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Gaussian field model for polar fluids as a function of density and polarization:
toward a model for water.

H. Berthoumieux1, 2
1)CNRS, UMR 7600, LPTMC, F-75005, Paris, France
2)Sorbonne Universités, UPMC Univ Paris 06, UMR 7600, LPTMC, F-75005, Paris,
France

This work is concerned with a simple model for a polar fluid, a Gaussian field model based on the excess
density and on the polarization. It is a convenient framework to implement the dielectric properties of
correlated liquids that stem from nanometric correlations between molecules. It allows to study the effects of
coupling terms between density and polarization on the structure of the fluid. Despite the simplicity of such a
model, it can capture some interesting features of the response functions of water such as the quasi-resonant
longitudinal dielectric susceptibility or the presence of two maxima in the structure factor. Explicit models
of water generate extremely high computational cost and implicit models sometimes fail to treat properly the
electrostatic interactions. A Gaussian field theory could therefore be an interesting alternative to describe
water.

I. INTRODUCTION

Water is the most abundant fluid on Earth and a pre-
requisite for life on this planet. It is an associated fluid
structured by H-bond networks. The strength of these
interactions and the cavities created by the spacial orga-
nization that they generate give rise to many anomalous
properties of water1. Water as a solvent plays an essen-
tial role to assist a broad range of nanometric machines
in their functions, proteins2,3 or nanocapacitors4 to name
a few. The ’perfect’ model of water capturing enough mi-
croscopic details to keep track of its molecular structure
but coarse-grained enough to reach an affordable compu-
tational cost is an active domain of research.

Atomistic models for water give acces to a large
amount of molecular detail5 but these models imply ex-
orbitant computational times and alternatives have to be
envisaged when one studies large systems or systems in
which the solvent is not pure, like electrolytes6,7. On the
other hand, implicit water models consisting in a mean
force applied on objects embedded in the solvent can be
significantly faster but they neglect length-scales origi-
nating in the molecular structure of the solvent8.

Continuous models describing water and using density
as an order parameter such as gaussian models or func-
tional models (DFT) have brought a huge contribution to
the field of the physics of liquids, clarifying the structural
response of the fluid to microscopic and macroscopic in-
clusions by taking into account short and long range den-
sity fluctuations9,10. However, these models that focus
on density effects do not properly reproduce electrostatic
interactions in water.

It is worth recalling that water possesses peculiar di-
electric properties that result from the hydrogen-bond
network structuring the fluid and correlating water dipole
orientations on a nanometric lengthscale. The dielec-
tric susceptibility is not constant but exhibits a quasi-
resonance in Fourier space for a wave number correspond-
ing to the inverse H-bond length. Neutron scattering and
molecular dynamics simulations have given access to its

precise shape11. Continuous theories can capture these
properties emerging from molecular correlations. They
are often referred to as ’nonlocal’12–16. The medium is
described by a field, often the polarization, and associ-
ated with a Landau-Ginzburg Hamiltonian the expan-
sion of which is chosen to reproduce the experimentally
measured susceptibility. A model capturing key prop-
erties of water dielectric susceptibility was developed17

and used to show that short-range correlations between
water molecules strongly affect the interaction between
charged inclusions embedded in the fluid18 and the elec-
trostatic attraction between macroscopic neutral objects
immersed in water19.

Recently, a classical density functional theory (MDFT)
using the density and the polarization was proposed to
describe water20? ,21. A few physical quantities such as
the structure factor and the dielectric susceptibilities are
used as inputs of the MDFT. This numerical method
gives satisfactory results for solvation energy and hydra-
tion profile of any solute with a significantly reduced com-
putational cost.

In this work we propose a first step toward a tractable
analytical framework to model water at an intermediate
length-scale, i.e. including nanometric details coming
out of the molecular structure of the fluid without keep-
ing track of all the atomistic details. The article is orga-
nized as follows. In the first part, we propose a Gaussian
field model for a polar liquid which is described by a den-
sity and a polarization field. We use a Landau-Ginzburg
expansion to obtain an Hamiltonian that gives rise to
nanometric correlation lengths for density and polariza-
tion. In a second part, we perturb the previous model
by adding a coupling term between the two order pa-
rameters. We study the form of the coupling, derive the
susceptibilities and the Green functions of the system.
In the third part, we use this extended Hamiltonian to
reproduce qualitatively the susceptibilities of water. We
derive the radial distribution function and the response
function of the medium to an impurity. We show that
this approach can capture some of the structural proper-
ties of water. The last part is devoted to the discussion
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and the conclusion.

II. TWO ORDER PARAMETER GAUSSIAN MODEL
FOR A POLAR FLUID

We start by considering a simple model of fluid, a
Gaussian model associated with a scalar field, the den-
sity ρ(r), and a vectorial field, the polarization P(r). The
Hamiltonian of the system is thus characterized by two
susceptibilities and can be written as

H[δρ,P] =
kbT

2ρ0

∫
d3rd3r′δρ(r)χ−1ρ,0(r, r′)δρ(r′)

+
1

2ε0

∫
d3rd3r′P(r) · χ−1P,0(r, r′) ·P(r′), (1)

where δρ(r) is the deviation of the fluid density from its
mean ρ0 = ρ(r)−δρ(r). The polarization P(r) is defined
as the average of the dipolar moments on a mesoscopic
volume. kB is the Boltzmann constant and T is the tem-
perature, ρ0 is the density of the fluid and taken in this

paper to be ρ0 = 0.033Å−3 (the density of water in nor-
mal conditions), and ε0 the permittivity of the vacuum.
χρ,0 and χP,0 are respectively the density susceptibility
and the tensorial dielectric susceptibility. The unper-
turbed fluid is characterized by a homogeneous density
equal to ρ0 and a vanishing polarization.

The first term of the Hamiltonian corresponds to the
energy of excess density22, the second term is the dielec-
tric energy of the medium. The variance of the fields
δρ(r) and P(r) are linked to the susceptibilities intro-
duced in Eq. (1) by the relations:

〈δρ(q)δρ(−q)〉 = ρ0χρ,0(q),

〈Pi(q)Pj(q)〉 = kbTε0χP,0(i,j)(q). (2)

The structure factor S(q) of such a fluid is equal to the
density susceptibility χρ,0(r)23.

In a first step, we propose a Landau-Ginzburg expan-
sion for the density and polarization terms including the
first and the second spacial derivatives of the fields. The
Hamiltonian can then be written as:

H[δρ,P] =
kbT

2ρ0

∫
d3r
[
Kρδρ(r)2 + λ (∇δρ(r))

2
+ ν (∇ · ∇δρ(r))

2
]

+
1

2ε0

∫
d3r

[
KP2(r) + κl(∇ ·P(r))2 + α(∇(∇ ·P(r)))

2
]

+
1

2ε0

∫
d3rd3r′

∇ ·P(r)∇ ·P(r′)

4π|r − r′|
. (3)

Note that the dielectric energy contains a local contribu-
tion due to the short-range interactions between dipoles
and a long-range part coming from the Coulomb inter-
actions. The dielectric susceptibility tensor is character-
ized by a longitudinal and a transverse scalar suscepti-
bility such that χP,0(i,j)(q) = χ‖(q)qiqj/q

2 + χ⊥(q)(δij −
qiqj/q

2). The transverse susceptibility associated with
this Hamiltonian is purely local and equal to χ⊥,0(q) =
1/K. In the following, we will consider only the lon-
gitudinal susceptibility, which is equivalent to consider
only the longitudinal contribution of the field P such that
∇×P = 0.

The corresponding density and dielectric susceptibility
tensors in Fourier space are equal to

χρ,0(q) =
1

Kρ + λq2 + νq4
(4)

χP,0(i,j)(q) = χP,0(q)
qiqj
q2

,

with χP,0(q) =
1

1 +K + κlq2 + αq4
. (5)

The Landau-Ginzburg expansion to order q4 can give rise
to susceptibilities exhibiting a maximum in q-space if one
imposes negative values for λ and κl and positives values
for α and ν which ensure the stability of the system. The
values for q = 0 of the susceptibilities χP,0(0) and χρ,0(0)

are linked to the macroscopic properties of the fluid, i.e.
to the permitivity and the compressibility through the
relations χP,0(0) = 1

1−ε and χρ,0(0) = χT /χ
0
T , where

χT is the compressibility of fluid and χ0
T = 1/kbTρ0 is

the compressibility of a perfect gas of density ρ0. We
choose the values of K and Kρ such that the macroscopic
properties of the fluid described by Eq. (3) correspond
to SPC/E water properties24. The values of (λ, ν) and
(κl, α) are chosen so that the value and the position of
the maxima of χρ,0(q) and χP,0(q) fit the ones SPC/E
water11,20,21.

The density correlation function in the real space is
obtained by Fourier transform of Eq. (2) and is an oscil-
lating function in an exponentially decaying envelope,

〈δρ(r)δρ(0)〉 = ρ0
(1 +R2

ρ)
2

8πKρRρλ2e,ρr
e−r/λe,ρ sin(

r

λo,ρ
), (6)

with Rρ = λe,ρ/λo,ρ, λo,ρ =
√

2/q0,ρ

√
1/
√
ζρ + 1, λe,ρ =

√
2/q0,ρ

√
1/
√
ζρ − 1, ζρ = νq40,ρ/Kρ. For the chosen set

of parameters, the decay length λe,ρ and the oscillating
length 2πλo,ρ are equal respectively to 0.35 nm and 0.22
nm. The polarization correlations are discussed in Ap-
pendix A.

The density correlation function is linked to the well
characterized pair distribution function through the re-
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FIG. 1. a. Density susceptibility χρ,0(q) as a function of the wavevector. The expression of χρ,0(q) is given in Eq. (4)
and plotted for Kρ = 14.44, λ = −3.50 Å−2 and ν = 0.22 Å−4. b. Longitudinal susceptibility χP,0(q) as a function of the
wavevector. The expression of χP,0(q) is given in Eq. (5) and is plotted for K = 1/70, κl = −0.29 Å−2, α = 0.02 Å−4.
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FIG. 2. The radial distribution g(r) as a function of the dis-
tance. The expression of g(r) is given in Eq. (7) and plotted
for parameter values given in Fig. 1.

lation

g(r) = 1 +
〈δρ(r)δρ(0)〉

ρ20
. (7)

The radial distribution function g(r) associated with the
Hamiltonian given in Eq. (3) is represented in Figure 2.
The first peak, located around 3 Å, corresponds to the
first solvation shell of a reference molecule. The function
decreases slowly in r with e−r/λe,ρ/r and the oscillations
due to the layers of ordered molecules are visible over a
range of 1 nm. This is much larger than what is observed
in liquid phase and in particular in water where the en-
velope of the radial distribution function decays more
rapidly and vanishes after two oscillations25. Indeed,
the density susceptibility obtained from the Landau-
Ginzburg expansion in q4 presents a narrow maximum
which corresponds to a long-range correlated fluid.

The local density of structured liquids such as water is
closely linked to the spacial organization of the molecular
dipoles26. A coarse-grained desciption of a fluid associ-
ated with two coupled parameters could take into ac-
cound the interplay between structure and density. A
Landau-Ginzburg Hamiltonian, function of ρ and P , ex-
panded to the second spacial derivative and generating a
Lorentzian dielectric susceptibility was introduced by Ko-
rnyshev and coworkers27. It was shown that a coupling
between ρ and P generates a maximum in the dielectric
susceptibility. In the next two sections, we study the ef-
fect of the coupling in the case of the model given by Eq.
(3).

III. PRESENCE OF A COUPLING TERM BETWEEN
DENSITY AND POLARIZATION

We add a coupling term between density and polar-
ization to the Hamiltonian given in Eq. (3) and study
its effects on the response functions of the system. Its
form is dictated by symmetry arguments requiring that
the coupling term is a scalar. A spacial derivative of
one of the fields has to be introduced and a supplemen-
tary length scale will be present in the problem. We
consider the gradient term and neglect higher deriva-
tive terms and add to the energy given in Eq. (3) an

extra contribution c kbTµ0ρ0

∫
d3r∇δρ(r) · P(r). The cou-

pling constant c is homogeneous to a length. Using
partial integration, the coupling term can be written as
−c kbTµ0ρ0

∫
d3rδρ(r)∇·P = −c kbTµ0ρ0

∫
d3rδρ(r)·ρb(r), where

ρb is the local bound charge density.

The Hamiltonian of the system characterized by the
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two coupled order parameters (δρ,P) is now equal to:

Hc[δρ,P] =
kbT

2ρ0

∫
d3qδρ(q)χ−1ρ,0δρ(−q)

+
1

2ε0

∫
d3qP(q)χ−1P,0P(−q)

− c ikbT
µ0ρ0

∫
d3qqP(q)δρ(−q)

=
1

2

∫
d3q (δρ(q),P(q))χ−1c (q)

(
δρ(−q)
P(−q)

)
.(8)

The kernel χ−1c (q) is a 4x4 matrix that is given in Ap-
pendix B. The density and the polarization susceptibili-
ties are the diagonal terms of the inverse of this matrix
and are equal to

χρ,c(q) =
χ−1P,0(q)

χ−1P,0(q)χ−1ρ,0(q)− c2q2 kbTε0
µ2
0ρ0

, (9)

χ(P,c)ij = χP,c(q)
qiqj
q2

with χP,c(q) =
χ−1ρ,0(q)

χ−1P,0(q)χ−1ρ,0(q)− c2q2 kbTε0
µ2
0ρ0

, (10)

where χρ,0(q) and χP,0(q) are the uncoupled suscepti-
bilities given in Eqs. (4,5). For a vanishing coupling
term, we obtain the expressions given in Eqs (4,5). The
system is now characterized by a cross susceptibility
χρ,P (q) proportional to the density-charge density corre-
lations that we define following Borgis and coworkers28 as

χρ,P (q) =
(

ρ0
kbTε0

)1/2 〈ρc(q)δρ(−q)〉
q , ρc(q) = iqP(q) being

the bound charge density. Using the correlation between
the polarization and the density derived from Eq. (8),
〈δρ(q)Pi(−q)〉 = icqikbT

ε0
µ0

1

χ−1
ρ,0(q)χ

−1
p,0(q)−c2q2

kbTε0
µ20ρ0

, we de-

rive the expression of the cross susceptibility,

χρ,P (q) =

(
kbTε0
ρ0

)1/2
cq

µ0

1

χ−1ρ,0χ
−1
p,0 − c2q2 kbTε0µ2

0ρ0

. (11)

χρ,c(q), χP,c(q), and χρ,P (q) are plotted in Figure 3 for
the set of parameters given in Fig. 1 and increasing val-
ues of the coupling constant c. The functions χρ,c(q) and
χP,c(q) are functions of c2 and do not depend on the sign
of the coupling constant. The cross-susceptibility χρ,P (q)
is proportional to c and presents a peak which is sharper
than the peak of the density susceptibility but less sharp
than the peak associated with χP,c(q). The coupling ef-
fectively broadens the peaks of the susceptibilities and
displaces the maxima toward small q, respectively large
q, for the density, respectively for the polarization. The
susceptibilities diverge for a large value of c showing that
a strong coupling between P and δρ leads to an unstable
system. A medium associated with the parameter values
given in Fig. 1 is stable for c < −0.33 Å.

To gain physical insight into the expressions of the
susceptibilities given in Eqs. (9-10), we consider the

Green functions that control the response of an homo-
geneous medium characterized by the Hamiltonian Eq.
(8) to a perturbation in density and in polarization. The
Green functions are derived in Appendix C. A pertur-
bation in density induces a response in density given by
Gρ(r) and in polarization given by Gρ,P . A polarization
of the medium induces a response in polarization and in
density that are given respectively by the Green func-
tions GP (i,j)(r) = Tc(r)(δij−rirj/r2)+Lc(r)rirj/r

2 and
Gρ,P (r). These functions are plotted in Fig. 4 for a van-
ishing coupling, c = 0 and a negative coupling c =-0.2
Å. They are the sum of two oscillating functions in ex-
ponentially decaying envelopes, each contribution being
associated with a decaying length that defines the range
of the response. In the absence of coupling, the range of
Gρ(r), GP (r) respectively, is equal to 0.31 nm, 0.49 nm
respectively, and the cross Green function Gρ,P (r) van-
ishes. An increasing coupling increases the range of the
Green functions. In Fig. 4, i. e. c=-0.2 Å, the largest
decaying length is equal to 0.59 nm for Gρ(r) and GP (r).

To conclude this section, we note that the form of cou-
pling between P and δρ is imposed by the symmetry of
the problem and will always lead to an increase of the
response of the system. The three susceptibilities asso-
ciated with this model and given in Eqs. (9-11) were
determined for SPC/E water, in particular χρ,P (q) that
was shown to be non vanishing28. This model could be
used to propose a tractable analytical theory for water.

IV. MODEL FOR WATER

The aim of this section is to qualitatively reproduce
certain structural properties of water using the present
Gaussian field model. Note that water is not a dipolar
molecule as it presents three punctual charges, so the
continuous field P(r) can be defined as ∇ ·P (r) = ρb, ρb
the bond charge density. We choose the free parameters
of this model (α, κl, ν, λ, c), so that we can reproduce
the positions and values of the maxima of the SPC/E
water susceptibilities (see Appendix D for details). Note
that Kρ and K are fixed to reproduce macroscopic prop-
erties of water. The results are plotted in Fig. 5. The
amplitude, the position and the sign of the three suscep-
tibility maxima are qualitatively comparable to the ones
of the susceptibilities of SPC/E water. Moreover, the
peak of χρ(r) is broader than in the absence of coupling
and associated with two separated maxima, reproducing
an experimentally observed aspect of the water structure
factor29. The structure factor S(q) of water can possess
two maxima in the zone 2Å−1 < q < 3.5Å−1 the rela-
tive positions of which could be related to the presence
of two structures in water: the LDL (low density liquid)
and the HDL (high density liquid)30. The radial distribu-
tion corresponding to these response functions is plotted
in Figure 6. The dotted line represents the radial distri-
bution obtained without coupling. We observe that the
coupling gives rise to a better fit of the numerical and
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experimental results25,31. The first peak located around
r = 3Å corresponding to the first solvation shell is more
as observed in data and the correlations decrease rapidly
after two oscillations and vanish after 1nm.

We consider now the response of the medium to an
impurity. An atom, located in r = 0, embedded in the
medium can be described as a force field such that the

Hamiltonian of the medium is,

Hpart = Hfluid+

∫
d3rρ(r)φn(r)−

∫
d3rP(r)E(r) (12)

with φn(r) a Lennard-Jones potential and E(r) an elec-
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trostatic field,

φn(r) = 4ε

(
σ12

r12
− σ6

r6

)
(13)

E(r) = −gradφ(r), with φ(r) =
Q

4πε0r
, (14)

where ε and σ are Lennard-Jones parameters (using
Lorentz-Berthelot mixing rules with Lennard-Jones pa-
rameters of the solvent) and Q being the point charge.

A punctual impurity creates an isotropic response of
the solvent given by δρ(r) and P (r)er, which is the sum
of two terms: a term generated by the Lennard-Jones po-
tential, δρn(r) and Pn(r)er, and a term generated by the
electrostatic field, δρn(r) and Pn(r), respectively. The
density and the polarization response in the direct space,
δρ(r) = δρn(r) + δρe(r) and P (r) = Pn(r) + Pe(r), are
derived by minimizing Eq. (12). Details of calculations
are given in Appendix E.

Note that we consider only the linear response of the
medium to the inclusion without taking into account the
nonlinearity coming from the excluded volume effects
generated by inclusions embedded in the fluid. This could
be done for this model in a second time following the for-
malism of Li, Kardar and Chandler, which we plan to do
in a future publication.

The response of the medium to a chlore atom (σcl = 3.6
Å, εcl = 9, 6.10−22 J, Qcl=0 C) and a chloride (σcl− = 3.6
Å, εcl− = 9, 6.10−22 J,Qcl− = 1, 6.10−19 C) are presented
in Fig. 7. The results can be compared to molecular
dynamics results28.

Figure 7a. represents the radial distribution function

gcl(r) = 1 + δρn(r)
ρ , the density response of the medium

to an atom of chlore, while Figure 7b. represents the
distribution of polarization Pn(r)/µ0ρ0, the polarization
response of the medium to a chlore atom. The qualita-
tive aspects of the responses are in agreement with the
molecular dynamics results. In particular, the amplitude
of the polarization response is similar to the molecular
dynamics results. Figure 7 c. represents the density re-

sponse gCl− = 1+ δρn(r)+δρe(r)
ρ0

to a chloride and the plot

7. d. is the polarization response (Pn(r) + Pe(r))/µ0ρ0.
We observe that the order of magnitude of the density
and polarization response are in agreement with molec-
ular dynamics28. The response is overestimated in both
cases and the decay of the response is too slow, which il-
lustrates that both the dielectric susceptibility χP (q) and
the coupling susceptibility χρ,P (q) are sharper than the
ones of water.

V. DISCUSSION AND CONCLUSION

In this paper, we have introduced a Gaussian field
model for polar fluids as a function of two order pa-
rameters, the density and the polarization. A Landau-
Ginzburg Hamiltonian with a development in q4 for the
excess density energy and the dielectric energy is pro-
posed. We showed that a simple linear coupling term
whose form is imposed by the symmetry of the problem
can give rise to susceptibilities that qualitatively repro-
duce the susceptibilities of water and consequently its
radial distribution of water and the response of the fluid
to a perturbation.

Problems related to liquids and to water in particular
are often envisaged using molecular dynamics and data
analysis which give access to a large amount of micro-
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scopic details and cost an exorbitant computer time. It
is interesting to develop in parallel an arsenal of tools
to describe water in an analytical framework. We be-
lieve that the approach presented here which combines a
nonlocal dielectric description of water and an approxi-
mate description of density fluctuations is an interesting
first step toward a model for water at an intermediate
length-scale.
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Appendix A: Correlation of polarization without coupling

The polarization correlations are equal to

〈Pi(0)Pj(r)〉 = kbTε0

(
T0(r)

(
δij −

rirj
r2

)
+ L0(r)

rirj
r2

)
,

(A1)
where T0(r) and L0(r) are the transverse and longitudinal
correlation functions. These functions were studied in
reference19. The exponential decay length λe,P and the
oscillatory decay length 2πλo,P are equal to 0.49 nm and
0.24 nm respectively. The correlation functions of the
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polarization are equal to:

L0(r) =
e−r/λe,P

4π(K + 1)r
cos

(
r

λo,P

)
×
( 2

r2
+

1

rλo,P

(
RP +

1

RP

))
+

e−r/λe,P

4π(K + 1)r
sin

(
r

λo,P

)(
1

λ2o,P

(
1

2R3
P

+
1

RP
+
RP
2

)

+
1

r

(
1

λo,P
+

1

λo,PR2
P

)
+

1

r2

(
1

RP
−RP

))

− 1

2π(K + 1)r3
,

2T0(r) + L0(r) =
(1 +R2

P )2

8π(1 +K)RPλ2e,P r
e−r/λe,P sin(

r

λo,P
),

with λe,P =
√

2/q0,P
√

1/
√
ζ, P − 1, λo,P =√

2/q0,P
√

1/
√
ζ, P + 1, RP = λe,P /λo,P , ζp =

αq40,P /(1 + K) = (1 +K − 1/χmP ) /(1 + K),

q0,P =
√
−κl/2α, and χmP the maximum value of

χP,0(q).

Appendix B: Susceptibility of the system in the presence of
coupling

The kernel χ−1c (q) introduced in Eq. (8) is a 4x4 matrix
which is equal to:

χ
−1
c (q) =



kbT
ρ0

χ
−1
ρ,0(q) ic

kbT
µ0ρ0

qx ic
kbT
µ0ρ0

qy ic
kbT
µ0ρ0

qz

−ic kbT
µ0ρ0

qx
1
ε0
χ
−1
P,0

(q)
q2x
q2

1
ε0
χ
−1
P,0

(q)
qxqy

q2
1
ε0
χ
−1
P,0

(q)
qxqz
q2

−ic kbT
µ0ρ0

qy
1
ε0
χ
−1
P,0

(q)
qxqy

q2
1
ε0
χ
−1
P,0

(q)
q2y

q2
1
ε0
χ
−1
P,0

(q)
qyqz

q2

−ic kbT
µ0ρ0

qz
1
ε0
χ
−1
P,0

(q)
qxqz
q2

1
ε0
χ
−1
P,0

(q)
qyqz

q2
1
ε0
χ
−1
P,0

(q)
q2z
q2


.

The corresponding susceptibility is obtained by inverting
χ−1c (q).

Appendix C: Green functions

We give the expressions of Green functions of the sys-
tem described by the Hamiltonian given in Eq. (8) in

real space.

• Expression of Gρ(r)

Gρ(r) =
1

(2π)3

∫
d3qeiqr cos(θ)χρ,c(q) (C1)

=
1

4πrαν
Σ4
i=1aie

iqir (C2)

• Expression of Gρ,P (r)

Gρ,P (i)(r) =
1

(2π)3

∫
d3qeqr cos(θ)χ(ρ,P ),i(q) (C3)

= Gρ,P (r)
r

r
· ei with

Gρ,P (r) =

√
kbTε0
ρ0

c

4πµ0αν

d

dr

(
Σ4
i=1bi

eiqir

r

)
(C4)

where ei is the unit vector of the orthonormal basis.

• Expression of the matrix GP (r)

GP (ij)(r) =
1

(2π)3

∫
d3qeqr cos(θ)χP,c(q)

qiqj
q2

(C5)

= Tc(r)
(
δij −

rirj
r2

)
+ Lc(r)

rirj
r2

(C6)

with

Lc(r) =
−1

4παν

d2

dr2

(
Σ4
i=1ci

−1 + eiqir

q2i r

)
(C7)

2Tc(r) + Lc(r) =
1

4παν
Σ4
i=1

ci
r
eiqir (C8)

and where qi, (i = 1, ..., 4) are the poles of the suscepti-
bility functions, such that (1+K+κlq

2+αq4)(Kρ+λq2+

νq4) − c2q2 kbTε0
µ2
0ρ0

= ανΠi(q
2 − q2i ). Note that qi are as-

sociated with a positive imaginary part. The coefficients
(ai, bi, ci), (i = 1, ..., 4) obey the following equations

M · a =


0
α
κl

1 +K

 ,M · b =


0
0
0
1

 ,M · c =


0
ν
λ
Kρ

(C9)

and the matrix M is equal to

M =

 1 1 1 1
−(q22 + q23 + q24) −(q21 + q23 + q24) −(q21 + q22 + q24) −(q21 + q22 + q23)
q22q

2
3 + q22q

2
4 + q23q

2
4 q21q

2
3 + q21q

2
4 + q23q

2
4 q21q

2
2 + q22q

2
4 + q21q

2
4 q21q

2
2 + q22q

2
3 + q23q

2
1

−q22q23q24 −q21q23q24 −q21q22q24 −q21q22q23

 . (C10)

In the absence of coupling one finds for the Green func-
tions of the system:

• Gρ(r) = 〈δρ(r)δρ(0)〉0/ρ0, with 〈δρ(r)δρ(0)〉0 given

in Eq. (6).

• Gρ,P (r) = 0
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• GP (ij)(r) = T0(r)
(
δij − rirj

r2

)
+ L0(r)

rirj
r2 with

T0(r) and L0(r) given in Appendix A.

The coupling modifies the range of the correlations.
The Green functions Gρ(r), Gρ,P (r), Lc(r) and Tc(r) are
the sum of two oscillating functions in decaying envelopes
of range λe,1 and λe,2 with λe,1 < λe,2 and λe,1 → λe,ρ
and λe,2 → λe,P for |c| → 0. As presented in Figure
A. 1, λe,2 increases with an increase of coupling strength
|c|, whereas λe,1 slightly decreases. The relative weight
of each decaying envelope varies with the strength of the
coupling. Its is presented in Fig A. 2, A.3 and A. 4

• Gρ(r): the relative contribution of the envelope de-
caying in λe,2 compared to the one decaying in λe,1
increases with an increasing coupling strength and
vanishes in the absence of coupling. The function
decaying in λe,1 remains practically unchanged as
the coupling strength increases. (See Fig A. 2.)

• Gρ,P (r): the cross Green function vanishes in the
absence of coupling. For increasing coupling, the
function is dominated by the contribution decaying
in λe,2. (See Fig. A. 3.)

• GP (i,j)(r) : the functions Lc(r) and 2Tc(r) +Lc(r)
characterizing the response in polarization are a
sum of envelopes decaying in e−λe,i/rj , with (i =
1, 2) and (j = 1, ..., 3). Similarly to the density
and cross Green functions, an increasing coupling
strength enhances the range of the response by in-
creasing the weight of the functions decaying in λ2.
In the absence of coupling, the terms decaying in
λe,1 vanish.

Appendix D: Parameter values for a description of water

In this appendix, we determine the values of the pa-
rameters α, κl, λ, ν and c that can reproduce certain
features of the response functions of water. We choose 5
conditions for the susceptibilities and its derivatives that
can be written as follows

χP (2.6) = 40,
∂χP (2.6)

∂q
= 0,

χρ(3) = 1.25,
∂χρ(3)

∂q
= 0, χρ,P (2.6) = 6.5.

The aforementioned equations are functions of (α, κl, λ,
ν, c). As a reminder, the value of the macroscopic prop-
erties of the medium is fixed in this paper to Kρ = 14.4
and K = 1/70, the values obtained for SPC/E water32.
Solving these equations one obtains the following values

αw = 0.024Å−4, κlw = −0.3Å−2, νw = 0.12Å−4,

λw = −2.5Å−2, cw = −0.90Å (D1)

and the corresponding response functions are plotted in
Figure 5.

Note that the goal is not to derive the set of param-
eters that gives the ”best” susceptibilities to reproduce
experimental results but to catch some of their important
aspects. In this frame, the plots presented in the main
text are satisfying because the three susceptibilities are
qualitatively similar to the numerical measures.

The radial distribution function associated to this set
of parameter is written as

gw(r) = 1 +Gρ(r)/ρ0 (D2)

where Gρ(r) is the Green function given in Eq. (C1)
with the coefficients ai and the poles qi, (i = 1, ..., 4 )
associated with the parameters (αw, ..., cw) previously
given.

Appendix E: Density and polarization response

We calculate the response of the medium to an external
potential given by Eq. (12). The potential is radial and
will induce a radial polarization P (r)er in the medium
that can be written P (r)er = ∇ψ(r), with ψ(r) a scalar
potential. The response of the fluid density and polar-
ization is obtained by minimizing the Hamiltonian given
in Eq. (12) that can be written in Fourier space as a
function of δρ(q) and ψ(q),

H[δρ, ψ] =
1

2

∫
d3q

(
δρ(q) ψ(q)

)
χ−1c,ψ(q)

(
δρ(−q)
ψ(−q)

)
+

∫
d3q

(
δρ(q) ψ(q)

)( φan(−q)
q2φ(−q)

)
, (E1)

with

χ−1cψ (q) =

(
kbT
ρ0
χ−1ρ,0(q) c kbTµ0ρ0

q2

c kbTµ0ρ0
q2 q2

ε0
χ−1P,0(q)

)
(E2)

The Lennard-Jones potential φ(r) defined in Eq. (13)
does not have a Fourier Transform due to its high diver-
gence in 0. We approximate it by the potential φa(r)
defined as follow,

φan(r) =

{
20ε for r < σ

4ε
(
σ12

r12 −
σ6

r6

)
for r > σ

(E3)

which Fourier transform is numerically determined. The
response of the medium to the inclusion is given by a
minimization of the Hamiltonian with respect to δρ(q)
and ψ(q) and one finds,(

δρ(q)
ψ(q)

)
= −χc,ψ(q)

(
φn(q)
q2ψ(q)

)
(E4)

=
1

χ−1
P,0(q)χ−1

ρ,0(q) − c2q2 kbTε0
µ2
0ρ0

(E5)

×

(
− ρ0
kbT

χ−1
P,0φ

a
n(q) cε0

µ0
q2φ(q)

cε0
µ0
φan(q) −ε0χ−1

ρ,0(q)φ(q)

)
(E6)

The density and the polarization are the sum of two
contributions, one triggered by the the Lennard-Jones
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potential and the other one by the electrostatic potential.
The first one is derived numerically,

δρn(r) = − 1

(2π)3
ρ0
kbT

∫
d3q

χ−1P,0(q)φan(q)eiqr

χ−1P,0(q)χ−1ρ,0(q)− c2q2 kbTε0
µ2
0ρ0

(E7)

ψn(r) =
1

(2π)3
cε0
µ0

∫
d3q

φan(q)eiqr

χ−1P,0(q)χ−1ρ,0(q)− c2q2 kbTε0
µ2
0ρ0

.(E8)

The electrostatic contribution can be expressed analyti-
cally in real space by writing φ(q) = Q

ε0q2
. It gives,

δρel(r) =
cQ

4µ0πrνα
Σ4
i=1bie

iqir, (E9)

ψel(r) = − Q

4πrαν
Σ4
i=1ci

−1 + eiqir

q2i
. (E10)

The polarization P(r) = P (r)er is given by the relation
P (r) = ψ′(r).
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