
HAL Id: hal-03968774
https://hal.science/hal-03968774

Submitted on 30 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing task reassignments for reconfigurable
multi-model assembly lines with unknown order of

product arrival
David Tremblet, Abdelkrim R. Yelles-Chaouche, Evgeny Gurevsky, Nadjib

Brahimi, Alexandre Dolgui

To cite this version:
David Tremblet, Abdelkrim R. Yelles-Chaouche, Evgeny Gurevsky, Nadjib Brahimi, Alexan-
dre Dolgui. Optimizing task reassignments for reconfigurable multi-model assembly lines with
unknown order of product arrival. Journal of Manufacturing Systems, 2023, 67, pp.190-200.
�10.1016/j.jmsy.2023.02.001�. �hal-03968774�

https://hal.science/hal-03968774
https://hal.archives-ouvertes.fr

Optimizing task reassignments for reconfigurable multi-model assembly lines
with unknown order of product arrival

David Trembleta, Abdelkrim R. Yelles-Chaoucheb,c,∗, Evgeny Gurevskyd, Nadjib Brahimie,
Alexandre Dolguia

aIMT Atlantique, LS2N, Nantes, France
bIRT Jules Verne, Bouguenais, France

cMines Saint-Étienne, LIMOS, Gardanne, France
dLS2N, Université de Nantes, France

eRennes School of Business, France

Abstract

This paper deals with the multi-model assembly line balancing problem (MuMALBP) in a recon-

figurable environment. The considered line is composed of a fixed number of workstations and can

produce different products in batches. Each product requires an appropriate line configuration.

Thus, when the product changes, the line has to be reconfigured to satisfy new requirements re-

lated to task precedence and cycle time constraints. Reconfiguring the line consists in reassigning

certain tasks between the existing workstations. The objective of this paper is to design a line con-

figuration for each product while minimizing the maximum number of task reassignments whatever

the sequence of product arrival. To solve this NP-hard problem, a mixed-integer linear program

(MILP) is first formulated. Subsequently, a constructive heuristic and a MILP-based heuristic,

named Halt-and-Fix, are developed to solve large-size problem instances. All the approaches are

tested and approved on a dataset derived from the well-known instances of the assembly line bal-

ancing literature. The numerical results show that the Halt-and-Fix heuristic provides a better

trade-off between solution quality and CPU time, compared to the constructive heuristic and the

MILP formulation.
Key words: Manufacturing; reconfigurability; multi-model; assembly line balancing; assembly line

design; MILP; heuristics; constraint generation; reconfigurable manufacturing systems.

∗Corresponding author
Email address: abdelkrim.yelles@emse.fr (Abdelkrim R. Yelles-Chaouche)

Preprint submitted to Journal of LATEX Templates January 10, 2023

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0278612523000250

1. Introduction

Nowadays, integrating reconfigurability and product diversity in the design phase of production

lines is a major challenge for industry and academic researcher. This can be noticed in recent

literature reviews such as the one proposed by Bortolini et al. [1]. Indeed, this phase requires

making important decisions such as layout design, process planning, and line balancing. While

many works have addressed layout design and process planning problems, few consider the line

balancing problem in a multi-product reconfigurable environment.

Line balancing is an important and crucial step in the design phase as it has a direct impact on

the performance of the line. More specifically, it aims at allocating a given set of tasks, required to

manufacture a product, to a set of workstations composing the line. Mainly, this has to be done

under various constraints such as task precedence relations and a desired production rate. The

former defines a partial order, usually represented by a directed acyclic graph, according to which

the tasks have to be executed, while the latter is defined by a cycle time that indicates the period

between the release of two successive products. Mostly studied for simple assembly lines, the line

balancing is usually viewed in the literature as an optimization problem [see, e.g., 2] and called

consequently as the simple assembly line balancing problem (SALBP).

The SALBP aims to design a line for a single product only. However, when dealing with different

products, two extensions of SALBP can be found in the literature [see, e.g., 3]. The first one, named

as mixed-model assembly line balancing problem (MiMALBP), arises when different products are

produced simultaneously on the same line. Such a line is typically used when the reconfiguration

effort, to switch from one product type to another, can be reduced enough to be neglected. If this

is not the case, then a multi-model assembly line balancing problem (MuMALBP) is considered,

where each product is performed separately in batches and the line has to be reconfigured accordingly.

Figure 1 illustrates the three different line types according to the product flow. In this figure, a single

model line, associated with SALBP, can produce one type of product only, represented by a triangle

shape. In a mixed-model line, several product types having triangular, round and square shapes go

through the line simultaneously. Finally, a multi-model line is able to handle several product types

in separate batches. Thus, a reconfiguration denoted as “R”, is required to switch from the square

shape type to the triangle one (and from triangle to round shape). Usually, the reconfiguration

is associated with time-consuming and costly manipulations involving the reassignment of some

tasks between available workstations. Therefore, optimizing the number of these reassignments is a

logical goal for MuMALBP. Despite its importance and an actual growing interest in reconfigurable

2

manufacturing systems (RMS), such an objective has received little attention in the literature [see,

e.g., 4]. This was also noticed through the recent literature review of Battäıa and Dolgui [5] where

they reported such problem among the underdeveloped topics in the literature of ALBP. Hence, in

the present paper, we try to fill this gap and study such a problem in the valuable context of RMS,

where no information is available regarding the sequence of product arrival.

1: single-model line

2: mixed-model line

3: multi-model line

R R

Figure 1: Three types of assembly line for single or multiple products

The article is organized into seven sections. Section 2 reviews the literature on MuMALBP. Section

3 provides a detailed description of the studied problem. In Section 4, its MILP formulation is pro-

posed. Subsequently, a constructive heuristic and a MILP-based heuristic are introduced in Section

5. Section 6 presents numerical experiments and results. Finally, the conclusion and perspectives

are provided in Section 7.

2. Literature review

RMS was introduced by Koren et al. [6] as a solution to the fluctuating nature of today’s market,

characterized by high product diversity, shared production assets, and volatile supply and demand

[7]. Indeed, RMS is mainly composed of reconfigurable machines (RM), which have a modular

structure allowing them to be easily reconfigured by adding, moving, or removing modules. The

design of an RMS is a challenging problem and several approaches have been proposed in the

literature to solve it. However, most authors consider reconfiguration as a parameter associated with

RM, while few have attempted to optimize the cost, time, or effort associated with the reconfiguration

process [see, e.g., 4].

There are very few studies about the MuMALBP in the literature [5, 8]. In fact, while SALBP and

MiMALBP constitute a large majority of studies, there are few publications on MuMALBP. This

3

can be seen through the classification provided by Boysen et al. [9], where the number of studies

related to MiMALBP is three times more than those related to MuMALBP. Furthermore, the few

studies on the multi-model problem usually simplify it to make it easier to solve. For example, some

papers dealing with MuMALBP consider it as a derived version of MiMALBP or try to convert it

to SALBP [see, e.g., 10]. To do so, a commonly used method consists in combining the precedence

graphs and adapting the task processing times of each product [see 11]. The advantage of this

approach is that there is no need to reconfigure the line. This usually leads to a solution with a

performance trade-off between the different products, which may decrease its overall efficiency. In

addition, the technique for combining precedence graphs works efficiently only when the graphs are

similar [see 12]. However, when the objective is to minimize the number of task reassignments (or

the associated time and cost), such approaches may provide very poor bounds which cannot be

efficiently exploited.

Table 1 presents the most relevant publications on MuMALBP. The second column of the table

indicates the objective(s) to minimize or maximize; the third column states the different solution

approaches; and finally the last one indicates whether the study was based on or related to an

industrial application.

Table 1: Summary of publications focusing on MuMALBP

Reference Objective Solution approach Industrial application

van Zante-de Fokkert and de Kok [11] Min. number of workstations Heuristic ×
Buxey et al. [13] Min. production cost Simulation ×
Chakravarty and Shtub [14] Min. total cost Heuristic ×
Kabir and Tabucanon [15] Min. number of workstations Simulation printing calculators

Kimms [16] Min. number of workstations Heuristic + column generation ×
Lapierre et al.[17] Min. cycle time Lagrangian relaxation printed circuit board

Pastor et al. [18] Max. yield of the line Tabu search white goods

Yu and Shi [19] Min. number of workstations Genetic algorithm ×
Liao [20] Min. cycle time MILP ×
Qu and Jiang [21] Max. efficiency of the line Memetic algorithm shipbuilding

Christensen et al. [22] Min. cycle time Heuristic ×
Pereira [23] Min. cost associated with the workstations Heuristic clothing

Asl et al. [24] Min. cycle time + others MILP engine manufacturing

Chen et al. [25] Min. number of workstations + resources Genetic algorithm + MILP liquid-crystal displays

Koskinen et al. [26] Min. tardiness Heuristic printed circuit board

Fisel et al. [27] Min. reconfiguration cost & Max. flexibility Multi-objective optimization car assembly line

Yelles-Chaouche et al. [28] Min. total number of task reassignments MILP + MILP-based heuristic ×

Most of the industrial applications are found in the electronics industry. Kabir and Tabucanon [15]

consider the assembly of printing calculators, which are still commonly used in some applications.

4

Lapierre et al. [17] and Koskinen et al. [26] study the problem of placing components on printed

circuit boards (PCBs). Such a problem is characterized by a variety of PCB types and multiple

placement machines for the components. Pastor et al. [18] explore a problem in which 4 types of

white goods are produced. The latter application in the electronics industry is the manufacturing

of liquid crystal displays (LCDs and more particularly the thin film transistor TFT-LCDs). Chen

et al. [25] consider such problems while integrating practical characteristics such as multi-skilled

worker and operator efficiency. Other applications of MuMALBP include shipbuilding [21], clothing

industry [23] and engine manufacturing [24].

As indicated in Table 1, studies on MuMALBP consider different objectives, but most of them

attempt either to minimize the number of workstations [11, 14, 16, 19, 25] or the cycle time [17,

20, 22, 24]. The reason why most researchers have studied the latter objectives is that these have

been the traditional objectives in most line balancing problems. The earliest studies of [13] and

[14] have as objective the minimization of the cost which can be composed of labor costs, inventory

carrying costs, and setup costs, among others. Pastor et al. [18] and Qu and Jiang [21] attempt

to maximize the yield and efficiency of the production line, respectively. In particular, Pastor et

al. [18] consider yield maximization in a multi-objective framework which also includes workload

balancing and minimizing the dispersion of worker tasks. Among the above studies, Asl et al. [24]

treat a multi-objective MuMALBP, where one of the objectives consists in maximizing the number

of common tasks between workstations.

In the same scope, Fisel et al. [27] studied the problem of balancing assembly lines with the objective

of optimizing their changeability and flexibility to cope with different scenarios of possible market

evolution. The authors defined flexibility as the ability of the line configuration to handle different

product mix. As for changeability, it was defined as the capacity of a balanced line to change its

configuration, mainly by reallocating its assembly tasks and resources.

Similarly, Yelles-Chaouche et al. [28] considered the MuMALBP in a reconfigurable environment.

Thus, given a sequence of product arrival, the objective is to generate a line configuration for each

of them that minimizes the total number of task reassignments when switching from one product

configuration to another. However, each product configuration is designed on the basis of a given

order of product arrival. This means that the line is not able to adapt if the mentioned order is

changed or modified. Therefore, in this paper, the objective is to fill this gap by considering a

MuMALBP where a line configuration is designed for each product without knowing their arrival

order.

5

The MuMALBP, except for some very specific form of precedence constraints, is known to be NP-

hard in the strong sense [see, e.g., 2]. Therefore, most of the solution approaches proposed to solve

their different extensions are approximate. Among these approaches in the existing literature, we

find meta-heuristics including genetic algorithms and tabu search [18, 19, 25], simple construction

heuristics [14], and Lagrangian based approximate methods [17].

Based on the above-described observations and the identified gaps, we can summarize our contribu-

tions as follows:

• Studying the problem of MuMALBP in a reconfigurable environment while considering that

the order of product arrival is unknown,

• Proposing a new MILP formulation to generate product configurations that minimize the

number of task reassignments between workstations when switching from one product batch

to another,

• Design and implementation of a constructive heuristic as well as a MILP-based heuristic,

named as Halt-and-Fix,

3. Problem description and formulation

In this section, a detailed description of the problem is given and a corresponding mathematical

formulation is introduced.

3.1. Problem definition

We consider a reconfigurable manufacturing line processing several products from the same family

in separate batches. In order to be finished, each product requires the execution of a given set

of tasks. Each task is characterized by a processing time and has to be executed following the

so-called precedence constraints. Since the products belong to the same family, we consider that

they share the same set of tasks. However, task processing times, precedence constraints, as well

as cycle times, may be different. As a consequence, an admissible distinct line configuration is

necessary for each product. Such a configuration is referred to as an assignment of tasks to a

given number of workstations so that the corresponding precedence and cycle time constraints are

satisfied. Since the line is reconfigurable, it is possible to switch from one product configuration to

another, called reconfiguration, by reassigning certain tasks between the existing workstations. For

example, in machining centers of mechanical parts, a task reassignment can be seen as a relocation

of a tool from one machine to another. Without loss of generality, we suppose that all the tasks

6

are compatible with all the workstations. Moreover, we do not consider the inclusion and exclusion

constraints that force certain tasks to be assigned, or not, to the same workstation.

In order to ensure fast and smooth reconfiguration, it is important to optimize the number of

task reassignments performed when moving from one configuration to another. This is especially

important when the sequence in which batches arrive is not known in advance. In this case, it is

relevant to design the line so that the maximum number of task reassignments between any two line

configurations is minimized.

To better illustrate the above-described optimization problem, Figure 2 shows an example where

three products, expressed by their corresponding precedence graphs, are considered. The cycle

times are 30, 29, and 27, respectively, and the manufacturing line is composed of 4 workstations.

The right-hand side of Figure 2 shows an optimal solution represented by three line configurations

corresponding to the three products. For this solution, we can notice that 3 task reassignments

would be necessary to switch from the first line configuration to the second one. Similarly, 5 (resp.

4) tasks should be reassigned to move from the third to the second (resp. from the third to the

first) line configuration. Here, 5, representing the objective function value for this solution, is the

maximum number of task reassignments between any two line configurations.

7

1
11

3
4

4
16

5
17

6
9

7
11

2
14

6
8

2
11

3
13

1
6

4
5

7
15

5
19

3
8

4
4

5
12

1
9

7
11

6
15

2
18

Product 1

Product 2

Product 3

1 2 3

2 6

3

4

3 1 4

4 1 5

5 6

5

7 6

7

7

2

3

5

4

WorkstationsPrecedence graphs

1 2 3 4

Figure 2: Optimal line configurations for 3 products with their given precedence graphs.

It is important to note that the studied problem is hard to solve since even finding an admissible

line configuration for a given product is equivalent to the SALBP-F problem, which is known to be

NP-complete in the strong sense [see, e.g., 2].

3.2. Mathematical formulation

The problem of minimizing the maximum number of task reassignments is formulated in this paper

as a MILP model using the following notations and variables.

Notations:

• V is the set of tasks,

• W is the set of available workstations,

• P is the set of products,

8

• U = {(p, q) ∈ P × P : p < q} is the set of all possible ordered pairs of products,

• C(p) is the cycle time associated with the product p ∈ P ,

• t
(p)
i is the processing time of the task i ∈ V for the product p ∈ P ,

• Q
(p)
i is the so-called assignment interval, associated with a set of workstations of the configu-

ration corresponding to the product p ∈ P , where task i can be potentially assigned,

• G(p) = (V, A(p)) is the directed acyclic graph corresponding to the precedence constraints of

the product p ∈ P . Here, V is the set of tasks associated with the set of vertices of G(p) and

A(p) is the set of arcs between tasks, where (i, j) ∈ A(p) means that task j has to be assigned

to the same workstation as task i, or to a succeeding one.

Variables:

• x
(p)
ik is equal to 1 if the task i ∈ V is assigned to the workstation k ∈ W in the configuration

corresponding to the product p ∈ P , 0 otherwise,

• z
(p,q)
ik is equal to 1 if the task i ∈ V is assigned to the same workstation k ∈ W in both

configurations corresponding to products p and q, 0 otherwise,

• r(p,q) is the number of task reassignments between two configurations corresponding to products

p and q,

• rmax is the maximum number of task reassignments between any two configurations.

min rmax + 1
|V | · |U | ·

∑

(p,q)∈U

r(p,q) (1)
subject to:

|V | −
∑

i∈V

∑

k∈W

z
(p,q)
ik ≤ r(p,q) ≤ rmax, ∀(p, q) ∈ U (2)

z
(p,q)
ik ≤ 1

2 ·
(
x

(p)
ik + x

(q)
ik

)
, ∀i ∈ V, ∀k ∈ W, ∀(p, q) ∈ U (3)

∑

k∈W

x
(p)
ik = 1, ∀i ∈ V, ∀p ∈ P (4)

|W |∑

q=k

x
(p)
iq ≤

|W |∑

q=k

x
(p)
jq , ∀(i, j) ∈ A(p), ∀k ∈ Q

(p)
i

⋂
Q

(p)
j , ∀p ∈ P (5)

∑

i∈V

t
(p)
i · x

(p)
ik ≤ C(p), ∀k ∈ W, ∀p ∈ P (6)

x
(p)
ik = 0, ∀i ∈ V, ∀k /∈ Q

(p)
i , ∀p ∈ P (7)

x
(p)
ik ∈ {0, 1}, ∀i ∈ V, ∀k ∈ W, ∀p ∈ P

z
(p,q)
ik ∈ {0, 1}, ∀i ∈ V, ∀k ∈ W, ∀(p, q) ∈ U

9

r(p,q) ≥ 0, ∀(p, q) ∈ U

rmax ≥ 0

The principal goal of the objective function (1) is to find a solution minimizing rmax. Furthermore,

among the solutions having the same value of rmax, the compound expression of (1) allows to favor

those minimizing the total number of task reassignments that is confirmed below by Lemma 3.1. The

number of task reassignments for any two configurations as well as its maximum value is determined

by constraints (2). Constraints (3) allow each variable z
(p,q)
ik to be equal to 1 if and only if task i

is assigned to the same workstation k for both configurations corresponding to products p and q.

Inequalities (4) are used to ensure that each task i ∈ V is assigned to exactly one workstation for

each product p ∈ P . The respect of precedence constraints for each product is done by expressions

(5). These latter impose that any task i that precedes task j can not be assigned to a workstation

that succeeds the one where j is assigned. The cycle time constraint for each product is expressed

by (6). Finally, constraints (7) enhance the MILP model by fixing any variable x
(p)
ik to 0, if task i

can not be assigned to workstation k in the configuration corresponding to product p with respect

to the assignment interval Q
(p)
i .

It is important to mention that the above-described MILP formulation can handle products that

require a different number of tasks. For example, if task j does not belong to product p, it is sufficient

to consider this task as a free dummy one for this product and set t
(p)
j = 0.

The lower (resp. upper) bound of the assignment interval Q
(p)
i refers to the earliest (resp. latest)

workstation in which task i can be assigned for the configuration corresponding to product p. In this

paper, the manner of computing assignment intervals is inspired by one of the approaches, presented

in [2, p. 44-47] for computing a lower bound, noted as LB4, on the number of workstations for the

SALBP-1 problem. These latter are calculated here as follows:

Q
(p)
i =

[⌈
θ

(p)
i

C(p)

⌉
, 1 +

⌊
ζ

(p)
i

C(p)

⌋]
.

The left-hand (resp. right-hand) expression of the interval described above indicates a lower bound on

the number of workstations necessary for allocating task i and all its predecessors (resp. successors).

The central idea of that approach consists in considering the line balancing problem as a single

machine scheduling one. To do this, for each task i and product p, two following parameters are

introduced: earliest completion time θ
(p)
i and latest starting time ζ

(p)
i . Based on the cycle time C(p)

10

for each product p, these parameters can be computed using the following dynamic programming

expressions:

θ
(p)
i = max

{
α

(p)
i ,

(⌈
α

(p)
i + t

(p)
i

C(p)

⌉
− 1

)
· C(p)

}
+ t

(p)
i ,

ζ
(p)
i = min

{
β

(p)
i ,

(⌊
β

(p)
i − t

(p)
i

C(p)

⌋
+ 1

)
· C(p)

}
− t

(p)
i ,

where α
(p)
i = max





∑

j∈P(p)
i

t
(p)
j , max

j∈P(p)
i

θ
(p)
j



 and β

(p)
i = min



C(p) · |W | − ∑

j∈P(p)
i

t
(p)
j , min

j∈S(p)
i

ζ
(p)
j



. Here,

θ
(p)
0 = 0 and ζ

(p)
|V |+1 = C(p) × |W | represent respectively the dummy start and the dummy end of the

schedule, P(p)
i (resp. S(p)

i) correspond to the set of direct predecessors (resp. successors) of task i

for product p and finally P(p)
i (resp. S(p)

i) represents the set of all predecessors (resp. successors) of

task i for product p.

Lemma 3.1. The mono-objective function (1) has an equivalent bi-objective lexicographic represen-

tation, where the first objective is rmax and the second one is ∑(p,q)∈U r(p,q) (both to be minimized).

Proof. (⇒) Let r, expressed by the pair
(
rmax,

∑
(p,q)∈U r(p,q)

)
, be an optimal solution for the problem

studied with the mono-objective function (1), noted as F1, and let us prove that r is also optimal

for the aforementioned bi-objective lexicographic representation of (1), noted as F2.

Assume that this is not the case and there exists a solution s, expressed respectively by the pair
(
smax,

∑
(p,q)∈U s(p,q)

)
, which dominates r in the lexicographical sense. The latter means that one of

the following two cases occurs: i) smax = rmax and ∑(p,q)∈U s(p,q) <
∑

(p,q)∈U r(p,q) or ii) smax < rmax.

For the first case, we obviously have the following:

F1(s) = smax + 1
|V | · |U | ·

∑

(p,q)∈U

s(p,q) < rmax + 1
|V | · |U | ·

∑

(p,q)∈U

r(p,q) = F1(r).

For the second case, since 0 ≤ smax < rmax ≤ |V | and due to the definition of s(p,q) and r(p,q), we

deduce the following two evident inequalities ∑(p,q)∈U s(p,q) < |V | · |U | and 0 <
∑

(p,q)∈U r(p,q). Based

on these observations, we obtain

F1(s) = smax + 1
|V | · |U | ·

∑

(p,q)∈U

s(p,q) < smax + 1 ≤ rmax < rmax + 1
|V | · |U | ·

∑

(p,q)∈U

r(p,q) = F1(r).

For both cases, we derive that F1(s) < F1(r), which is in contradiction with the optimality of r for

F1. As a consequence, r is also optimal for F2.

11

(⇐) Now, let s be a lexicographically optimal solution for F2. And suppose by contradiction that

s is not optimal for F1. Hence, there exists an optimal solution r for F1 such that F1(r) < F1(s).

Moreover, since r is optimal for F1, then it is necessarily optimal for F2 (see the proof of ⇒).

The latter leads us to conclude that smax = rmax and ∑(p,q)∈U s(p,q) = ∑
(p,q)∈U r(p,q), which is in

contradiction with F1(r) < F1(s). Thus, s is also optimal for F1.

4. Constructive heuristic

In the literature, many constructive heuristics have been developed to solve large size instances for

SALBP [see, e.g., 2]. Such approaches take advantage of task precedence relationships in order to

generate priority rules for assigning tasks to workstations. They are known to provide good quality

solutions for SALBP and are often used to generate a first feasible solution for an exact method

[10]. To the best of our knowledge, no such heuristic has been developed in the literature regarding

MuMALBP. To fill this gap, we propose in this paper a new one, inspired by the COMSOAL

algorithm [29], usually used for SALBP.

The main idea of the proposed heuristic is to simultaneously construct line configurations for all

the products based on their corresponding precedence graph. More precisely, given the number of

workstations and the cycle time of each product, the algorithm uses the so-called candidate list

CL
(p)
k , which contains all the tasks assignable to current workstation k of product p. This list is

built in the following way. The set of unassigned tasks of product p is examined and task j is added

to CL
(p)
k if both of the following conditions are satisfied: (i) j has no predecessors or all predecessors

of j are already assigned, (ii) assigning of j does not violate the cycle time C(p). Then, CL
(p)
k is

analyzed for each p. Namely, if there are common tasks in CL
(p)
k for each product p, so one of

these tasks is assigned to workstation k in all the configurations. Otherwise, for each product p,

one task is randomly selected from CL
(p)
k and assigned to current workstation k. For both cases

described above, CL
(p)
k is rebuilt for each p and their analysis is repeated. If CL

(p)
k is empty for at

least one product p, then the next empty workstation is opened for all product configurations. This

new workstation becomes current for each product p and the algorithm continues to assign tasks to

them. The heuristic stops either when all tasks for all products are assigned, or when it is no longer

possible to open a new workstation. The first case indicates that a feasible solution is found, while

the second one implies that an infeasible solution is reached. A random parameter is also added to

the heuristic process in order to cover as many solutions as possible. A formal description of the

12

constructive heuristic is given by Algorithm 1.

Algorithm 1: Constructive heuristic
1. Open the first empty workstation, having no task assigned, for all product configurations,

i.e., set k := 1.

2. If there exists at least one unassigned task, then construct a candidate list CL
(p)
k for each

p ∈ P . Otherwise, go to Step 8.

3. If CL
(p)
k = ∅ for at least one p ∈ P and k < |W |, then open the next empty workstation for

all product configurations, i.e., set k := k + 1, and go to Step 2. If CL
(p)
k = ∅ for at least one

p ∈ P and k = |W |, then go to Step 7.

4. Let RCLk := ⋂
p∈P CL

(p)
k be a set of common assignable tasks for current workstation k

between all product configurations. If RCLk ̸= ∅, then go to Step 5 with probability α or go

to Step 6 with probability 1 − α. Otherwise, go to Step 6.

5. Choose randomly one task from RCLk and assign it to workstation k for all product

configurations and go to Step 2.

6. For each p ∈ P , choose randomly one task from CL
(p)
k and assign it to workstation k of the

configuration corresponding to product p and go to Step 2.

7. Stop, an inadmissible line configuration is reached.

8. Stop, an admissible line configuration is found.

As Step 4 is subject to the random parameter α, the heuristic can therefore be repeated in order to

explore and compare different feasible solutions. It is worth mentioning that if a feasible solution

with no task reassignment is found, the heuristic stops since an optimal solution is reached. Similarly,

if the heuristic does not find a better solution, compared to the current best one, after a limited

number of iterations, it stops and the best solution is returned.

As we will see later, the heuristic described above provides good quality solutions when dealing with

instances including 2 products. However, it reaches its limits when solving instances with 3 or more

products. This can be explained by the fact that the set RCLk (see Step 4 in Algorithm 1) is more

likely to be empty when dealing with a larger number of products. One way to handle this situation

is to consider common tasks not for all products, but for each possible combination of products

(p, q) ∈ U . Such an approach is complex and difficult because it requires the development of specific

rules to select and assign for each product an appropriate task.

13

5. MILP-based heuristic

In most cases, large size instances of line balancing problems are hard to solve to optimality [2]. One

of the main difficulties regarding exact methods is the proof of optimality, which is a real challenge

for commercial MIP solvers. Accordingly, to address the studied problem, a MILP-based heuristic,

named as Halt-and-Fix, is proposed in this paper. The central idea of this heuristic consists

in reducing the MILP search space by exploiting feasible solutions found by a solver during the

resolution process [28]. In order to avoid poor quality solutions, a particular reduction mechanism

is used.

Note that the Halt-and-Fix heuristic is different from the well-known Relax-and-Fix heuristic.

The latter heuristic consists in solving a sequence of derived sub-problems with relaxed integrality

constraints on selected variables. Then, some of them are fixed for the original problem. The Halt-

and-Fix heuristic, which is presented below, is contrary based on a partial solving of the problem

in order to obtain a feasible solution which is then used to fix the value of some variables for the

next iteration.

The Halt-and-Fix is an iterative heuristic whose iteration consists in running the MIP solver for

a short period of time T , analyzing the current best feasible solution found and adding specific

constraints to fix some variables of the problem. Within this time period T , three cases may arise

depending on the solving process. The first case occurs when the solver stops before reaching T ,

meaning that an optimal solution has been found. In this situation, the algorithm ends and returns

this solution as the final one. The second case happens when the time limit T is reached by the

solver, but no feasible solution better than the current best one was found. In that case, the solver

continues until a new better solution is found or a global time limit dedicated to the heuristic is

exceeded. For the third case, the solver is interrupted when a better solution is finally found either

by reaching or exceeding T and the following additional constraints are generated based on it:

∑

k∈W

z
(p,q)
ik = 1, ∀(p, q) ∈ U, ∀i ∈ K(p, q). (8)

Here, K(p, q) represents all the tasks assigned to the same workstation for both configurations

corresponding to products p and q in the current best solution found. Then, the heuristic repeats its

iteration including for the MILP model both the aforementioned solution as a warm start one and

a new set of constraints (8). The principal idea of (8) is to enforce each task belonging to K(p, q)

to be assigned to the same workstation (without indicating which one) for both configurations

corresponding to products p and q for all further iterations of the heuristic. This allows to quickly

14

reduce the MILP search space and, as a consequence, to speed up the solving process, especially

since the set K(p, q) is updated for any (p, q) ∈ U at each iteration.

A more formal presentation of the Halt-and-Fix heuristic is described below by Algorithm 2.

Algorithm 2: Halt-and-Fix heuristic
1. Set K(p, q) = ∅ for each (p, q) ∈ U . Set the best feasible solution s(B) as an empty one.

2. Start to solve the MILP model (1)-(8) with s(B) as a warm start solution. If an optimal

solution is found within the time period T , then go to Step 4. Otherwise, if the time period

T is expired and no optimal solution is found, then continue to solve and go to Step 3 only if

a new feasible solution s better than s(B) is found.

3. Interrupt solving and based on the solution s, update the set K(p, q) for each (p, q) ∈ U .

Reset s(B) := s and repeat Step 2.

4. Stop, the final heuristic solution is found.

To assess the performance of the Halt-and-Fix heuristic compared to both the constructive heuris-

tic and the MILP model sole, computational experiments were conducted and a comparison between

both methods is detailed in the next section of this paper.

6. Numerical experiments

In this section, a description of the used instances for the numerical experiments is first given.

Then, computational results obtained for the MILP model (referred to as exact approach), and both

heuristics are shown, compared, and analyzed.

6.1. Used instances and input data

For the numerical experiments, benchmark instances of [30] were used. Each of these latter consists

of a precedence graph and the value of the processing time for each task. Among the available

instances, only those having a directed acyclic weakly connected precedence graph were taken into

account.

For these instances, the enumeration of precedence graph vertices follows the topological order.

However, such graph structure might lead to trivial instances for the studied problem. Indeed, if

for each product the task numbers follow a topological order in their precedence graph, then the

configurations generated can be naturally similar. Thus, tasks with smaller numbers will always be

assigned to the beginning of the line, and those with larger numbers are more likely to be assigned

to the latest workstations. This is an interesting observation that reflects the reality of the field.

15

However, it makes it difficult to assess the performance of the approaches developed, as shown in

the tables below.

Thus, in order to properly evaluate the performance of the exact and heuristic approaches, numerical

experiments were conducted on both the original and modified instances. These latter are more

difficult to solve, as their precedence graph vertices are shuffled according to a randomly generated

permutation. Figure 3 shows an example of such a precedence graph modification for 2 instances,

where the original and modified graphs are respectively displayed on the left-hand and right-hand

sides, linked by a randomly generated permutation.

1
11

2
14

3
4

4
16

5
17

6
9

7
11

1
6

2
11

3
13

4
5

5
19

6
15

7
8

Instance 1
(3,2,6,5,1,4,7)

Instance 2
(7,2,3,1,4,6,5)

1
11

2
14

3
4

4
16

5
17

6
9

7
11

1
6

2
11

3
13

4
5

5
19

6
15

7
8

Figure 3: Generation of two modified instances with |V | = 7

Numerical experiments were conducted on two sets of instances 1 of medium (|V | = 50) and large

(|V | = 100) sizes. Each set was classified into three series based on the density of precedence

graphs, also called the order strength (OS). This latter is computed as OS = 2·|E(p)|
|V |·(|V |−1) , where

E(p) =
{

(i, j) | i ∈ V, j ∈ S(p)
i

}
is the set of arcs in the transitive closure of G(p). As a result, the

first series corresponds to the instances having an OS ≈ 0.2. The second series includes instances

with an OS ≈ 0.6, and the last one is for those with an OS ≈ 0.9. The number of products is

set to |P | = 2 and |P | = 3. Hence, for example, to construct an instance of the studied problem

with two (resp. three) products, two (resp. three) successive instances from the same series have to

1http://pagesperso.ls2n.fr/˜gurevsky-e/data/RMS.zip

16

be considered. Finally, the cycle time of each product is set to C(p) =
⌈
1.5 · maxi∈V t

(p)
i

⌉
, and the

number of workstations is fixed to |W | = maxp∈P

{⌈
1.2 ·∑i∈V t

(p)
i /C(p)

⌉}
.

6.2. Computational results

This subsection presents analyses and compares the obtained computational results of the exact

approach and both heuristics. To solve the MILP formulation, CPLEX 20.1.0 was used for both

approaches. In addition, the heuristics were coded using Julia 1.5.4 along with JuMP modeling

language.

The experiments were conducted on a computer having a 3.7 GHz Intel(R) Core(TM) i3-6100 proces-

sor with 8 GB RAM. The global solving time limit was fixed to 600 seconds. For the Halt-and-Fix

heuristic, the iteration time limit T was set to 10 seconds for each instance. For the constructive

heuristic, the random parameter α was fixed to 0.01, and the maximum number of iterations without

improving the solution was set to 500, 000.

6.2.1. Exact approach results

The computational results for the MILP formulation sole are given in Tables 2 and 3. The former

illustrates the results obtained for the modified instances, while the latter displays those obtained

for the original ones. In both tables, the first three columns represent the number of products, the

number of tasks, and the OS series number, respectively. The fourth column shows the total number

of instances within each series. The number of instances solved to optimality and their average CPU

time are respectively given in the fifth and sixth columns. As for the instances which were not solved

to optimality within 600 seconds, their average GAP is displayed in the last column.

Table 2 shows that only 19.07% of all the instances were solved optimally. It can be seen that

instances with OS ≈ 0.2 are harder to solve than the other ones. This can be noticed through

the following two factors: (1) an important number of instances unsolved to optimality and (2)

their corresponding average GAP, which is relatively high. However, we can observe that for the

other OS series (resp. 2 and 3) more instances were optimally solved. Moreover, we can also

remark through the average GAP, that the higher the OS is, the easier the instances are to solve

to optimality. Indeed, it is obvious that the average GAP and CPU decrease significantly as the

OS increases. Nevertheless, despite this trend, it is clear that the number of instances unsolved

to optimality and their corresponding average GAP remains relatively high, especially for large size

instances corresponding to |V | = 100, where only a few instances were solved to optimality. In

addition, for one instance, noted in the table by (+1), CPLEX was not able to find any feasible

17

solution within 600 seconds. In view of the obtained results, it is clear that the MILP formulation

is not efficient when dealing with medium and large-size instances.

Table 2: Computational results for the MILP model for modified instances.

|P | |V | OS #Instances #OPT Avg. CPU, (s.) Avg. GAP, (%)

2

50

1 15 2 181.3 53.46

2 219 136 148.4 18.60

3 74 74 16.4 ⊕

100

1 39 0 ⊖ 94.73

2 219 0 ⊖ 52.94

3 73(+1) 1 569.7 22.84

Global 640 212 (33.17%) 105.3 44.84

3

50

1 14 0 ⊖ 85.21

2 218 0 ⊖ 42.64

3 73 31 276.1 7.34

100

1 38 0 ⊖ 97.11

2 218 0 ⊖ 60.11

3 72(+1) 0 ⊖ 29.30

Global 634 31 (4.88%) 276.1 49.30

(⊕) All optimal solutions were found within the time limit of 600 seconds.

(⊖) No optimal solution was found within the time limit of 600 seconds.

In addition to these numerical experiments, Table 3 shows the results for the same instances but

without applying random permutations to their precedence graphs. In this table, it is clear that

medium-size instances (with |P | = 2 or |V | = 50) are easier to solve to optimality than the modified

ones. However, in the case corresponding to |P | = 3 and |V | = 100, no optimal solution was found.

Furthermore, the average GAP for these instances (≈ 100%) is not a reliable measure and therefore

provides no information about their complexity. This is mainly due to the fact that the lower bound

is in most cases equal to 0 since all the tasks follow the topological order in the corresponding

precedence graphs. This is not the case for Table 2 with modified instances.

18

Table 3: Computational results for the MILP model for unmodified instances.

|P | |V | OS #Instances #OPT Avg. CPU, (s.) Avg. GAP, (%)

2

50

1 15 15 4.0 ⊕
2 219 215 4.0 83.33

3 74 74 8.6 ⊕

100

1 39 28 154.8 100

2 218 186 142.6 100

3 74 55 130.2 93.70

Global 640 573 (89.53%) 69.0 95.72

3

50

1 14 13 209.2 ⊕
2 218 158 65.1 83.79

3 73 58 136.2 26.46

100

1 38 0 ⊖ 100

2 217 0 ⊖ 100

3 73 0 ⊖ 99.65

Global 634 229 (36.11%) 91.28 94.31

(⊕) All optimal solutions were found within the time limit of 600 seconds.

(⊖) No optimal solution was found within the time limit of 600 seconds.

To summarize, this exact approach seems to be efficient in finding promising feasible solutions but

struggles to improve them or prove that they are optimal.

6.2.2. Heuristics results

This subsection provides a comparison between the numerical results obtained by the constructive

and Halt-and-Fix heuristics. Similarly to the previous subsection, computational experiments

were conducted by solving both unmodified (Table 4) and modified (Table 5) instances with |P | = 2

and |V | = 50, and |P | = 2 and |V | = 100.

In both tables, column 3 (resp. 4) provides the gap between the upper bound obtained by the

constructive heuristic (resp. Halt-and-Fix heuristic) and the best upper bound found between

these two approaches, denoted as GAPB
C (resp. GAPB

H). More precisely, GAPB
C = 100% · (UBC − UBB)/UBB,

and GAPB
H = 100% · (UBH − UBB)/UBB, where UBC (resp. UBH) represents the upper bound found by the

constructive heuristic (resp. Halt-and-Fix heuristic), and UBB = min{UBC, UBH}. Columns 5 and 6

19

provide the average CPU time over all instances for the constructive and Halt-and-Fix heuristics,

denoted as CPUC and CPUH, respectively. Finally, the last two columns show the average upper bound

found by the constructive heuristic (resp. Halt-and-Fix heuristic), denoted as UBC (resp. UBH).

From Table 4, it can be noticed that both heuristics provide good quality solutions in a reasonable

CPU time. This can be seen through average UBC and UBH, which are close to the theoretical lower

bound of 0 for both sets of instances corresponding to |V | = 50 and |V | = 100. It can also be

observed that the constructive heuristic is faster with a global average CPU time of 11.4 seconds

versus 52.5 seconds for the Halt-and-Fix heuristic. This being said, based on GAPB
C and GAPB

H, the

Halt-and-Fix heuristic has found better solutions in most cases. This can be explained by the fact

that the constructive heuristic struggles to improve the solution and gets stuck in local optima.

Table 4: Comparison between both heuristics for unmodified instances with |P | = 2

|V | OS Avg. GAPB
C, (%) Avg. GAPB

H, (%) Avg. CPUC, (s.) Avg. CPUH, (s.) Avg. UBC Avg. UBH

50

1 0.05 0.03 0.1 3.7 0.00 0.00

2 44.37 5.07 6.3 4.7 0.52 0.05

3 143.06 57.20 12.8 3.8 4.55 1.76

100

1 207.73 266.71 20.9 180.1 2.09 2.69

2 305.01 0.09 22.2 95.8 3.08 0.00

3 357.18 66.26 16.1 59.2 6.22 1.12

Global 185.59 31.73 11.4 52.5 2.55 0.48

The same conclusions can be reached when solving the more challenging modified instances. Here,

and based on Table 5, the Halt-and-Fix heuristic outperforms the constructive heuristic in terms

of solution quality. In fact, the Halt-and-Fix heuristic was able to find the best solution in 99 %

of cases for both |V | = 50 and |V | = 100 with GAPB
H ≈ 0%. The constructive heuristic is certainly

faster, but finds solutions relatively far from the best one with a GAPC
H, which varies between 15%

and 80% on average.

Unlike the previous table where the difference between UBC and UBH is quite small, this one turns

out to be more important when dealing with difficult instances. This shows that the Halt-and-Fix

heuristic is more efficient as it allows to continuously improve the solution by adding new constraints

at each iteration. Moreover, since the Halt-and-Fix is a MILP-based heuristic, it can be used to

solve instances with more than 2 products. This is not the case for the constructive heuristic. For

20

this reason, the constructive heuristic is not considered in the next parts of the experiments.

Table 5: Comparison between both heuristics for modified instances with |P | = 2

|V | OS Avg. GAPB
C, (%) Avg. GAPB

H, (%) Avg. CPUC, (s.) Avg. CPUH, (s.) Avg. UBC Avg. UBH

50

1 80.18 0.09 51.7 25.7 20.20 11.56

2 45.19 0.06 17.4 22.0 34.30 23.88

3 20.63 0.04 8.38 8.44 43.00 35.72

100

1 73.61 0.78 26.6 280.4 65.21 41.41

2 48.24 0.02 22.5 211.5 80.05 54.55

3 15.43 0.01 47.4 250.9 89.68 78.47

Global 42.40 0.00 22.7 124.2 62.83 43.64

6.2.3. Comparison between the exact approach and the Halt-and-Fix heuristic

In this subsection, the results of the Halt-and-Fix heuristic are analyzed and compared with those

obtained with the exact approach. Tables 6 and 7 show this comparison on the same modified and

unmodified instances as those used in the previous subsection. In these tables, the fourth (resp. fifth)

column represents the gap between the upper bound obtained with the exact approach (resp. the

heuristic) and the best upper bound found between these two approaches. These gaps are computed

as GAPB
E = 100% · (UBE − UBB)/UBB for the exact approach and GAPB

H = 100% · (UBH − UBB)/UBB for the

heuristic, where UBE (resp. UBH) is the upper bound found by the exact (resp. heuristic) approach

and UBB = min{UBE, UBH}. The sixth and seventh columns represent the average CPU time over all

instances for the exact method (CPUE) and the heuristic approach (CPUH). Finally, the last two

columns provide the average upper bound found by the exact method (UBE) and the Halt-and-Fix

heuristic (UBH), respectively.

From Table 6, we can see that the heuristic provides better overall performance than the exact

approach. Indeed, the average GAP, CPU time, and UB of the heuristic are significantly smaller than

the exact approach. Moreover, for the instances corresponding to |P | = 2 and |V | = 50, for which

optimal solutions were mainly found by the exact approach, the heuristic also manages to find good

quality solutions, within a few seconds only. For the large instances of |V | = 100, most of the best

solutions were found by the heuristic in a significantly small CPU time. Indeed, the heuristic succeeds

to solve most instances before reaching the solving time limit of 600 seconds.

21

Table 6: Comparison between MILP and heuristic for modified instances

|P | |V | OS Avg. GAPB
E, (%) Avg. GAPB

H, (%) Avg. CPUE, (s.) Avg. CPUH, (s.) Avg. UBE, (s.) Avg. UBH, (s.)

2

50

1 5.00 3.43 600 25.7 11.69 11.56

2 0.53 2.89 319.5 23.6 23.34 23.88

3 0.00 0.73 15.2 8.44 35.47 35.72

100

1 22.52 5.47 600 366.6 47.28 41.41

2 21.77 0.08 600 221.7 66.51 54.55

3 4.04 0.43 599.6 244.8 81.36 78.47

Global 9.58 1.56 436.3 136.16 48.24 43.64

3

50

1 17.07 0.00 600 77.3 23.72 20.44

2 6.31 0.83 600 70.2 32.03 30.38

3 0.24 3.56 462.4 16.4 39.18 40.46

100

1 34.24 0.00 600 555.8 93.28 78.49

2 27.12 0.03 600 431.9 85.31 68.62

3 6.77 0.30 600 337.0 89.67 84.65

Global 14.73 0.74 584.1 248.3 60.07 52.73

Table 7 provides the same comparison on unmodified instances. Unlike modified ones, the objective

values of these instances are usually equal to 0, which causes very large and insignificant GAP values.

To avoid this, the GAPB
(·) values are calculated as follows GAPB

E = 100% · (UBE − UBB)/ max{1, UBB} for

the exact approach and GAPB
H = 100% · (UBH − UBB)/ max{1, UBB} for the heuristic. As can be seen in

this table, the heuristic is able to provide good-quality solutions that are close to optimal ones. For

example, the heuristic was successful to find all optimal solutions for the instances corresponding

to |P | = 2 and |V | = 50. When dealing with larger size instances of |P | = 3 and |V | = 50, the

heuristic provides a better solution than the exact approach in 75% of the cases. As for the instances

with 100 tasks, 96% and 74% of the best solutions were found by the Halt-and-Fix heuristic for

|P | = 2 and |P | = 3, respectively. An exception is noticeable in the table regarding the instances

corresponding to |P | = 3, |V | = 50 and OS = 3, where the exact approach has found better

solutions and outperformed the heuristic. This can be explained by the fact that such instances are

characterized by dense precedence graphs that reduce the number of possible feasible solutions and

leads the heuristic to local optima.

22

Table 7: Comparison between MILP and heuristic for unmodified instances

|P | |V | OS Avg. GAPB
E, (%) Avg. GAPB

H, (%) Avg. CPUE, (s.) Avg. CPUH, (s.) Avg. UBE, (s.) Avg. UBH, (s.)

2

50

1 0.00 0.00 4.0 3.7 0.00 0.00

2 0.00 0.00 14.9 4.7 0.05 0.05

3 0.00 0.00 8.6 3.8 1.76 1.76

100

1 892.74 9.97 280.4 180.1 9.97 2.69

2 354.19 0.00 211.5 95.8 3.54 0.00

3 7.64 1.29 250.9 59.2 1.26 1.12

Global 175.92 1.96 124.3 52.5 1.74 0.48

3

50

1 29.04 0.00 237.1 57.5 0.29 0.00

2 3.60 7.19 212.4 22.0 0.72 0.87

3 0.00 34.79 231.5 11.4 4.32 6.01

100

1 463.39 5.91 600.0 598.2 89.02 83.26

2 2758.40 2.71 600.0 431.6 65.29 31.17

3 383.13 40.15 600.0 222.9 29.41 12.64

Global 1017.88 12.34 415.3 219.3 28.98 14.42

For a better overview, Figure 4 shows the obtained results for modified instances for both the

exact approach (blue-colored round markers) and the Halt-and-Fix heuristic (red-colored square

markers). In this figure, the top two graphs represent the average gap from the best found solution,

denoted as Avg. GAPB
(·) and obtained for the instances with |V | = 50 and |V | = 100 for each OS

series. The two graphs below show the average CPU time comparison between the two approaches.

As it can be seen in these graphs, the heuristic performs better than the exact approach providing

solutions with an average GAPB
H up to 10% better for |V | = 50 and up to 25% better for |V | = 100.

As for the average CPU time, it clearly visible that the proposed heuristic outperforms the exact

approach for both instance sizes.

23

1 2 30

5

10

2.5

7.5

12.5

OS

Av
g.

GA
PB (·)

,(
%

)
|V | = 50

GAPB
E

GAPB
H

1 2 30

10

20

30

5

15

25

OS

|V | = 100

GAPB
E

GAPB
H

1 2 30
100
200
300
400
500
600

OS

Av
g.

CP
U (

·),
(s

.)

|V | = 50

CPUE
CPUH

1 2 30
100
200
300
400
500
600

OS

|V | = 100

CPUE
CPUH

Figure 4: Graph comparison between the exact and heuristic approaches for modified instances

Even if the heuristic has shown better performance than the exact approach, it remains dependent on

the MILP model. As a consequence, for some instances, it is difficult to find an initial or intermediate

solution quickly within an iteration, which causes the heuristic to become more time-consuming.

7. Conclusion and Perspectives

In this paper, a reconfigurable multi-product line balancing problem was studied. Under the as-

sumption that the sequence of product arrival is not known in advance, the addressed optimization

problem was focused on finding an appropriate line configuration for each product so as to minimize

the maximum number of task reassignments between any two line configurations.

To tackle this problem, a MILP formulation was first proposed enhanced by some new pre-processing

techniques for computing task assignment intervals. Then, two heuristics were developed. The

first one is a constructive heuristic, which uses the precedence graph of each product to generate

feasible line configurations. The second one, named Halt-and-Fix, consists in generating new

24

constraints for the original MILP formulation based on a current feasible solution. The first numerical

comparison between the two developed heuristics showed that the Halt-and-Fix outperforms the

constructive heuristic in terms of solution quality. Moreover, since the Halt-and-Fix is a MILP-

based heuristic, it makes it possible to handle instances with more than 2 products, whereas the

constructive heuristic is difficult to adapt when the set of products increases. Then, the second

comparison between the Halt-and-Fix and exact approaches was given. It was shown that the

heuristic has been more efficient and managed to find solutions of better quality in a shorter CPU

time than the exact approach.

Several possible extensions can be explored for future research. One of the most promising is

based on taking into account available historical data about the frequency of product arrival and

switching from one product to another. This may be achieved through a finer stochastic MILP model,

which better reflects reality than the deterministic one. Moreover, we are also looking forward to

studying the effect of task reassignments in an integrated equipment selection for the MuMALBP

problem. The objective will be to generate advanced line configurations while considering additional

technological constraints, imposed by available resources [31]. Finally, the constructive heuristic,

proposed in this paper, can be used to provide a warm start feasible solution for the Halt-and-Fix

method, in order to improve its performance.

Funding

This work was financially supported by the IRT PERFORM program, managed by IRT Jules Verne

(French Institute in Research and Technology in Advanced Manufacturing).

References

[1] M. Bortolini, F. G. Galizia, C. Mora, Reconfigurable manufacturing systems: Literature review

and research trend, Journal of Manufacturing Systems 49 (2018) 93–106.

[2] A. Scholl, Balancing and Sequencing of Assembly Lines, 2nd Edition, Physica-Verlag Heidelberg,

1999.

[3] C. Becker, A. Scholl, A survey on problems and methods in generalized assembly line balancing,

European Journal of Operational Research 168 (3) (2006) 694–715.

[4] A. R. Yelles-Chaouche, E. Gurevsky, N. Brahimi, A. Dolgui, Reconfigurable manufacturing

25

systems from an optimisation perspective: a focused review of literature, International Journal

of Production Research 59 (21) (2021) 6400–6418.

[5] O. Battäıa, A. Dolgui, Hybridizations in line balancing problems: A comprehensive review on

new trends and formulations, International Journal of Production Economics 250 (2022) 108673.

[6] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, H. Van Brussel, Recon-

figurable manufacturing systems, CIRP Annals 48 (2) (1999) 527–540.

[7] Y. Koren, M. Shpitalni, Design of reconfigurable manufacturing systems, Journal of Manufac-

turing Systems 29 (4) (2010) 130–141.

[8] P. Sivasankaran, P. Shahabudeen, Literature review of assembly line balancing problems, The

International Journal of Advanced Manufacturing Technology 73 (9-12) (2014) 1665–1694.

[9] N. Boysen, M. Fliedner, A. Scholl, A classification of assembly line balancing problems, Euro-

pean Journal of Operational Research 183 (2) (2007) 674–693.

[10] O. Battäıa, A. Dolgui, A taxonomy of line balancing problems and their solution approaches,

International Journal of Production Economics 142 (2) (2013) 259–277.

[11] J. I. van Zante-de Fokkert, T. G. de Kok, The mixed and multi model line balancing problem:

a comparison, European Journal of Operational Research 100 (3) (1997) 399–412.

[12] N. Boysen, M. Fliedner, A. Scholl, Assembly line balancing: Joint precedence graphs under

high product variety, IIE Transactions 41 (3) (2009) 183–193.

[13] G. M. Buxey, N. D. Slack, R. Wild, Production flow line system design - A review, AIIE

Transactions 5 (1) (1973) 37–48.

[14] A. K. Chakravarty, A. Shtub, Balancing mixed model lines with in-process inventories, Man-

agement Science 31 (9) (1985) 1161–1174.

[15] M. A. Kabir, M. T. Tabucanon, Batch-model assembly line balancing: A multiattribute decision

making approach, International Journal of Production Economics 41 (1-3) (1995) 193–201.

[16] A. Kimms, Minimal investment budgets for flow line configuration, IIE Transactions 32 (4)

(2000) 287–298.

[17] S. D. Lapierre, L. Debargis, F. Soumis, Balancing printed circuit board assembly line systems,

International Journal of Production Research 38 (16) (2000) 3899–3911.

26

[18] R. Pastor, C. Andrés, A. Duran, M. Pérez, Tabu search algorithms for an industrial multi-

product and multi-objective assembly line balancing problem, with reduction of the task dis-

persion, Journal of the Operational Research Society 53 (12) (2002) 1317–1323.

[19] H. Yu, W. Shi, A genetic algorithm for multi-model assembly line balancing problem, in: IEEE

International Symposium on Assembly and Manufacturing (ISAM 2013), 2013, pp. 369–371.

[20] L. Liao, Construction and comparison of multi-model and mixed-model assembly lines balancing

problems with bi-objective, Journal of Industrial and Production Engineering 31 (8) (2014) 483–

490.

[21] S. Qu, Z. Jiang, A memetic algorithm approach for batch-model assembly line balancing problem

of sub-block in shipbuilding, Proceedings of the Institution of Mechanical Engineers, Part B:

Journal of Engineering Manufacture 228 (10) (2014) 1290–1304.

[22] M. K. Christensen, M. N. Janardhanan, P. Nielsen, Heuristics for solving a multi-model robotic

assembly line balancing problem, Production & Manufacturing Research 5 (2017) 410–424.

[23] J. Pereira, Modelling and solving a cost-oriented resource-constrained multi-model assembly line

balancing problem, International Journal of Production Research 56 (11) (2018) 3994–4016.

[24] A. J. Asl, M. Solimanpur, R. Shankar, Multi-objective multi-model assembly line balancing

problem: a quantitative study in engine manufacturing industry, OPSEARCH 56 (3) (2019)

603–627.

[25] J. C. Chen, Y. Chen, T. Chen, Y. Kuo, Applying two-phase adaptive genetic algorithm to

solve multi-model assembly line balancing problems in TFT–LCD module process, Journal of

Manufacturing Systems 52 (2019) 86–99.

[26] J. Koskinen, C. Raduly-Baka, M. Johnsson, O. S. Nevalainen, Rolling horizon production

scheduling of multi-model PCBs for several assembly lines, International Journal of Produc-

tion Research 58 (4) (2020) 1052–1073.

[27] J. Fisel, Y. Exner, N. Stricker, G. Lanza, Changeability and flexibility of assembly line balancing

as a multi-objective optimization problem, Journal of Manufacturing Systems 53 (2019) 150–

158.

[28] A. R. Yelles-Chaouche, E. Gurevsky, N. Brahimi, A. Dolgui, Minimizing task reassignments

under balancing multi-product reconfigurable manufacturing lines, Computers & Industrial En-

gineering 173 (2022) 108660.

27

[29] A. L. Arcus, A computer method of sequencing operations for assembly lines, International

Journal of Production Research 4 (4) (1965) 259–277.

[30] A. Otto, C. Otto, A. Scholl, Systematic data generation and test design for solution algorithms

on the example of SALBPGen for assembly line balancing, European Journal of Operational

Research 228 (1) (2013) 33–45.

[31] O. Battäıa, A. Dolgui, N. Guschinsky, G. Levin, Integrated configurable equipment selection

and line balancing for mass production with serial–parallel machining systems, Engineering

Optimization 46 (10) (2014) 1369–1388.

28

Highlights

 A reconfiurable multimodel assembly line balancini problem is

considered.

 The objectie is to ienerate best line confiuratons that minimize the

maximum number of task reassiinments.

 A MILP formulaton is proposed with preiprocessini techniques.

 Constructie and MILPibased heuristcs are deieloped.

 A comparison between the three approaches is iiien on the basis of a

benchmark data set.

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

