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A B S T R A C T

By applying the local yield stress (LYS) method to probe local regions of three-dimensional
computational glass models, we confirm high correlations between the measured local yield
stress (𝛥𝜏𝑐) and the plastic events when the parameterization of the method is properly
optimized. The optimal probing region for this system is found to be ∼ 5𝜎 in radius, where
𝜎 represents the Lennard-Jones length scale, approximately the atomic size. The averaged
correlation remains positive through the first 200 identified plastic events or 1/3 of the yielding
strain (∼ 7%). Here we apply only the local probing that aligns perfectly with the loading on
the boundary. The LYS measurements converge to a Weibull distribution with a minimum 𝛥𝜏𝑐
indistinguishable from zero at larger probing region radii. Analysis of the data in light of an
assumption that 𝛥𝜏𝑐 is a local quantity that obeys extreme value statistics above a critical length
scale bounds the exponent of the underlying partial distribution of 𝛥𝜏𝑐 ≲ 0.71. A thorough
investigation of the anisotropy of the local yield surface at the location of the first plastic
event indicates that the first triggered region does not align perfectly with the loading on the
boundary, but is well-predicted by projecting the shear applied at the boundary onto the local
yield surface. This implies that the correlation between the local yield stress prediction and the
resulting plasticity may be enhanced by performing a more complete assessment of the local
yield surface at each sample point.

. Introduction

The detailed micro-mechanism of the mechanical response under an elastoplastic deformation in amorphous materials remains
oorly characterized relative to their crystalline counterparts in which dislocations can be well specified (Stukowski and Albe, 2010;
hockley and Read, 1949; LeSar, 2014; Püschl, 2002). Falk and Langer (1998) postulated a shear transformation zone (STZ) model
n which preexisting defects corresponding to local clusters of atoms/molecules rearrange cooperatively and irreversibly during
lastic flow. This STZ concept has been incorporated into constitutive equations for describing elastoplastic behaviors (Bouchbinder
t al., 2007b,a; Manning et al., 2007; Bouchbinder and Langer, 2009a,b,c; Rycroft et al., 2015; Hinkle et al., 2017; Kontolati et al.,
021) as well as into discrete models of amorphous plastic response (Homer and Schuh, 2009; Talamali et al., 2012). The existence
f such defects in amorphous solids has been supported by experimental studies (Jiang et al., 2011; Ma et al., 2015a,b; Pan et al.,
009) and atomic simulations (Priezjev, 2017; Shi et al., 2007; Shi and Falk, 2005, 2006) in various types of glasses.
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Researchers have been keenly interested in how one might accurately locate and characterize such ’flow-defects’, and in doing so
ave measured the correlation of plastic events with a variety of proposed structurally derived predictors.(Richard et al., 2020) These
redictors range from trivial structural parameters such as local density (Spaepen, 1977), atomic potential energy (Shi et al., 2007;
inkle et al., 2017), and short-range order (Shi and Falk, 2005, 2007; Ding et al., 2014a), through more complex metrics obtained
ia machine learning (Cubuk et al., 2015; Schoenholz et al., 2016), quantification of local excitations induced by linear (Widmer-
ooper et al., 2008; Tanguy et al., 2010; Manning and Liu, 2011; Ding et al., 2014b) or nonlinear (Gartner and Lerner, 2016; Xu
t al., 2021) vibrational modes, by probing activation via the minimal energy path (Xu et al., 2017, 2018), and by measurement of
ocal elastic moduli (Tsamados et al., 2009; Mizuno et al., 2013; Shang et al., 2019). Such simulations require a sample sufficiently
arge to resolve multiple individual STZs. Most of these investigations considered two-dimensional glasses consisting of ∼ 10, 000

atoms. Few analyses in three-dimensional glasses have been performed at comparable length scales, as this requires million-atom
simulations prepared by quenching a liquid sufficiently slowly to produce a glass stable enough to compare with experiments.(Shi
and Falk, 2007; Ding et al., 2014a,b; Cubuk et al., 2015; Schoenholz et al., 2016)

In the context of the above indicators, Patinet et al. (2016) and Barbot et al. (2018) developed the local yield stress (LYS) method
in which local regions are sheared at a particular length scale and loading orientation until yielding is triggered. By measuring the
incremental stress to yield, the LYS method provides a direct measurement of elastoplastic response. High correlations have been
observed between low local yield stresses and the sites where plastic events are observed during subsequent shear simulations of
the material as a whole. A recent comparison found that this method ranks highly among a large number of structural indicators
in 2D glassy samples, and performs best amongst these comparators in deeply quenched glasses, those modeled samples most
comparable to as-quenched glasses produced in laboratory and industrial processes.(Richard et al., 2020) The LYS framework also
quantifies atomistic data in ways that clearly relate to the yield surface, a continuum concept critical for understanding plasticity
at the macro-scale (Lund and Schuh, 2003; Schuh and Lund, 2003). Characterizing larger 3D glasses has presented a challenge for
diagonalization-based methods such as the identification of ‘soft’ spots in Manning and Liu (2011). Recent advances have provided
more efficient ways to explore low-frequency modes to locate STZs, but comprehensive characterization of a material using such
methods remains a challenge (Richard et al., 2021). The computational expense for the LYS method scales with the system size as
(𝑁) making it applicable to these larger three-dimensional systems.

Here we apply the LYS method to measure spatial variations in the incremental stress to yield (𝛥𝜏𝑐) along a single local probing
determined by a strain tensor. The resulting measurements of 𝛥𝜏𝑐 exhibit a correlation with the locations of the local plastic events
produced by a similarly oriented strain applied at the boundary. The correlation persists until about 1/3 of the yielding strain when
undertaken at the optimal length scale, ∼ 5𝜎(atomic diameters) in radius.

Variation in the local probing strain is also examined at the location of the first identified plastic event. These data indicate that
the triaxiality, orientation, rotation, and sign of the resulting plastic event aligns well with what one would infer from the measured
local yield surface, but does not exactly correspond with the strain applied at the boundary. This suggests that the correlation of
𝛥𝜏𝑐 with the observed plastic events would improve if the entire local yield stress surface, rather than only the value of 𝛥𝜏𝑐 along
the direction of the applied shear, were to be characterized throughout the material.

2. Sample preparation

We perform molecular dynamics (MD) simulations to prepare three independent Kob–Andersen(KA) (Kob and Andersen, 1995)
binary Lennard-Jones (LJ) glasses within the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) environ-
ment (LAMMPS). In each sample, 1,000,000 atoms are simulated in a cubic simulation box with periodic boundary conditions
along the x, 𝑦 and z axes. The system is comprised of 80% large atoms (A) and 20% small atoms (B). We apply a smoothed 6–12
Lennard-Jones(LJ) potential (Jones and Chapman, 1924) field to quantify the interatomic interactions.

According to a prior study by Shi and Falk (2006), shear bands only arise during deformation in KA glasses prepared with
relatively low quenching rates. To focus on KA glasses susceptible to strain localization, we follow the same preparation procedure
to melt and equilibrate the initial configuration at a reservoir temperature 𝑇 = 0.87𝜖∕𝑘𝐵 under an external pressure 𝑃 = 8.5𝜖∕𝜎3,
and we then cool this melt to 𝑇 = 0.03𝜖∕𝑘𝐵 while releasing the pressure to 𝑃 = 0𝜖∕𝜎3 linearly over a duration of 2000𝑡0 using a
Nose–Hoover thermostat (Nosé, 1984; Hoover, 1985) and Parrinello-Rahman barostat (Parrinello and Rahman, 1981). We verify that
the difference in the potential energy per atom at the as-quenched state between our samples and the corresponding KA glasses in
Shi and Falk (2006) results from our choice of the smoothed LJ potential and the difference in the aspect ratio of the box dimension.
Minimization of the energy via a conjugate gradient scheme (Polak and Ribiere, 1969) under zero pressure conditions is undertaken
until achieving the convergence of the total force norm of the whole system. This is followed by a second force minimization with
constrained volume for studying the athermal mechanical response at zero temperature. The final box dimension of these three KA
glasses is approximately 93.4𝜎 × 93.4𝜎 × 93.4𝜎, where 𝑥 and 𝑦 dimensions are comparable to those of the 2D systems previously
studied by the local yield stress method (Barbot et al., 2018; Patinet et al., 2016). The configurations of all 3 glasses can be found
on Johns Hopkins University Data Archive (Ruan et al., 2021).

3. Three-dimensional local yield stresses

3.1. 3D Local yield stress method

Patinet et al. developed the local yield stress (LYS) method in Patinet et al. (2016) based upon the assumption that plastic events
2

in amorphous solids occur as localized rearrangements located at STZs (Falk and Langer, 1998). In the LYS method, local regions of
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Fig. 1. Schematics of a spherical region of atoms cut from the simulation box for local probing in a 3D binary glass with large (blue) and small (red) particles.
The atoms in transparency form a shell of the core atoms shown in solid color. 𝑅𝑓𝑟𝑒𝑒 and 𝑅𝑓𝑟𝑜𝑧𝑒𝑛 are labeled by arrows in yellow and gray respectively. The
black arrows denote the loading on the local boundary in Eq. (6).

atoms are sheared to the point of mechanical instability identified by a stress drop, and the incremental stress required to reach the
yielding point is recorded as the local yield stress (𝛥𝜏𝑐). A low value of 𝛥𝜏𝑐 indicates relative high susceptibility to plasticity. In our
three-dimensional LYS analyses, spherical regions of atoms within a radius 𝑅𝑓𝑟𝑒𝑒 + 𝑅𝑓𝑟𝑜𝑧𝑒𝑛 are probed by the athermal quasi-static
(AQS) method (Tanguy et al., 2006; Lerner and Procaccia, 2009; Tsamados et al., 2009; Dasgupta et al., 2012; Karmakar et al.,
2010; Maloney and Lemaître, 2004). The atoms in the inner core with radius 𝑅𝑓𝑟𝑒𝑒 are referred to as the ‘free’ atoms, and the atoms
in the outer shell with thickness 𝑅𝑓𝑟𝑜𝑧𝑒𝑛 are referred to as the ‘frozen’ atoms, as is shown in Fig. 1. At each increment of loading, the
‘frozen’ atoms are deformed affinely with respect to the probing strain, and the ‘free’ atoms bounded by the ‘frozen’ shell undergo
static relaxation into the nearest mechanically stable configuration using a conjugate gradient method (Polak and Ribiere, 1969).
𝑅𝑓𝑟𝑜𝑧𝑒𝑛 is set to be 5𝜎, twice the smoothed LJ potential cutoff radius 𝑟𝑜𝑢𝑡 = 2.5𝜎, to include all relevant neighbor atoms for the ‘free’
atoms.

An increment of local loading 𝛥𝑬𝐿 with a constant volume can be written in terms of a strain step magnitude 𝛥𝑒𝐿 multiplied by
a unit local strain tensor 𝑬𝐿

𝑢 as

𝛥𝑬𝐿 = 𝛥𝑒𝐿𝑬𝐿
𝑢 . (1)

All strains are expressed as Lagrange strains defined relative to the initial undeformed configuration. The projected stress 𝜏𝑝 is
defined as

𝜏𝑝 = 𝑺𝐿 ∶ 𝑬𝐿
𝑢 , (2)

where 𝑺𝐿 is the Cauchy stress tensor of the local ‘free’ region. Since the system is loaded along the principal axes and the volume
is held constant, this is equivalent to the Kirchhoff stress. The most appropriate way to quantify continuum fluxes like stress from
atomistic data remains an area of active research (Chen and Diaz, 2018). Here we resort to the widely used virial approximation to
quantify stress within the region of interest. In the athermal limit (Heyes, 1994; Sirk et al., 2013; Thompson et al., 2009; Surblys
et al., 2019), the virial contribution of atom 𝑖 can be computed as a tensor

𝜱𝑖 =
1
2

𝑁𝑝
∑

𝑗≠𝑖

(

𝑟𝑖𝑗 ⊗ 𝑓𝑖𝑗
)

, (3)

in which atom 𝑗 is one of 𝑁𝑝 atoms within the pairwise potential cutoff radius from atom 𝑖. The displacement vector 𝑟𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖
represents the interatomic displacement, and 𝑓𝑖𝑗 represents the force exerted on atom 𝑖 from atom 𝑗. 𝑺𝐿 can then be estimated by
dividing the sum of the virial contributions 𝜱𝑖 from the 𝑁𝑓𝑟𝑒𝑒 atoms in the free region by its volume as

𝑺𝐿 ≈ 3
4𝜋𝑅3

𝑓𝑟𝑒𝑒

𝑁𝑓𝑟𝑒𝑒
∑

𝑖=1
𝜱𝑖. (4)

The projected stress 𝜏𝑝 is used to identify whether the response to an incremental strain is elastic or if, rather, an instability has
been triggered. The stress tensor at the point when a stress drop is detected will be referred to as the onset stress 𝑺𝐿𝑜𝑛𝑠𝑒𝑡. This stress
is used to calculate the local yield stress 𝛥𝜏𝑐 given by

𝛥𝜏𝑐 = (𝑺𝐿𝑜𝑛𝑠𝑒𝑡 − 𝑺𝐿0 ) ∶ 𝑬𝐿
𝑢 , (5)

where 𝑺𝐿0 is the initial stress state of the local region before any probing. It is important to note that due to the residual stresses
present in glasses, the elements in the initial undeformed stress tensor 𝑺𝐿𝟎 are typically not equal to zero. Since undertaking the
local yield stress analysis in 3D is computationally demanding, we initially limit our investigation to the case where 𝑬𝐿 is chosen
3
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Table 1
Table of initial force tolerance 𝐹 0

𝑡𝑜𝑙 , strain step 𝛥𝑒𝐿, and final force tolerance 𝐹𝑡𝑜𝑙 settings at each
𝑅𝑓𝑟𝑒𝑒. ∗: 𝛥𝑒𝐿 (10−6) is the smallest strain step achievable computationally given the available
resources.
𝑅𝑓𝑟𝑒𝑒(𝜎) 𝐹 0

𝑡𝑜𝑙(𝜖∕𝜎) 𝛥𝑒𝐿 𝐹𝑡𝑜𝑙(𝜖∕𝜎)

2.5 2 × 10−11 10−4 10−6

3.75 3 × 10−11 10−4 10−6

5 4 × 10−11 10−5 10−6

7.5 8 × 10−11 10−6 ∗ 10−6

10 2 × 10−10 10−6 ∗ 10−6

to be a pure shear loading as

𝑬𝐿
𝑢 =

√

2
2

⎡

⎢

⎢

⎢

⎣

1 0 0

0 −1 0

0 0 0

⎤

⎥

⎥

⎥

⎦

. (6)

o impose strain, equal tension and compression are applied along the 𝑥 axis and the 𝑦 axis while zero strain is imposed along the
axis, as illustrated in Fig. 1. This plane strain boundary condition is comparable to the prior study on the 2D local yield stress
ethod in Patinet et al. (2016) and Barbot et al. (2018).

.2. Parameterization

The LYS method involves probing local regions with respect to a local unit strain tensor 𝑬𝐿
𝑢 and measuring the incremental

tress required to induce a local instability. There are three parameters playing important roles in computing the local yield stress
𝜏𝑐 : the force tolerance 𝐹𝑡𝑜𝑙 that sets the accuracy of force minimization when relaxing the ‘free’ atoms, the strain step 𝛥𝑒𝐿 that
ontrols the magnitude of each increment of loading, and the characteristic length 𝑅𝑓𝑟𝑒𝑒 that determines the sizes of locally probed
egions. The optimal values of these three parameters are not independent of each other. For instance, for larger 𝑅𝑓𝑟𝑒𝑒 values, more
toms may participate in the plastic rearrangement, and the higher number of degrees of freedom necessitates a smaller strain step
𝑒𝐿.(Karmakar et al., 2010)

In Table 1, we list the parameters that are obtained from a series of convergence studies that we have undertaken to optimize
he parameters. All the convergence studies are executed on sampling regions centered on evenly spaced 2 × 2 × 2 grids extracted
rom the binary LJ glass samples described in Materials and Methods. For each listed 𝑅𝑓𝑟𝑒𝑒 between 2.5𝜎 and 10𝜎, an initial force
olerance 𝐹 0

𝑡𝑜𝑙 is chosen by sampling the convergence of the force norm when probing a very small strain 10−7. Local yield stresses
𝛥𝜏𝑐) are computed at various strain steps 𝛥𝑒𝐿, and these results are compared with the results using the smallest 𝛥𝑒𝐿 (10−6) we
ould achieve within our computational limitations. We choose the largest strain step 𝛥𝑒𝐿 that results in a relative difference in 𝛥𝜏𝑐
1% or we choose 10−6, as noted in Table 1. With 𝛥𝑒𝐿 set, we raise the values of 𝐹𝑡𝑜𝑙 to enhance the computational efficiency in

he 3D LYS method. The final 𝐹𝑡𝑜𝑙 settings are determined by converging the computed 𝛥𝜏𝑐 with various 𝐹𝑡𝑜𝑙 values to be within
1% of the results using 𝐹 0

𝑡𝑜𝑙. We are able to raise the final 𝐹𝑡𝑜𝑙 values to 10−6 among all the 𝑅𝑓𝑟𝑒𝑒 values without significantly
ffecting the results.

.3. Distribution and scaling

In order to uniformly sample the material response, local yield stresses (𝛥𝜏𝑐) are computed in probing regions centered on evenly
paced grid points throughout the simulation box instead of probing regions centered on each atom as had been done in prior 2D
tudies (Patinet et al., 2016). The distance between grid points 𝑑𝑠𝑎𝑚𝑝𝑙𝑒 is chosen as ∼ 10𝜎 to approach a set of 10 × 10 × 10 samples
n each Kob–Anderson (KA) (Kob and Andersen, 1995) glass. From these samples, we are able to compute the distribution of 𝛥𝜏𝑐 in
representative manner. The distributions of local yield stress (𝛥𝜏𝑐) with 𝑅𝑓𝑟𝑒𝑒 from 2.5𝜎 to 10𝜎 are plotted in the inset of Fig. 2(a).
s was observed in the prior 2D studies (Patinet et al., 2016; Barbot et al., 2018), increasing 𝑅𝑓𝑟𝑒𝑒 results in more sampling regions
ielding at lower 𝛥𝜏𝑐 , and the peaks of these probability density functions (𝑃𝑑) shift toward lower 𝛥𝜏𝑐 values with heavier low-end
ails. This is consistent with our expectation that yielding behavior is controlled by the easiest to yield STZ in the sampling region.
f we consider yield to be a local phenomenon, such that STZs are independent above a critical length scale (𝑅𝑐𝑓𝑟𝑒𝑒), larger regions
re expected to incorporate more STZs, and their 𝛥𝜏𝑐 should be lower on average than that of smaller regions that contain fewer
TZs. If we assume that the observed yield stress is determined by the STZ with the lowest yield stress in the region, 𝛥𝜏𝑐 of a larger
egion is the minimum 𝛥𝜏𝑐 of all the included regions.

To test this assumption of ‘isolated’ local yield regions, we compare these distributions to the ’Extreme Value Distribution’
EVD) (Gumbel, 2004), which categorizes the distribution of maxima or minima of random variables. Since 𝛥𝜏𝑐 is defined to be non-
egative, minima of sampled 𝛥𝜏𝑐 values are expected to result in a Weibull distribution when sampled at a length scale sufficiently
4

arger than the scale on which distinct sub-regions would be independent.(Weibull and Stockholm, 1951) For sufficiently large
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Fig. 2. Local yield stress (𝛥𝜏𝑐 ) distributions with 𝑅𝑓𝑟𝑒𝑒 = 2.5𝜎(⋄), 3.75𝜎(⋆), 5𝜎(◦), 7.5𝜎(□), and 10𝜎(△). (a) Log–log plot of 𝛥𝜏𝑐 probability density function (𝑃𝑑 ).
ot-dashed lines denote Weibull distribution fits (Eq. (7)). The black solid line denotes the slope of the log–log distribution at 𝛥𝜏𝑐 → 0 with 𝑅𝑓𝑟𝑒𝑒 = 5𝜎. Inset:

linear–linear plot of the probability density function of 𝛥𝜏𝑐 . (b) Scaled plot of the normalized cumulative distribution function of 𝛥𝜏𝑐 , where the dot-dashed line
denotes for a linear guideline extrapolated from 𝛥𝜏𝑐 distribution with 𝑅𝑓𝑟𝑒𝑒 = 10𝜎. *: The curves are shifted by their corresponding modes. Inset: the cumulative
distribution of 𝛥𝜏𝑐 . Plot of (c) the scale parameter 𝑎 (×) and (d) the shape parameter 𝑏 (∗) from the Weibull distribution fits in Fig. 2 versus 𝑅𝑓𝑟𝑒𝑒. The dotted
ine in (d) denotes the lower bound for b to converge with extremely large 𝑅𝑓𝑟𝑒𝑒.
ource: The original data in this figure can be found on Johns Hopkins University Data Archive (Ruan et al., 2021).

ampling regions, the probability density function (𝑃𝑑) and cumulative distribution function (𝑃𝑐) are therefore expected to be given
y

𝑃𝑑 (𝛥𝜏𝑐 |𝑎, 𝑏) =
𝑏
𝑎

(

𝛥𝜏𝑐
𝑎

)𝑏−1
exp

[

−
(

𝛥𝜏𝑐
𝑎

)𝑏
]

, (7)

and

𝑃𝑐 (𝛥𝜏𝑐 |𝑎, 𝑏) = 1 − exp

[

−
(

𝛥𝜏𝑐
𝑎

)𝑏
]

, (8)

where 𝑎 is the scale parameter, and 𝑏 is the shape parameter. As is presented in Fig. 2(c), the scale parameter 𝑎 is observed to
decrease with increasing 𝑅𝑓𝑟𝑒𝑒 corresponding to a lower mean when a larger local region is probed. Here, the shape parameter
> 1 indicates that the instantaneous ’yield rate’

𝑀(𝛥𝜏𝑐 |𝑎, 𝑏) =
𝑃𝑑 (𝛥𝜏𝑐 )

1 − 𝑃𝑐 (𝛥𝜏𝑐 )
= 𝑏
𝑎

(

𝛥𝜏𝑐
𝑎

)𝑏−1
, (9)

the number of yield events per unit stress, increases with 𝛥𝜏𝑐 .(Jiang and Murthy, 2011)
The fitted Weibull distributions are plotted as dot-dashed lines on top of the measured 𝛥𝜏𝑐 distributions in the main plot of

Fig. 2(a). Also, the corresponding cumulative distributions (𝑃𝑐) of 𝛥𝜏𝑐 are presented in the inset of Fig. 2(b). In the main plot of
Fig. 2(b), the cumulative distributions of 𝛥𝜏𝑐 are normalized by the two fitting parameters 𝑎 and 𝑏 in terms of ln

[

− ln
(

1 − 𝑃𝑐
)]

∕𝑏 + ln 𝑎
nd are then plotted versus ln𝛥𝜏𝑐 after being shifted by the corresponding mode. Combining the above plots, we notice that the
istributions of 𝛥𝜏𝑐 align with the Weibull distribution for larger 𝑅𝑓𝑟𝑒𝑒 values. More specifically, the density distribution functions
n Fig. 2(a) with 𝑅𝑓𝑟𝑒𝑒 = 7.5𝜎 and 10𝜎 are significantly Weibull-like. Therefore, the underlying distribution of 𝛥𝜏𝑐 at some critical
ength with 𝑅𝑐𝑓𝑟𝑒𝑒 under 7.5𝜎 is inferred to behave like a power-law distribution in the limit of 𝛥𝜏𝑐 → 0.(Hansen and Roux, 2000)

Close inspection of the data taken with 𝑅𝑓𝑟𝑒𝑒 from 2.5𝜎 to 3.75𝜎, reveals that the lower-value tails of their probability
ensity functions deviate from the power law form that would be expected to lead to a Weibull distribution. These distributions
iscontinuously drop to zero below a relatively high threshold, as shown in the main plot of Fig. 2(a). We believe this indicates that
ower 𝛥𝜏𝑐 values cannot be accurately measured due to the limitations that the boundary constraints impose on local rearrangements
ithin smaller regions. In comparison, the smooth 𝛥𝜏𝑐 distribution at 𝑅𝑓𝑟𝑒𝑒 = 5𝜎 behaves like a power-law distribution as 𝛥𝜏𝑐 → 0.

Notably, this distribution does not converge to a Weibull distribution. In addition, we note that the power-law of the partial
distribution function is 1.26 as shown by the slope of the log–log distribution at the lower end when 𝑅 = 5𝜎 in Fig. 2(a).
5
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Fig. 3. Stress–strain response for the AQS deformation with a strain step 𝛥𝑒𝐺 = 10−6 on one KA glass. The inset is the zoom-in view of the circled region in the
main plot, where the first plastic event is identified.
Source: The original data of the stress–strain response for all 3 independent glasses can be found on Johns Hopkins University Data Archive (Ruan et al., 2021).

The shape parameter 𝑏 used to fit the Weibull distribution to the data in Fig. 2(d) should converge to 1 + 𝜂 where 𝜂 is the exponent
of the underlying density distribution, i.e. 𝑏 should approach 2.26.(Hansen and Roux, 2000) In Fig. 2(d) we see that the value of 𝑏
from the fitted Weibull distribution converges to a value ≲ 1.71. We note that this exponent matches closely a previous numerical
estimate based on extreme value analysis (Karmakar et al., 2010) and the prediction made by Kapteijns, Richard and Lerner for
nonlinear quasilocalized excitations. (Kapteijns et al., 2020)

Furthermore, based on the derivation of the extreme value statistics, the mean 𝛥𝜏𝑐 when probing larger regions whose size is far
above the critical length 𝑅𝑐𝑓𝑟𝑒𝑒 can be related to the cumulative distribution 𝑃 ∗

𝑐 in terms of 𝑁 , the number of STZs in the probing
region as Hansen and Roux (2000)

⟨𝛥𝜏𝑐⟩ = 𝑃 ∗−1
𝑐

( 1
𝑁 + 1

)

. (10)

f we suppose 𝑅𝑐𝑓𝑟𝑒𝑒 to be 5𝜎, 𝑁(𝑅𝑓𝑟𝑒𝑒 = 7.5𝜎) ≈ 11 and 𝑁(𝑅𝑓𝑟𝑒𝑒 = 10𝜎) ≈ 47 accordingly. While we intuitively expect that 𝑁 ∝ 𝑅3
𝑓𝑟𝑒𝑒,

this is not consistent with the above two 𝑅𝑓𝑟𝑒𝑒 values. This inconsistency combined with the discrepancy between the Weibull fit
and the exponent of the tail of the underlying distribution argues against the applicability of a simple "weakest link" picture for
quantitatively understanding the statistics of STZs. We further discuss the consequences of this observation in our conclusions.

4. Locating plastic events

To identify the series of plastic events that arise during loading, the simulation box is deformed via the AQS method. At each
strain step, the simulation box and the atoms are affinely deformed. All atoms are then relaxed to their mechanically equilibrated
state. The conjugate gradient method is deployed to minimize the forces during the relaxation. The load on the boundary is applied
in the same manner as the locally-probed deformation described by Eq. (6). At each strain step applied on the boundary (𝛥𝑒𝐺), a
projected stress for the simulation box (𝑠𝑝) is recorded to characterize the stress–strain response,

𝑠𝑝 = 𝑺𝐺 ∶ 𝑬𝐺
𝑢 , (11)

where 𝑬𝐺
𝑢 denotes the unit global strain tensor. The Cauchy stress of the system is approximated by the virial expression,

𝑺𝐺 ≈ 1
𝑉

𝑁
∑

𝑖=1
𝜱𝑖, where 𝑉 is the volume of the simulation box and 𝑁 is the total number of atoms in the system. A plastic event

s identified by each instance in which the stress (i.e., 𝑠𝑝) decreases. These 3D KA glasses exhibit a discontinuous drop in the stress
ue to strain localization at approximately 7% strain with strain step 10−6, as is indicated in Fig. 3. Due to the relatively large size

of these 3D systems, many plastic events are triggered during deformation. This makes the serrations difficult to resolve by eye, in
contrast to the obvious fluctuations in some previously studied 2D glasses (Barbot et al., 2018). The inset presents the first identified
plastic event with a stress drop of ∼ 5.30×10−7𝜖∕𝜎3 and a triggering strain of ∼ 0.091%. As was noted in Salerno and Robbins (2013),
the identified plastic events depend on the strain step. This means that smaller and smaller plastic events are observed to occur at
smaller and smaller strain as the strain step is decreased. Due to computational limitations, it is not possible to converge 𝛥𝑒𝐺 to
determine if there is a ‘true’ first plastic event in our prepared glasses with 1,000,000 atoms, and answering that question is not
the objective of this work. Rather we assume that the strain step determines the resolution at which we are able to sample plastic
rearrangements during deformation of the simulation box. We apply the loading on the boundary with the smallest strain step
which is computationally affordable (10−7) until the first stress drop in an effort to characterize the smallest length scale at which
D Hooke’s law behavior is recovered. For testing the predictivity of the LYS method, consecutive plastic events are sampled every
0−6 strain.
6
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Fig. 4. Log-linear plot of deviation from 3D Hooke’s law versus averaging radius 𝑅𝐻 . The standard errors are negligible compared with the size of the markers.
he dotted line is the guideline for 1%.

. Deviation from Hooke’s law

In determining the region size set by 𝑅𝑓𝑟𝑒𝑒, the local yield stress method assumes that Hooke’s law is valid at this length scale.
n evaluation of the consistency of local material response with Hooke’s law should thus set a lower bound on 𝑅𝑓𝑟𝑒𝑒 in computing

he local yield stresses (𝛥𝜏𝑐). Here, we adopt the methodology developed by Tsamados et al. (2009) to estimate the deviation from
inear elasticity at a given length scale. The whole simulation box is deformed in increments of 10−7 strain. The virial contribution
t each atom (Eq. (3)) is computed both at the initial as-quenched state (𝜱𝐺

𝑖,0) and at the first onset of instability (𝜱𝐺
𝑖,𝑦), defined

s the configuration prior to the first stress drop (at 0.012 ± 0.007%). Instead of applying a Gaussian windowing function as in
samados et al. (2009), we sum these local contributions from 𝑁𝐻 atoms within the sampling radius 𝑅𝐻 , to remain consistent with

the uniform contributions from the ‘free’ atoms when computing the local yield stress (𝛥𝜏𝑐). The Cauchy stress change in this region
is then approximated by

𝑺𝐺𝑖,𝑅𝐻 = 3
4𝜋𝑅3

𝐻

𝑁𝐻
∑

𝑗

(

𝜱𝐺
𝑗,𝑦 −𝜱𝐺

𝑗,0

)

. (12)

By comparing the above two configurations, the atomic strain tensor centered at each atom is calculated with varying cutoff radii
𝐻 according to Falk and Langer (1998) and Shimizu et al. (2007) using the OVITO open visualization tool (Stukowski, 2010). A
eformation gradient tensor 𝑭 𝑖 is computed by minimizing

𝑁𝐻
∑

𝑗=1

|

|

|

𝑟𝑖𝑗,0𝑭 𝑖 − 𝑟𝑖𝑗,𝑦
|

|

|

2
, (13)

here 𝑟𝑖𝑗,0 and 𝑟𝑖𝑗,𝑦 are displacement vectors between atom 𝑗 and 𝑖 in the unstrained state and at the onset of instability
espectively.(Shimizu et al., 2007) It follows that

𝑭 𝑖 =

(𝑁𝐻
∑

𝑗=1
𝑟𝑖𝑗,0 ⊗ 𝑟𝑖𝑗,0

)−1 (𝑁𝐻
∑

𝑗=1
𝑟𝑖𝑗,0 ⊗ 𝑟𝑖𝑗,𝑦

)

. (14)

he resulting atomic strain tensor centered at atom 𝑖 is then calculated as

𝜺𝐺𝑖,𝑅𝐻 = 1
2
(

𝑭 𝑇
𝑖 𝑭 𝑖 − 𝑰

)

. (15)

Here we denote the strain as 𝜺 to emphasize that since all strains are on the order of 0.01% we are operating in the limit of
infinitesimal strains where all stress and strain measures are essentially equivalent. Consider the generalized 3D Hooke’s law in
Voigt notation

𝑺̃ = 𝑪̃𝜺̃ (16)

here, for instance, 𝑠𝑥𝑥 in 𝑺̃ and 𝜀𝑥𝑥 in 𝜺̃ represent the stress and strain components along 𝑥 direction on the yz plane, and 𝑐𝑖𝑗𝑘𝑙
n 𝑪̃ denotes one of the 21 nonzero elastic constants from a 4th order elastic-moduli tensor. To solve for these 21 unknowns in
he stiffness matrix, 21 linear equations must be generated from 4 independent deformations. The resulting solution is, in general,
verdetermined. We apply the least-squares method (Paige and Saunders, 1982) to optimize the 21 elastic moduli numerically.
reset bounds on the solutions are applied with regards to the bulk stiffness matrix of the whole system.
7
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Fig. 5. (a) Plot of correlation from Eq. (20) versus the 𝑁th plastic event with 3.75𝜎(⋆), 5𝜎(◦), 7.5𝜎(□), and 10𝜎(△). The hollow markers denote data points
veraged over every 20 plastic events for 3 independent KA glasses. The 4 solid markers denote the mean correlation over the 3 glasses at the 1st plastic event.
he standard errors are presented by the errorbars. The upper 𝑥-axis marks the corresponding triggering strain for each averaged correlation. The dotted line
enotes 𝐶 = 0. (b) Plot of the correlation averaged over all the plastic events in (a) versus 𝑅𝑓𝑟𝑒𝑒, with standard errors denoted by errorbars. The correlation
ith 𝑅𝑓𝑟𝑒𝑒 = 2.5𝜎 is excluded due to its relatively large deviation from Hooke’s law (see Fig. 4).

We then perform 11 independent deformations on the simulation box with the unit strain tensor

𝜺𝐺𝑢 =

√

2𝜓2 − 4𝜓 + 8
𝜓2 − 2𝜓 + 4

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0
𝜓
2
− 1 0

0 0 −
𝜓
2

⎤

⎥

⎥

⎥

⎥

⎦

, (17)

in which triaxiality 𝜓 = 0, 0.1, 0.2, 0.3,… , 1. For an atom 𝑖, the deformations with 𝜓 ranging from 0.1 to 1 overdetermine the elastic
constants in Eq. (16). The length scale dependence of the overdetermined elastic constants is assessed by varying 𝑅𝐻 from 2.5 to
10𝜎. At 𝜓 = 0, an estimated stress tensor 𝑺̃𝐺

′

𝑖,𝑅𝐻
(in Voigt notation) is calculated by substituting the solved stiffness matrix and the

strain tensor into Eq. (16). Then 𝑺̃𝐺
′

𝑖,𝑅𝐻
is compared with the directly computed stress tensor 𝑺̃𝐺𝑖,𝑅𝐻 and its deviation is quantified

by the relative root mean square as

𝛥𝑖,𝑅𝐻 =

√

√

√

√

√

√

‖

‖

‖

𝑺̃𝐺
′

𝑖,𝑅𝐻
− 𝑺̃𝐺𝑖,𝑅𝐻

‖

‖

‖

2

6 ‖‖
‖

𝑺̃𝐺𝑖,𝑅𝐻
‖

‖

‖

2
. (18)

In Fig. 4, the mean deviation averaged among all the atoms are plotted against the averaging radius 𝑅𝐻 . If we choose the threshold
for elastic behavior to be ≤ 1% as in Tsamados et al. (2009), then the 3D Hooke’s law is valid at a length scale 𝑅𝐻 above 2.5𝜎,
which can thus serve as the lower limit of 𝑅𝑓𝑟𝑒𝑒 for the local yield stress method in the 3D glasses.

6. Correlation between 𝜟𝝉𝒄 and plastic events

Next, we would like to assess the degree of correlation of the localized plasticity with the local yield stress, and in doing so
determine an optimal length scale for 𝑅𝑓𝑟𝑒𝑒. We consider multiple plastic events obtained by shearing with strain steps 𝛥𝑒𝐺 = 10−6.
Each plastic event is identified by a stress (𝑠 ) drop, and the yield point is recorded as the last configuration prior to instability.
8
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Fig. 6. Schematics of rotating and probing a local region. The ‘frozen’ atoms in transparency form a shell of the core ‘free’ atoms shown in solid color. The
black arrows on the local boundary denote the loading given by 𝐸𝐿

𝑢 in Eq. (22) before (upper left) and after (upper right) the rotation. (𝑋⃗𝑎 , 𝑌𝑎 , 𝑍⃗𝑎) represents for
the coordinate system of the atoms rotating about 𝑋⃗𝑎 counter-clockwise with angle 𝛾 (green arrows) and then aligning 𝑋⃗𝑎 with a direction 𝑂⃗ (yellow arrows).
𝑂⃗ (yellow arrows) is sampled with respect to the face norms in a regular dodecahedron in the middle.

Considering two consecutive events, the end of the former event also serves as the reference point of the subsequent event, which
is identified as the last configuration prior to a stress (𝑠𝑝) increase after a relaxation. We locate the triggered plastic rearrangement
and characterize its nature by comparing the configuration after relaxation to the configuration at the yield point. These two
configurations are denoted by subscripts 𝑒, for end, and 𝑦, for yield, respectively. At each atom, the deviation from affinity 𝐷2

𝑚𝑖𝑛 is
calculated as

𝐷2
𝑚𝑖𝑛,𝑖 =

𝑁𝑐𝑢𝑡
∑

𝑗=1

|

|

|

𝑟𝑖𝑗,𝑦𝑭 𝑖 − 𝑟𝑖𝑗,𝑒
|

|

|

2
, (19)

where, we solve for 𝑭 𝑖 as described in Eq. (14). 𝑁𝑐𝑢𝑡 is the number of neighbor atoms within a cutoff radius 2.5𝜎(Falk and Langer,
1998) to the center atom 𝑖. At the 𝑁th plastic event, the local yield stress 𝛥𝜏𝑐 is computed centered at atom 𝑎𝑁 with the maximum
value of 𝐷2

𝑚𝑖𝑛 in the as-quenched configuration, and then this 𝛥𝜏𝑐,𝑎𝑁 is compared with the distribution of 𝛥𝜏𝑐 above. To be consistent
with the prior studies in the 2D LYS method (Barbot et al., 2018; Patinet et al., 2016), we quantify the correlation as

𝐶𝑁 = 1 − 2𝑃𝑐
(

𝛥𝜏𝑐,𝑎𝑁
)

, (20)

where 𝑃𝑐 is the cumulative distribution function of 𝛥𝜏𝑐 .
For the first 200 identified plastic events, the correlation averaged over every 20 plastic events in 3 independent KA glasses is

plotted against the number of the plastic event in Fig. 5(a). The corresponding total average with each 𝑅𝑓𝑟𝑒𝑒 is presented in Fig. 5(b).
The local yield stress (𝛥𝜏𝑐) computed for 𝑅𝑓𝑟𝑒𝑒 = 5𝜎 exhibits the highest total averaged correlation with the plastic events. The mean
correlation with 𝑅𝑓𝑟𝑒𝑒 = 5𝜎 remains positive through ∼ 2.5% strain, about 1/3 of the yielding strain. The correlation of the first
plastic event is shown separately by the solid markers in Fig. 5(a), and these correlations decay rapidly with the number of plastic
events with larger 𝑅𝑓𝑟𝑒𝑒 values. The predictivity of the local yield stress method in 3D appears reasonably good in this preliminary
study in which we consider only the local probing that perfectly aligns with the deformation imposed at the box boundary. This
optimal 𝑅𝑓𝑟𝑒𝑒 ∼ 5𝜎 is consistent with the length scale of the prior study in the 2D LYS method (Barbot et al., 2018; Patinet et al.,
2016), but the corresponding volume is significantly more substantial with 600 ∼ 700 atoms in each probing region in 3D.

We note that there exist some negative correlations in Fig. 5(a) and (b). As discussed in the previous 2D LYS studies (Barbot
et al., 2018), the LYS measurements using larger values of 𝑅𝑓𝑟𝑒𝑒 fail to account for the secondary STZs because their signature is
obscured by other nearby low yield-stress STZs. In other words, spatial resolution is lost by increasing local patch size. This leads
to rapid decay in the correlation at higher strains. The fact that off-axis rearrangements were not probed is also expected to result
in the over-estimation of the local yield stress (𝛥𝜏𝑐).

7. Variation in orientation, rotation and triaxiality

We expect that the local yield stress (𝛥𝜏𝑐) is anisotropic in glasses. To explore this anisotropy, we vary the local probing and
explore the 𝛥𝜏𝑐 yield surface in a democratic way at the optimal probing radius of 𝑅𝑓𝑟𝑒𝑒 = 5𝜎. For this purpose, we transform 𝑬𝐿

𝑢
to a rotated unit strain 𝑬𝐿∗

𝑢 by applying the rotation matrix 𝑹
(

𝑂⃗(𝛼, 𝛽), 𝛾
)

𝑬𝐿∗
𝑢 = 𝑹𝑇

(

𝑂⃗(𝛼, 𝛽), 𝛾
)

𝑬𝐿
𝑢𝑹

(

𝑂⃗(𝛼, 𝛽), 𝛾
)

. (21)

In order to maintain an orthogonal simulation box, we rotate the atoms in the local region such that the principal axes of 𝑬𝐿
𝑢

align with the basis vectors that define the simulation box, illustrated in Fig. 6. 𝑹
(

𝑂⃗(𝛼, 𝛽), 𝛾
)

represents the general rotation tensor
9
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Fig. 7. 𝛥𝜏𝑐 with variation in triaxiality 𝜓 horizontally and orientation 𝑂⃗ vertically. In each subplot, rotation angle 𝛾 is plotted as the angle counterclockwise
rom the horizontal axis pointing to the right, and the magnitude of 𝛥𝜏𝑐 is represented by the distance from the origin. Blue △ and red ◦ denote the results for
= −1 and +1 in Eq. (22) respectively. All subplots are scaled with the limits of the axes as 5𝜖∕𝜎3.
ource: The original data can be found on Johns Hopkins University Data Archive (Ruan et al., 2021).

Fig. 8. Projected local yield stress (𝛥𝜏𝑦) calculated by Eq. (25) to (27) with 𝑬𝐺
𝑢 in Eq. (11). Only 𝛥𝜏𝑦 with 𝑂⃗1 is plotted corresponding to the 1st row in Fig. 7.

Black crosses mark the five lowest values of 𝛥𝜏𝑦 with labeling 1 next to the smallest value. The black dotted circle labels the magnitude of the minimum 𝛥𝜏𝑦
among all other 𝑂⃗ orientations as a reference in each plot. All subplots are scaled with the limits of the axes as 5𝜖∕𝜎3.
Source: The original data can be found on Johns Hopkins University Data Archive (Ruan et al., 2021).
10
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expressed as a function of 𝑂⃗, an arbitrary unit vector with which the 𝑥 axis is brought into alignment, specified in terms of (𝛼, 𝛽), a
olar and an azimuthal angle respectively, and 𝛾, an angle that describes a prior rotation about the 𝑥 axis. To sample 𝑂⃗ evenly in
D, we utilize the face norms of a regular dodecahedron. The resulting rotation is illustrated in Fig. 6. The atoms within the cut-out
phere are first rotated by an angle 𝛾 counterclockwise about 𝑋⃗𝑎 that is then rotated to align with a direction 𝑂⃗. After the rotation
peration is applied on the atoms, a loading 𝑬𝐿

𝑢 is imposed on the local boundary. The deformation imposed on the principal axes
ay be expressed in terms of triaxiality 𝜓 as

𝑬𝐿
𝑢 =

𝜔
√

2𝜓2 − 4𝜓 + 8
𝜓2 − 2𝜓 + 4

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0
𝜓
2
− 1 0

0 0 −
𝜓
2

⎤

⎥

⎥

⎥

⎥

⎦

, (22)

here, 𝜔 = −1 (x-axis compression) or +1 (x-axis tension). 𝜓 ranges from 0 to 1 inclusively, and in doing so determines the symmetry
f the loading. If 𝜓 = 0,

𝑬𝐿
𝑢 =

𝜔
√

2
2

⎡

⎢

⎢

⎢

⎣

1 0 0

0 −1 0

0 0 0

⎤

⎥

⎥

⎥

⎦

, (23)

and a pure shear loading strain is thus applied. With zero strain along z axis, this plane strain deformation recovers the local probing
studied in the prior work regarding the two-dimensional LYS method (Patinet et al., 2016; Barbot et al., 2018). As 𝜓 increases to
1,

𝑬𝐿
𝑢 =

𝜔
√

6
2

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0

0 −1
2

0

0 0 −1
2

⎤

⎥

⎥

⎥

⎥

⎦

, (24)

resulting in a biaxial loading that is symmetric about the 𝑥 axis.
For the sake of a preliminary study regarding the anisotropy of the local yield stress (𝛥𝜏𝑐), we focus on the region centered

around the single atom with the most dramatic plastic rearrangement as characterized by 𝐷2
𝑚𝑖𝑛 from Eq. (19) applied to the first

plastic event identified in Fig. 3 during the deformation of a 3D KA glass. When computing 𝛥𝜏𝑐 , we choose 𝑅𝑓𝑟𝑒𝑒 = 5𝜎 as the optimal
length scale in the LYS method. Then we systematically vary the triaxiality 𝜓 to take the values 0, 0.2, 0.4, 0.6, 0.8, and 1.0. At
each 𝜓 , we consider 6 orientation directions of 𝑂⃗(𝛼, 𝛽) as shown in the middle of Fig. 6. For each 𝑂⃗(𝛼, 𝛽), the rotation angle 𝛾 is set
to be 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦.

In Fig. 7, the calculated local yield stresses (𝛥𝜏𝑐) are presented in a series of 2D plots with variation in rotation (𝛾), orientation
(𝑂⃗), triaxiality (𝜓) and loading direction (𝜔). Each plot corresponds to a chosen set of 𝜓 and 𝑂⃗, and the resulting 𝛥𝜏𝑐 from both
compressive and tensile loadings are plotted for each value of 𝛾. As expected, the projection must be a circle when 𝜓 = 1 since
this corresponds to equibiaxial loading, and 𝑬𝐿

𝑢 in Eq. (24) is symmetric about the 𝑥 axis in this case. As 𝜓 decreases to 0 (from
right to left), 𝛥𝜏𝑐 loses this symmetry. The resulting 𝛥𝜏𝑐 projections from both loading directions (𝜔 = −1,+1) are consistent in their
elongation, and it is generally the case that the x-axis compressive 𝛥𝜏𝑐 is slightly larger in magnitude than its corresponding x-axis
tensile 𝛥𝜏𝑐 , particularly for larger values of 𝜓 .

Although the as-quenched glass structure is statistically isotropic with respect to orientation and rotation, the data in Fig. 7
clearly shows that locally the plastic response can be highly anisotropic. Variations of more than a factor of two in yield stress are
found as we scan the full range orientations, particularly as we vary orientation or move away from equibiaxial loading (𝜓=1). This
is particularly evident in the difference between orientations 1 (the first row) and 3 (the third row). The expected consequence of
this is that the spatial orientation of the resulting plastic shear may reasonably be expected to vary from that of the applied load if
the weakest orientation is misaligned to the applied shear loading.

In previous sections, the deformation on the box boundary given by 𝑬𝐺
𝑢 is identical to the shear of the local probing used to

analyze the local value of 𝛥𝜏𝑐 given by 𝑬𝐿
𝑢 . Here, we are able to cross-compare the propensity for the applied global loading to

trigger the local yield stresses (𝛥𝜏𝑐) measured along multiple probing directions, projecting each 𝛥𝜏𝑐 along the applied loading
irection by calculating

𝑓 2
𝑝 = 𝑬𝐿∗

𝑢 ∶ 𝑬𝐺
𝑢 , (25)

𝑝𝑓 =
𝑓 2
𝑝

|𝑓 2
𝑝 |

√

|𝑓 2
𝑝 |, (26)

such that the projected local yield stress is expressed as

𝛥𝜏𝑦 =
𝛥𝜏𝑐
𝑝𝑓

. (27)

If 𝑬𝐿∗
𝑢 = 𝑬𝐺

𝑢 , then 𝑝𝑓 = 1 and the deformation on the box boundary aligns perfectly with the local probing when computing 𝛥𝜏𝑐 .
This is the case for our results in the previous sections. If 0 < 𝑝𝑓 < 1, the stress along 𝑬𝐺

𝑢 must be greater than 𝛥𝜏𝑐 itself in order
to trigger the same local rearrangement probed by 𝑬𝐿∗. If 𝑝 < 0, it indicates that the loading via 𝑬𝐺 contributes in the opposite
11
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direction as that applied during the local probing 𝑬𝐿∗
𝑢 . This should indicate that it is impossible to trigger such a rearrangement by

applying this 𝑬𝐺
𝑢 .

The projected local yield stresses (𝛥𝜏𝑦) along 𝑬𝐺
𝑢 in Eq. (11) are mapped in Fig. 8 with the same presentation as in Fig. 7. Due

o the fact that 𝛥𝜏𝑦 varies over a very large range, from −20𝜖∕𝜎3 to 20𝜖∕𝜎3 after being scaled by 𝑝𝑓 in Eq. (27), we only present
the resultant 𝛥𝜏𝑐 with 𝑂⃗1 corresponding to the 1st row in Fig. 7, which are found to be generally lower in magnitude than those
in other orientation directions. With all negative 𝛥𝜏𝑦 values neglected, all subplots are scaled to a radius of 5𝜖∕𝜎3. The minimum
positive 𝛥𝜏𝑦 along all other 𝑂⃗ orientations is indicated by black dotted circles as a reference in each plot. The black crosses label
the five smallest positive 𝛥𝜏𝑦 values. The 𝛥𝜏𝑦 locally probed with 𝑬𝐿

𝑢 in Eq. (6) ranks as the 4th least in its value. This 𝑬𝐿
𝑢 aligns

perfectly with 𝑬𝐺
𝑢 in the prior section, and the difference from the lowest 𝛥𝜏𝑦 is ∼ 8% and is small in comparison to the highest level

of the 𝛥𝜏𝑦 scale, 20𝜖∕𝜎3. This indicates that, as expected, the easiest-to-trigger local rearrangement does not necessarily align with
the loading imposed at the boundary, and the difference between the two appears to predominantly associated with the triaxiality
𝜓 .

We are also curious to compare the triaxiality 𝜓 of the corresponding local rearrangement centered at this targeted atom when
applying 𝑬𝐺

𝑢 on the boundary. The atomic strain with averaging radius 5𝜎 is computed according to Eq. (15) by comparing the
yielding configuration with the initial state. This strain tensor is an ‘average’ over the probing region, and this can be compared
to the local probing presented by the effective unit strain tensor 𝑬𝐿∗

𝑢 in Eq. (21) after normalization. Accordingly, the eigenvalues
of the normalized atomic strain tensor are then compared to 𝑬𝐿

𝑢 in Eq. (22) and the resulting value of 𝜓 is 0.465. This value falls
between 𝜓 = 0.4 and 𝜓 = 0.6 which correspond to the 2nd and the 1st lowest 𝛥𝜏𝑦 marked in Fig. 8. In addition, the 𝑝𝑓 between
the probing 𝑬𝐿∗

𝑢 and the above averaged atomic strain yields ∼ 0.938 for the minimal 𝛥𝜏𝑦 higher than 𝑝𝑓 ∼ 0.896 found for the
𝛥𝜏𝑦 when the local regions are probed aligning perfectly with the loading on the boundary (the 4th lowest). This high degree of
correspondence indicates that the triggered local plastic event is not necessarily in alignment with the loading on the boundary,
but, rather the local arrangement could be well predicted by the minimum 𝛥𝜏𝑦 from the local yield surface. The correlation might
be improved if a more complete range of local probing were undertaken at each sampling point, particularly with respect to the
triaxiality 𝜓 .

We also note that in producing this data set we have not systematically varied the hydrostatic loading; only the orientation
and triaxiality of shear was varied. Prior studies in two-dimensions have indicated a modest linear dependence of yield stress on
pressure, consistent with experimental results (Lund and Schuh, 2003; Barbot et al., 2020). We expect that is also the case for this
system, but confirming this is left for future work.

8. Conclusions

By applying the local yield stress (LYS) method to a computational model of a three-dimensional glass and varying the local
probing over a range of triaxialities (𝜓), orientations (𝑂⃗(𝛼, 𝛽)), rotations (𝛾), and directions (𝜔), we are able to obtain a sense of
the complexity of the response of the glass microstructure when subjected to shear. We note that the optimal length scale for this
analysis (approximately 5 atomic diameters in radius) is just above the smallest length scale at which the 3D Hooke’s law remains
valid, as was the case in 2D, although significantly more atoms reside within the resulting probing region (600–700 atoms) due to
the higher dimensionality. When we are limited to probing at a shear identical to the loading on the boundary, the mean correlation
after noise reduction persists through the first 200 identified plastic events or 1/3 the yielding strain (∼ 7%). The local yield stress
surface is significantly anisotropic. And the projected local yield stresses (𝛥𝜏𝑦) with respect to the loading on the boundary does a
very good job of predicting the sense of the shear at the first yield event. It is thus anticipated that the correlation of the yield stress
analysis might be improved by characterizing the entire yield surface, rather than only the shear commensurate with that applied
at the boundary, on each sampling point.

This detailed glimpse into the local yield surfaces present in a three-dimensional model glass has clear relevance for guiding
the development of constitutive models. Many coarse-grained mesoscale theories have been developed based on the concepts of
local yield (Nicolas et al., 2018). However, the underlying statistics of the local yield distribution have been a matter of significant
debate. Here we show that depending on the scale of the coarse-graining, an assumption of Weibull statistics is applicable. We
also show that the power-law tail of the Weibull distribution converges to a value (𝑏 − 1) ≲ 0.71 that is consistent with numerical
estimates (Karmakar et al., 2010) and predictions of nonlinear quasilocalized excitation scaling. (Kapteijns et al., 2020) However,
this Weibull fit appears not to arise from simple "weakest link" statistics. At this time we can only conjecture that the discrepancy
between the underlying distribution and the larger scale Weibull fit arises from elastic effects that emerge on longer length scales,
modulus fluctuations, or STZ interactions.

We also see evidence of the relevance of both the distribution of yield stresses along a particular sense of loading and the
shape of the local yield surface. This has clear consequences for where yield will be triggered and anticipates that such theories
should account for potential misalignment between the applied load and the resulting plastic flow. Our work also highlights one
particular outstanding question: How can we best characterize these local yield surfaces? They are not simply random, but rather
exhibit relatively smooth and regularly varying shapes. It is our belief that only by constructing a reliable reduced description of
these complex stochastic yield surfaces can one effectively experimentally characterize the mechanical response of these fascinating
structurally disordered materials.
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ppendix A. Sample preparation

In each sample, 1,000,000 atoms are simulated in a cubic simulation box with periodic boundary conditions along the x, 𝑦 and
axes. The system is comprised of 80% large atoms (A) and 20% small atoms (B). We apply a smoothed 6–12 Lennard-Jones(LJ)
otential to quantify the interatomic interactions as follows Barbot et al. (2018):

When 𝑟 ≤ 𝑟𝑖𝑛,

𝑈𝛼𝛽 (𝑟) = 4𝜖𝛼𝛽

[

(𝜎𝛼𝛽
𝑟

)12
−
(𝜎𝛼𝛽

𝑟

)6
]

+ 𝐶 ′, (A.1)

When 𝑟𝑖𝑛 < 𝑟 ≤ 𝑟𝑜𝑢𝑡,

𝑈𝛼𝛽 (𝑟) = 𝐶0 + 𝐶1(𝑟 − 𝑟𝑖𝑛) + 𝐶2(𝑟 − 𝑟𝑖𝑛)2 + 𝐶3(𝑟 − 𝑟𝑖𝑛)3 + 𝐶4(𝑟 − 𝑟𝑖𝑛)4, (A.2)

When 𝑟 > 𝑟𝑜𝑢𝑡,

𝑈𝛼𝛽 (𝑟) = 0, (A.3)

with

𝐶 ′ = 𝐶0 − 4𝜖𝛼𝛽

[

(𝜎𝛼𝛽
𝑟𝑖𝑛

)12
−
(𝜎𝛼𝛽
𝑟𝑖𝑛

)6
]

, (A.4)

𝐶0 = −(𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛)
[

3𝐶1 + 𝐶2(𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛)
]

∕6, (A.5)

𝐶1 = 24𝜖𝛼𝛽𝜎6𝛼𝛽 (𝑟
6
𝑖𝑛 − 2𝜎6𝛼𝛽 )∕𝑟

13
𝑖𝑛 , (A.6)

𝐶2 = 12𝜖𝛼𝛽𝜎6𝛼𝛽 (26𝜎
6
𝛼𝛽 − 7𝑟6𝑖𝑛)∕𝑟

14
𝑖𝑛 , (A.7)

𝐶3 = −[3𝐶1 + 4𝐶2(𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛)]∕[3(𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛)2], (A.8)

𝐶4 = [𝐶1 + 𝐶2(𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛)]∕[2(𝑟𝑜𝑢𝑡 − 𝑟𝑖𝑛)3]. (A.9)

𝛼 and 𝛽 denote particle species A or B. In LJ units, all quantities are represented in terms of particle mass 𝑚, which is equivalent for
both species, interatomic distance 𝜎, and interaction energy 𝜖. Consequently, time is measured in units of 𝑡0 = 𝜎

√

𝑚∕𝜖, temperature
in units of 𝜖∕𝑘𝐵 , pressure and stress in units of 𝜖∕𝜎3, etc. In the Kob and Andersen (1995) model, the bonding energies are 𝜖𝐴𝐴 = 1.0𝜖,
𝜖𝐵𝐵 = 0.5𝜖, 𝜖𝐴𝐵 = 𝜖𝐵𝐴 = 1.5𝜖, and the equilibrium particle spacings are 𝜎𝐴𝐴 = 1.0𝜎, 𝜎𝐴𝐴 = 0.88𝜎, 𝜎𝐴𝐵 = 𝜎𝐵𝐴 = 0.8𝜎.(Shi and Falk,
006) This potential field is smoothed from 𝑟𝑖𝑛 = 2.0𝜎 to 𝑟𝑜𝑢𝑡 = 2.5𝜎 via a polynomial function with coefficients 𝐶0, 𝐶1, 𝐶2, 𝐶3 and
4 as shown in Eq. (A.2), to avoid any discontinuity in the force associated with the potential’s short-ranged cutoff.

ppendix B. Deviation from Hooke’s law

.1. Elastic constants for the bulk glasses

To estimate the bulk elastic constants, the simulation box is loaded independently along xx, yy, zz, or sheared along xy, xz, yz
p to 1 × 10−7 strain using the athermal quasi-static (AQS) method (Tanguy et al., 2006; Lerner and Procaccia, 2009; Tsamados
t al., 2009; Dasgupta et al., 2012; Karmakar et al., 2010; Maloney and Lemaître, 2004). After strain is applied along each of the
ix probing directions, the elastic constants are calculated such that

𝑐𝐴𝐵 = 𝑠𝐴∕𝑒𝐵 (B.1)

ith 𝐴 and 𝐵 taking the values xx, yy, zz, xy, xz, or yz. For each loading, both positive and negative strain are applied and averaged.
( )
13

he 𝑐𝐴𝐵 = 𝑐𝐵𝐴 elements are symmetrized as 𝑐𝐴𝐵 + 𝑐𝐵𝐴 ∕2 for the off-diagonal elastic constants.
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Fig. C.9. Projected local yield stress (𝛥𝜏𝑦).

Appendix C. Variation in orientation, rotation and triaxiality

The projected local yield stress 𝛥𝜏𝑦

The patterns of the Projected Local Yield Stress 𝛥𝜏𝑦 are presented in Fig. C.9. In the array of plots, triaxiality (𝜓) is varied
horizontally and orientation (𝑂⃗) is varied vertically. In each plot, rotation angle (𝛾) is the angle counterclockwise from the horizontal
xis pointing to the right, and the magnitude of 𝛥𝜏𝑐 is represented by the distance from the origin. Blue △ and red ◦ denote the
esults for 𝜔 = −1 and +1. Black crosses mark the five lowest values of 𝛥𝜏𝑦 where the label 1 indicates the smallest value. In addition,
olid and hollow markers denote positive and negative sign respectively. In order to show the full range of values, each plot is scaled
ith the limits of the axes varied to ±5, ±10, ±15, and ±20𝜖∕𝜎3, and this variation in scaling is denoted by the yellow, light green,
reen, and dark green backgrounds, as is shown in the bottom subplot.
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