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Abstract
This paper presents mathematical modelling and simulation of thin free-surface flows of viscoplastic flu-
ids with a Herschel–Bulkley rheology over complex topographies. Using the asymptotic expansion method,
depth-averaged models (lubrication and shallow water type models) are derived for three-dimensional multi-
regime flows on non-flat inclined topographies with varying basal conditions. Starting from the Navier–Stokes
equations, two flow regimes corresponding to di�erent balances between shear and pressure forces are pre-
sented. Flow models corresponding to these regimes are calculated as perturbations of the zeroth-order
solutions. The classical reference models in the literature are recovered by considering their respective cases
on a flat-inclined surface. In the second regime case, a pressure term is non-negligible. Mathematically, it
leads to a corrective term to the classical regime equations. Flow solutions of the two regimes are compared;
the di�erence appears in particular in the vicinity of sharp changes of slopes. Nonetheless, both regime
models are compared with experiments and are found to be in good agreement.

Key words: Shallow water equations, lubrication, viscoplastic, Herschel–Bulkley, free-surface flows, multi-
regime flows.

1 Introduction

Free-surface flows of viscoplastic fluids are commonly encountered in nature (e.g., lava flows, debris
flows, mudflows) [1–3] and in industrial settings (e.g., cosmetic creams, food pastes, paints, heavy oils) [3–5].
Mathematical modelling and simulation of these flows has a number of important geophysical and engineering
applications [2, 6, 7]. One key application is the ability to predict the fluid flow path and run-out distances,
for risk assessments and hazard management plans [7–9]. Reliable forecasting, however, calls for accurate
modelling of the flow dynamics. For that reason, this paper aims at deriving a reliable model that can be
used to simulate viscoplastic flows like lava and mudflows.

Viscoplastic materials are characterized by a yield stress threshold, beyond which they flow like fluids and
below which they behave like rigid solids [4]. Flows of viscoplastic fluids have another complex behaviour
resulting from the formation of a plug-like (unyielded) region within the flow [2, 4]. Below this region is
the sheared (yielded) zone; the interface between them is the yield surface. The possible coexistence and
interaction of the two layers (regions) during the fluid evolution is still a paradox [10–13]. This complex
rheology makes it challenging to model viscoplastic flows. However, a number of rheological models have
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been developed in the past, and the most common are the Bingham and Herschel–Bulkley models which
date back to the pioneering work of [14] and [15], respectively. This research work considers the Herschel–
Bulkley law because of its ability to describe many complex fluid behaviors in a non-linear and history
independent manner. In addition, this law has widely been used in the past to describe viscoplastic flows,
see for instance [10,16–21], and reference therein.

Apart from the complex rheology, geophysical flows of viscoplastic fluids have an additional complexity
that arises from the free-surface evolution with time, the variation of basal conditions, and the rapidly
unfolding complex topographies - which results in multi-regime flows (multiple regimes within the flow).
Indeed, two di�erent extreme regimes, fully sheared and sliding-like, can be observed within the flows.
Di�erent regimes within the flow usually originate from basal conditions that are non-uniform or potentially
from variations of the mean-slope, see [22]. The conservation equations governing such flows, therefore,
become rather more complex and di�cult to solve numerically. However, geophysical flows are generally
characterized by a small flow thickness compared to the flow extent, commonly referred to as the long-wave
assumption, which allows to eliminate the vertical dimension by depth-integration [23, 24]. This yields the
so-called thin-layer models (reduced models), such as the lubrication model and the shallow water model,
that are easier to solve than the original complete Navier–Stokes equations.

Due to the increasing demand for fast and accurate viscoplastic models for hazard mitigation [7,25,26], we
propose here to revisit and build on the derivations of shallow flow models in pursuit for one that can reproduce
flows of viscoplastic fluids. Lubrication theory assumes that the flow is thin and slow [11, 24, 27]. This
allows to reduce the conservation equations to a one-equation model (a scalar non-linear advection di�usion
equation) governing the evolution of the fluid depth, see [10, 16, 17, 28–31] for derivation and applications.
The Newtonian version of this approximation dates back to the work of Benney [32] prior to the Bingham
(viscoplastic) one, which was pioneered by [27, 33]. However, the lubrication model fails to account for the
e�ects of fluid inertial forces and the wet-dry front dynamics as the depth approaches zero, see [1, 13] and
references therein. Some studies have also reported the singular behaviour of the model at high Reynolds
number and/or when the linear stability threshold is exceeded [34–37].

On the other hand, the shallow water theory takes advantage of the long-wave assumption that allows to
average the local mass and momentum conservation equations over the fluid depth. The resulting averaged
quantities are then approximated by asymptotic analysis. This yields a two-equations model for the evolution
of the local fluid depth and flow rate [22, 37]. One important advantage of this model over the lubrication
model is that inertial terms are accounted for. The shallow water equations were first introduced by Barré
de Saint-Venant for 1D hydraulic flows in 1887 [38]. Since then, there have been numerous derivation studies
applicable to a variety of Newtonian flows e.g., [35, 39–42] and the flow of power-law fluids e.g., [22, 36, 37].
However, only a few studies have considered the case of viscoplastic flows, see [36,43] for Bingham and [44–46]
for Herschel–Bulkley flows. Due to the complexity of calculating (and computing) these models, many of
these derivations have been done based on a 2D (two-dimensional) flow problem which yields a 1D model
(one-dimensional set of equations). It is of great importance to extend these derivations to 2D for practical
applications in 3D.

Furthermore, despite the fact that many free-surface flows exhibit multiple flow regimes (ranging from slow
to fast, sliding to fully sheared, just to name a few), the existing derivations in the literature are mono-regime
in the sense that they generally assume non-changing basal conditions. However, there has been little e�ort to
derive thin-layer models taking into account multi-regime flows. In particular, [47] derived unified thin-layer
models for viscous fluids valid for fast and slow regimes, and [22] derived asymptotic thin-layer models (one
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equation and two equation type) for power-law fluids with varying basal boundary conditions corresponding
to the multi-regimes aforementioned (including the flow regimes considered herein). The present article
builds on the derivation of these models, in particular the shallow water equations partly presented in [45]
and [22], and extends them to a 3D case on a non-flat inclined configuration with varying conditions at the
bottom, therefore potentially presenting di�erent flow regimes which are naturally defined as functions of
dimensionless parameters. Note that multiple flow regimes (multi-regimes) can be encountered not only in
geophysical flows but also in industrial settings, see e.g., [1, 4, 22].

The outline of the paper is as follows. In Section 2, the flow configuration and the governing equations
are defined. The primitive equations are non-dimensionalized, and the orders of magnitude of dimensionless
parameters presented - from which two flow regimes are defined: Regime A, the basic/classical regime, and
Regime B, the enriched one with a corrective term. In Section 3, the zeroth-order solutions corresponding
to these flow regimes are presented. The one-equation model of lubrication type is re-derived therein. The
derivation of the shallow water equations is presented in Section 4, an extension of the work of [22, 45].
Considering particular cases in the literature, classical shallow water models are recovered. In Section 5, the
derived shallow water equations are validated with experiments, and the comparison of the two flow regimes
discussed. Conclusions are drawn in Section 6.

2 Model formulation

We start by considering a 2D flow of a thin layer of a viscoplastic fluid on an inclined non-flat topography,
as shown in Fig. 1, with x being the axis of the slope at an angle ◊ with the horizontal (of the reference
plane) and z, the axis normal to the slope. The flow is driven by gravity g = (gsin◊, ≠gcos◊) and described
by its velocity u(t, x, z) = (u(t, x, z), w(t, x, z)), and the pressure field p(t, x, z). The fluid is assumed to be
incompressible with its density denoted by fl. The fluid layer is of thickness h(t, x, z) = (H(t, x, z) ≠ b(x, z)),
where H(t, x, z) is the fluid elevation and b(x, z) the basal topography elevation.

For clarity, it is worthwhile noting that here we adopt a mean-slope coordinate system xz (with local
variations of the topography), which can be related to the reference plane XZ (horizontal-vertical coordinate
system) by the inclination ◊, see Fig. 1. Another natural system of coordinates could be the Prandlt
coordinate system as described in [22].

Figure 1: Flow configuration with a non-flat topography.

As usual, the flow dynamics are governed by the Navier–Stokes equations (conservation of mass and
momentum, respectively):
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ˆxu + ˆzw = 0,

fl(ˆtu + uˆxu + wˆzu) = ≠ˆxp + flg sin ◊ + ˆx·xx + ˆz·xz,

fl(ˆtw + uˆxw + wˆzw) = ≠ˆzp ≠ flg cos ◊ + ˆx·zx + ˆz·zz,

(2.1)

where ·
=

=
A

·xx ·xz

·zx ·zz

B
is the fluid stress tensor. The fluid rheology on the other hand, is described by the

Herschel–Bulkley constitutive law which reads
Y
]

[
·ij =

1
K“̇n≠1 + ·c

“̇

2
“̇ij for · > ·c,

“̇ij = 0 for · Æ ·c,
(2.2)

where ·ij and “̇ij = ˆjui + ˆiuj are elements of the stress and strain rate tensors, · =
Ò

1
2

q
ij

·ij·ij and

“̇ =
Ò

1
2

q
ij

“̇ij “̇ij are the second invariant of the stress and strain rate tensors, K > 0 the consistency index,
n > 0 the power-law index, and ·c the yield stress, respectively.

It is worth noting that some geophysical flows like volcano lava, K is highly dependent on the fluid tem-
perature T . In this case, K has simply to be given (or deduced by solving a thermal model).

Other fluid models can be recovered from the relation (2.2) depending on n and ·c. For instance, when
n = 1, the Herschel–Bulkley model reduces to a Bingham model where the consistency index K becomes the
plastic viscosity ÷. When n < 1 the model reduces to a shear thinning fluid (pseudo-plastic) model in which
the apparent viscosity increases the shear rate. When n > 1, a shear thickening (dilatant) fluid is obtained.
When n ”= 1 and ·c = 0, a power-law fluid model is obtained. When n = 1 and ·c = 0, a Newtonian fluid
model is recovered where K becomes the fluid viscosity.

The governing equations (2.1) - (2.2) are subject to the following boundary conditions at the bottom
surface, z = b, and at the free-surface, z = H, respectively:

• The friction condition otherwise known as the power-law condition or the Weertman-type friction law
(see e.g., [22]), defined as Y

]

[
u · t̂b = ≠C|·

=
· n̂b · t̂b|

1≠n
n ·

=
· n̂b · t̂b,

u · n̂b = 0,
(2.3)

where vectors t̂b and n̂b are the tangent and outward normal to the bottom, respectively, and C the
basal slip coe�cient. The negative sign allows C to be positive since n̂b is pointing outward. When
C = 0, the no slip condition is recovered: u = w = 0.

• The kinematic condition: ˆth + uˆxH = w and the no stress condition: (·
=

≠ pI
=

) · n̂ = 0, where
n̂ = 1Ô

1+(ˆxH)2

!
ˆxH

≠1
"

is the unit vector normal to the surface pointing outwards and I
=

the identity tensor.

After a little algebra, the stress-free condition gives rise to two expressions: ·xz = ˆxH

1≠(ˆxH)2 (·xx ≠ ·zz)
and p = 1

1≠ˆxH
(·zz ≠ (ˆxH)2·xx).

Since the flow is incompressible, the mass conservation allows us to write the following equality: ˆxu =
≠ˆzw … ·xx = ≠·zz.
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2.1 Scaling and non-dimensionalization

To non-dimensionalize the primitive equations, L is set to be the characteristic length in the direction
of the flow, H the characteristic depth, U the scale of u and W the scale of w. By scaling and introducing
dimensionless variables denoted by Õ yields x = LxÕ, z = HzÕ, t = L

U
tÕ, b = Hb

Õ
, h = HhÕ, H = HH Õ, u =

UuÕ and w = WwÕ. Assuming that the long-wave assumption holds, a geometric scaling parameter can be
defined as ‘ = H

L
<< 1. The mass conservation equation allows us to naturally define W = H

L
U . Further, a

hydrostatic pressure scale can be chosen as p = flgHcos◊pÕ. Some standard scales are adopted for the fluid
stresses:

(·xx, ·xz, ·zz) = K

3
U

H

4n

(‘· Õ

xx
, · Õ

xz
, ‘· Õ

zz
) .

The strain rate is scaled naturally as “̇ = U

H
“̇Õ. Injecting these dimensionless variables into the primitive

equations, some standard dimensionless groups can be defined: the Reynolds number, Froude number, and
Bingham number, respectively:

Re = flU2≠n
H

n

K
, Fr = U

Ô
gH cos ◊

, Bi = ·c

K

3
H

U

4n

.

Following the work of [22,36,37], some dimensionless parameters that occur naturally can be deduced:

(—, –, ”, ⁄) = ‘

3
Re, “,

1
“

,
1
‘“

tan ◊

4
,

where —, –, and ” are weight coe�cients corresponding to the inertial, viscous, and pressure terms, re-
spectively. The dimensionless parameter ⁄ is the normalized gravity source term and “ = F r

2

Re
. For our

mathematical convenience we set m = 1
n

, where n is the power-law index. Dropping the apostrophe (Õ) no-
tation, the following dimensionless equations are obtained: the mass and momentum conservation equations,
respectively:

ˆxu + ˆzw = 0.

—(ˆtu + uˆxu + wˆzu) = ≠”ˆxp + ⁄ + –”ˆx·xx + ˆz·xz,

‘2—(ˆtw + uˆxw + wˆzw) = ≠”(ˆzp + 1) + –”(ˆx·zx + ˆz·zz).

(2.4)

and the rheological law:
Y
___]

___[

·xx = ≠·zz = 2
1

Bi

“̇
+ “̇n≠1

2
ˆxu,

·xz =
1

Bi

“̇
+ “̇n≠1

2
(ˆzu + –”ˆxw) for · > Bi,

“̇ij = 0 for · Æ Bi,

(2.5)

where “̇ =
Ò

(ˆzu + –”ˆxw)2 + 4–” (ˆxu)2, “̇ij =
A

2‘ˆxu ˆzu + –”ˆxw

ˆzu + –”ˆxw ≠2‘ˆxu

B
and · =


·2

xz
+ –”·2

xx
.

At z = b, the scaled friction condition (see e.g [22]) writes
Y
_]

_[

u = C
|·xz (1 ≠ –”ˆxb)2

≠ 2–”·xxˆxb|
m≠1

(1+–”ˆxb2)m+ 1
2

1
·xz (1 ≠ –”ˆxb)2

≠ 2–”·xxˆxb
2

,

w = uˆxb.
(2.6)

At the free-surface z = H, the kinematic condition writes ˆth + uˆxH ≠ w = 0 and the stress-free condition
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becomes
·xz = –”ˆxH

1 ≠ –”(ˆxH) (·xx ≠ ·zz), p = –

(1 ≠ –”(ˆxH)2) (·zz ≠ –”(ˆxH)2·xx). (2.7)

2.2 Orders of magnitude of dimensionless parameters

To investigate the balance of di�erent forces within the flow, field measurements of a real geophysical
flow are scrutinized. In particular, measurements of volcano lava flows sourced from [48–52] are presented
in Table 1 for analysis. The corresponding orders of magnitude of dimensionless parameters and weight
coe�cients are calculated as shown in Table 2. The average density of lava and inclination angle used for
these calculations are fl = 2700kgm≠3 and ◊ = 10o, respectively. From the order of magnitude in Table

Composition Temperature Viscosity Velocity
T (0C) K (Pa sn) u (m/s)

Less viscous lava Komatiite 1400 ≠ 1600 100 101

Viscous lava (Intermediate) Basalt 1200 102 10≠1

More viscous lava Dacite/Rhyolite 900 107 10≠2

Table 1: Field measurements of three types of volcano lava flows, [48–52].

‘ Re Fr — – ” ⁄ 1
—

”

—

–”

—

Less viscous lava 10≠5 103 101 10≠2 10≠7 10≠4 101 101 103 10≠9

Viscous lava (Intermediate) 10≠3 100 10≠2 10≠3 10≠7 101 103 102 105 10≠3

More viscous lava 10≠2 10≠5 10≠3 10≠7 10≠3 10≠1 100 107 106 103

Table 2: Orders of magnitude of dimensionless parameters and weight coe�cients.

2, the following deductions can be made: the aspect ratio is small in the three regimes, which validates the
long-wave assumption: ‘ << 1. Previous studies have shown that this assumption is numerically valid up to
‘ ¥ 0.3, see e.g., [49,53]. The dimensionless parameter – is small in the three regimes but relatively larger in
the more viscous regime. The dimensionless parameter — is much smaller when lava is more viscous compared
to other flow regimes; hence important when distinguishing the three regimes. On the other hand, ” is either
small or of at most order 1, hence another important parameter to distinguish the regimes.

This implies that real flows are multi-regimes in (—, –, ”). The gravity term ⁄ is of at most order 3 and can
be much higher on steep slopes. The Reynolds number Re and Froude number Fr for the less viscous lava
(and the intermediate one) are much higher than those of the more viscous lava, which rules out consideration
of the more viscous lava in this paper. Generally, komatiite and basaltic lava which are less viscous, are the
most common lava flows on earth [49]. From this analysis, two regimes depending on —, – and ” can be
defined:

• Regime A: with — small, – small, and ” small (less viscous lava).

• Regime B: with — small, – small, while ” = O(1) (intermediate viscous lava).

Considering these two regimes, the weight coe�cient –”

—
as seen in Table 3, is much smaller than other terms.

Thus, it can be neglected; this will be recalled in the following sections. Furthermore, the asymptotic models
corresponding to these two regimes will be derived in the next sections.
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3 Zeroth-order field expressions

Firstly, we will start by deriving the steady-state uniform solutions (see Fig. 2 (a)) of the primitive
equations, which are obtained by setting h = const, b © 0 and – = — = ” = 0. This is equivalent to
considering the zeroth-order approximations of Regime A: — = ” = – = O(‘). Next, we will derive the
zeroth-order approximations of Regime B, that is, by considering — = – = O(‘) and ” = O(1). For clarity,
the calculations presented in this section are in 1D only, i.e., in space variables (x, z).

3.1 Zeroth-order in Regime A sense

Considering — = ” = – = O(‘), the governing equations (2.4) - (2.7) simplify to
Y
]

[
ˆz·xz = ≠⁄,

ˆzp = ≠1.
(3.1)

Y
]

[
·xz = Bi + (ˆzu)n if ·xz > Bi,

ˆzu = 0 if ·xz Æ Bi.
(3.2)

The friction condition becomes u = C|·xz|
m≠1·xz, w = 0, from which a non-slip condition is recovered when

the slip coe�cient C = 0 and a pure slip when C æ Œ. The free-surface conditions become ·xz = 0, and
p = 0.

(a) (b)

Figure 2: Sketch of (a) a steady uniform flow configuration and (b) the velocity profile showing the plug and
sheared zones in Herschel–Bulkley flows

Solving Eq. (3.1), a hydrostatic pressure and shear stress linear in z are obtained:

p = h ≠ z, ·xz = ⁄ (h ≠ z) . (3.3)

Consequently, the friction condition reduces to u = C (⁄h)m and w = 0. Near the free-surface as z æ h,
the shear stress component ·xz æ 0, which implies the existence of a plug-like flow near the free-surface of
thickness hp (see Fig. 2 (b)) such that

hp = Bi

⁄
. (3.4)
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Next, solving for the stream-wise velocity using Eqs. (3.2) - (3.4) yields

u(z) = ⁄m

Y
_]

_[

1
m+1 hm+1

c

5
1 ≠

1
1 ≠

z≠b

hc

2m+16
+ Chm, for z < hc

1
m+1 hm+1

c
+ Chm, for z Ø hc

(3.5)

where, hc = max (0, h ≠ hp) represents the thickness of the sheared zone below the plug. The flow rate can

also be obtained by q = hū =
⁄

H

b

udz where ū is the mean velocity:

q = ⁄m

5
hm+1

c

3
1

m + 1hp + 1
m + 2hc

4
+ Chm+1

6
. (3.6)

For the Newtonian case where Bi = 0, m = 1, and taking C = 0, the plug is absent i.e. hc = h. This
results in a Poiseuille-like velocity profile: u(z) = 1

2 ⁄h2
Ë
1 ≠

!
1 ≠

z

h

"2È
, and the average velocity ū in terms

of thickness h becomes ū = 1
3 ⁄h2.

The zeroth-order solutions are important as they show the main properties of solutions and serve as
reference solutions for other flow regimes. In particular, the asymptotic fields of other flow regimes considered
in the following sections are perturbations of these reference solutions.

3.2 Zeroth-order in Regime B sense

Regime B approximations are obtained by considering the 0th order terms in (–, —), while ” = O(1).
Consequently, Eqs. (2.4) - (2.5) reduce to the following system:

ˆxu + ˆzw = 0, (3.7)

Y
]

[
ˆz·xz = ”ˆxp ≠ ⁄,

ˆzp = ≠1,
(3.8)

and the constitutive law becomes
Y
]

[
·xx = ≠·zz = 2

1
Bi

ˆzu
+ (ˆzu)n≠1

2
ˆxu, ·xz = Bi + (ˆzu)n for ·xz > Bi,

ˆzu = 0 for ·xz Æ Bi.
(3.9)

The boundary conditions, on the other hand, reduce to u = C|·xz|
m≠1·xz, w = uˆxb at z = b and ˆth +

uˆxH = w, ·xz = 0, p = 0 at z = H. By integration, Eq. (3.8) yields a hydrostatic pressure p = H(x, t)≠z

and an expression for the shear stress

·xz = (⁄ ≠ ”ˆxH)(H ≠ z). (3.10)

which represents a balance between the shear stress and the hydrostatic pressure gradient. The modulus of
Eq. (3.10) can be obtained as:

|·xz| = |⁄ ≠ ”ˆxH|(H ≠ z). (3.11)

which implies that for a vanishing slope angle in the gravity term ⁄, the sign of the shear stress ·xz remains
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the same as the sign of the local slope of the free-surface. Eqs. (3.3) and (3.10) suggest to introduce the
variable � as in Boutounet et al. [2]:

� =

Y
]

[
⁄ for regime A,

⁄ ≠ ”ˆxH for regime B,
(3.12)

which allows to write unified expressions representing the two regimes.
Further, as seen previously in the case of Regime A approximations, Eq. (3.10) shows that the evolution

of the shear stress is linear in depth. As z æ H, the shear stress component ·xz æ 0, indicating the existence
of an unyielded zone near the free-surface (see Fig. 2 (b)) whose thickness now writes

hp = Bi

� . (3.13)

This thickness, however, is not constant; it varies with the thickness gradient of the free-surface, which
implies the existence of some elongational deformation in the plug. This contradicts the validity of zero-order
approximations. To resolve this contradiction, a concept of pseudo-plug has been introduced, see [10,11,36],
where the plug is made weakly sheared under the influence of normal stresses.

Furthermore, by integrating the constitutive law (3.9) and using the fact that H = (hp + hc + b), Eqs.
(3.9) - (3.13) enable to obtain the velocity field expression:

u(z) = �|�|
m≠1

Y
_]

_[

5
1

m+1 hm+1
c

3
1 ≠

1
1 ≠

z≠b

hc

2m+14
+ Chm

6
if z < hc + b,

Ë
1

m+1 hm+1
c

+ Chm

È
if z Ø hc + b,

(3.14)

which is locally identical to that of the Regime A solution, a perturbation of the reference flow. Also, by
integration, an expression for the discharge q = hū can be obtained:

q = �|�|
m≠1

5
hm+1

c

3
1

m + 1hp + 1
m + 2hc

4
+ Chm+1

6
(3.15)

3.3 On the lubrication-type flow model

The so-called lubrication flow model is derived from the discharge expression and the depth-integrated
mass equation. The latter is obtained by integrating Eq. (3.7) from z = b to z = H, which, after applying the
Leibniz integral rule and the boundary conditions, reads ˆh

ˆt
+ ˆq

ˆx
= 0. In the Regime B case, the lubrication

type model (also called one-equation model) reads

ˆh

ˆt
+ ˆ

ˆx

3
�|�|

m≠1
3

hm+1
c

3
1

m + 1hp + 1
m + 2hc

4
+ Chm+1

44
= 0.

By setting Bi = 0 and m = 1, a simplified Newtonian model of Benney’s type with no surface tension term
is recovered (see [24,32]).

The main advantage of the lubrication-type model is that since it is a scalar non-linear equation, it is
computationally less expensive to solve. However, this model can fail to capture important flow details, like
the e�ects of inertial terms, which are neglected at order zero. The model is also not consistent with the
wet-dry front dynamics as h æ 0, see e.g., [24] and references therein. In addition, it can present singularities
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in finite time when the linear stability threshold is exceeded, see [34–36] and references therein. The solution
to some of these issues is to consider the two-equations model derived in the next section.

4 Shallow water type models

Assuming the long-wave assumption ( ‘ << 1) holds, the shallow water equations are obtained by depth
integration of the Cauchy mass and momentum equations (2.4). For the sake of clarity, the derivations are
first done in 2D (to obtain a 1D model), then extended to 3D (to obtain a 2D model).

4.1 The 1D model

The first model equation is the integrated mass conservation: ˆh

ˆt
+ ˆq

ˆx
= 0. Next, to obtain the second

equation, the momentum equation is integrated over the fluid depth, which, after applying the Leibniz integral
rule together with the boundary conditions, give

—

A
ˆ

ˆt

⁄
H

b

udz + ˆ

ˆx

⁄
H

b

u2dz

B
+ ”

ˆ

ˆx

⁄
H

b

pdz = ‘2 ˆ

ˆx

⁄
H

b

·xxdz + ⁄h ≠ ·xz|z=b ≠
!
”p|z=b ≠ ‘2·xx|z=b

" ˆb

ˆx
.

After a few arrangements, taking q = hū =
⁄

H

b

udz and the shear stress at the base as ‡xz|z=b = ·b, the

second equation in variables (h, q) is obtained as

ˆhū

ˆt
+ ˆ

ˆx

⁄
H

b

u2dz ≠
–”

—

ˆ

ˆx

⁄
H

b

·xxdz + ”

—

ˆ

ˆx

⁄
H

b

pdz + ”

—
(p|z=b≠–·xx|z=b) ˆb

ˆx
= 1

—
(⁄h ≠ ·b) . (4.1)

To close this model, the averaged quantities:
s

H

b
u2,

s
H

b
·xx, and

s
H

b
p, need to be related to the state

variables h and ū. This is done by asymptotic approximations. Due to the complex flow behaviour of
geophysical viscoplastic flows (like lava, muds, etc), the zeroth-order approximations are usually assumed to
be su�cient to close the model. The one-order approximations are more consistent therefore important for
perfectly reproducible flows (like flows of perfect fluids). However, for geophysical flows, they may be too
complex to set up, costly to compute, and unnecessary owing to other uncertainties. For that reason, the
following approximations are developed at order zero, following the calculations presented in [22,45]:

i. Assuming u ¥ ū, the averaged quantity
s

H

b
u2dz can be approximated as

s
H

b
u2dz ƒ

s
H

b
u(0)2

dz ¥

q
2

h
+ ”the corrective term”, where the corrective term is adopted from [22] as �2m

h
2m+3

(2m+3)(m+2)2 . It is
important to note that the corrective term vanishes as � vanishes.

ii. The averaged pressure term is approximated as
s

H

b
pdz ƒ

s
H

b
p(0)dz = h

2

2 .

iii. The terms of order –”

—
are negligibly small, as seen previously in Table 3, hence can be dropped.

iv. The basal shear stress ·b can be approximated from Eqs. (3.10) and (3.13) as

· (0)
b

= · (0)
xz

|z=b = � (hp + hc) (4.2)

which can be expressed further in terms of h and q. Consequently, Eq. (3.15) and Eq. (4.2) allows to
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write

· (0)
b

= |�|
1≠m (hp + hc)

S

U hū

hm+1
c

1
1

m+1 hp + 1
m+2 hc

2
+ Chm+1

T

V . (4.3)

Analogously, Chambon [45] obtained an almost similar expression of the form · (0)
b

= Bi+hc

5
hū

h
m+1
c ( 1

m+1 hp+ 1
m+2 hc)

6 1
m

.

Applying the above approximations into Eq. (4.1) (dropping the zeroth-order notation), the momentum
equation writes

ˆq

ˆt
+ ˆ

ˆx

3
q2

h
+ �2mh2m+3

(2m + 3)(m + 2)2

4
+ ”

—
h

ˆH

ˆx
= 1

—
(⁄h ≠ ·b) , (4.4)

with the basal shear stress written as

·b = |�|
1≠m (hp + hc) q

D(h) , (4.5)

where the denominator D(h) is given by D(h) = hm+1
c

1
1

m+1 hp + 1
m+2 hc

2
+ Chm+1

Considering the Newtonian case (Bi = 0, m = 1, and taking C = 0), Eq. (4.5) reduces to ·b = 3ū

h
. This

recovers the multi-regime two-equations model for a Newtonian fluid presented in [22]:

ˆh

ˆt
+ ˆq

ˆx
= 0,

ˆq

ˆt
+ ˆ

ˆx

3
q2

h
+ ”

2—
h2 + �2h5

45

4
= 1

—

3
⁄h ≠

3q

h2

4
. (4.6)

In the mono-regime version (Regime B), the Bingham fluid case (Bi > 0 and m = 1) is recovered as in [36].
Similarly, by setting Bi = 0 and m ”= 1, the shallow water model for power-law fluids presented in [36,37] is
recovered.

4.2 The 2D model

Here, we extend the calculations to 2D i.e., in variables (x, y, z). To do so, the shallow water system is
derived by averaging the 3D incompressible Navier–Stokes equations presented below over the fluid depth,
taking into account the asymptotic approximations obtained in the previous subsection.

The primitive equations

For the purpose of derivations, a configuration in which either x or y is the axis of the slope at an angle ◊

with z being the axis normal to the slope is considered.

—(ˆtu + uˆxu + vˆyu + wˆzu) = ≠”ˆxp + ⁄x + –” (ˆx·xx + ˆy·xy) + ˆz·xz,

—(ˆtv + uˆxv + vˆyv + wˆzv) = ≠”ˆyp + ⁄y + –” (ˆx·yx + ˆy·yy) + ˆz·yz,

‘2—(ˆtw + uˆxw + vˆyw + wˆzw) = ≠”(ˆzp + 1) + –”(ˆx·zx + ˆy·zy + ˆz·zz).

(4.7)

Considering the 0th order terms in ‘ and assuming — = – = O(‘) (equivalent to the Regime B case), the
governing equations reduce to the following system of equations: the continuity equation: ˆxu+ˆxu+ˆzw = 0,
the momentum balance equation:
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Y
___]

___[

ˆz·xz = ”ˆxp ≠ ⁄x,

ˆz·yz = ”ˆyp ≠ ⁄y,

ˆzp = ≠1.

(4.8)

and the Herschel–Bulkley rheology law introduced in Section 2:
Y
]

[
·xz =

1
Bi

“̇
+ “̇n≠1

2
ˆzu, ·yz =

1
Bi

“̇
+ “̇n≠1

2
ˆzv if · > Bi,

“̇ij = 0 if · Æ Bi,
(4.9)

where the deformation tensor norm: “̇ =
Ò

(ˆzu)2 + (ˆzv)2 and the stress norm:

· =
Ò

·2
xz

+ ·2
yz

. (4.10)

The system is completed by boundary conditions at the bottom surface: the friction condition which reduces
to u = C|·xz|

m≠1·xz, v = C|·yz|
m≠1·yz, w = uˆxb + vˆyb, and at the free-surface we have the non-stress

conditions: ·xz = ·yz = 0, p = 0, and the kinematic condition: ˆth + uˆxH + vˆyH = w.

Field equations

Straightforward integration of Eq. (4.8) yields a hydrostatic pressure p = (H(x, y, t) ≠ z) and the following
expressions for the shear stresses

·xz = �x(H ≠ z), ·yz = �y(H ≠ z), (4.11)

where, if x is considered as the axis of the slope, y as the spanwise coordinate, and z the normal axis to the
slope, � defined in Section 3.2 writes

�̄ = ⁄
!1

0
"

for regime A, �̄ = ⁄
!1

0
"

≠ ”
!

ˆxH

ˆyH

"
for regime B. (4.12)

Otherwise, when considering a general case in which the axis of the slope is either x or y, the gravity term
can be written as

�̄ = ⁄
!1

1
"

for regime A, �̄ = ⁄
!1

1
"

≠ ”
!

ˆxH

ˆyH

"
for regime B. (4.13)

Eq. (4.10) can now be written in terms of � as

· =
Ò!

�2
x

+ �2
y

"
(H ≠ z). (4.14)

On the yield surface: · = Bi and h = hc, thus the thickness of the sheared zone is obtained as

hc = h ≠
Bi

||�||
for · > Bi, (4.15)
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which in general, writes: hc = max (0, h ≠ hp), where the plug thickness hp = Bi

||�||
and ||�|| =

Ò!
�2

x
+ �2

y

"
.

Next, from the rheology law (4.9), · can be written as

· =
Ò

·2
xz

+ ·2
yz

= Bi + “̇n. (4.16)

Note that Eq. (4.14) and Eq. (4.16) are equivalent, which after some algebra translates to

ˆzu = �x(hc + b ≠ z) 1
n , ˆzv = �y(hc + b ≠ z) 1

n (4.17)

in the x- and y-directions, respectively. Integrating these expressions and applying the friction condition, the
velocity distribution in the x- and y-directions, respectively, is obtained:

u(z) = �x|�x|
m≠1

Y
]

[

Ë
1

m+1

1
hm+1

c
≠ (hc ≠ z ≠ b)

m+12
+ Chm

È
if z < hc,

Ë
1

m+1 hm+1
c

+ Chm

È
if z Ø hc.

v(z) = �y|�y|
m≠1

Y
]

[

Ë
1

m+1

1
hm+1

c
≠ (hc ≠ z ≠ b)

m+12
+ Chm

È
if z < hc,

Ë
1

m+1 hm+1
c

+ Chm

È
if z Ø hc.

(4.18)

The flow rate in both directions is finally obtained as qx = hū =
s

H

b
udz and qy = hv̄ =

s
H

b
vdz, respectively,

qx = �x|�x|
m≠1

5
hm+1

c

3
1

m + 1hp + 1
m + 2hc

4
+ Chm+1

6
,

qy = �y|�y|
m≠1

5
hm+1

c

3
1

m + 1hp + 1
m + 2hc

4
+ Chm+1

6
.

(4.19)

The two-equations model

The first equation of the SW model reads in 2D as ˆh

ˆt
+ ˆqx

ˆx
+ ˆqy

ˆy
= 0. Following the approach presented

earlier for the 1D case, the x- and y-momentum equations are integrated over the fluid depth, applying
Leibniz integral rule and the boundary conditions to obtain the x-component:

ˆhū

ˆt
+ ˆ

ˆx

⁄
H

b

u2dz + ˆ

ˆy

⁄
H

b

uvdz ≠
–”

—

A
ˆ

ˆx

⁄
H

b

·xxdz + ˆ

ˆy

⁄
H

b

·xydz + ·xy|z=b

ˆb

ˆy
≠ ·xy|z=H

ˆH

ˆy

B

+ ”

—

ˆ

ˆx

⁄
H

b

pdz + ”

—
(p|z=b≠–·xx|z=b) ˆb

ˆx
= 1

—
(⁄xh ≠ ·bx) ,

and the y-component:

ˆhv̄

ˆt
+ ˆ

ˆx

⁄
H

b

uvdz + ˆ

ˆy

⁄
H

b

v2dz ≠
–”

—

A
ˆ

ˆx

⁄
H

b

·xydz + ˆ

ˆy

⁄
H

b

·yydz + ·xy|z=b

ˆb

ˆx
≠ ·xy|z=H

ˆH

ˆx

B

+ ”

—

ˆ

ˆy

⁄
H

b

pdz + ”

—
(p|z=b≠–·yy|z=b) ˆb

ˆy
= 1

—

!
⁄yh ≠ ·by

"
.
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Considering the zeroth-order approximations defined at the beginning of this section, the two-equations model
in 2D reads

ˆh

ˆt
+ ˆhū

ˆx
+ ˆhv̄

ˆy
= 0,

ˆhū

ˆt
+ ˆ

ˆx

3
hū2 + ”

2—
h2 + Cm�2m

x
h2m+3

4
+ ˆ

ˆy
(hūv̄ + Cm�2m

y
h2m+3) = 1

—

3
⁄xh ≠ ”h

ˆb

ˆx
≠ ·bx

4
,

ˆhv̄

ˆt
+ ˆ

ˆx

!
hūv̄ + Cm�2m

x
h2m+3"

+ ˆ

ˆy

3
hv̄2 + ”

2—
h2 + Cm�2m

y
h2m+3

4
= 1

—

3
⁄yh ≠ ”h

ˆb

ˆy
≠ ·by

4
,

(4.20)

with the basal shear stress components approximated at order zero from Eq. (4.11), which after substituting
Eq. (4.19) for � in both directions, yield

·bx = |�x|
1≠m

3
Bi

||�||
+ hc

4
qx

D(h) , ·by = |�y|
1≠m

3
Bi

||�||
+ hc

4
qy

D(h) , (4.21)

where the denominator D(h) = hm+1
c

1
1

m+1 h ≠
1

(m+1)(m+2) hc

2
+ Chm+1 and Cm = 1

(2m+3)(m+2)2 . Recall
that (qx,qy) = h(ū, v̄).

In dimensional form the two-equations model in 2D writes

ˆh

ˆt
+ ˆqx

ˆx
+ ˆqy

ˆy
= 0,

ˆqx

ˆt
+ ˆ

ˆx

3
q2

x

h
+ 1

2gh2cos◊ + Cm�2m

x
h2m+3

4
+ ˆ

ˆy

1qxqy

h
+ Cm�2m

y
h2m+3

2
= ghcos◊

3
tan◊ ≠

ˆb

ˆx

4
≠

1
fl

·bx ,

ˆqy

ˆt
+ ˆ

ˆx

1qxqy

h
+ Cm�2m

x
h2m+3

2
+ ˆ

ˆy

A
q2

y

h
+ 1

2gh2cos◊ + Cm�2m

y
h2m+3

B
= hgcos◊

3
tan◊ ≠

ˆb

ˆy

4
≠

1
fl

·by ,

(4.22)
where �̄ = flg

K
S̄◊, with S̄◊ = sin◊

!1
0
"

for Regime A, or S̄◊ = sin◊
!1

0
"

≠ cos◊
!

ˆxH

ˆyH

"
for Regime B.

The basal shear stress is expressed as

· b =
C

·bx

·by

D
=

S

WWWU

K

3
K

flg|S◊x |

4m≠1 3
·c

flg||S◊||
+ hc

4
qx

D(h)

K

3
K

flg|S◊y |

4m≠1 3
·c

flg||S◊||
+ hc

4
qy

D(h)

T

XXXV
, (4.23)

where, as presented previously, the sheared thickness hc = max (0, h ≠ hp) and the plug thickness hp = ·c
flg||S◊||

.
It is worth noting that Regime A equations are not valid for a vanishing mean-slope (horizontal case),

since the solution blows up when ◊ = S◊ = 0. Further, by setting ·c = 0, m = 1 and ◊ = 0 (for Regime B),
the shallow water equations for Newtonian flows (mono-regime version) are recovered.

On the global geometry assumption and coordinate system

In the present study, all derivations have been presented in the mean-slope coordinate system with local
topography variations about the mean-position, see Fig. 1. This geometry is the most classical, straight-
forward, and reasonable in a large number of applications. However, this mean-slope geometry assumption
can be limiting, especially for large variations of mean inclinations. To overcome this, [22] uses the Prandtl
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coordinate system, which allows the variation of the topography without the existence of a fixed mean-slope.
Moreover, when using the mean-slope geometry as in the present derivations, it is numerically observed that
the gravity source term ghcos◊tan◊ of Eq. (4.22) overestimates the solutions for relatively large inclina-
tions. A solution to this issue consists to express the gravity term as ghcos◊tan◊I ƒ ≠ghsec◊

1
ˆh

ˆx
, ˆh

ˆy

2
with

sec◊ = (cos ◊)≠1.

5 Numerical results

This section presents the computed results of a few cases considered using the shallow water type system
(4.22). To start with, a mesh convergence test is performed; thereafter, numerical results are compared with
experimental results for validation. The comparison of the two regime models within a steady-state flow
and an unsteady (dam-break) one is investigated afterwards. Further results are shown for 3D applications.
Results are computed using COMSOL Multiphysics [54] (unless stated otherwise) applying the “Shallow
Water equations interface” which requires to add the source terms and the extra terms containing the �
function. To solve the equations, this interface uses the finite element method (FE), which employs nodal
discontinuous Lagrange functions with constant element order. For cross-validation and the possibility of
using inversion computational tools (such as adjoint models, optimization procedures, etc), the system (4.22)
is also implemented into the DassFlow open-source software [55], which employs finite folume (FV) schemes
(both first and second order), see [56, 57] for the Newtonian case. For the present Herschel–Bulkley case,
the first order FV scheme has been enriched; details are presented in the appendix. Experimental data is
extracted from the literature using the WebPlotDigitize open-source software with an estimated error margin
of less than 5% [58]. For all numerical simulations presented hereafter, the coe�cient of slipperiness C is set
to zero.

5.1 Dam-break flows on an inclined surface

The dam-break experiment presented in [59] is considered here for validation. This experiment involves the
sudden release of fixed volumes of a viscoplastic fluid (Carbopol ultrez 10 at a mass concentration of 0.15%)
down a channel of length 3.5 m and width 0.3 m, inclined at some angle ◊, as shown in Fig. 3.

Figure 3: Side-view sketch of a dam-break problem.

The fluid is initially locked in a reservoir of length 0.5 m, set at the top of the flume before it is released
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suddenly by opening the lock gate. The initial height is described by

h(x) =

Y
]

[
0.12 + (x ≠ 0.25)tan◊ for x Æ 0.5,

0 otherwise.
(5.1)

The fluid is of density fl = 1000 Kgm≠3 and its rheological properties given by Eq. (5.2)

(K, n, ·c) = (26 Pa sn, 0.33, 33 Pa) (5.2)

A wall condition is used on all boundaries. For further details on the experimental procedure and uncertainties
involved, see [59].

Firstly, to ensure convergence of results, a grid independence study is performed. Fig. 4 shows the fluid
height and the corresponding mean velocity for 4 di�erent meshes: coarse (1500 elements), medium (3000
elements), fine (5000 elements), and extremely fine (50000 elements). The extremely fine mesh is assumed
to represent the exact solution. The study is performed considering Regime A on an inclination ◊ = 15o. As
observed, all the four meshes show similar results, with a slight di�erence appearing around the maximum of
the mean velocity. The medium mesh is chosen for the rest of the simulations in this subsection since both
the computational time and accuracy of the results are satisfactory.

(a) (b)

Figure 4: Mesh convergence study: (a) fluid height and (b) the corresponding mean velocity for di�erent
mesh sizes at t = 2 s.

Next, numerical simulations are compared with experiments for inclination ◊ = 15o and ◊ = 25o, respec-
tively, see Fig. 5. The front positions are plotted against time for both Regimes, A and B. Numerical results
of a similar viscoplastic model (one-layer model) presented in [46] are also plotted for cross-validation. The
present results are found to be in better agreement with experimental results than with solutions obtained
by [46]. Notably, both regime models compare fairly well with the experiments.

To investigate the two regimes further, the time evolution of the elevation profile for the two flow regimes
is shown in Fig. 6 for the two slope angles. The maximum relative di�erence between the two regimes is
calculated by |XfB

≠XfA
|

|XfA
|

, where subscripts A and B denote the two regimes, respectively. A di�erence of
about 7.5% for ◊ = 15o and 2.5% for ◊ = 25o, is observed between the two regimes at the front zone, where
there is a sharp change of the fluid slope ˆh

ˆx
. This di�erence, however, diminishes everywhere else within the

flow profile. The front zone is usually determined by the balance between the gravitational acceleration g ˆh

ˆx

and the basal shear stress ·b, with the slope ˆh

ˆx
having the dominant e�ects. The di�erence between the two

regimes is larger for ◊ = 15o than for ◊ = 25o, since the height gradient ˆh

ˆx
is larger for ◊ = 15o than for

◊ = 25o. This shows that the di�erence between the two regimes occurs in areas with sharp changes of the
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(a) (b)

Figure 5: Comparing Regime A and B with experiments [59] and with solutions of the one-layer model
presented in [46]: front positions Xf varying with time t in semilog scale, for (a) ◊ = 15o and (b) ◊ = 25o,
respectively.

(a) (b)

Figure 6: Comparing Regime A and Regime B for two di�erent inclination angles.

fluid local slopes and increases when the height gradient increases.

5.2 Steady flow over a bump

Figure 7: Flow geometry on a flat topography with a bump at the center

To investigate the two regimes further, a steady state flow on an inclined topography (◊ = 15o) with a
bump at the center is considered, as shown in Fig. 7. The topography given by b(x) = boe≠0.15(2x≠L)2

, where
bo is the height of the bump, is set on a domain of length L = 10 m and width 1 m. To vary the mean-slope
of the topography, two di�erent heights of the bump are considered for analysis: bo = 0.1 m and 0.3 m,
respectively. A discharge q = 0.12 m2s≠1 is imposed at the upstream boundary, and a fluid depth of 0.5 m
imposed at the outflow. The fluid density used is fl = 1000 Kgm≠3 together with the rheological parameters
given by Eq. (5.2). To ensure the convergence of the solution, a medium mesh, as described in the previous
section, is chosen here for discretization with �t = 0.05 s. Simulations are ran over time until a steady
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state is reached at about t = 20 s, with a steady-state tolerance of about 10≠7. The tolerance is obtained
by calculating the relative error between solutions of two consecutive time steps, which should satisfy the
condition |h

n+1
≠h

n
|

|hn|
< 10≠3. Fig. 8 compares the steady-state solutions (h, ū) of the two regimes, Regime

(a) (b)

(c) (d)

Figure 8: Comparing Regime A and B for two di�erent heights of the bump: bo = 0.1m and 0.3 m, respectively.

A and B, for the two values of the bump height. Results for Regime A from both COMSOL Multiphysics
and DassFlow softwares are plotted for cross-comparison, which shows excellent agreement. The di�erence
between the two regimes, however, is negligible within the state variables (h, ū) for the two cases of the bump
height. Nevertheless, on zooming out, a slight di�erence of about 0.5% between the two regimes is observed
around the top region of the taller bump, where the local slope is sharp. This disparity, however, is negligible
everywhere else. Note that the di�erence between the two regimes is calculated by |hB≠hA|

|hA|
◊ 100, where the

subscripts A and B denote the two regimes, respectively.
To study the di�erence between the two flow regimes further, the gravity term defined in Section 3.2 is

normalized as
�
⁄

=

Y
]

[
1 for regime A,

1 ≠
”

⁄
ˆxH for regime B,

(5.3)

from which a regime correction criterion di�erentiating the two regimes can be defined as ”

⁄
ˆxH. We recall

that in physical dimensions ”

⁄
=cot◊ and ⁄ = flg

K
.

By plotting Eq. 5.3, based on the simulation of the present case, the di�erence brought about by the
correction criterion is now visible around the bump area (2 m < x < 8 m) and negligible everywhere else, see
Fig. 9. This di�erence is maximum at the top region of the bump around 4 m < x < 6 m, on both upstream
and downstream of the bump, where there is a sharp change of the slope. This shows that the correction
criterion ( ”

⁄
ˆxH) increases as the height gradient increases due to the increase of the height of the bump,

thereby increasing the di�erence between the two regimes. The 1.2% and 4% disparity observed in Fig. 9
(a) and (b), respectively, however, have an insignificant e�ect on the state variables of a steady-state flow,
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(a) (b)

Figure 9: Comparing the normalized gravity term �
⁄

for Regime A and B for two di�erent heights of the
bump.

as observed earlier in Fig. 8. This suggests that the corrective term in Regime B improves solutions in areas
with a very sharp change of slope, otherwise can be neglected for steady state flows.

5.3 2D dam-breach

To demonstrate the applicability of the present model to 3D flows, we consider a partial dam-breach problem
studied in [60–62]. The setup is on a 200 m by 200 m domain with a sluice gate of thickness 10 m situated at
the center as shown in Fig. 10. The gates are nonsymmetrical to demonstrate a general case for geophys-
ical and/or engineering applications. The initial upstream and downstream fluid levels are 10 m and 5 m,
respectively. Note that this case is investigated using Regime B, since Regime A is only valid for ◊ > 0, as
remarked previously.

Figure 10: Dam-breach flow configuration.

For comparison with the results in the literature, the fluid rheological information used is given by Eq.
(5.4). A coarse mesh of 60 ◊ 60 structured elements is considered. Note that the very coarse 40 ◊ 40 mesh
cells used in [60,61] do not provide su�ciently converged numerical solutions for the present simulations. A
wall condition is used on all boundaries.

(K, n, ·c) = (0.001 Pa s, 1, 0 Pa) (5.4)

The fluid is initially at rest before the gate is opened instantaneously to produce a bore-like wave that
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moves downstream (right) and a negative wave that tends to move upstream (left), see Fig. 11. The numerical
simulations shown are for t = 7.2 s, before the positive wave reaches the downstream wall. Fig. 11 (a) and
(b) show the free-surface profile and velocity field from the literature [60–62] while (c) and (d), show the
corresponding results of the present model (4.22). The present results are shown to compare fairly well with
those obtained by [60–62]. The velocity vectors point in the direction of the propagating wave past the gate.

(a) (b)

(c) (d)

Figure 11: Dam-breach problem. Newtonian case: comparing the (a) fluid surface and (b) velocity vector
from [60,61] with (c) - (d) the present simulations, respectively.

To consider a viscoplastic case, the rheological parameters given by Eq. (5.5) are considered, and the
mesh size increased to 100 ◊ 100 elements to achieve the convergence of results.

(K, n, ·c) = (0.1, Pa s, 0.33, 33 Pa) (5.5)

As seen in the Newtonian case above, a bore-like wave propagating downstream is observed; see Fig. 12
(a). The corresponding yield surface is also plotted in Fig. 12 (b), which shows some complex flow patterns,
especially in the front profile where the negative wave counters the upstream positive wave. Further, contour
plots of the velocity field at t = 3 s and t = 6 s are shown in Fig. 12 (c) and (d), respectively. The arrows
of the velocity field point towards the direction propagated by the upstream wave. At t = 3 s, the fluid is
observed to force its way out through the gate before it spreads in all directions, as seen for t = 6 s . The
mean velocity is maximum in the gate region where the flow passage is minimum (and therefore the velocity
must increase there - the conservation of momentum). The velocity then decreases on either side of it.
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(a) t = 6 s (b) t = 6 s

(c) t = 3 s (d) t = 6 s

Figure 12: Dam-breach problem. Herschel-Bulkley case showing (a) the fluid depth profile and the corre-
sponding (b) yield surface at t = 6 s, mean velocity field at (c) t = 3 s and (d) t = 6 s, respectively.

6 Conclusion

This paper presents the derivations of thin-layer flow models (lubrication and shallow water equations), valid
for 3D multi-regime flows of viscoplastic Herschel–Bulkley fluids over non-flat inclined topographies. Upon
considering a free-surface flow with varying basal conditions, these models are derived from the Navier–Stokes
equations through an asymptotic analysis and the multi-regime approach, which allows to model di�erent
flow regimes originating from the variation of the mean-slope and/or the basal conditions. Two flow regimes
(Regime A, the basic/classical one, and Regime B, the enriched one) corresponding to di�erent balances
between shear and pressure forces are defined and investigated. Flow models corresponding to these regimes
are calculated. Classical reference solutions in the literature are recovered by considering particular cases on
flat topographies.

Numerical solutions of the shallow water equations are obtained using two simulation softwares based on
the finite element method (for COMSOL Multiphysics [54]) and finite volume method (for DassFlow [55],
an open-source software), for cross-validation. The solutions of the two regime models are compared with
experiments and related results from the literature, and are found to be in good agreement. The di�erence
between the two regimes, however, is observed to occur in areas with sharp changes of the local slopes
within unsteady flows, otherwise, it is negligible everywhere else. Flow models for Regime A, which are
mathematically less complex than those for Regime B, can therefore be used reliably to simulate free-surface
flows of Herschel–Bulkley fluids, unless the mean-slope variation is very sharp. The flow models derived here
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are able to simulate 3D geophysical flows presenting Herschel-Bulkley rheology like lava and mudflows, which
is the next step of the present study.
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A Appendix: Finite volume schemes

In this section, the solution procedure for the present shallow water equations is presented, following the
work of [63,64], see also [56,57].

A.1 Conservative form

Firstly, the model is written in conservative form as

ˆtU + ˆxF (U) + ˆyG (U) = Sg (U) + Sf (U) (A.1)

where
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Secondly, Godunov-type finite volume method is employed to solve the integrated form of the shallow
water equations (A.1) which generally yields a semi-discretized equation of the form

ˆtU + 1
mk

ÿ

eœˆk

meF̂ e (U) = Sg (U) + Sf (U) (A.2)

where, following the notations defined in DassFlow [55]; œ is the computational domain in 2D with N number
of cells, k representing the cell index, mk the area of the cell k, mˆk perimeter of the cell k, ke neighboring
cell, e the cell edge, ne the unit normal vector to e, ne,k the unit normal vector to e pointing outward from k

to ke, me the length of the side e, and F̂ e (U) = F e (U) nex + Ge (U) ney the intercell normal flux obtained
by applying the rotational invariance property in Eq. (A.1), see [63]. This property enables us to reduce the
sum of a 2D problem to a 1D Riemann problem.

Figure 13: Finite volume cell k: showing the notations used for mesh discretization

A.2 Splitting method

To obtain a fully discretized system of Eq. (A.2), the splitting method is employed for the numerical treatment
of fluxes and source terms. Splitting methods are commonly used to divide a long equation incorporating
several time-dependent physical processes into simpler equations for individual physical process, which can
be solved separately by numerical techniques [63, 65]. Incorporating the prediction and correction method,
the splitting method here consists of two steps:
Step 1: Compute ÂU

n+1
solution of (A.2) without the friction term:

ˆtU + 1
mk

ÿ

eœˆk

meF̂ e (U) = Sg (U) . (A.3)

Step 2: Given the predicted solution ÂU
n+1

, compute Un+1
k

solution of

ˆtU = Sf (U) . (A.4)

It’s noted that the solution ÂU
n+1

obtained in Step 1 is used to update the solution Un+1
k

obtained in Step 2.
This procedure is described in the next subsection and detailed in [55]. Following these steps, the expected
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final scheme in general will take the form

Un+1
k

= ÂU
n+1
k

+ �tSf

1
ÂU

n+1
k

2
. (A.5)

It is evident from Eq. (A.1) and (A.5) that for a small fluid depth i.e., as h æ 0, the friction term becomes
very large compared to other terms and can lead to numerical instability. In that sense, a small time step �t

can be chosen to maintain the stability, however, this can be computationally expensive. To overcome this
drawback, a proper numerical treatment of the friction source term is required i.e., the friction source term
can be treated implicitly while others are treated explicitly.

A.3 Interface fluxes and gravity source term discretization

Here, the fluxes and gravity source terms are treated explicitly, thus, integrating Eq. (A.3) in time, a fully
discrete system is obtained:
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where, the subscript k represents the mesh cell index, superscript n the time level, �t = tn+1
≠ tn the

time step for t œ [0, T ], Un

k
the approximation of U at time tn, and F̂ e = F̂ e,k ≠ F̂ e,ke the numerical

fluxes through the interfaces of cell k at time tn. For clarity, it is worth noting that this can also be
written as F̂ e (Un) = F̂ e
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where Un

e,k
and Un

e,ke
are the vectors of the conservative

variable on either side of edge e. The numerical scheme (A.6) is complete when numerical fluxes F̂ e and
gravity source term Sg are reconstructed using finite volume methods developed in the literature, see e.g.,
[55, 63]. In this work, a Godunov-type scheme incorporated with a HLLC approximate Riemann solver is
employed, as detailed in the DassFlow guide [55]. For the gravity source term, a well-balanced scheme
developed in DassFlow (and references therein) which is stable for simulations involving wet-dry fronts is
also adopted. To ensure positivity of the fluid depth and preservation of the fluid at rest property, Audusse
et al. [66] considered a hydrostatic balance between the momentum components of the fluxes and gravity
source term: 1

2 gÒh2 = ≠ghÒb, and proposed a well balanced gravity source term scheme of the form
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, with he,k representing the

reconstructed hydrostatic water depth, at the left-hand side of the cell interface e. This is the first-order
gravity source term scheme implemented in DassFlow for the Newtonian case.

In a similar approach, comparing with the Newtonian version in DassFlow [55] and Audusse et al. [66], a
well-balanced discretization of the gravity source term Sg (U) = ≠g (cos◊hÒb ≠ hsin◊I) for the SWE model
derived here is employed. For instance, considering the x-direction gravity term:
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Thus, in general, Sg (Un) = ≠ghn (cos◊Òb ≠ sin◊I) ƒ
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Substituting this into Eq. (A.6) yields
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Using appropriate Riemann solver (HLLC), this scheme (for the fluxes and gravity term) together with other
schemes (for other terms) are implemented in DassFlow for the non-Newtonian version.
Note: For further details of the hydrostatic reconstruction and numerical methods used, see [55, 66] and
references therein.

A.4 Friction source term discretization

A stable implicit-scheme for the friction source term is required to avoid numerical instability as h æ 0.
Using appropriate numerical methods, Eq. (A.4) can be solved conveniently to get a numerical scheme for
the friction term. In an expanded form, this equation writes

ˆh

ˆt
= 0,

ˆq̄

ˆt
= Sf ,

(A.9)

where Sf = ≠
1
fl
· b. It’s noted that the component of the continuity equation is already zero i.e.

h
n+1

≠Âhn+1

�tn = 0, which implies that we only need to seek a solution for the non-zero component of the
momentum equation. The fluid depth is thus updated as

hn+1 = Âhn+1. (A.10)

where Âhn+1 is the fluid depth estimated at the previous time step in Step 1 above. Treating the friction
source term implicitly, i.e., at time level tn+1 for all the state variables, the semi-implicit time step scheme
writes
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,

where Âhn+1 and Âun+1 are the previous solutions at tn obtained in step 1 above. Further, this writes
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recalling that the · b expression reads
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Treating the flow rate term implicitly, Eq. (A.11) becomes
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After rearrangement this results to

ūn+1 = Âun+1
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As h æ 0 then ūn+1
æ 0, which implies that the fluid at rest property is preserved even at wet/dry fronts.

This develops into the following full-implicit scheme:
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Recall that the expressions for the critical depth hc , the term S◊, and the denominator D, are defined in
Sec. 4. Conclusively, this scheme is also implemented in DassFlow together with other terms and results
computed as presented in the previous section.
Remark: It is worth noting that only Regime A has been implemented in DassFlow. Further work needs to
be done to implement Regime B.
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