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Abstract
This paper presents mathematical modelling and simulation of thin free-surface flows of viscoplastic fluids
with a Herschel–Bulkley rheology over complex topographies with basal perturbations. Using the asymp-
totic expansion method, depth-averaged models (lubrication and shallow water type models) are derived for
3D (three-dimensional) multi-regime flows on non-flat inclined topographies with varying basal slipperiness
conditions. Starting from the Navier–Stokes equations, two flow regimes corresponding to different balances
between shear and pressure forces are presented. Flow models corresponding to these regimes are calculated
as perturbations of the zeroth-order solutions. The classical reference models in the literature are recovered
by considering their respective cases on a flat-inclined surface. In the second regime case, a pressure term is
non-negligible. Mathematically, it leads to a corrective term to the classical regime equations. Flow solutions
of the two regimes are compared; the difference appears in particular in the vicinity of sharp changes of
slopes. Nonetheless, both regime models are compared with experiments and are found to be in good agree-
ment. Furthermore, numerical examples are shown to illustrate the robustness of the present shallow water
models to simulate viscoplastic flows in 3D and over an inclined topography with local perturbations in basal
elevation and basal slipperiness. The derived models are adequate for direct (engineering and geophysical)
applications to real-world flow problems presenting Herschel–Bulkley rheology like lava and mud flows.

Key words: Shallow water equations, lubrication, viscoplastic, basal slipperiness, free-surface flows, multi-
regime flows.

1 Introduction

Free-surface flows of viscoplastic fluids are commonly encountered in nature (e.g., lava flows, debris
flows, mudflows) [1–3] and in industrial settings (e.g., cosmetic creams, food pastes, paints, heavy oils) [3–5].
Mathematical modelling and simulation of these flows has a number of important geophysical and engineering
applications [2, 6, 7]. One key application is the ability to predict the fluid flow path and run-out distances,
for risk assessments and hazard management plans [7–9]. Reliable forecasting, however, calls for accurate
modelling of the flow dynamics. For that reason, this paper aims at deriving a reliable model that can be
used to simulate viscoplastic flows (like lava and mudflows) in a natural setting consisting of an irregular
topography with varying basal slip distribution.

Viscoplastic materials are characterized by a yield stress threshold, beyond which they flow like fluids and
below which they behave like rigid solids [4]. Flows of viscoplastic fluids have another complex behaviour
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resulting from the formation of a plug-like (unyielded) region within the flow [2, 4]. Below this region is
the sheared (yielded) zone; the interface between them is the yield surface. The possible coexistence and
interaction of the two layers (regions) during the fluid evolution is still a paradox [2, 10–13]. This complex
rheology makes it challenging to model viscoplastic flows. However, a number of rheological models have
been developed in the past, and the most common are the Bingham and Herschel–Bulkley models which
date back to the pioneering work of [14] and [15], respectively. This research work considers the Herschel–
Bulkley law because of its ability to describe many complex fluid behaviors in a non-linear and history
independent manner. In addition, this law has widely been used in the past to describe viscoplastic flows,
see for instance [10,16–21], and reference therein.

Apart from the complex rheology, geophysical flows of viscoplastic fluids have an additional complexity
that arises from the free-surface evolution with time, the variation of basal conditions, and the rapidly
unfolding complex topographies - which results in multi-regime flows (multiple regimes within the flow).
Indeed, two different extreme regimes, fully sheared and sliding-like, can be observed within the flows.
Different regimes within the flow usually originate from basal conditions that are non-uniform or potentially
from variations of the mean-slope or basal elevation, see [22]. The conservation equations governing such
flows, therefore, become rather more complex and difficult to solve numerically. However, geophysical flows
are generally characterized by a small flow thickness compared to the flow extent, commonly referred to as
the long-wave assumption, which allows to eliminate the vertical dimension by depth-integration [23, 24].
This yields the so-called thin-layer models (reduced models), such as the lubrication model and the shallow
water model, that are easier to solve than the original complete Navier–Stokes equations.

Due to the increasing demand for fast and accurate viscoplastic models for hazard mitigation [7, 25, 26],
we propose here to revisit and build on the derivations of shallow flow models in pursuit for one that can
reproduce flows of viscoplastic fluids in a natural setting. Lubrication theory assumes that the flow is thin and
slow [11,24,27]. This allows to reduce the conservation equations to a one-equation model (a scalar non-linear
advection diffusion equation) governing the evolution of the fluid depth, see [10, 16, 17, 28–31] for derivation
and applications. The Newtonian version of this approximation dates back to the work of Benney [32] prior
to the Bingham (viscoplastic) one, which was pioneered by [27, 33]. However, the lubrication model fails to
account for the effects of fluid inertial forces and the wet-dry front dynamics as the depth approaches zero,
see [1, 13] and references therein. Some studies have also reported the singular behaviour of the model at
high Reynolds number and/or when the linear stability threshold is exceeded [34–37].

On the other hand, the shallow water theory takes advantage of the long-wave assumption that allows to
average the local mass and momentum conservation equations over the fluid depth. The resulting averaged
quantities are then approximated by asymptotic analysis. This yields a two-equations model for the evolution
of the local fluid depth and flow rate [22, 37]. One important advantage of this model over the lubrication
model is that inertial terms are accounted for. The shallow water equations were first introduced by Barré
de Saint-Venant for 1D hydraulic flows in 1887 [38]. Since then, there have been numerous derivation studies
applicable to a variety of Newtonian flows e.g., [35, 39–42] and the flow of power-law fluids e.g., [22, 36, 37].
However, only a few studies have considered the case of viscoplastic flows, see [36, 43, 44] for Bingham
and [45–47] for Herschel–Bulkley flows. Due to the complexity of calculating (and computing) these models,
many of these derivations have been done based on a 2D (two-dimensional) flow problem which yields a 1D
model (one-dimensional set of equations). It is of great importance to extend these derivations to 2D for
practical applications in 3D.

Furthermore, despite the fact that many free-surface flows exhibit multiple flow regimes (ranging from
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slow to fast, sliding to fully sheared, just to name a few) that arise from the variation of topography elevation
and basal slip conditions, the existing derivations in the literature are mono-regime in the sense that they
generally assume a flat configuration with non-changing basal conditions. However, there has been little effort
to derive thin-layer models taking into account multi-regime flows. In particular, [48] derived unified thin-layer
models for viscous fluids valid for fast and slow regimes, and [22] derived asymptotic thin-layer models (one
equation and two equation type) for power-law fluids with varying basal boundary conditions corresponding
to the multi-regimes aforementioned (including the flow regimes considered herein). This, however, has not
yet been applied to viscoplastic flows. Incorporating basal properties (e.g., basal slipperiness) is important
for accurate modelling of flow dynamics. Thus, the present article builds on the derivation of these models, in
particular the shallow water equations partly presented in [46] and [22], and extends them to a 3D case that
includes a topography elevation profile and a varying basal slip distribution on a non-flat inclined configuration
with varying slip conditions at the bottom, therefore potentially presenting different flow regimes which are
naturally defined as functions of dimensionless parameters. Note that multiple flow regimes (multi-regimes)
can be encountered not only in geophysical flows but also in industrial settings, see e.g., [1, 4, 22].

In particular, the objective of the paper is to derive (and validate) a unified shallow water model for
3D multi-regime flows of Herschel Bulkley fluids over an inclined topography with perturbations in basal
elevation and basal slipperiness. The outline of the paper is as follows. In Section 2, the flow configuration
and the governing equations are defined. The primitive equations are non-dimensionalized, and the orders of
magnitude of dimensionless parameters presented - from which two flow regimes are defined: Regime A, the
basic/classical regime, and Regime B, the enriched one with a corrective term. In Section 3, the zeroth-order
solutions corresponding to these flow regimes are presented. The one-equation model of lubrication type is
re-derived therein. The derivation of the shallow water equations is presented in Section 4, an extension of the
work of [22, 46]. Considering particular cases in the literature, classical shallow water models are recovered.
In Section 5, the derived shallow water equations are validated with experiments, and the comparison of the
two flow regimes discussed. Conclusions are drawn in Section 6.

2 Model formulation

We start by considering a 2D flow of a thin layer of a viscoplastic fluid on an inclined non-flat topography,
as shown in Fig. 1, with x being the axis of the slope at an angle θ with the horizontal (of the reference
plane) and z, the axis normal to the slope. The flow is driven by gravity g = (gsinθ,−gcosθ) and described
by its velocity u(t, x, z) = (u(t, x, z), w(t, x, z)), and the pressure field p(t, x, z). The fluid is assumed to be
incompressible with its density denoted by ρ. The fluid layer is of thickness h(t, x, z) = (H(t, x, z)− b(x, z)),
where H(t, x, z) is the fluid elevation and b(x, z) the basal topography elevation.

For clarity, it is worthwhile noting that here we adopt a mean-slope coordinate system xz (with local
variations of the topography), which can be related to the reference plane XZ (horizontal-vertical coordinate
system) by the inclination θ, see Fig. 1. Another natural system of coordinates could be the Prandlt
coordinate system as described in [22].

As usual, the flow dynamics are governed by the Navier–Stokes equations (conservation of mass and
momentum, respectively):
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Figure 1: Flow configuration with a non-flat topography.

∂xu+ ∂zw = 0,

ρ(∂tu+ u∂xu+ w∂zu) = −∂xp+ ρg sin θ + ∂xτxx + ∂zτxz,

ρ(∂tw + u∂xw + w∂zw) = −∂zp− ρg cos θ + ∂xτzx + ∂zτzz,

(2.1)

where τ
=

=
(
τxx τxz

τzx τzz

)
is the fluid stress tensor. The fluid rheology on the other hand, is described by the

Herschel–Bulkley constitutive law which readsτij =
(
Kγ̇n−1 + τc

γ̇

)
γ̇ij for τ > τc,

γ̇ij = 0 for τ ≤ τc,
(2.2)

where τij and γ̇ij = ∂jui + ∂iuj are elements of the stress and strain rate tensors, τ =
√

1
2
∑
ij τijτij and

γ̇ =
√

1
2
∑
ij γ̇ij γ̇ij are the second invariant of the stress and strain rate tensors, K > 0 the consistency index,

n > 0 the power-law index, and τc the yield stress, respectively.
It is worth noting that some geophysical flows like volcano lava, K is highly dependent on the fluid tem-

perature T . In this case, K has simply to be given (or deduced by solving a thermal model).

Other fluid models can be recovered from the relation (2.2) depending on n and τc. For instance, when
n = 1, the Herschel–Bulkley model reduces to a Bingham model where the consistency index K becomes the
plastic viscosity η. When n < 1 the model reduces to a shear thinning fluid (pseudo-plastic) model in which
the apparent viscosity increases the shear rate. When n > 1, a shear thickening (dilatant) fluid is obtained.
When n 6= 1 and τc = 0, a power-law fluid model is obtained. When n = 1 and τc = 0, a Newtonian fluid
model is recovered where K becomes the fluid viscosity.

The governing equations (2.1) - (2.2) are subject to the following boundary conditions at the bottom
surface, z = b, and at the free-surface, z = H, respectively:
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• The friction condition otherwise known as the power-law condition or the Weertman-type friction law
(see e.g., [22, 49]), defined as u · t̂b = −C|τ

=
· n̂b · t̂b|

1−n
n τ

=
· n̂b · t̂b,

u · n̂b = 0,
(2.3)

where vectors t̂b and n̂b are the tangent and outward normal to the bottom, respectively, and C the
basal slip coefficient. The negative sign allows C to be positive since n̂b is pointing outward. When
C = 0, the no slip condition is recovered: u = w = 0.

• The kinematic condition: ∂th + u∂xH = w and the no stress condition: (τ
=
− pI

=
) · n̂ = 0, where

n̂ = 1√
1+(∂xH)2

(
∂xH
−1
)
is the unit vector normal to the surface pointing outwards and I

=
the identity tensor.

After a little algebra, the stress-free condition gives rise to two expressions: τxz = ∂xH
1−(∂xH)2 (τxx − τzz)

and p = 1
1−∂xH (τzz − (∂xH)2τxx).

Since the flow is incompressible, the mass conservation allows us to write the following equality: ∂xu =
−∂zw ⇔ τxx = −τzz.

2.1 Scaling and non-dimensionalization

To non-dimensionalize the primitive equations, L is set to be the characteristic length in the direction
of the flow, H the characteristic depth, U the scale of u and W the scale of w. By scaling and introducing
dimensionless variables denoted by ′ yields x = Lx′, z = Hz′, t = L

U t
′, b = Hb′ , h = Hh′, H = HH ′, u =

Uu′ and w = Ww′. Assuming that the long-wave assumption holds, a geometric scaling parameter can be
defined as ε = H

L << 1. The mass conservation equation allows us to naturally define W = H
LU . Further, a

hydrostatic pressure scale can be chosen as p = ρgHcosθp′. Some standard scales are adopted for the fluid
stresses:

(τxx, τxz, τzz) = K

(
U

H

)n
(ετ ′xx, τ ′xz, ετ ′zz) .

The strain rate is scaled naturally as γ̇ = U
H γ̇
′. Injecting these dimensionless variables into the primitive

equations, some standard dimensionless groups can be defined: the Reynolds number, Froude number, and
Bingham number, respectively:

Re = ρU2−nHn

K
, Fr = U√

gH cos θ
, Bi = τc

K

(
H
U

)n
.

Following the work of [22,36,37], some dimensionless parameters that occur naturally can be deduced:

(β, α, δ, λ) = ε

(
Re, γ,

1
γ
,

1
εγ

tan θ
)
,

where β, α, and δ are weight coefficients corresponding to the inertial, viscous, and pressure terms, re-
spectively. The dimensionless parameter λ is the normalized gravity source term and γ = Fr2

Re . For our
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mathematical convenience we set m = 1
n , where n is the power-law index. Dropping the apostrophe (′) no-

tation, the following dimensionless equations are obtained: the mass and momentum conservation equations,
respectively:

∂xu+ ∂zw = 0.

β(∂tu+ u∂xu+ w∂zu) = −δ∂xp+ λ+ αδ∂xτxx + ∂zτxz,

ε2β(∂tw + u∂xw + w∂zw) = −δ(∂zp+ 1) + αδ(∂xτzx + ∂zτzz).

(2.4)

and the rheological law: 
τxx = −τzz = 2

(
Bi
γ̇ + γ̇n−1

)
∂xu,

τxz =
(
Bi
γ̇ + γ̇n−1

)
(∂zu+ αδ∂xw) for τ > Bi,

γ̇ij = 0 for τ ≤ Bi,

(2.5)

where γ̇ =
√

(∂zu+ αδ∂xw)2 + 4αδ (∂xu)2, γ̇ij =
(

2ε∂xu ∂zu+ αδ∂xw

∂zu+ αδ∂xw −2ε∂xu

)
and τ =

√
τ2
xz + αδτ2

xx.

At z = b, the scaled friction condition (see e.g [22]) writesu = C
|τxz

(
1− αδ∂xb2

)
− 2αδτxx∂xb|m−1

(1+αδ∂xb2)m+ 1
2

(
τxz
(
1− αδ∂xb2

)
− 2αδτxx∂xb

)
,

w = u∂xb.

(2.6)

At the free-surface z = H, the kinematic condition writes ∂th+ u∂xH − w = 0 and the stress-free condition
becomes

τxz = αδ∂xH

1− αδ(∂xH) (τxx − τzz), p = α

(1− αδ(∂xH)2) (τzz − αδ(∂xH)2τxx). (2.7)

2.2 Orders of magnitude of dimensionless parameters

To investigate the balance of different forces within the flow, field measurements of a real geophysical
flow are scrutinized. In particular, measurements of volcano lava flows sourced from [50–54] are presented
in Table 1 for analysis. The corresponding orders of magnitude of dimensionless parameters and weight
coefficients are calculated as shown in Table 2. The average density of lava and inclination angle used for
these calculations are ρ = 2700kgm−3 and θ = 10o, respectively. From the order of magnitude in Table

Composition Temperature Viscosity Velocity
T (0C) K (Pa sn) u (m/s)

Less viscous lava Komatiite 1400− 1600 100 101

Viscous lava (Intermediate) Basalt 1200 102 10−1

More viscous lava Dacite/Rhyolite 900 107 10−2

Table 1: Field measurements of three types of volcano lava flows, [50–54].

2, the following deductions can be made: the aspect ratio is small in the three regimes, which validates the
long-wave assumption: ε << 1. Previous studies have shown that this assumption is numerically valid up to
ε ≈ 0.3, see e.g., [51,55]. The dimensionless parameter α is small in the three regimes but relatively larger in
the more viscous regime. The dimensionless parameter β is much smaller when lava is more viscous compared
to other flow regimes; hence important when distinguishing the three regimes. On the other hand, δ is either
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ε Re Fr β α δ λ 1
β

δ
β

αδ
β

Less viscous lava 10−5 103 101 10−2 10−7 10−4 101 101 103 10−9

Viscous lava (Intermediate) 10−3 100 10−2 10−3 10−7 101 103 102 105 10−3

More viscous lava 10−2 10−5 10−3 10−7 10−3 10−1 100 107 106 103

Table 2: Orders of magnitude of dimensionless parameters and weight coefficients.

small or of at most order 1, hence another important parameter to distinguish the regimes.
This implies that real flows are multi-regimes in (β, α, δ). The gravity term λ is of at most order 3 and can

be much higher on steep slopes. The Reynolds number Re and Froude number Fr for the less viscous lava
(and the intermediate one) are much higher than those of the more viscous lava, which rules out consideration
of the more viscous lava in this paper. Generally, komatiite and basaltic lava which are less viscous, are the
most common lava flows on earth [51]. From this analysis, two regimes depending on β, α and δ can be
defined:

• Regime A: with β small, α small, and δ small (less viscous lava).

• Regime B: with β small, α small, while δ = O(1) (intermediate viscous lava).

Considering these two regimes, the weight coefficient αδ
β as seen in Table 3, is much smaller than other terms.

Thus, it can be neglected; this will be recalled in the following sections. Furthermore, the asymptotic models
corresponding to these two regimes will be derived in the next sections.

3 Zeroth-order field expressions

Firstly, we will start by deriving the steady-state uniform solutions (see Fig. 2 (a)) of the primitive
equations, which are obtained by setting h = const, b ≡ 0 and α = β = δ = 0. This is equivalent to
considering the zeroth-order approximations of Regime A: β = δ = α = O(ε). Next, we will derive the
zeroth-order approximations of Regime B, that is, by considering β = α = O(ε) and δ = O(1). For clarity,
the calculations presented in this section are in 1D only, i.e., in space variables (x, z).

3.1 Zeroth-order in Regime A sense

Considering β = δ = α = O(ε), the governing equations (2.4) - (2.7) simplify to∂zτxz = −λ,

∂zp = −1.
(3.1)

τxz = Bi+ (∂zu)n if τxz > Bi,

∂zu = 0 if τxz ≤ Bi.
(3.2)

The friction condition becomes u = C|τxz|m−1τxz, w = 0, from which a non-slip condition is recovered when
the slip coefficient C = 0 and a pure slip when C → ∞. The free-surface conditions become τxz = 0, and
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(a) (b)

Figure 2: Sketch of (a) a steady uniform flow configuration and (b) the velocity profile showing the plug and
sheared zones in Herschel–Bulkley flows

p = 0. Recall that Bi = τc
K

(H
U

)n.
Solving Eq. (3.1), a hydrostatic pressure and shear stress linear in z are obtained:

p = h− z, τxz = λ (h− z) . (3.3)

Consequently, the friction condition reduces to u = C (λh)m and w = 0. Near the free-surface as z → h,
the shear stress component τxz → 0, which implies the existence of a plug-like flow near the free-surface of
thickness hp (see Fig. 2 (b)) such that

hp = Bi

λ
. (3.4)

Next, solving for the stream-wise velocity using Eqs. (3.2) - (3.4) yields

u(z) = λm


1

m+1h
m+1
c

[
1−

(
1− z−b

hc

)m+1
]

+ Chm, for z < hc

1
m+1h

m+1
c + Chm, for z ≥ hc

(3.5)

where, hc = max (0, h− hp) represents the thickness of the sheared zone below the plug. The flow rate can

also be obtained by q = hū =
∫ H

b

udz where ū is the mean velocity:

q = λm
[
hm+1
c

(
1

m+ 1hp + 1
m+ 2hc

)
+ Chm+1

]
. (3.6)

For the Newtonian case where Bi = 0, m = 1, and taking C = 0, the plug is absent i.e. hc = h. This
results in a Poiseuille-like velocity profile: u(z) = 1

2λh
2
[
1−

(
1− z

h

)2]
, and the average velocity ū in terms

of thickness h becomes ū = 1
3λh

2.

The zeroth-order solutions are important as they show the main properties of solutions and serve as
reference solutions for other flow regimes. In particular, the asymptotic fields of other flow regimes considered
in the following sections are perturbations of these reference solutions.

3.2 Zeroth-order in Regime B sense

Regime B approximations are obtained by considering the 0th order terms in (α, β), while δ = O(1).
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Consequently, Eqs. (2.4) - (2.5) reduce to the following system:

∂xu+ ∂zw = 0, (3.7)

∂zτxz = δ∂xp− λ,

∂zp = −1,
(3.8)

and the constitutive law becomesτxx = −τzz = 2
(
Bi
∂zu

+ (∂zu)n−1
)
∂xu, τxz = Bi+ (∂zu)n for τxz > Bi,

∂zu = 0 for τxz ≤ Bi.
(3.9)

The boundary conditions, on the other hand, reduce to u = C|τxz|m−1τxz, w = u∂xb at z = b and ∂th +
u∂xH = w, τxz = 0, p = 0 at z = H. By integration, Eq. (3.8) yields a hydrostatic pressure p = H(x, t)−z
and an expression for the shear stress

τxz = (λ− δ∂xH)(H − z). (3.10)

which represents a balance between the shear stress and the hydrostatic pressure gradient. The modulus of
Eq. (3.10) can be obtained as:

|τxz| = |λ− δ∂xH|(H − z). (3.11)

which implies that for a vanishing slope angle in the gravity term λ, the sign of the shear stress τxz remains
the same as the sign of the local slope of the free-surface. Eqs. (3.3) and (3.10) suggest to introduce the
variable Λ as in Boutounet et al. [2]:

Λ =

λ for regime A,

λ− δ∂xH for regime B,
(3.12)

which allows to write unified expressions representing the two regimes.
Further, as seen previously in the case of Regime A approximations, Eq. (3.10) shows that the evolution

of the shear stress is linear in depth. As z → H, the shear stress component τxz → 0, indicating the existence
of an unyielded zone near the free-surface (see Fig. 2 (b)) whose thickness now writes

hp = Bi

Λ . (3.13)

This thickness, however, is not constant; it varies with the thickness gradient of the free-surface, which
implies the existence of some elongational deformation in the plug. This contradicts the validity of zero-order
approximations. To resolve this contradiction, a concept of pseudo-plug has been introduced, see [10,11,36],
where the plug is made weakly sheared under the influence of normal stresses.

Furthermore, by integrating the constitutive law (3.9) and using the fact that H = (hp + hc + b), Eqs.
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(3.9) - (3.13) enable to obtain the velocity field expression:

u(z) = Λ|Λ|m−1


[

1
m+1h

m+1
c

(
1−

(
1− z−b

hc

)m+1)
+ Chm

]
if z < hc + b,[

1
m+1h

m+1
c + Chm

]
if z ≥ hc + b,

(3.14)

which is locally identical to that of the Regime A solution, a perturbation of the reference flow. Also, by
integration, an expression for the discharge q = hū can be obtained:

q = Λ|Λ|m−1
[
hm+1
c

(
1

m+ 1hp + 1
m+ 2hc

)
+ Chm+1

]
(3.15)

3.3 On the lubrication-type flow model

The so-called lubrication flow model is derived from the discharge expression and the depth-integrated
mass equation. The latter is obtained by integrating Eq. (3.7) from z = b to z = H, which, after applying the
Leibniz integral rule and the boundary conditions, reads ∂h

∂t + ∂q
∂x = 0. In the Regime B case, the lubrication

type model (also called one-equation model) reads

∂h

∂t
+ ∂

∂x

(
Λ|Λ|m−1

(
hm+1
c

(
1

m+ 1hp + 1
m+ 2hc

)
+ Chm+1

))
= 0.

By setting Bi = 0 and m = 1, a simplified Newtonian model of Benney’s type with no surface tension term
is recovered (see [24,32]).

The main advantage of the lubrication-type model is that since it is a scalar non-linear equation, it is
computationally less expensive to solve. However, this model can fail to capture important flow details, like
the effects of inertial terms, which are neglected at order zero. The model is also not consistent with the
wet-dry front dynamics as h→ 0, see e.g., [24] and references therein. In addition, it can present singularities
in finite time when the linear stability threshold is exceeded, see [34–36] and references therein. The solution
to some of these issues is to consider the two-equations model derived in the next section.

4 Shallow water type models

Assuming the long-wave assumption ( ε << 1) holds, the shallow water equations are obtained by depth
integration of the Cauchy mass and momentum equations (2.4). For the sake of clarity, the derivations are
first done in 2D (to obtain a 1D model), then extended to 3D (to obtain a 2D model).

4.1 The 1D model

The first model equation is the integrated mass conservation: ∂h
∂t + ∂q

∂x = 0. Next, to obtain the second
equation, the momentum equation is integrated over the fluid depth, which, after applying the Leibniz integral
rule together with the boundary conditions at order 1 in (α, δ), give

β

(
∂

∂t

∫ H

b

udz + ∂

∂x

∫ H

b

u2dz

)
+ δ

∂

∂x

∫ H

b

pdz = ε2
∂

∂x

∫ H

b

τxxdz + λh− τxz|z=b −
(
δp|z=b − ε2τxx|z=b

) ∂b
∂x
.
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After a few arrangements, taking q = hū =
∫ H

b

udz and the shear stress at the base as σxz|z=b = τb, the
second equation in variables (h, q) is obtained as

∂hū

∂t
+ ∂

∂x

∫ H

b

u2dz − αδ

β

∂

∂x

∫ H

b

τxxdz + δ

β

∂

∂x

∫ H

b

pdz + δ

β
(p|z=b−ατxx|z=b)

∂b

∂x
= 1
β

(λh− τb) . (4.1)

To close this model, the averaged quantities:
∫H
b
u2,
∫H
b
τxx, and

∫H
b
p, need to be related to the state variables

h and ū, see [22, 36, 37, 46]. This is done by asymptotic approximations. Due to the complex flow behaviour
of geophysical viscoplastic flows (like lava, muds, etc), the zeroth-order approximations are usually assumed
to be sufficient to close the model. The one-order approximations are more consistent therefore important
for perfectly reproducible flows (like flows of perfect fluids). However, for geophysical flows, they may be too
complex to set up, costly to compute, and unnecessary owing to other uncertainties. For that reason, the
following approximations are developed at order zero, following the calculations presented in [22,46]:

i. Assuming u ≈ ū, the averaged quantity
∫H
b
u2dz can be approximated as

∫H
b
u2dz '

∫H
b
u(0)2

dz ≈ q2

h +
"the corrective term", where the corrective term is adopted from [22] as Λ2mh2m+3

(2m+3)(m+2)2 . It is important
to note that the corrective term vanishes as Λ vanishes.

ii. The averaged pressure term is approximated as
∫H
b
pdz '

∫H
b
p(0)dz = h2

2 .

iii. The terms of order αδ
β are negligibly small, as seen previously in Table 3, hence can be dropped.

iv. The basal shear stress τb can be approximated from Eqs. (3.10) and (3.13) as

τ
(0)
b = τ (0)

xz |z=b = Λh = Λ (hp + hc) (4.2)

which, if inserted into the momentum equation (4.1) the source terms degenerate. This implies that
the zeroth-order approximation (4.2) is not sufficient to close the model in a consistent way, hence not
adequate to describe non-uniform flows. A solution to this issue is to express τ (0)

b in terms of q = hū

following [22,46]. Consequently, Eq. (3.15) and Eq. (4.2) allow to write

τ
(0)
b = |Λ|1−m (hp + hc)

q

D(h) . (4.3)

where the denominator D(h) is given by D(h) = hm+1
c

(
1

m+1hp + 1
m+2hc

)
+ Chm+1.

Applying the above approximations into Eq. (4.1) (dropping the zeroth-order notation), the momentum
equation (4.1) writes

∂q

∂t
+ ∂

∂x

(
q2

h
+ Λ2mh2m+3

(2m+ 3)(m+ 2)2

)
+ δ

β
h
∂H

∂x
= 1
β

(λh− τb) , (4.4)

with the basal shear stress given by Eq. 4.3.

11



Comparison with models in the literature for simpler rheology cases

Considering the Newtonian case (Bi = 0, m = 1, and taking C = 0), Eq. (4.3) reduces to τb = 3ū
h . This

recovers the multi-regime two-equations model for a Newtonian fluid presented in [22]:

∂h

∂t
+ ∂q

∂x
= 0, ∂q

∂t
+ ∂

∂x

(
q2

h
+ δ

2β h
2 + Λ2h5

45

)
= 1
β

(
λh− 3q

h2

)
. (4.5)

In the mono-regime version (Regime B), the Bingham fluid case (Bi > 0 and m = 1) is recovered as in [36].
Similarly, by setting Bi = 0 and m 6= 1, the shallow water model for power-law fluids presented in [36,37] is
recovered.

4.2 The 2D model

Here, we extend the calculations to 2D i.e., in variables (x, y, z). To do so, the shallow water system is derived
by averaging the 3D incompressible Navier–Stokes equations presented below over the fluid depth, taking
into account the asymptotic approximations obtained in the previous subsection.

The primitive equations

For the purpose of derivations, a configuration in which either x or y is the axis of the slope at an angle θ
with z being the axis normal to the slope is considered.

β(∂tu+ u∂xu+ v∂yu+ w∂zu) = −δ∂xp+ λx + αδ (∂xτxx + ∂yτxy) + ∂zτxz,

β(∂tv + u∂xv + v∂yv + w∂zv) = −δ∂yp+ λy + αδ (∂xτyx + ∂yτyy) + ∂zτyz,

ε2β(∂tw + u∂xw + v∂yw + w∂zw) = −δ(∂zp+ 1) + αδ(∂xτzx + ∂yτzy + ∂zτzz).
(4.6)

Considering the 0th order terms in ε and assuming β = α = O(ε) (equivalent to the Regime B case), the
governing equations reduce to the following system of equations: the continuity equation: ∂xu+∂yv+∂zw = 0,
the momentum balance equation: 

∂zτxz = δ∂xp− λx,

∂zτyz = δ∂yp− λy,

∂zp = −1.

(4.7)

and the Herschel–Bulkley rheology law introduced in Section 2:τxz =
(
Bi
γ̇ + γ̇n−1

)
∂zu, τyz =

(
Bi
γ̇ + γ̇n−1

)
∂zv if τ > Bi,

γ̇ij = 0 if τ ≤ Bi,
(4.8)

where the deformation tensor norm: γ̇ =
√

(∂zu)2 + (∂zv)2 and the stress norm:

τ =
√
τ2
xz + τ2

yz. (4.9)

The system is completed by boundary conditions at the bottom surface: the friction condition which reduces
to u = C|τxz|m−1τxz, v = C|τyz|m−1τyz, w = u∂xb + v∂yb, and at the free-surface we have the non-stress
conditions: τxz = τyz = 0, p = 0, and the kinematic condition: ∂th+ u∂xH + v∂yH = w.
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Field equations

Straightforward integration of Eq. (4.7) yields a hydrostatic pressure p = H(x, y, t) − z and the following
expressions for the shear stresses

τxz = Λx(H − z), τyz = Λy(H − z), (4.10)

where, if x is considered as the axis of the slope, y as the spanwise coordinate, and z the normal axis to the
slope, Λ defined in Section 3.2 writes

Λ̄ = λ
(1

0
)
for regime A, Λ̄ = λ

(1
0
)
− δ
(
∂xH
∂yH

)
for regime B. (4.11)

Otherwise, when considering a general case in which the axis of the slope is either x or y, the gravity term
can be written as

Λ̄ = λ
(1

1
)
for regime A, Λ̄ = λ

(1
1
)
− δ
(
∂xH
∂yH

)
for regime B. (4.12)

Eq. (4.9) can now be written in terms of Λ as

τ =
√(

Λ2
x + Λ2

y

)
(H − z). (4.13)

On the yield surface: τ = Bi and h = hc, thus the thickness of the sheared zone is obtained as

hc = h− Bi

||Λ|| for τ > Bi, (4.14)

which in general, writes: hc = max (0, h− hp), where the plug thickness hp = Bi
||Λ|| and ||Λ|| =

√(
Λ2
x + Λ2

y

)
.

Next, from the rheology law (4.8), τ can be written as

τ =
√
τ2
xz + τ2

yz = Bi+ γ̇n. (4.15)

Note that Eq. (4.13) and Eq. (4.15) are equivalent, which after some algebra translate to

∂zu = Λx(hc + b− z) 1
n , ∂zv = Λy(hc + b− z) 1

n (4.16)

in the x- and y-directions, respectively. Integrating these expressions and applying the friction condition, the
velocity distribution in the x- and y-directions, respectively, is obtained:

u(z) = Λx|Λx|m−1


[

1
m+1

(
hm+1
c − (hc − z − b)

m+1)
+ Chm

]
if z < hc,[

1
m+1h

m+1
c + Chm

]
if z ≥ hc.

v(z) = Λy|Λy|m−1


[

1
m+1

(
hm+1
c − (hc − z − b)

m+1)
+ Chm

]
if z < hc,[

1
m+1h

m+1
c + Chm

]
if z ≥ hc.

(4.17)

The flow rate in both directions is finally obtained as qx = hū =
∫H
b
udz and qy = hv̄ =

∫H
b
vdz, respectively,

13



qx = Λx|Λx|m−1
[
hm+1
c

(
1

m+ 1hp + 1
m+ 2hc

)
+ Chm+1

]
,

qy = Λy|Λy|m−1
[
hm+1
c

(
1

m+ 1hp + 1
m+ 2hc

)
+ Chm+1

]
.

(4.18)

The two-equations model

The first equation of the SW model reads in 2D as ∂h
∂t + ∂qx

∂x + ∂qy
∂y = 0. Following the approach presented

earlier for the 1D case, the x- and y-momentum equations are integrated over the fluid depth, applying
Leibniz integral rule and the boundary conditions to obtain the x-component:

∂hū

∂t
+ ∂

∂x

∫ H

b

u2dz + ∂

∂y

∫ H

b

uvdz − αδ

β

(
∂

∂x

∫ H

b

τxxdz + ∂

∂y

∫ H

b

τxydz + τxy|z=b
∂b

∂y
− τxy|z=H

∂H

∂y

)

+ δ

β

∂

∂x

∫ H

b

pdz + δ

β
(p|z=b−ατxx|z=b)

∂b

∂x
= 1
β

(λxh− τbx) ,

and the y-component:

∂hv̄

∂t
+ ∂

∂x

∫ H

b

uvdz + ∂

∂y

∫ H

b

v2dz − αδ

β

(
∂

∂x

∫ H

b

τxydz + ∂

∂y

∫ H

b

τyydz + τxy|z=b
∂b

∂x
− τxy|z=H

∂H

∂x

)

+ δ

β

∂

∂y

∫ H

b

pdz + δ

β
(p|z=b−ατyy|z=b)

∂b

∂y
= 1
β

(
λyh− τby

)
.

Considering the zeroth-order approximations defined at the beginning of this section, the two-equations model
in 2D reads

∂h

∂t
+ ∂hū

∂x
+ ∂hv̄

∂y
= 0,

∂hū

∂t
+ ∂

∂x

(
hū2 + δ

2β h
2 + CmΛ2m

x h2m+3
)

+ ∂

∂y
(hūv̄ + CmΛ2m

y h2m+3) = 1
β

(
λxh− δh

∂b

∂x
− τbx

)
,

∂hv̄

∂t
+ ∂

∂x

(
hūv̄ + CmΛ2m

x h2m+3)+ ∂

∂y

(
hv̄2 + δ

2β h
2 + CmΛ2m

y h2m+3
)

= 1
β

(
λyh− δh

∂b

∂y
− τby

)
,

(4.19)

with the basal shear stress components approximated at order zero from Eq. (4.10), which after substituting
Eq. (4.18) for Λ in both directions, yield

τbx = |Λx|1−m
(
Bi

||Λ|| + hc

)
qx
D(h) , τby = |Λy|1−m

(
Bi

||Λ|| + hc

)
qy
D(h) , (4.20)

where the denominatorD(h) = hm+1
c

(
1

m+1h−
1

(m+1)(m+2)hc

)
+Chm+1, see Eq. 3.15, and Cm = 1

(2m+3)(m+2)2 .
Recall that (qx,qy) = h(ū, v̄).
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In dimensional form the two-equations model in 2D writes

∂h

∂t
+ ∂qx

∂x
+ ∂qy

∂y
= 0,

∂qx
∂t

+ ∂

∂x

(
q2
x

h
+ 1

2gh
2cosθ + CmΛ2m

x h2m+3
)

+ ∂

∂y

(qxqy
h

+ CmΛ2m
y h2m+3

)
= ghcosθ

(
tanθ − ∂b

∂x

)
− 1
ρ
τbx ,

∂qy
∂t

+ ∂

∂x

(qxqy
h

+ CmΛ2m
x h2m+3

)
+ ∂

∂y

(
q2
y

h
+ 1

2gh
2cosθ + CmΛ2m

y h2m+3

)
= hgcosθ

(
tanθ − ∂b

∂y

)
− 1
ρ
τby ,

(4.21)
where Λ̄ = ρg

K S̄θ, with S̄θ = sinθ
(1

0
)
for Regime A, or S̄θ = sinθ

(1
0
)
− cosθ

(
∂xH
∂yH

)
for Regime B.

The basal shear stress expressed in function of τc reads as

τ b =
[
τbx

τby

]
=


K

(
K

ρg|Sθx |

)m−1(
τc

ρg||Sθ||
+ hc

)
qx
D(h)

K

(
K

ρg|Sθy |

)m−1(
τc

ρg||Sθ||
+ hc

)
qy
D(h)

 , (4.22)

where, as presented previously, the sheared thickness hc = max (0, h− hp), the plug thickness hp = τc
ρg||Sθ||

and finally
(

τc
ρg||Sθ|| + hc

)
= h.

It is worth noting that Regime A equations are not valid for a vanishing mean-slope (horizontal case),
since the solution blows up when θ = Sθ = 0. Further, by setting τc = 0, m = 1 and θ = 0 (for Regime B),
the shallow water equations for Newtonian flows (mono-regime version) are recovered.

On the global geometry assumption and coordinate system

In the present study, all derivations have been presented in the mean-slope coordinate system with local
topography variations about the mean-position, see Fig. 1. This geometry is the most classical, straight-
forward, and reasonable in a large number of applications. However, this mean-slope geometry assumption
can be limiting, especially for large variations of mean inclinations. To overcome this, [22] uses the Prandtl
coordinate system, which allows the variation of the topography without the existence of a fixed mean-slope.

Moreover, when using the mean-slope geometry as in the present derivations, it is numerically observed
that the momentum gravity source term ghcosθtanθ of Eq. (4.21) overestimates dam-break flow solutions
for relatively large inclinations. However, based on the facts that dam-break flows are mainly driven by
the streamwise pressure gradient

(
∂h
∂x ,

∂h
∂y

)
, and that the front zone of the current is usually determined

by the balance between the gravitational acceleration g
(
∂h
∂x ,

∂h
∂y

)
and the basal friction

(
τbx , τby

)
[56, 57], a

possible solution to this issue consists to further express the gravity source in terms of the height gradient.
Consequently, based on the coordinate systems defined in Fig. 1 (taking b ≡ 0), we can consider that
ghcosθtanθI ' −ghsecθ

(
∂h
∂x ,

∂h
∂y

)
with secθ = (cos θ)−1. If x- is considered as the axis of the slope, this

reads ghcosθtanθI ' −ghsecθ
(
∂h
∂x , 0

)
. This is applied to dam-break flow simulations in the following section.
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5 Numerical results

This section presents the computed results of a few cases considered using the shallow water type system
(4.21). To start with, a mesh convergence test is performed; thereafter, numerical results are compared with
experimental results for validation. The comparison of the two regime models within a steady-state flow and
an unsteady (dam-break) one is investigated afterwards. Further results are shown for 3D applications. Re-
sults are computed using COMSOL Multiphysics software [58] (unless stated otherwise) applying the “SWEs
interface” which allows to implement the source terms and the extra terms containing the Λ function. To
solve the equations, this interface uses the finite element method (FE), which employs nodal discontinuous
Lagrange functions with constant element order. For cross-validation and the possibility of using inversion
computational tools (such as adjoint models, optimization procedures, etc), the system (4.21) is also imple-
mented into the DassFlow open-source software [59], which employs finite volume (FV) schemes (both first
and second order), see [60,61] for the Newtonian case. For the present Herschel–Bulkley case, the first order
FV scheme has been enriched; details are presented in Appendix A. Experimental data is extracted from the
literature using the WebPlotDigitizer open-source software [62] with an estimated error margin of less than
5%. For all numerical simulations presented hereafter, the coefficient of slipperiness C is set to zero, unless
stated otherwise.

5.1 Dam-break flows on an inclined surface

The dam-break experiment presented in [63] is considered here for validation of the mathematical model
and numerical simulations. This experiment involves the sudden release of fixed volumes of a viscoplastic
fluid (Carbopol ultrez 10 at a mass concentration of 0.15%) down a channel of length 3.5m and width 0.3m,
inclined at some angle θ, as shown in Fig. 3.

The fluid is initially locked in a reservoir of length 0.5m, set at the top of the flume before it is released

Figure 3: Side-view sketch of a dam-break problem.

suddenly by opening the lock gate. The initial height is described by

h(x) =

0.12 + (x− 0.25)tanθ for x ≤ 0.5,

0 otherwise.
(5.1)

Recall that depth-averaged models like the present SW system are not able to accurately describe flow
dynamics at the very start of dam-break, in particular due to the long-wave assumption (ε = H∗

L∗ small). In
practice, the long wave assumption can be considered valid if ε lower than ≈ 0.3, see e.g. [51]. This assumption
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is not satisfied at the very early stages of dam-break. However, this assumption is satisfied everywhere else
and very quickly at the dam location. In the present dam-break experiment, (hreservoir/lreservoir)=0.24,
therefore satisfying a reasonable ratio.

The fluid is of density ρ = 1000 kgm−3 and its rheological properties given by Eq. (5.2):

(K, n, τc) = (26Pa sn, 0.33, 33Pa) (5.2)

A wall condition is used on all boundaries. For further details on the experimental procedure and uncertainties
involved, see [63].

Firstly, to ensure convergence of results, a grid independence study is performed. Fig. 4 shows the fluid
height and the corresponding mean velocity for 4 different meshes: coarse (1500 elements), medium (3000
elements), fine (5000 elements), and extremely fine (50000 elements). The extremely fine mesh is assumed
to represent the exact solution. The study is performed considering Regime A on an inclination θ = 15o. As
shown in Fig. 4, all four meshes show similar results, with a slight difference appearing around the maximum
of the mean velocity. The medium mesh is chosen for the rest of the simulations in this subsection since both
the computational time and accuracy of the results are satisfactory.

(a) (b)

Figure 4: Mesh convergence study: (a) fluid height and (b) the corresponding mean velocity for different
mesh sizes at t = 2 s.

Next, numerical simulations are compared with experiments for inclination θ = 15o and θ = 25o, respec-
tively, see Fig. 5. The front positions are plotted against time for both Regimes, A and B. Numerical results
of a similar viscoplastic model (one-layer model) presented in [47] are also plotted for cross-validation. The
present results are found to be in better agreement with experimental results than with solutions obtained
by [47]. Notably, both regime models compare fairly well with the experiments and the difference between
the two solutions is small. The slight difference between the present regime models and the experimental
data, especially for longer times (see Fig. 5 (b)) can be attributed to the sidewall friction effects reported in
the experiment [63], which are not accounted for in the present model.

To investigate the two regimes further, the time evolution of the elevation profile for the two flow regimes
is shown in Fig. 6 for the two slope angles. The maximum relative difference between the two regimes is
calculated by |xfB−xfA ||xfA |

, where subscripts A and B denote the two regimes, respectively. A difference of
about 7.5% for θ = 15o and 2.5% for θ = 25o, is observed between the two regimes at the front zone, where
there is a sharp change of the fluid slope ∂h

∂x . This difference, however, diminishes everywhere else within the
flow profile. The front zone is usually determined by the balance between the gravitational acceleration g ∂h∂x
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(a) (b)

Figure 5: Comparing Regime A and B with experiments [63] and with solutions of the one-layer model
presented in [47]: front positions xf varying with time t in semilog scale, for (a) θ = 15o and (b) θ = 25o,
respectively.

(a) (b)

Figure 6: Comparing Regime A (dashed line) and Regime B (dotted line) for two different inclination angles.

and the basal shear stress τb, with the slope ∂h
∂x having the dominant effects. The difference between the two

regimes is larger for θ = 15o than for θ = 25o, since the height gradient ∂h
∂x is larger for θ = 15o than for

θ = 25o. This shows that the difference between the two regimes occurs in areas with sharp changes of the
fluid local slopes and increases when the height gradient increases.

5.2 Steady flow over a bump

Figure 7: Flow geometry on a flat topography with a bump at the center

To investigate the two regimes further, a steady state flow on an inclined topography (θ = 15o) with a
bump at the center is considered, as shown in Fig. 7. The topography given by b(x) = boe

−0.15(2x−L)2
, where
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bo is the height of the bump, is set on a domain of length L = 10m and width 1m. To vary the mean-slope
of the topography, two different heights of the bump are considered for analysis: bo = 0.1m and 0.3m,
respectively. A discharge q = 0.12m2s−1 is imposed at the upstream boundary, and a fluid depth of 0.5m
imposed at the outflow. The fluid density used is ρ = 1000 kgm−3 together with the rheological parameters
given by Eq. (5.2). To ensure the convergence of the solution, a medium mesh, as described in the previous
section, is chosen here for discretization with ∆t = 0.05 s. Simulations were run over time until a steady
state was reached at about t = 20 s, with a steady-state tolerance of about 10−7. The tolerance is obtained
by calculating the relative error between solutions of two consecutive time steps, which should satisfy the
condition |h

n+1−hn|
|hn| < 10−3. Fig. 8 compares the steady-state solutions (h, ū) of the two regimes, Regime

(a) (b)

(c) (d)

Figure 8: Comparing Regime A and B for two different heights of the bump: bo = 0.1m and 0.3m, respectively.

A and B, for the two values of the bump height. Results for Regime A from both COMSOL Multiphysics
and DassFlow softwares are plotted for cross-comparison, which shows excellent agreement. The difference
between the two regimes, however, is negligible within the state variables (h, ū) for the two cases of the bump
height. Nevertheless, on zooming out, a slight difference of about 0.5% between the two regimes is observed
around the top region of the taller bump, where the local slope is sharp. This disparity, however, is negligible
everywhere else. Note that the difference between the two regimes is calculated by |hB−hA||hA| × 100, where the
subscripts A and B denote the two regimes, respectively.

To study the difference between the two flow regimes further, the gravity term defined in Section 3.2 is
normalized as

Λ
λ

=

1 for regime A,

1− δ
λ∂xH for regime B,

(5.3)

from which a regime correction criterion differentiating the two regimes can be defined as δ
λ∂xH. We recall

19



that in physical dimensions δ
λ=cotθ and λ = ρg

K .

(a) (b)

Figure 9: Comparing the normalized gravity term Λ
λ for Regime A and B for two different heights of the

bump.

By plotting Eq. 5.3, based on the simulation of the present case, the difference brought about by the
correction criterion is now visible around the bump area (2m < x < 8m) and negligible everywhere else, see
Fig. 9. This difference is maximum at the top region of the bump around 4m < x < 6m, on both upstream
and downstream of the bump, where there is a sharp change of the slope. This shows that the correction
criterion ( δλ∂xH) increases as the height gradient increases due to the increase of the height of the bump,
thereby increasing the difference between the two regimes. The 1.2% and 4% disparity observed in Fig. 9
(a) and (b), respectively, however, have an insignificant effect on the state variables of a steady-state flow,
as observed earlier in Fig. 8. This suggests that the corrective term in Regime B improves solutions in areas
with a very sharp change of slope, otherwise can be neglected for steady state flows.

5.3 2D dam-breach

To demonstrate the applicability of the present model to 3D flows, we consider a partial dam-breach problem
studied in [64–66]. The setup is on a 200m by 200m domain with a sluice gate of thickness 10m situated at
the center as shown in Fig. 10. The gates are nonsymmetrical to demonstrate a general case for geophys-
ical and/or engineering applications. The initial upstream and downstream fluid levels are 10m and 5m,
respectively. Note that this case is investigated using Regime B, since Regime A is only valid for θ > 0o, as
remarked previously.

For comparison with the results in the literature, the fluid rheological information used is given by Eq.
(5.4). A coarse mesh of 60 × 60 structured elements is considered. Note that the very coarse 40 × 40 mesh
cells used in [64, 65] do not provide sufficiently converged numerical solutions for the present simulations. A
wall condition is used on all boundaries.

(K, n, τc) = (0.001Pa s, 1, 0Pa) (5.4)

The fluid is initially at rest before the gate is opened instantaneously to produce a bore-like wave that
moves downstream (right) and a negative wave that tends to move upstream (left), see Fig. 11. The numerical
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Figure 10: Dam-breach flow configuration (top-view).

simulations shown are for t = 7.2 s, before the positive wave reaches the downstream wall. Fig. 11 (a) and
(b) show the free-surface profile and velocity field from the literature [64–66] while (c) and (d), show the
corresponding results of the present model (4.21). The present results are shown to compare fairly well with
those obtained by [64–66]. The velocity vectors point in the direction of the propagating wave past the gate.

(a) (b)

(c) (d)

Figure 11: Dam-breach problem. Newtonian case: comparing the (a) fluid surface and (b) velocity vector
from [64,65] with (c) - (d) the present simulations, respectively.

To consider a viscoplastic case, the rheological parameters given by Eq. (5.5) are considered, and the
mesh size increased to 100× 100 elements to achieve the convergence of results.

(K, n, τc) = (0.1, Pa s, 0.33, 33Pa) (5.5)
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As seen in the Newtonian case above, a bore-like wave propagating downstream is observed; see Fig. 12

(a) t = 6 s (b) t = 6 s

(c) t = 3 s (d) t = 6 s

Figure 12: Dam-breach problem. Herschel-Bulkley case showing (a) the fluid depth profile and the corre-
sponding (b) yield surface at t = 6 s, mean velocity field at (c) t = 3 s and (d) t = 6 s, respectively.

(a). The corresponding yield surface is also plotted in Fig. 12 (b), which shows the evolution of the sheared
thickness. Further, contour plots of the velocity field at t = 3 s and t = 6 s are shown in Fig. 12 (c) and (d),
respectively. The arrows of the velocity field point towards the direction propagated by the upstream wave.
At t = 3 s, the fluid is observed to force its way out through the gate before it spreads in all directions, as
seen for t = 6 s . The mean velocity is maximum in the gate region where the flow passage is minimum (and
therefore the velocity must increase there - the conservation of momentum). The velocity then decreases on
either side of it.

5.4 Dam-break flows over a slippery bed

To test the robustness of the present model (4.21) to simulate slip conditions, the coefficient of slipperiness
C is varied to investigate three basal slip cases: a non-slip (C = 0), a pure slip (C = 10 to represent C →∞),
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and a transition between the two cases (C = 0.5), see [22]. The dam-break problem described in Subsection
5.1 is used here for the simulations. However, a set of different rheological values (sourced from [67]) of
a relatively more viscous flow regime (given by Eq 5.6) is used here for analysis. The study is performed
considering Regime A on a shallow slope θ = 6o.

(K, n, τc) = (50Pa s, 0.5, 40Pa) (5.6)

Figure 13: Variation of the basal slipperiness. Herschel–Bulkley case showing the basal shear stress profiles
for three different values of the slip coefficient at t = 1 s.

The basal shear stress (frictional resistance) between the fluid and the bed is observed to reduce as the
slipperiness coefficient increases, see Fig. 13. This implies that the fluid encounters less resistance from the
basal topography as the slip coefficient increases, hence, reducing the shear rate. Consequently, the sliding
of the fluid over the bed increases, and the fluid tends to spread faster.

(a) (b)

Figure 14: Variation of the basal slipperiness. Herschel–Bulkley case showing the evolution of (a) fluid depth
(solid), yield surface (dashed), and (b) mean velocity for three different values of the slip coefficient at t = 2 s,
respectively.

When the coefficient of slipperiness is increased, the front position of the free-surface profile is observed
to advance faster and the corresponding mean velocity observed to increase, see Fig. 14. This is due to the
decrease in frictional resistance. Furthermore, the plug thickness is observed to increase with the increase
in the basal slip coefficient, see Fig. 14 (a). This implies that the shear rate of the fluid vanishes as the
basal slipperiness approaches infinity, hence a plug flow. Conclusively, the results presented show that basal
properties (e.g., basal slipperiness) have an influence on the dynamics of fluid flows, hence, it is important to
have a model that accounts for them.
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6 Conclusion

This paper presents the derivations of thin-layer flow models (lubrication and shallow water equations),
valid for 3D multi-regime flows of viscoplastic Herschel–Bulkley fluids over non-flat inclined topographies
with basal slipperiness. Upon considering a free-surface flow with varying basal conditions, these models are
derived from the Navier–Stokes equations through an asymptotic analysis and the multi-regime approach,
which allows to model different flow regimes originating from the variation of the mean-slope, basal elevation,
and/or the basal boundary conditions. Two flow regimes (Regime A, the basic/classical one, and Regime
B, the enriched one) corresponding to different balances between shear and pressure forces are defined and
investigated. Flow models corresponding to these regimes are calculated. Classical reference solutions in the
literature are recovered by considering particular cases on flat topographies.

Numerical solutions of the shallow water equations are obtained using two simulation softwares based on
the finite element method (for COMSOL Multiphysics [58]) and finite volume method (for DassFlow [59],
an open-source software), for cross-validation. The solutions of the two regime models are compared with
experiments and related results from the literature, and are found to be in good agreement. The difference
between the two regimes, however, is observed to occur in areas with sharp changes of the local slopes
within unsteady flows, otherwise, it is negligible everywhere else. Flow models for Regime A, which are
mathematically less complex to solve than those for Regime B, can therefore be used reliably to simulate
free-surface flows of Herschel–Bulkley fluids, unless the mean-slope variation is very sharp.

Moreover, basal perturbations in topography elevation and basal slipperiness are observed to impact fluid
flow dynamics, hence, it is important to include them in the model. In addition, the present flow models
derived here are shown to be able to simulate 3D complex flows presenting Herschel-Bulkley rheology like
lava and mud flows, which is the next step of the present study.
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A Appendix: Finite volume schemes

In this section, the solution procedure for the present shallow water equations is presented, following the
work of [68,69], see also [60,61].

A.1 Conservative form

Firstly, the model is written in conservative form as

∂tU + ∂xF (U) + ∂yG (U) = Sg (U) + Sf (U) (A.1)

where

U =

 h

hū

hv̄

 is the vector of conserved variables,

F (U) =

 hū

hū2 + 1
2gh

2cosθ + Cm
[
ρg
K Sθx

]2m
h2m+3

hūv̄ + Cm
[
ρg
K Sθx

]2m
h2m+3

 andG (U) =

 hv̄

hūv̄ + Cm
[
ρg
K Sθy

]2m
h2m+3

hv̄2 + 1
2gh

2cosθ + Cm
[
ρg
K Sθy

]2m
h2m+3


are the vectors of fluxes,

Sg (U) =


0

−gh
(
cosθ ∂b∂x − sinθ

)
−gh

(
cosθ ∂b∂y − sinθ

)
 and Sf (U) =

 0
− 1
ρτbx

− 1
ρτby

 are the vectors of sources. Basal shear

stressτ b is given by (4.22).
Secondly, Godunov-type finite volume method is employed to solve the integrated form of the shallow

water equations (A.1) which generally yields a semi-discretized equation of the form

∂tU + 1
mk

∑
e∈∂k

meF̂ e (U) = Sg (U) + Sf (U) (A.2)

where, following the notations defined in DassFlow [59]; Ω is the computational domain in 2D with N number
of cells, k representing the cell index, mk the area of the cell k, m∂k perimeter of the cell k, ke neighboring
cell, e the cell edge, ne the unit normal vector to e, ne,k the unit normal vector to e pointing outward from k

to ke, me the length of the side e, and F̂ e (U) = F e (U)nex +Ge (U)ney the intercell normal flux obtained
by applying the rotational invariance property in Eq. (A.1), see [68]. This property enables us to reduce the
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sum of a 2D problem to a 1D Riemann problem.

Figure 15: Finite volume cell k: showing the notations used for mesh discretization

A.2 Splitting method

To obtain a fully discretized system of Eq. (A.2), the splitting method is employed for the numerical
treatment of fluxes and source terms. Splitting methods are commonly used to divide a long equation
incorporating several time-dependent physical processes into simpler equations for individual physical process,
which can be solved separately by numerical techniques [68,70]. Incorporating the prediction and correction
method, the splitting method here consists of two steps:
Step 1: Compute Ũ

n+1
solution of (A.2) without the friction term:

∂tU + 1
mk

∑
e∈∂k

meF̂ e (U) = Sg (U) . (A.3)

Step 2: Given the predicted solution Ũ
n+1

, compute Un+1
k solution of

∂tU = Sf (U) . (A.4)

It’s noted that the solution Ũ
n+1

obtained in Step 1 is used to update the solution Un+1
k obtained in Step 2.

This procedure is described in the next subsection and detailed in [59]. Following these steps, the expected
final scheme in general will take the form

Un+1
k = Ũ

n+1
k + ∆tSf

(
Ũ
n+1
k

)
. (A.5)

It is evident from Eq. (A.1) and (A.5) that for a small fluid depth i.e., as h→ 0, the friction term becomes
very large compared to other terms and can lead to numerical instability. In that sense, a small time step ∆t
can be chosen to maintain the stability, however, this can be computationally expensive. To overcome this
drawback, a proper numerical treatment of the friction source term is required i.e., the friction source term
can be treated implicitly while others are treated explicitly.

A.3 Interface fluxes and gravity source term discretization

Here, the fluxes and gravity source terms are treated explicitly, thus, integrating Eq. (A.3) in time, a
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fully discrete system is obtained:

Ũ
n+1

= Un
k −

∆t
mk

∑
e∈∂k

meF̂ e (Un) + ∆tSg (Un) (A.6)

where, the subscript k represents the mesh cell index, superscript n the time level, ∆t = tn+1 − tn the
time step for t ∈ [0, T ], Un

k the approximation of U at time tn, and F̂ e = F̂ e,k − F̂ e,ke the numerical
fluxes through the interfaces of cell k at time tn. For clarity, it is worth noting that this can also be
written as F̂ e (Un) = F̂ e

(
Un
e,k

)
− F̂ e

(
Un
e,ke

)
where Un

e,k and Un
e,ke are the vectors of the conservative

variable on either side of edge e. The numerical scheme (A.6) is complete when numerical fluxes F̂ e and
gravity source term Sg are reconstructed using finite volume methods developed in the literature, see e.g.,
[59, 68]. In this work, a Godunov-type scheme incorporated with a HLLC approximate Riemann solver is
employed, as detailed in the DassFlow guide [59]. For the gravity source term, a well-balanced scheme
developed in DassFlow (and references therein) which is stable for simulations involving wet-dry fronts is
also adopted. To ensure positivity of the fluid depth and preservation of the fluid at rest property, Audusse
et al. [71] considered a hydrostatic balance between the momentum components of the fluxes and gravity
source term: 1

2g∇h
2 = −gh∇b, and proposed a well balanced gravity source term scheme of the form

Sg (Un) = −gh∇b ' 1
mk

∑
e∈∂k

me
g
2

[(
hne,k

)2
− (hnk )2

]
ne,k, where the well-balanced discretization of the bed

slope, if considering the x-direction, can be viewed as ∂b
∂x '

be,k−bk
∆x ' hk−he,k

∆x , with he,k representing the
reconstructed hydrostatic water depth, at the left-hand side of the cell interface e. This is the first-order
gravity source term scheme implemented in DassFlow for the Newtonian case.

In a similar approach, comparing with the Newtonian version in DassFlow [59] and Audusse et al. [71], a
well-balanced discretization of the gravity source term Sg (U) = −g (cosθh∇b− hsinθI) for the SWE model
derived here is employed. For instance, considering the x-direction gravity term:

Sg = −g
(
hcosθ ∂b

∂x
− hsinθ

)
,

' −g
[(

he,k + hk
2

)(
hk − he,k

∆x

)
cosθ − he,k + hk

2 sinθ
]
,

' g

2∆x
[(
h2
e,k − h2

k

)
cosθ + ∆x (he,k + hk) sinθ

]
.

(A.7)

Thus, in general, Sg (Un) = −ghn (cosθ∇b− sinθI) ' 1
mk

∑
e∈∂k

me
g
2

[((
hne,k

)2
− (hnk )2

)
cosθ +me

(
hne,k + hnk

)
sinθ

]
ne,k.

Substituting this into Eq. (A.6) yields

Ũ
n+1

= Un
k−

∆t
mk

∑
e∈∂k

meF̂ e (Un)+ ∆t
mk

∑
e∈∂k

me
g

2

[((
hne,k

)2 − (hnk )2
)
cosθ +me

(
hne,k + hnk

)
sinθ

]
ne,k. (A.8)

Using appropriate Riemann solver (HLLC), this scheme (for the fluxes and gravity term) together with other
schemes (for other terms) are implemented in DassFlow for the non-Newtonian version.
Note: For further details of the hydrostatic reconstruction and numerical methods used, see [59, 71] and
references therein.
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A.4 Friction source term discretization

A stable implicit-scheme for the friction source term is required to avoid numerical instability as h→ 0.
Using appropriate numerical methods, Eq. (A.4) can be solved conveniently to get a numerical scheme for
the friction term. In an expanded form, this equation writes

∂h

∂t
= 0,

∂q̄

∂t
= Sf ,

(A.9)

where Sf = − 1
ρτ b. It’s noted that the component of the continuity equation is already zero i.e.

hn+1−h̃n+1

∆tn = 0, which implies that we only need to seek a solution for the non-zero component of the
momentum equation. The fluid depth is thus updated as

hn+1 = h̃n+1. (A.10)

where h̃n+1 is the fluid depth estimated at the previous time step in Step 1 above. Treating the friction
source term implicitly, i.e., at time level tn+1 for all the state variables, the semi-implicit time step scheme
writes

hn+1ūn+1 − h̃n+1ũn+1

∆tn = −1
ρ
τn+1
b ,

where h̃n+1 and ũn+1 are the previous solutions at tn obtained in step 1 above. Further, this writes

ūn+1 = ũn+1 − ∆tn

h̃n+1ρ
τn+1
b . (A.11)

recalling that the τ b expression reads

τn+1
b = K

D

(
K

ρg |Snθ |

)m−1(
τc

ρg||Snθ ||
+ hnc

)
qn+1. (A.12)

Treating the flow rate term implicitly, Eq. (A.11) becomes

ūn+1 = ũn+1 − ∆tn

ρh̃n+1

[
K

D

(
K

ρg |Snθ |

)m−1(
τc

ρg||Snθ ||
+ hnc

)
h̃n+1ūn+1

]
. (A.13)

After rearrangement this results to

ūn+1 = ũn+1

 ρD

ρD + ∆tnK
(

K
ρg |Sn

θ
|

)m−1 [
τc

ρg ||Sn
θ
|| + h̃n+1

c

]
 . (A.14)

As h→ 0 then ūn+1 → 0, which implies that the fluid at rest property is preserved even at wet/dry fronts.
This develops into the following full-implicit scheme:
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Un+1
k =

(
hn+1

hn+1ūn+1

)
=


h̃n+1

hn+1ũn+1

 ρD

ρD+∆tnK
(

K
ρg |Sn

θ
|

)m−1[
τc

ρg ||Sn
θ
||+h̃

n+1
c

]

 . (A.15)

Recall that the expressions for the critical depth hc , the term Sθ, and the denominator D, are defined in
Sec. 4. Conclusively, this scheme is also implemented in DassFlow together with other terms and results
computed as presented in the previous section.
Remark: It is worth noting that only Regime A has been implemented in DassFlow. Further work needs to
be done to implement Regime B.
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