SECO loss in each figure, and the standardized SECO losses plus 1 are then plotted on the logarithmic scale.
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