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MOMENTS OF PARTITION FUNCTIONS OF 2D GAUSSIAN POLYMERS IN THE WEAK DISORDER REGIME -I

Introduction and statement of results

We consider in this paper the partition function of two dimensional directed polymers in Gaussian environment, and begin by introducing the model. Set [START_REF] Belius | for the cover time of the two dimensional sphere[END_REF] W N (β, x) = E x e N n=1 βω(n,Sn)-N β 2 /2 , x ∈ Z d .

Here, {ω n,x } n∈Z+,x∈Z d are i.i.d. standard centered Gaussian random variables of law P, {S n } n∈Z+ is simple random walk, and E x denotes the law of simple random walk started at x ∈ Z 2 . Thus, W N (β, x) is a random variable measurable on the σ-algebra G N := σ{ω(i, x) : i ≤ N, x ∈ Z d }. For background, motivation and results on the rich theory surrounding this topic, we refer the reader to [START_REF] Comets | Directed polymers in random environments[END_REF]. In particular, we mention the relation with the d dimensional stochastic heat equation (SHE).

The random variables W N (β, 0) form a G N positive martingale, and therefore converge almost surely to a limit W ∞ (β, 0). It is well known that in dimensions d = 1, 2, for any β > 0 we have W ∞ (β, 0) = 0, a.s., while for d ≥ 3, there exists β c > 0 so that W ∞ (β, 0) > 0 a.s. for β < β c and W ∞ (β, 0) = 0 for β > β c . We refer to these as the weak and strong disorder regimes, respectively. In particular, for d = 2, which is our focus in this paper, for any β > 0, we are in the strong disorder regime.

A meaningful rescaling in dimension 2 was discovered in the context of the SHE by Bertini and Cancrini [START_REF] Bertini | The two-dimensional stochastic heat equation: renormalizing a multiplicative noise[END_REF] and was later generalized by Caravenna, Sun and Zygouras [START_REF] Caravenna | Universality in marginally relevant disordered systems[END_REF], in both the SHE and polymer setups, to a wider range of parameters for which a phase transition occurs. See also [START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF][START_REF] Caravenna | The critical 2d stochastic heat ow[END_REF][START_REF] Chatterjee | Constructing a solution of the (2 + 1)-dimensional KPZ equation[END_REF][START_REF] Gu | Gaussian uctuations of the 2d KPZ equation[END_REF][START_REF] Nakajima | Fluctuation of two-dimesional stochastic heat equation and KPZ equation in subcritical regime for general initial conditions[END_REF]. Introduce the mean intersection local time for random walk (2)

R N = E ⊗2 0 N n=1 1 S 1 n =S 2 n ∼ log N π .
The asymptotic behavior of R N follows from the local limit theorem [START_REF] Gregory | Intersections of random walks[END_REF]Sec. 1.2].

Further, the Erd®s-Taylor theorem [START_REF] Erd®s | Some problems concerning the structure of random walk paths[END_REF] states that 

π log N N n=1 1 S 1 n =S 2
β N = β √ R N , β ≥ 0.
We will use the short-notation W N = W N (β N , 0). With it, see [START_REF] Caravenna | Universality in marginally relevant disordered systems[END_REF], one has (4)

∀ β < 1 : log W N (d) -→ N - λ 2 2 , λ 2 , with λ 2 ( β) = log 1 1 -β2 .
The convergence in (4) has recently been extended in [START_REF] Lygkonis | Moments of the 2d directed polymer in the subcritical regime and a generalization of the Erdös-Taylor theorem[END_REF] to the convergece of W N to the exponential of a Gaussian, in all L p . (The critical case β = 1, which we will not study in this paper, has received considerable attention, see [START_REF] Bertini | The two-dimensional stochastic heat equation: renormalizing a multiplicative noise[END_REF][START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF][START_REF] Caravenna | The critical 2d stochastic heat ow[END_REF][START_REF] Gu | Moments of the 2d SHE at criticality[END_REF].)

The spatial behavior of W N (β N , x) is also of interest. Indeed, one has, see [START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF],

(5)

G N (x) := R N log W N (β N , x √ N ) -E log W N (β N , x √ N ) (d) -→ β2 1 -β2 G(x),
with G(x) a log-correlated Gaussian eld on R 2 . The convergence in [START_REF] Caravenna | Universality in marginally relevant disordered systems[END_REF] is in the weak sense, i.e. for any smooth, compactly supported function φ, φ(x)G N (x)dx converges to a centered Gaussian random variable of variance β2 σ 2 φ /(1 -β2 ), where

σ 2 φ = 1 2π φ(x)φ(y) ∞ |x-y| 2 /2 (6) 
z -1 e -z dz.

One recognizes σ 2 φ in [START_REF] Caravenna | The Dickman subordinator, renewal theorems, and disordered systems[END_REF] as the variance of the integral of φ against the solution of the Edwards-Wilkinson equation. For a related result in the KPZ/SHE setup, see [START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF][START_REF] Gu | Gaussian uctuations of the 2d KPZ equation[END_REF][START_REF] Nakajima | Fluctuation of two-dimesional stochastic heat equation and KPZ equation in subcritical regime for general initial conditions[END_REF].

Logarithmically correlated elds, and in particular their extremes and large values, have played an important recent role in the study of various models of probability theory at the critical dimension, ranging from their own study [START_REF] Biskup | Extrema of the two-dimensional discrete Gaussian free eld[END_REF][START_REF] Bramson | Convergence in law of the maximum of the two-dimensional discrete Gaussian free eld[END_REF][START_REF] Duplantier | Log-correlated Gaussian elds: an overview[END_REF][START_REF] Rhodes | Gaussian multiplicative chaos and applications: a review[END_REF],

random walk and Brownian motion [START_REF] Belius | for the cover time of the two dimensional sphere[END_REF][START_REF] Dembo | Cover times for Brownian motion and random walks in two dimensions[END_REF], random matrices [START_REF] Chhaibi | On the maximum of the CβE eld[END_REF][START_REF] Chhaibi | On the circle, GM C γ = lim ← -CβEn for γ 2/β (γ ≤ 1)[END_REF][START_REF] Claeys | How much can the eigenvalues of a random Hermitian matrix uctuate?[END_REF], Liouville quantum gravity [START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF][START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ formula[END_REF], turbulence [START_REF] Chevillard | On a skewed and multifractal unidimensional random eld, as a probabilistic representation of Kolmogorov's views on turbulence[END_REF], and more. In particular, exponentiating Gaussian logarithmically correlated elds yields Gaussian multiplicative chaoses, with the ensuing question of convergence towards them.

In the context of polymers, [START_REF] Caravenna | Universality in marginally relevant disordered systems[END_REF] opens the door to the study of such questions. A natural role is played by the random measure

µ γ N (x) = e γG N (x)
Ee γG N (x) ,

and it is natural to ask about its convergence towards a GMC, and about extremes of G N (x) for x in some compact subsets of R 2 .

A preliminary step toward any such analysis involves evaluating exponential moments of G N (0). This is our goal in this paper. In the following, q = q(N ) denotes an integer q ≥ 2 that may depend on N . Our main result is the following.

Theorem 1.1. There exists β0 ≤ 1 so that if β < β0 and [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF] lim sup

N →∞ 3 β2 1 -β2 1 log N q 2 < 1,
then,

E[W q N ] ≤ e ( q 2 )λ 2 (1+ε N ) , (8) 
where ε N = ε(N, β) 0 as N → ∞.

The proof will show that in Theorem 1.1, β0 can be taken as 1/96, but we do not expect this to be optimal.

Remark 1.2. With a similar method, we can also prove that the estimate [START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF] holds for all β < 1 at the cost of choosing q 2 = o(log N/ log log N ), see Section 2.4 for details. In particular, we obtain that the partition function possesses all (xed) moments in the region β < 1:

(9) ∀q ∈ N, sup N E[W q N ] < ∞.
As mentioned above, [START_REF] Caravenna | The critical 2d stochastic heat ow[END_REF] was independently proved in [START_REF] Lygkonis | Moments of the 2d directed polymer in the subcritical regime and a generalization of the Erdös-Taylor theorem[END_REF]. (See also [START_REF] Lygkonis | A multivariate extension of the theorem[END_REF] for further precision and a multivariate generalization of the Erd®s-Taylor theorem.) They also observed that together with the convergence in distribution (4), the estimate [START_REF] Caravenna | The critical 2d stochastic heat ow[END_REF] implies that for all xed q ∈ N,

E[W q N ]e -( q 2 )λ 2 ( β) -→ N →∞ 1. (10) 
Note however that the estimate [START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF] does not yield [START_REF] Chatterjee | Constructing a solution of the (2 + 1)-dimensional KPZ equation[END_REF] when q → ∞ with N → ∞.

Remark 1.3. Theorem 1.1 is of course not enough to prove convergence toward a GMC. For that, one would need to improve the error in the exponent from O(q 2 ε N ) to O(1), to obtain a complementary lower bound and, more important, to derive similar multi-point estimates. We hope to return to these issues in future work.

The structure of the paper is as follows. In the next Section 2, we use a well-worn argument to reduce the computation of moments to certain estimates concerning the intersection of (many) random walks. After some standard preliminaries, we state there our main technical estimate, Theorem 2.1, which provides intersection estimates under the extra assumptions that all intersections are in pairs, i.e. that no triple (or more) points exist. The rest of the section provides the proof of Theorem 1.1. Section 3 then develops the induction scheme that is used to prove Theorem 2.1.

Since we assume that there are no triple (or more) intersections, we may consider particles as matched in pairs at intersection times. The induction is essentially on the number of instances in which matched particles break the match and create a dierent matching. Section 4 provides a discussion of our results, their limitations, and possible extensions. In particular we explain there why the constraint on q in Theorem 1.1 limits our ability to obtain the expected sharp upper bounds on the Acknowledgment We thank Dimitris Lygkonis and Nikos Zygouras for sharing their work [START_REF] Lygkonis | Moments of the 2d directed polymer in the subcritical regime and a generalization of the Erdös-Taylor theorem[END_REF] with us prior to posting, and for useful comments. We thank the referee for a careful reading of the original manuscript and for many comments that helped us to greatly improve the paper.
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2. Intersection representation, reduced moments, and proof of Theorem 1.1

Throughout the rest of the paper, we let p(n, x) = p n (x) = P 0 (S n = x). There is a nice formula for the q-th moment of the partition function whose importance is apparent in previous work on directed polymers, for example in [START_REF] Caravenna | The Dickman subordinator, renewal theorems, and disordered systems[END_REF][START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF]. Indeed,

E[W q N ] = E ⊗q 0 Ee q i=1 N n=1 (β N ω(n,S i n )-β 2 N /2) ,
where S 1 , . . . , S q are q independent copies of the simple random walk and E ⊗q X denotes the expectation for the product measure started at X = (x 1 , . . . , x q ). (If the starting point X is not specied, we assume X = 0.) Since the ω(i, x) are Gaussian and the variance of

q i=1 β N ω(n, S i n ) is equal to β 2 N i=1...q,j=1...q 1 S i n =S j n
, we have the following formula for the moment in terms of intersections of q independent random walks:

(11) E[W q N ] = E ⊗q e β 2 N 1≤i<j≤q N n=1 1 S i n =S j n . 2.1.
No triple estimate. The key step in upper bounding the right hand side of [START_REF] Chevillard | On a skewed and multifractal unidimensional random eld, as a probabilistic representation of Kolmogorov's views on turbulence[END_REF] is to restrict the summation to subsets where there are no triple (or more) intersection. More precisely, denote by

F n = {∃(ᾱ, β, γ) : 1 ≤ ᾱ < β < γ ≤ q, S ᾱ n = S β n = S γ n }, (12) 
K n = (13) {∃(ᾱ, β, γ, δ) : 1 ≤ (ᾱ < β), (γ < δ) ≤ q, {ᾱ, β} ∩ {γ, δ} = ∅, S ᾱ n = S β n , S γ n = S δ n }
and let

G T = n∈ 1,T (F n ∪ K n )
be the event that there is no triple (or more) intersection, i.e. that at each given time no more than a pair of particles are involved in an intersection.

The following theorem is the technically involved part of this paper. Its proof will be presented in Section 3.

Theorem 2.1. Fix β ∈ (0, 1). Assume that either q(N ) = q 0 ∈ N is constant, or that q(N ) → ∞ as N → ∞ with the condition [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF]. Then, uniformly in

T ∈ 1, N as N → ∞, (14) 
sup

X∈(Z 2 ) q E ⊗q X e β 2 N T n=1 1≤i<j≤q 1 S i n =S j n 1 G T ≤ ce λ 2 T ,N ( q 2 )(1+o(1)) ,
where c = c( β) > 0 in the case q → ∞ and c = c( β, q 0 ) when q = q 0 , and λ T,N is dened as

(15) λ 2 T,N ( β) = λ 2 T,N = log 1 1 -β2 log T log N
.

Note that as soon as q > 9, the expression in the left side of ( 14) trivially vanishes if X = 0. The X's of interest are those that allow for non-existence of triple or more intersections.

Assuming Theorem 2.1, the proof of Theorem 1.1 is relatively straightforward.

We will need the preliminary results collected in the next subsection. 

η = sup Z∈Z sup x∈Z 2 e κ 2 -1 E x k n=1 1 Sn=Zn < 1, then (17) 
sup

Z∈Z sup x∈Z 2 E x e κ 2 k n=0 1 Sn =Zn ≤ 1 1 -η .
Proof. Let Λ 2 = (e κ 2 -1). We have:

E x e κ 2 k n=1 1 Sn =Zn = E x k n=1 1 + Λ 2 1 Sn=Zn = ∞ p=0 Λ p 2 1≤n1<•••<np≤k E x p i=1 1 Sn i =Zn i = ∞ p=0 Λ p 2 1≤n1<•••<np-1≤k E x   p-1 i=1 1 Sn i =Zn i E Sn p-1   k-np-1 n=1 1 Sn=Zn+n p-1     (16) ≤ ∞ p=0 Λ p-1 2 η 1≤n1<•••<np-1≤k E x p-1 i=1 1 Sn i =Zn i ≤ • • • ≤ ∞ p=0 η p = 1 1 -η .
The next lemma gives an a-priori rough estimate on the moments of

W k (β N ) = W k (β N , 0) when k is small. Lemma 2.3. Let β > 0. Let b N > 0 be a deterministic sequence such that b N = o( √ log N ) as N → ∞. Assume that q = O( √ log N ) > 1. Then, for all k ≤ e b N , E[W k (β N ) q ] = E ⊗q e β 2 N 1≤i<j≤q k n=1 1 S i n =S j n ≤ e 1 π (1+ε N )q 2 β 2 N log(k+1) , for ε N = ε N ( β) → 0 as N → ∞. Proof. Let N i,j k = k n=1 1 S i n =S j n
. By Hölder's inequality, we nd that

E[W k (β N ) q ] ≤ E ⊗q e qβ 2 N 2 1<j≤q N 1,j k q/q = E ⊗2 E ⊗2 e qβ 2 N 2 N 1,2 k S 1 q-1
, by independence of the (N 1,j ) 1<j conditioned on S 1 . We now estimate the above conditional expectation using Lemma 2.2. Let κ 2 = qβ 2 N /2 → 0 and η be as in [START_REF] Dembo | Cover times for Brownian motion and random walks in two dimensions[END_REF]. For any Z ∈ Z and y ∈ Z 2 ,

E y k n=1 1 Sn=Zn ≤ k n=1 sup x p n (x),
where, see Appendix A for an elementary proof, [START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF] ∀n ≥ 1 : sup

x p n (x) := p n ≤ 2 πn . Thus, η ≤ 1 π (1 + o(1))qβ 2 N log(k + 1) → 0, uniformly for k ≤ e b N as N → ∞. Lemma 2.2 then yields that for such k's, E[W k (β N ) q ] ≤ 1 1 -1 π (1 + o(1))qβ 2 N log k q-1 = e 1 π (1+o(1))q 2 β 2
N log(k+1) .

2.3. Proof of Theorem 1.1. We begin by assuming that q(N ) = q 0 is constant or that q(N ) → ∞ as N → ∞ with the condition [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF]. This allows us to apply Theorem 2.1. As a rst step, we will prove that

(19) E[W q N ] ≤ Ce ( q 2 )λ 2 (1+ε N ) ,
where C = 1 if q → ∞ and C = C( β, q 0 ) when q = q 0 , and ε N = ε N ( β) → 0 as N → ∞. As a second step, we treat the general q(N ) case (i.e. only assuming condition [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF]) by a diagonalization argument.

Recall the denitions of λ k,N in [START_REF] Comets | Directed polymers in random environments[END_REF] and that λ = λ N,N ( β). By standard convexity arguments, we note that x ≤ log( 1 1-x ) ≤ x 1-x for all x ∈ [0, 1); hence for all a > 1 and β < 1 such that a β2 < 1,

(20) ∀k ≤ N : a β2 log k log N ≤ λ k,N ( √ a β) 2 ≤ a β2 1 -a β2 log k log N . Now, let I s,t = β 2 N t n=s+1 i<j≤q 1 S i n =S j n and I k = I 0,k , and dene (21) 
M (X) := E ⊗q X e I N and M = sup

X∈(Z 2 ) q M (X).
By [START_REF] Chevillard | On a skewed and multifractal unidimensional random eld, as a probabilistic representation of Kolmogorov's views on turbulence[END_REF], it is enough to have a bound on M (0). In fact what we will give is a bound on M . To do so, we let T = T N > 0 such that log T = o( √ log N ) and introduce the event

τ T := inf{n > T : F n ∪ K n occurs}.
We then decompose M (X) as follows:

M (X) = E ⊗q X e I N 1 τ T ≤N + E ⊗q X e I N 1 τ T >N =: A(X) + B(X).
We start by bounding B(X) from above. By Markov's property,

sup X∈(Z 2 ) q B(X) ≤ sup X∈(Z 2 ) q E ⊗q X [e I T ] sup Y ∈(Z 2 ) q E ⊗q Y [e I N -T 1 τ0>N -T ] ≤ Ce 1 π (1+ε N )q 2 β 2 N log T e ( q 2 )λ 2 N -T ,N (1+o(1)) ≤ Ce ( q 2 )λ 2 (1+o(1)) ,
where in the second inequality, we used Lemma 2.3 and Theorem 2.1 and in the last inequality, we used that β 2 N log T vanishes as N → ∞ and that λ 2 N -T,N < λ 2 ( β). Note that the constant C depends on β and might depend on q 0 in the constant case q = q 0 (because of Theorem 2.1).

We will now deal with A(X) and show that [START_REF] Gu | Gaussian uctuations of the 2d KPZ equation[END_REF] sup

X∈(Z 2 ) q A(X) ≤ M ε N ,
with ε N → 0. This, together with the last two displays, implies that

M (1 -ε N ) ≤ Ce ( q 2 )λ 2 (1+o(1)) .
Absorbing the constant C in the o(1) term in the case that q → ∞, this entails [START_REF] Durrett | Probability: theory and examples[END_REF].

Toward the proof of ( 22), we rst use Markov's property to obtain that

A(X) = N k=T E ⊗q X [e I k +I k,N 1 τ T =k ] ≤ M N k=T E ⊗q X [e I k 1 τ T =k ].
In what follows, we use the phrase "no triple+ at time n" to denote the event that F n ∪ K n does not hold. Similarly, for I ⊂ 1, q , we use the phrase "no triple+ for particles of I" to denote the event (∪ n∈I (F n ∪ K n )) . We then decompose over which event, F n or K n , occured at τ T , and then over which particles participated in the event:

A(X) ≤ M ᾱ, β,γ≤q N k=T E ⊗q X e I k 1 no triple+ in T, k -1 1 S ᾱ k =S β k =S γ k +M ( ᾱ< β) =(γ< δ) N k=T E ⊗q X e I k 1 no triple+ in T, k -1 1 S ᾱ k =S β k ,S γ k =S δ k , (23) 
=: A 1 (X) + A 2 (X).

We next handle A 1 (X), the argument for A 2 (X) is similar. Write

I k = J k + J ᾱ k + J β k + J γ k ,
where

J k = β 2 N k n=1 i<j≤q i,j / ∈{ ᾱ, β,γ} 1 S i n =S j n and J i0 k = β 2 N k n=1 j∈ 1,q \{i0} 1 S i 0 n =S j n .
If we let 1

a + 3 b = 1 with 1 < a ≤ 2 and 1 < b, we have E ⊗q X e I k 1 no triple+ in T, k -1 1 S ᾱ k =S β k =S γ k ≤ E ⊗q X e aJ k 1 no triple+ in T, k -1 for particles of 1, q \ { ᾱ, β, γ} 1 S ᾱ k =S β k =S γ k 1/a (24) × i0∈{ ᾱ, β,γ} E ⊗q X e bJ i 0 k 1 S ᾱ k =S β k =S γ k 1/b . ( 25 
)
We will treat separately the last two factors. Before doing so, we specify our choice of a, b and β. We assume that β2 < 1/72 and a < 3/2, with a close enough to 3/2 (and so b close to 9) in such a way that ( 26)

(i) 8b β2 < 1, (ii) lim sup N →∞ 1 π q 2 β 2 N < 1/a and (iii) lim sup N →∞ β2 1 -a β2 q 2 log N < 1/a.
Note that (ii) and (iii) are assured to hold for a close enough to 3/2 thanks to the assumption [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF] which implies that lim sup N π -1 q 2 β 2 N ≤ 2 3 . We chose β2 < 1/72 to allow (i).

We rst bound the factor appearing in [START_REF] Kupiainen | Integrability of Liouville theory: proof of the DOZZ formula[END_REF].

If k ≤ e (log N ) 1/3
, then it is bounded by

E ⊗q X e aJ k 1/a P ⊗3 (x ᾱ ,x β ,x γ ) S ᾱ k = S β k = S γ k 1/a ≤ Ce 1 π (1+ε N )q 2 aβ 2 N (log(k+1))/a k -2/a ,
for some c > 0 and uniformly in X ∈ (Z 2 ) q , where we have used in the inequality Lemma 2.3 and that

x p k (x) 3 ≤ (p k ) 2 ≤ k -2 by (18). For k ≥ e (log N ) 1/3
, we rely on [START_REF] Claeys | How much can the eigenvalues of a random Hermitian matrix uctuate?[END_REF] to bound the same factor by

P ⊗3 (x ᾱ,x β ,x γ ) S ᾱ k = S β k = S γ k 1/a × E ⊗q X e aJ k 1 no triple+ in T, k -1 for particles in 1, q \ { ᾱ, β, γ} 1/a ≤ Ck -2/a E ⊗q X e aJ T • sup Y E ⊗(q-3) Y e aJ k-T -1 1 no triple+ in 1, k -T -1 for particles in 1, q \ { ᾱ, β, γ} 1/a ≤ Ce 1 π (1+ε N )q 2 aβ 2 N (log T )/a e ( q 2 )λ 2 k,N ( √ a β)/a k -2/a .
For the factor in [START_REF] Gregory | Intersections of random walks[END_REF], we apply the Cauchy-Schwarz inequality to nd that ( 27)

E ⊗q X e bJ i 0 k 1 S ᾱ k =S β k =S γ k 1/b ≤ E ⊗q X e 2bJ i 0 k 1/2b k -1/b ,
where we again used that [START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF]. Now observe that by conditioning on S i0 , we have

x p k (x) 3 ≤ (p k ) 2 ≤ k -2 by
E ⊗q X e 2bJ i 0 k ≤ sup y∈Z 2 E S 1 y sup x∈Z 2 E S 2 x e 2bβ 2 N k n=1 1 S 1 k =S 2 k q-1
,

where uniformly on all nearest neighbors walks Z ∈ Z,

2bβ 2 N sup x∈Z 2 E x k n=1 1 S k =Z k ≤ 4(1 + o(1))b β2 log(k + 1) log N
because of the denition of R N and sup x p n (x) ≤ 2/(πn), see ( 2) and ( 18). Hence by Lemma 2.2 with ( 26)

-(i), sup X∈(Z 2 ) q E ⊗q X e bJ i 0 k 1 S ᾱ k =S β k =S γ k 1/b ≤ 1 1 -8b β2 log(k+1) log N (q-1)/2b k -1/b ≤ e c log(k+1) √ log N k -1/b ,
for some universal constant c > 0, using [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF].

Coming back to [START_REF] Gu | Moments of the 2d SHE at criticality[END_REF], we nd that [START_REF] Nakajima | Fluctuation of two-dimesional stochastic heat equation and KPZ equation in subcritical regime for general initial conditions[END_REF] sup

X∈(Z 2 ) q A 1 (X) ≤ M q 3 e (log N ) 1/3 k=T e 1 π (1+ε N )q 2 β 2 N log(k+1) k -2/a e 3c log(k+1) √ log N k -3/b + CM q 3 e 1 π (1+ε N )q 2 β 2 N log T N k= e (log N ) 1/3 e λ 2 k,N ( √ a β)( q 2 )/a k -2/a e 3c log(k+1) √ log N k -3/b .
By ( 26)-(ii), there exists δ > 0 such that the rst sum in the RHS of ( 28) can be bounded by

M q 3 e (log N ) 1/3 k=T k -1-δ ≤ M Cq 3 T -δ ,
for N large enough. Hence, we can set T = e (log N ) 1/4 (which satises log T = o( √ log N )), so that q 3 T -δ → 0 as N → ∞. Relying on [START_REF] Erd®s | Some problems concerning the structure of random walk paths[END_REF], the second sum in [START_REF] Nakajima | Fluctuation of two-dimesional stochastic heat equation and KPZ equation in subcritical regime for general initial conditions[END_REF] is bounded by

CM q 3 e c log T N k= e (log N ) 1/3 e β2 1-a β2 ( q 2 ) log N log(k+1) e 3c log(k+1) √ log N k -1-1/a ≤ CM q 3 e c log T N k= e (log N ) 1/3 k -1-δ ≤ CM q 3 e -δ(log N ) 1/3 +c(log N ) 1/4
, for some δ, c > 0, where we used ( 26)-(iii). Then again the quantity multiplying M in the last line vanishes as N → ∞, thus from (28) we obtain [START_REF] Gu | Gaussian uctuations of the 2d KPZ equation[END_REF]. When dealing with A 2 , we have to use Hölder's inequality as in ( 24), ( 25) with 4 particles instead of 3, so in this case we can choose a ∼ 3/2 and b ∼ 12, and the condition (i) in ( 26) is satised with the restriction β2 < 1/96. The rest of the argument follows the same line as for A 1 .

As a result, we have shown that (19) holds. When q = q 0 , although the constant C in [START_REF] Durrett | Probability: theory and examples[END_REF] might depend on q 0 , it still yields that W N is bounded in any L p , p > 1. This fact combined with (4) implies the convergence (10) for all xed q, which in particular implies that (8) holds in the case q = q 0 as well.

We now turn to the general case, where we only assume that q(N ) satises [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF]. Suppose that (8) does not hold, so that we can nd ε 0 > 0 and a subsequence q N = q(ϕ(N )) such that [START_REF] Rhodes | Gaussian multiplicative chaos and applications: a review[END_REF] ∀N ∈ N, EW

q N N > e λ 2 ( q N
2 )(1+ε0) .

One can distinguish two cases. If q N is bounded, then up to extracting a subsequence, we can suppose that q N converges to some q 0 ≥ 2. Then, one can check that by (4), we must have EW q N N → e λ 2 ( q 0 2 ) (for example, using Skorokhod's representation theorem and Vitali's convergence theorem with the fact that W N is bounded in any L p ). But this is impossible by [START_REF] Rhodes | Gaussian multiplicative chaos and applications: a review[END_REF]. On the other hand, if q N is not bounded, up to extracting a subsequence we can suppose that q N → ∞. But then ( 29) cannot be true because [START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF] holds with q = q N → ∞. Therefore (8) must hold for any sequence q(N ) that satises [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF].

2.4. On Remark 1.2. We describe the changes needed for obtaining the claim in Remark 1.2. Recall the denitions of F n and K n , see ( 12) and ( 13), and [START_REF] Chevillard | On a skewed and multifractal unidimensional random eld, as a probabilistic representation of Kolmogorov's views on turbulence[END_REF]. Set

A N = N n=1 1 (Fn∪Kn) 1≤i<j≤q 1 S i n =S j n , B N = N n=1 1 Fn 1≤i<j≤q 1 S i n =S j n , C N = N n=1 1 Kn 1≤i<j≤q 1 S i n =S j n Note that for any u N ≥ 1, we can check that E ⊗q X e u N β 2 N A N is bounded above by Ψ N,q ( 
X) of (37) with T = N and β N replaced by β N u N . Using Hölder's inequality it is enough to show (together with the proof of Theorem 2.1, which actually controls sup X Ψ N,q (X)) that for any β < 1 and q N = o(log N/ log log N ), there exist v N → ∞ so that [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF] sup

X E ⊗q X e v N β 2 N B N 1/v N → N →∞ 1, sup X E ⊗q X e v N β 2 N C N 1/v N → N →∞ 1.
We sketch the proof of the rst limit in [START_REF] Sznitman | Brownian motion, obstacles and random media[END_REF], the proof of the second is similar. By Corollary C.2 (applied on the space of q-tuples of path, with f

(Y n ) = v N β 2 N 1≤i<j≤q 1 S i n =S j n 1 Fn ), it suces to show that (31) lim sup N ∈N sup X∈Z q E ⊗q X [v N β 2 N B N ] = 0.
To see (31), x K ∈ 1, N . By [START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF], we have that

E ⊗q X N n=1 1 Fn 1≤i<j≤q 1 S i n =S j n ≤ K n=1 q(q -1) 2 C n + N n=K+1 1≤i<j≤q E ⊗q X 1 Fn 1 S i n =S j n . ( 32 
)
For i < j ≤ q and r ∈ {0, 1, 2}, further denote

F i,j;r n = {∃(ᾱ, β, γ) : ᾱ < β < γ ≤ q, S ᾱ n = S β n = S γ n , |{ᾱ, β, γ} ∩ {i, j}| = r}.
We have that 1≤i<j≤q

E ⊗q X 1 Fn 1 S i n =S j n = 1≤i<j≤q E ⊗q X 2 r=0 1 F i,j;r n 1 S i n =S j n .
We rst focus on the term r = 0. By independence, [START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF] and the union bound,

1≤i<j≤q E ⊗q X 1 F i,j;0 n 1 S i n =S j n ≤ 1≤i<j≤q C n ᾱ< β<γ≤q sup xi∈Z 2 y∈Z 2 3 i=1 P xi (S n = y) ≤ Cq 5 n 3 .
When r = 1, the condition in the indicator function becomes that there exist ᾱ < β ≤ q such that S i n = S j n = S ᾱ n = S β n . Hence, the term for r = 1 is bounded by

1≤i<j≤q ᾱ< β≤q sup xi∈Z 2 y∈Z 2 4 i=1 P xi (S n = y) ≤ Cq 4 n 3 .
Similarly, we can bound the term for r = 2 by a constant times q 3 /n 2 . Using (32), we nd that for all K ∈ 1, N ,

sup

X∈Z q E ⊗q X [v N β 2 N B N ] ≤ Cv N β2 log N q(q -1) 2 log K + q 5 K 2 + q 4 K 2 + q 3 K .
For K = (log N ) 3/4 , and q 2 = o(log N/ log log N ), we nd that (31) holds with a well-chosen v N → ∞.

No triple intersections -Proof of Theorem 2.1

Recall that T ∈ 1, N . For compactness of notation in the rest of the paper, set

σ 2 N = σ 2 N ( β) = e β 2 N -1. (34) 
By (2), there exist δ N = δ(N, β) and δ N = δ (N, β) that vanish as N → ∞ such that (35)

σ 2 N = β2 R N (1 + δ N ) = π β2 log N (1 + δ N ).
3.1. Expansion in chaos. In this section, we show that the moment without triple intersections can be bounded by a rather simple expansion. Introduce the following notation: for n = (n 0 , n 1 , . . . , n k ) and x = (

x 0 , x 1 , . . . , x k ), let p n,x = k i=1 p(n i -n i-1 , x i -x i-1 ). Proposition 3.1. For all X = (x 1 0 , . . . , x q 0 ) ∈ (Z 2 ) q , we have (36) E ⊗q X e β 2 N T n=1 1≤i<j≤q 1 S i n =S j n 1 G T ≤ Ψ N,q (X),
where

Ψ

N,q (X) = ∞ k=0 σ 2k N 1≤n1<•••<n k ≤T,(i1<j1),...,(i k <j k ) x 1 ∈(Z 2 ) k ,...,x q ∈(Z 2 ) k k r=1 1 x ir r =x jr r q i=1 p (0,n1,...,n k ),(x i 0 ,x i ) ,
where we recall (34) for the denition of σ N .

(By convention, here and throughout the paper, the term k = 0 in sums as (37) equals 1.)

Proof. We will use here the lexicographical ordering of 3-tuples (n, i, j) and use the shorthand notation (n

1 , i 1 , j 1 ) < • • • < (n k , i k , j k ) to denote a collection of k 3-tuples satisfying (n 1 , i 1 , j 1 ) < • • • < (n k , i k , j k ) ∈ 1, T × 1, q 2 
with i r < j r for all r ≤ k. For brevity, we write G for G T .

For X = (x 1 0 , . . . , x q 0 ) ∈ (Z 2 ) q , using the identity e

β 2 N 1 S i n =S j n -1 = σ 2 N 1 S i n =S j n , M no triple N,q (X) := E ⊗q X e β 2 N T n=1 1≤i<j≤q 1 S i n =S j n 1 G = E ⊗q X   n∈ 1,T ,i<j≤q 1 + σ 2 N 1 S i n =S j n 1 G   ,
Expand the previous product to obtain that:

(38)

M no triple N,q (X) = ∞ k=0 σ 2k N (n1,i1,j1)<•••<(n k ,i k ,j k ) E ⊗q X k r=1 1 S ir nr =S jr nr 1 G .
Since there are no triple or more particle intersections on the event G, the above sum can be restricted to 3-tuples (n r , i r , j r ) r≤k such that n r < n r+1 for all r < k.

Hence,

M no triple N,q (X) = ∞ k=0 σ 2k N 1≤n1<•••<n k ≤T,(i1<j1),...,(i k <j k ) E ⊗q X k r=1 1 S ir nr =S jr nr 1 G ≤ Ψ N,q (X),
where Ψ is dened in (37), and where we have bounded 1 G by 1 in the inequality.

3.2. Decomposition in two-particle intersections. In this section, we rewrite Ψ N,q in terms of successive two-particle interactions. We generalize a decomposition used in [7, Section 5.1] that was restricted to a third moment computation (q = 3).

The following notation is borrowed from their paper. Let (39)

U N (n, x) :=    σ 2 N E ⊗2 0 e β 2 N n-1 l=1 1 S 1 l =S 2 l 1 S 1 n =S 2 n =x if n ≥ 1,
1 x=0 if n = 0, and (40) U N (n) := z∈Z 2 U N (n, z) =    σ 2 N E ⊗2 0 e β 2 N n-1 l=1 1 S 1 l =S 2 l 1 S 1 n =S 2 n if n ≥ 1, 1 if n = 0.
Observe that, by the identity e

β 2 N 1 S 1 l =S 2 l -1 = σ 2 N 1 S 1 l =S 2 l
, one has for all n ≥ 1,

E ⊗2 0 e β 2 N n-1 l=1 1 S 1 l =S 2 l 1 S 1 n =S 2 n =x = E ⊗2 0 n-1 l=1 1 + σ 2 N 1 S 1 l =S 2 l 1 S 1 n =S 2 n =x = ∞ k=0 σ 2k N n0=0<n1<•••<n k <n E ⊗2 0 k r=1 1 S 1 nr =S 2 nr 1 S 1 n =S 2 n =x . (41) 
Hence for all n ≥ 1:

(42) U N (n, x) = σ 2 N ∞ k=0 σ 2k N n0=0<n1<•••<n k <n=n k+1 x0=0,x1,...,x k ∈Z 2 ,x k+1 =x k+1 r=1 p nr-nr-1 (x r -x r-1 ) 2 .
Now, in the sum in (37), we observe that (only) two particles interact at given Further let X = (X 1 , . . . , X m ) and Y = (Y 1 , . . . , Y m ) with X r = (x 1 r , . . . , x q r ) and Y r = (y 1 r , . . . , y q r ) denote respectively the positions of the particles at time a r and b r . We also write X = (x p 0 ) p≤q , for the initial positions of the particles at time 0. We call a diagram I of size m ∈ N any collection of m couples I = ((i 1 < j 1 ), . . . , (i m < j m )) such that {i r , j r } = {i r+1 , j r+1 }. We denote by D(m, q) the set of all diagrams of size m.

times (n 1 < • • • < n k ). So we dene a 1 = n 1 and b 1 = n r such that (n 1 , n 2 , . . . , n r ) are the successive times that verify (i 1 , j 1 ) = (i 2 , j 2 ) = • • • = (i r , j r ) before a new couple of particles {i r+1 , j r+1 } = {i 1 , j 1 } is considered,
If we re-write Ψ N,q (X) according to the decomposition that we just described, we nd that:

Ψ N,q (X) = ∞ m=0 1≤a1≤b1<a2≤b2<•••<am≤bm≤T X,Y∈(Z 2
) m×q ,(ir,jr) r≤m ∈D(m,q) k1∈ 1,b1-a1+1 ,...,km∈ 1,bm-am+1 See Figure 1 for a pictorial description of the intersections associated with a diagram.

σ 2k1+•••+2km N × p≤q p a1 (x p 1 -x p 0 ) m-
Summing over all the congurations between time a r and b r gives a contribution of σ 2 N 1 x ir r =y ir r when a r = b r , and

∞ k=2 σ 2k N n0=ar<n1<•••<n k-2 <br=n k-1 x0=x ir r ,x1,...,x k-2 ∈Z 2 ,x k-1 =y ir r k-1 i=1 p ni-ni-1 (x i -x i-1 ) 2 = σ 2 N U N (b r -a r , y ir r -x ir r ),
when a r < b r (in this case k r ≥ 2 by denition). It directly follows that:

(43) 

Ψ N,q (X) = ∞ m=0 σ 2m N 1≤a1≤b1<a2≤b2<•••<am≤bm≤T X,Y∈Z m×q ,I=(ir,jr) r≤m ∈D(m,q) A X,a
We can further simplify the expression (43). Let I = (i r , j r ) r≤m ∈ D(m, q) be any diagram. For all r ≤ m, denote by k1 r the last index l < r such that i r ∈ {i l , j l }, i.e. k1 r = sup{l ∈ 1, r -1 : i r ∈ {i l , j l }}. When the set is empty we set k1 r = 0. Dene k2 r similarly for j r instead of i r and let kr = k1 r ∨ k2 r . See gure 1.

Proposition 3.2. For all X ∈ (Z 2 ) q , (45)

Ψ N,q (X) = ∞ m=0 σ 2m N 1≤a1≤b1<a2≤b2<•••<am≤bm≤T x,y∈Z m ,I=(ir,jr) r≤m ∈D(m,q)
ÃX,a,b,x,y,I , where ÃX,a,b,x,y,I = p∈{i1,j1}

p a1 (x 1 -x p 0 ) m r=1 U N (b r -a r , y r -x r ) × m-1 r=1 p(a r+1 -bk1 r+1 , x r+1 -yk1 r+1 )p(a r+1 -bk2 r+1 , x r+1 -yk2 r+1 ). (46) 
Proof. Denote x r = x ir r and y r = y ir r . We obtain (46) from (44) by using the semi group property of the random walk transition probabilities and summing, at intersection times, over the location of particles not involved in the intersection.

Proposition 3.3. We have that

(47) sup X∈(Z 2 ) q Ψ N,q (X) ≤ ∞ m=0 I∈D(m,q) σ 2m N A m,N,I , where (48) 
A m,N,I = ui∈ 1,T ,vi∈ 0,T ,1≤i≤m

m i=1 ui≤T p 2u1 U N (v m ) m-1 r=1 U N (v r )p vr+2ur+1+2ũr+1 . with (49) ũr = r-1 i= kr+1 u i if kr < r -1, ur-1 2 if kr = r -1,
and p k = sup x∈Z 2 p k (x).

Proof. By (45), it is enough to show that (50)

sup X∈(Z 2 ) q 1≤a1≤b1<a2≤b2<•••<am≤bm≤T x,y∈Z m ÃX,a,b,x,y,I ≤ A m,N,I . i m-1 j m-1 j m a m-1 b m-1 a m b m exchanges • • • exchanges • • • i m-1 j m-1 i m j m a m-1 b m-1 a m b m ak m • • • • • • Figure 1.
Two types of diagrams. Note the dierent types of exchanges. In the top diagram, km = m -1 and the mth jump is considered short (the notion of short and long jumps is dened in Section 3.5). In the bottom, the mth jump is considered long (with respect to a given L) if m -km > L + 2. In that case, both paths i m , j m will be involved in an intersection not before a m-L-2 .

We begin by summing on y m , which gives a contribution of

ym U N (b m -a m , y m -x m ) = U N (b m -a m ), where U N (n) is dened in (40). Then summing on x m gives a factor xm p(a m -bk1 m , x m -yk1 m )p(a m -bk2 m , x m -yk2 m ) = p(2a m -bk1 m -bk2 m , yk1 m -yk2 m ) ≤ p 2am-bk1 m -bk2 m .
By iterating this process we obtain that the sum on x, y is bounded (uniformly on the starting point X) by

p 2a1 U N (b m -a m ) m-1 r=1 U N (b r -a r )p 2ar+1-b k1 r+1 -b k2 r+1 .
If we introduce the change of variables u i = a i -b i-1 and v i = b i -a i with b 0 = 0, then equation ( 50 

E W n (β N ) 2 ≤ 1 1 -σ 2 N R n .
Furthermore, there exists

ε n = ε(n, β) → 0 as n → ∞, such that for all N ≥ n, (53) 
E W n (β N ) 2 = (1 + ε n ) 1 1 -β2 log n log N .
Proof. We rst choose N 0 = N 0 ( β) large enough such that for all N ≥ (n ∨ N 0 ),

we have σ 2 N R n < 1.
That this is possible follows from ( 18) which yields that (54)

∀n ∈ N, R n = n s=1 p 2s (0) ≤ 1 π n s=1 1 s ≤ 1 π log(n + 1).
For the rest of the proof, we continue in this setup. Similarly to (41), we have

(letting n 0 = x 0 = 0) that E W n (β N ) 2 = E 0 e β 2 N n k=1 1 S 1 k =S 2 k = ∞ k=0 σ 2k N 0<n1<•••<n k ≤n x1,...,x k ∈Z 2 k i=1 p ni-ni-1 (x i -x i-1 ) 2 .
Hence, we obtain by letting n i -n i-1 run free in 1, n that

E W n (β N ) 2 ≤ ∞ k=0 σ 2k N n m=1 x∈Z 2 p m (x) 2 k = ∞ k=0 σ 2k N R k n = 1 1 -σ 2 N R n ,
which gives (52). On the other hand, if we let n i -n i-1 run free in 1, n/k , we have

E W n (β N ) 2 ≥ 1 + ∞ k=1 σ 2k N   n/k m=1 x∈Z 2 p m (x) 2   k ≥ 1 + log n k=1 σ 2k N R k n/ log n = 1 -(σ 2 N R n/ log n ) log n+1 1 -σ 2 N R n/ log n
, By (35) and the fact that R n ∼ 1 π log n as n → ∞ by (2), we nd that for all N ≥ n,

E W n (β N ) 2 ≥ (1 + δ n ) 1 1 -β2 log n log N , with δ n = δ n ( β) → 0 as n → ∞.
Combining this with (52) entails (53).

Proposition 3.5. For all M ≥ 1, we have:

(55) M n=0 U N (n) = E W 2 M .
Moreover, there is C( β) > 0 such that, as N → ∞ and for all n ≤ N , (56)

U N (n) ≤ C 1 1 -β2 log n log N 2 1 n log N .
Remark 3.6. When n → ∞, one can take the constant C that appears in ( 56)

arbitrarily close to one. See Appendix B.

Proof. By (42), we have, for n ≥ 1,

U N (n) = σ 2 N ∞ k=1 σ 2(k-1) N 0<n1<•••<n k-1 <n k :=n x1,...,x k ∈Z 2 k i=1 p ni-ni-1 (x i -x i-1 ) 2 = σ 2 N ∞ k=1 σ 2(k-1) N 0<n1<•••<n k-1 <n k :=n k i=1 p 2ni-2ni-1 (0). Therefore, M n=0 U N (n) = 1 + ∞ k=1 σ 2k N 0<n1<•••<n k-1 <n k ≤M x1,...,x k ∈Z 2 k i=1 p ni-ni-1 (x i -x i-1 ) 2 = E[W 2 M ], (57) 
which yields (55).

We now prove (56) by expressing U N as a function of a renewal process, see [START_REF] Caravenna | The Dickman subordinator, renewal theorems, and disordered systems[END_REF] or [START_REF] Giacomin | Random polymer models[END_REF]Chapter 1] for the general framework in the context of the pinning model.

From (57), we have the following representation for U N (n) when n ≥ 1:

U N (n) = ∞ k=1 (σ 2 N R N ) k P τ (N ) k = n ,
where the τ P τ

(N ) k = n ≤ CkP T (N ) 1 = n P T (N ) 1 ≤ n k-1
.

Hence, using that ∞

k=1 ka k-1 = 1 (1-a) 2 for a < 1, U N (n) ≤ C ∞ k=1 (σ 2 N R N ) k kP T (N ) 1 = n P T (N ) 1 ≤ n k-1 = C p 2n (0) R N σ 2 N R N 1 -σ 2 N R N Rn R N 2 ,
which gives (56) by ( 2), ( 18) and (35).

3.4. Summing on the v i 's. In the following we denote ( 59)

F (u) = 1 u 1 1 -β2 log(u) log N
.

By dierentiation with respect to u one checks that F is non-increasing.

Proposition 3.7. There exists N 0 ( β) > 0 and

ε N = ε(N, β) 0 as N → ∞, such that for all N ≥ N 0 ( β), (60) 
sup

X∈(Z 2 ) q Ψ N,q (X) ≤ ∞ m=0 σ 2m N I∈D(m,q) 1 π m-1 Ãm,N,I ,
where, recalling (49),

Ãm,N,I = 1

1 -β2 ui∈ 1,T ,1≤i≤m (1 + ε N ) m p 2u1 m r=2 F (u r + ũr )1 r i=1 ui≤T .
Proof. By (53), ( 48) and ( 55), summing over v m in A m,N,I gives a factor bounded by 1

1-β2 (1 + o(1)). We will now estimate the sum over the variable v m-1 . Let w = u m + ũm . (Note that by denition 3/2 ≤ w ≤ T ≤ N , and that w might be a non-integer multiple of 1/2.) Writing v = v m-1 , the sum over v m-1 in (48) gives a factor (62)

T v=0 U N (v)p v+2um+2ũm =: S ≤w + S >w ,
where S ≤w is the sum on the LHS of (62) restricted to v ≤ w . Using (56) and [START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF], there exists a constant C = C( β) > 0 such that (63)

S >w ≤ C log N T v= w +1 1 v 2 ≤ 1 log N C w .
Using (51) and ( 54), (64)

S ≤w ≤ p 2w w v=0 U N (v) = p 2w E[W 2 w ] ≤ p 2w 1 1 -σ 2 N R w .
where the upper bound holds by ( 52) for all N ≥ N 0 ( β) since w ≤ N . Let δ N = δ(N, β) → 0 such that (35) holds, and let N 0 = N 0 ( β) > N 0 ( β) be such that sup N ≥N 0 sup n≤N β2 1+log n log N (1 + δ N ) < 1. By ( 18) and ( 54), we obtain that

p 2w 1 1 -σ 2 N R w ≤ 1 π 1 w 1 1 -β2 1+log w log N (1 + δ N )
.

Moreover, as there is

C( β) ∈ (0, ∞) such that sup N ≥N 0 sup n≤N 1 1 -β2 1+log n log N (1 + δ N ) ≤ C( β),
we see that there exists ε N = ε (N, β) N →∞ 0 such that for all n ≤ N ,

1 1 -β2 1+log n log N (1 + δ N ) - 1 1 -β2 log n log N ≤ ε N 1 -β2 log n log N
.

Coming back to (64), we obtain that for all N ≥ N 0 ( β),

S ≤w ≤ 1 πw

1 + ε N 1 -β2 log w log N
.

We nally obtain from ( 65) and ( 63) that there exists ε N = ε (N, β) N →∞ 0 such that the sum in ( 62) is smaller than

(1 + ε N ) 1 πw 1 1 -β2 log w log N = (1 + ε N ) 1 π F (u m + ũm ) .
Repeating the same observation for v m-2 , . . . , v 1 leads to Proposition 3.7.

3.5. The induction pattern. Our next goal is to sum over (u r ) r≤m that appear in (61). We will sum by induction starting from r = m and going down to r = 1.

To do so, we rst need to dene the notion of good and bad indices r. While performing the induction, encountering a bad index will add some nuisance term to the estimate. We will then show that, for typical diagrams, the bad indices are rare enough so that the nuisance can be neglected.

Let L = L N ∈ N \ {1, 2} to be determined later. Given a diagram I ∈ D(m, q), we say that r ∈ 1, m is a long jump if r -kr > L + 2, which means that the last times that the two particles i r , j r have been involved in an intersection are not too recent. We say that r is a small jump if it is not a long jump. (See Figure 1 for a pictorial description of short (top) and long (bottom) jumps.) Since small jumps reduce drastically the combinatorial choice on the new couple that intersects, the diagrams that will contribute to the moments will contain mostly long jumps. Let K = K(I) denote the number of small jumps and s 1 < • • • < s K denote the indices of small jumps. For all i ≤ K such that s i -s i-1 > L + 1, we mark the following

indices {s i -kL -1, k ∈ N, s i -kL -1 > s i-1 } as stopping indices.
We then call any long jump r a fresh index if r is stopping or if r + 1 is a small jump. Note that any stopping index is a fresh index. If m is a long jump we also mark it as a fresh index. The idea is that all indices smaller than a fresh index avoid nuisance terms, until we stumble on a stopping index or a small jump; we remark that since our induction will be downward from m, these nuisance-avoiding indices occur in the induction following a fresh index. Hence we say that an index r is good if it is a long jump that is not fresh. An index k is bad if it is not good.

For a given diagram, one can easily determine the nature of all indices via the following procedure: (i) mark all small jumps; (ii) mark every stopping index; (iii) mark all fresh indices; (iv) all the remaining indices that have not been marked are good indices.

For all I ∈ D(m, q), we dene for all r < m ϕ(r) = ϕ(r, I) = inf{r ≥ r, r is fresh} -L if r is not a stopping index and r + 1 is a long jump, r otherwise.

We also set ϕ(m) = m. Note that because of stopping indices, the function ϕ satises ϕ(r) ≤ r. Here are a few immediate observations: Lemma 3.8.

(i) If r is good, then r + 1 is a long jump. (ii) If r ∈ 2, m -1 is good, then ϕ(r -1) = ϕ(r). (iii) If r ∈ 2, m is fresh, then ϕ(r -1) = r -L.
Proof. Proof of (i). Suppose that r is good. It must be that r < m since by denition m is either fresh or a small jump. Now, r + 1 must be a long jump otherwise r would be fresh.

Proof of (ii). Let r ∈ 2, m -1 be a good index. We distinguish two cases. First suppose that r -1 is not a stopping index. Then r -1 cannot be fresh because r is not a small jump. Therefore ϕ(r -1) = inf{r > r -1, r is fresh} -L. Furthermore, by (i), we have that ϕ(r) = inf{r ≥ r, r is fresh} -L and thus ϕ(r -1) = ϕ(r). Now assume that r -1 is stopping. Then ϕ(r -1) = r -1. Moreover, by denition r, . . . , r + L -1 are long jumps and either r + L -1 is a stopping index or r + L is a small jump. Therefore r + L -1 is a fresh index and r, . . . , r + L -2 are good, so that ϕ(r) = (r + L -1) -L = r -1 = ϕ(r -1).

Proof of (iii). Let r ∈ 2, m be a fresh index. We rst note that r -1 cannot be a stopping index. Indeed, if r is a stopping index, then r -1 cannot be stopping by denition; if r is not a stopping index, then as r is fresh, r + 1 must be a small jump and thus r -1 cannot be stopping. Now, as r -1 is not stopping and r is fresh, we obtain that ϕ(r -1) = r -L. (Note that r -1 cannot be fresh because r -1 is not stopping and r is a long jump.)

For all v ∈ [1, T ], we further let f (v) = log N β2 log 1 -β2 log v log N 1 -β2 log T log N
.

Note that f is non-increasing. Recall (49) and the denition of F in (59).

Lemma 3.9. For all m ≥ 2,

I ∈ D(m, q), k ∈ 1, m -1 and m-k i=1 u i ≤ T with u i ∈ 1, T , (66) ui∈ 1,T ,m-k<i≤m m r=m-k+1 F (u r + ũr )1 m-k+1 i=1 ui≤T ≤ k i=0 c k i (k -i)! 1 1 -β2 i f   m-k i=ϕ(m-k) u i   k-i . with c 1 0 = 1, c 1 1 = 2, c k+1 i ≤ c k i + 2γ m k i-1 j=0 c k j for i ≤ k + 1 with γ m k = 1 m-k is bad and c k i = 0 for i > k.
Remark 3.10. The c k i 's depend on m and I ∈ D(m, q).

Before turning to the proof, we need another result that plays a key role in the proof of Lemma 3.9 and which claries the role of good indices.

Lemma 3.11. For all k ∈ 0, m -2 , j ≤ k and m-k-1 i=1

u i ≤ T with u i ∈ 1, T , (67) 
S k f j (u 1 , . . . , u m-k-1 ) := T u m-k =1 F (u m-k + ũm-k )f   m-k i=ϕ(m-k) u i   j 1 m-k i=1 ui≤T ≤ 1 j + 1 f   m-k-1 i=ϕ(m-k-1) u i   j+1 + γ m k j+1 l=1 j! (j + 1 -l)! 2 1 -β2 l f   m-k-1 i=ϕ(m-k-1) u i   j+1-l .
Remark 3.12. When m -k is good, the right hand side of (67) is reduced to a single term. When m -k is bad, a nuisance term appears.

Proof. We divide the proof into three cases.

Case 1: m -k is good. Necessarily m -k + 1 is a long jump by Lemma 3.8-(i), so if we let r fresh = inf{r > m -k, r is fresh}, then ϕ(m -k) = r fresh -L. Because of the presence of stopping points, we have that r fresh -(m -k) ≤ L -1. Since also r fresh > m -k, we obtain

(m -k) -L ≤ ϕ(m -k) ≤ (m -k) -1. Dene v := m-k-1 i=ϕ(m-k) u i ∈ 1, T .
As m -k is a long jump, we rst observe that

(68) ũm-k ≥ u m-k-1 + • • • + u m-k-L-1 ≥ v.
Since F and f are non-increasing, see (59), this implies that

S k f j ≤ T u m-k =1 F (u m-k + v) f (u m-k + v) j 1 u m-k +v≤T ≤ T v 1 u 1 1 -β2 log(u) log N f (u) j du = - 1 j + 1 f (x) j+1 T v = 1 j + 1 f (v) j+1 ,
where in the comparison to the integral, we have used that F (x)f (x) j decreases in 

S k f j = S ≤v k f j + S >v k f j ,
where S ≤v k f j is the restriction of the sum in S k f j to u m-k ∈ 1, v . Given that m -k is a long jump, the bounds (68) hold again. Hence, using that F and f are non-increasing, we nd that (70)

S ≤v k f j ≤ v u m-k =1 1 u m-k + v 1 1 -β2 log(u m-k +v) log N f (u m-k ) j 1 u m-k +v≤T ≤ 1 v 1 1 -β2 f (1) j + v 1 f (x) j dx ,
by comparison to an integral. By integrating by part and using that f (x) = -1

x

1 1-β2 log(x) log N
, we see that for all j ≥ 1,

f (1) j + v 1 f (x) j dx = vf (v) j -j v 1 xf (x)f (x) j-1 dx ≤ vf (v) j + 1 1 -β2 v 1 f (x) j-1 dx.
If we iterate the integration by part, we obtain that

f (1) j + v 1 f (x) j dx ≤ v j i=0 j! (j -i)! 1 1 -β2 i f (v) j-i ,
and so (71)

S ≤v k f j ≤ j i=0 j! (j -i)! 1 1 -β2 i+1 f (v) j-i .
On the other hand, we have

S >v k f j ≤ T u m-k =v+1 1 u m-k 1 1 -β2 log(u m-k ) log N f (u m-k ) j ≤ T v 1 x 1 1 -β2 log(x) log N f (x) j dx = - 1 j + 1 f (x) j+1 T v ≤ 1 j + 1 f (v) j+1 .
Combining the two previous estimates yields (67).

Case 3: m -k is a small jump. We have that f

( m-k i=ϕ(m-k) u i ) ≤ f (u m-k ). Moreover ũm-k ≥ u m-k-1
2 always holds. Hence, if we use the same decomposition as in (69) with = u m-k-1 , we nd that

S ≤v k f j ≤ v u m-k =1 1 u m-k + v/2 1 1 -β2 log(u m-k +v/2) log N f (u m-k ) j 1 u m-k +v/2≤T ≤ 2 v 1 1 -β2 f (1) j + v 1 f (x) j dx ≤ 2 j i=0 j! (j -i)! 1 1 -β2 i+1 f (v) j-i ,
where we have used the integration by part from Case 2. Furthermore, we have

S >v k ≤ 1 j+1 f (v) j+1 as in Case 2.
Finally, since m -k is bad we have ϕ(m -k -1) = m -k -1 and therefore (67) follows.

Proof of Lemma 3.9. We prove the lemma by induction on k. The case k = 1 follows from Lemma 3.11 with j = k = 0.

Assume now that (66) holds for some k ∈ 1, m -2 . Then by (67) we obtain that the LHS of (66) for the index k + 1 is smaller than the sum of all the entries of the following matrix, where we have set µ = 1 -

β2 and f = f (v) with v = m-k-1 i=ϕ(m-k-1) u i :           c k 0 (k+1)! f k+1 2γ m k c k 0 k!µ f k 2γ m k c k 0 (k-1)!µ 2 f k-1 • • • 2γ m k c k 0 µ k f 2γ m k c k 0 µ k+1 0 c k 1 k!µ f k 2γ m k c k 1 (k-1)!µ 2 f k-1 . . . 2γ m k c k 1 µ k f 2γ m k c k 1 µ k+1 0 0 c k 2 (k-1)!µ 2 f k-1 . . . 2γ m k c k 2 µ k f 2γ m k c k 2 µ k+1 . . . . . . 0 0 0 . . . c k k µ k f 2γ m k c k k µ k+1          
, and summing over the columns gives (66) for k + 1.

Recall (61). Lemma 3.9 yields the following.

Proposition 3.13. There exists

C = C( β) > 0 and ε N = ε(N, β) → 0 as N → ∞, such that (72) Ãm,N,I ≤ C(1 + |ε N |) m m-1 i=0 c m-1 i (m -i)! × log N β2 m-i 1 1 -β2 i λ 2(m-i) T,N
, where λ T,N is dened in [START_REF] Comets | Directed polymers in random environments[END_REF].

Proof of Proposition 3.13. By Proposition 3.7 and Lemma 3.9 applied to k = m-1,

we have:

Ãm,N ≤ 1 1 -β2 (1 + ε N ) m T u1=1 C u 1 m-1 i=0 c m-1 i (m -1 -i)! f (u 1 ) m-1-i 1 1 -β2 i ≤ C 1 -β2 (1 + ε N ) m m-1 i=0 c m-1 i (m -i)! f (1) m-i 1 1 -β2 i ,
where the second inequality comes from a comparison to an integral. This yields (72).

Lemma 3.14. all I ∈ D(m, q), for all k ≤ m:

(73) ∀i ≤ k, c k i ≤ 3 i k-1 r=1 (1 + γ m r ).
Proof. We prove it by induction on k. The estimate holds for k = 1 since c 1 0 = 1 and c 1 1 = 2. Suppose that (73) holds for some k ≤ m -1. Then, for all i ≤ k + 1,

c k+1 i ≤ c k i + 2γ m k i-1 j=0 c k j ≤ k-1 r=1 (1 + γ m r )   3 i + 2γ m k i-1 j=0 3 j   ≤ 3 i k r=1
(1 + γ m r ). 

sup X∈(Z 2 ) q Ψ N,q (X) ≤ ce λ 2 T ,N ( q 2 )+o(q 2 )
.

for some c = c( β) when q → ∞ and c = c( β, q 0 ) when q(N ) = q 0 is a constant.

Using Proposition 3.7, we have

sup

X∈(Z 2 ) q Ψ N,q (X) ≤ ∞ m=0 σ 2m N 1 π m-1 I∈D(m,q)
Ãm,N,I , where (72) gives an upper bound on the Ãm,N,I . Observe that by (73), we have

c m-1 i ≤ 3 i 2 m-1 i=1 1 i is bad ≤ 3 i 2 2n(I)+m/L+1 ,
where n(I) is the number of small jumps in I. Indeed, an index i is bad if it is a small jump or a fresh index. The number of small jumps is n(I). A fresh index is either a stopping index or an index adjacent to a small jump or m, so the number of fresh indices is at most 1+n(I) plus the number of stopping indices. Since stopping indices are spaced at least L steps apart, there are at most m/L stopping indices. Hence there are at most 2n(I) + m/L + 1 bad indices. For a xed n ≤ m, let us compute the number of diagrams in D(m, q) such that n(I) = n. One has rst to choose the location of the bad jumps, which gives m n possibilities. Now if m is a small jump (m -km ≤ L + 2), it means that at least one of the two particles {i m , j m } is the same as one of the particles {i m-L+2 , j m-L+2 , . . . , i m-1 , j m-1 }, therefore there are at most 2Lq choices for the couple (i m , j m ). On the other hand, if {i m , j m } is a long jump, there are at most q 2 possibilities. By repeating the argument, we nally nd that the number of diagrams in D(m, q) such that n(I) = n is less than

m n (2Lq) n q 2 m-n . 
Hence, by (75), Proposition 3.13, Lemma 3.14 and (35), there exists ε N 0

such that sup X∈(Z 2 ) q Ψ N,q (X) ≤ C( β)× ∞ m=0 (1 + ε N ) m m n=0 m n (2Lq) n q 2 m-n m i=0 3 i 2 2n+m/L+1 (m -i)! β2 log N i λ 2(m-i) T,N 1 -β2 i .
The sum over n gives a factor of (8Lq q 2 ) m . Exchanging the sum in i and m entails sup

X∈(Z 2 ) q Ψ N,q (X) ≤ C ∞ i=0 (1 + ε N ) i 3 i 2 i/L β2 log N i 8Lq + q 2 i 1 1 -β2 i × ∞ m=i (1 + ε N ) m-i × 8Lq + q 2 m-i 2 (m-i)/L (m -i)! λ 2(m-i) T,N
.

So if we assume that (76)

r = 3(1 + ε N ) 2 1/L 1 -β2 β2 log N 8Lq + q 2 < 1,
we obtain the bound:

(77) sup X∈(Z 2 ) q Ψ N,q (X) ≤ C 1 -r e (1+ε N )(8Lq+( q 2 ))2 1/L λ 2 T ,N .
If q(N ) = q 0 ∈ N is constant, we can let L = 3. Then, the condition (76) is trivially satised since r → 0 as N → ∞ for any xed β < 1. Hence (74) holds in this case. (In fact, when q is constant, it is not necessary to introduce the distinction between good and bad indexes, as one can treat every index as a bad index in the induction (Lemma 3.9 and Lemma 3.11) and still arrive to (74) with the same following arguments.) If q = q(N ) → ∞, then we can choose any L → ∞ such that L = o(q), so that together with [START_REF] Caravenna | On the moments of the (2+1)dimensional directed polymer and stochastic heat equation in the critical window[END_REF], the estimate (74) holds.

Discussion and concluding remarks

We collect in this section several comments concerning the results of this paper.

(1) Our results allow one already to obtain some estimates on the maximum of 1) ,

Y N (x) := log W N (β N , x) over subsets D ⊂ [0, 1]
P Y * N ≥ δ log N ≤ 2N 2γ P Y N (0) ≥ δ log N ≤ 2N 2γ E[W q N ]e -qδ √ log N ≤ N 2γ+ q 2 λ 2 2 log N -qδ √ log N +o ( 
where we used [START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF] in the last inequality. The optimal q (disregarding the constraint in ( 7)) is q/ √ log N = δ/λ 2 , and for that value the right side of the last display decays to 0 if δ 2 > 4γλ 2 . The condition on q in (7) then gives the constraint that γ < 1 6 λ 2 1-β2 β2 , which for β small reduces to γ < 1/6. Thus, our estimates only allow one to consider, for β small, the maximum over small subsets, if one shoots for the conjectured optimal estimate. (We note that one would hope for γ = 1/2, which would allow to consider the maximum over x ∈ [0, 1] 2 .)

(2) In view of the last sentence in Remark 1.2, it would be of interest to obtain a lower bound on E[W q N ] that matches the upper bound, that is, E[W q N ] ≥ e ( 2 q )λ 2 (1-ε N ) . This is the topic of work in progress that will be reported elsewhere.

Proof. Since (S 1 n -S 2 n )

= (S 2n ), we write (79) We compute the norm of the dierence which, using that |e -x -1| ≤ |x| for x ≥ 0, is less than

U N (n + 1) = σ 2 N E 0 e β 2
E 0   e β 2 N n i=1 1 S 2i =0 1 S2n=0 × β 2 N n- j= 1 S2j =0   = β 2 N n- j= E 0 e β 2 N j i=1 1 S 2i =0 1 S2j =0 E 0 e β 2 N n-j i=1 1 S 2i =0 1 S 2(n-j) =0 .
where we have used Markov's property in the second line. By (79) and (56), the last sum is smaller than

Cβ 2 N n- j= 1 j 1 n -j ≤ 2Cβ 2 N n/2 j= 1 j 1 n/2 ≤ 1 n C β 2 N log n n ≤ 1 n C ε n = o(n -1
).

Since the left hand side of (80) is bigger than cn -1 for some constant c > 0, this shows (80). = o(n -1 ).

We now estimate the sum on ∆ x for |x| ≤ √ n ε/4 . We start by bounding the expectation inside the denition of ∆ x : This completes the proof of (81). Email address: clement.cosco@gmail.com, ofer.zeitouni@weizmann.ac.il

and we let k 1 =

 1 r be the number of times the couple is repeated. Dene then a 2 ≤ b 2 , a 3 ≤ b 3 , . . . , a m ≤ b m similarly for the next interacting couples, with m denoting the number of alternating couples and k 1 , . . . , k m the numbers of times the couples are repeated successively.

  •<n kr -2 <br z 1 ∈(Z 2 ) kr -2 ,...,z q ∈(Z 2 ) kr -2 ,n1,...,n kr -2 ,br),(x p r ,z p 1 ,...,z p kr -2 ,y p r ) .

  ,b,X,Y,I , where A X,a,b,X,Y,I = p≤q p a1 (x p 1 -x p 0 ) m r=1 U N (b r -a r , y ir r -r+1 -b r , x p r+1 -y p r ).

)

  i being i.i.d. random variables with distribution P T (N ) i = n = 1 R N p 2n (0)1 1≤n≤N , and R N = N n=1 p 2n (0). By [6, Proposition 1.5], there exists C > 0 such that for all n ≤ N , (58)

  x ∈ [1, . . . T ]. Given that ϕ(m -k -1) = ϕ(m -k) by Lemma 3.8-(ii), we have the identity v = m-k-1 i=ϕ(m-k-1) u i . Hence (67) holds.Case 2: m -k is fresh. By 3.8-(iii), we have ϕ(m -k -1) = m -k -L.

N n i=1 1 S

 1 2i =0 1 S 1 2n =0 . Consider = n = n 1-εn with ε n = 1 log log n , so that n = o(n) and ε n → 0.

First step: 1 S 2 N ( i=1 1 S

 121 As n → ∞ with n ≤ N , 2i =0 1 S2n=0 ∼ E 0 e β 2i =0 + n i=n-1 S 2i =0 ) 1 S2n=0 .

E 0 e β 2 N ( i=1 1 S∼ E 0 e β 2 N i=1 1 S 2 E 0 e β 2 N i=1 1 S 2 E 0 e β 2 N i=1 1 S 2 N i=1 1 S 2 N i=1 1 S 2 N i=1 1 SSince E 0 e β 2 N i=1 1 Sn ε/ 4 |∆ x | ≤ C |x|> √ n ε/ 4 E 0 e β 2 N i=1 1 SE 0 e β 2 N i=1 1 S 2 N i=1 1 S 2i =0 1 p p 2 (x) 1 q 2 n , ≤ Ce - 1 2q n ε/ 2

 2121221221212121214421212121212 Second step: As n → ∞ with n ≤ N , (81) 2i =0 + n i=n-1 S 2i =0 ) 1 S2n=0 2i =0 E 0 e β 2 N n i=n-1 S 2i =0 1 S2n=0 .By Markov's property, we can write the LHS of (81) asx∈Z 2i =0 1 S 2 =x E x e β 2 N n-i=n-2 1 S 2i =0 1 S 2n-=0 = x∈Z 2i =0 1 S 2 =x E 0 e β 2i =0 1 S 2n-=x .Therefore the dierence in (81) writesx∈Z 2 ∆ x with ∆ x := E 0 e β 2i =0 1 S 2 =x E 0 e β 2i =0 1 S 2n-=0 -1 S 2n-=x . 2i =0 ≤ C( β) by (52), we have |x|> √ 2i =0 1 S 2 =x .By Hölder's inequality with p -1 + q -1 = 1, and p small enough so that √ p β < 1, 2i =0 1 S 2 =x ≤ E 0 e pβ ≤ C( β) -1 n e -

E 0 e β 2 Ni=1 1 S 2 E 0 e β 2 Ni=1 1 SE 0 e β 2 N i=1 1 S

 2122121 2i =0 1 S 2n-=0 -1 S 2n-=x = y∈Z 2i =0 1 S =y (p 2n-2 (y) -p 2n-2 (y -x)) .By the same argument as above, we can prove that the above sum restricted to |y| ≥ √ n ε/4 is negligible with respect to n -1 , uniformly for |x| ≤ √ n ε/4 . On the other hand, by the local limit theorem we havesup |x|≤ √ n ε/4 ,|y|≤ √ n ε/4 |p 2n-2 (y) -p 2n-2 (y -x)| = o(n -1 ).since n n ε/2 = n 1-εn/2 = o(n). Thus, the quantity in (82) is bounded uniformly for |x| ≤ √ n ε/4 by 2i =0 × o(n -1 ) = o(n -1 ).

1 S 2 N i=1 1 SE 0 e β 2 N n i=1 1 S 2 N i=1 1 S 2i =0 2 pE 0 e β 2 N i=1 1 S 2i =0 ∼ 1 1- 2 . 1 .

 121212221121 Third step: As n → ∞ with n ≤ N , 2i =0 1 S2n=0 ∼ E 0 e β 2i =0 p 2n (0).Equivalence (83) can be proven by following the same line of arguments as used to prove (81), hence we omit its proof. Now, combining the three steps leads to the equivalence 2i =0 1 S2n=0 ∼ E 0 e β 2n (0). By (53), as log ∼ log n, we have β2 log n log N , and so (78) follows from (79) and the last two displays.Appendix C. Khas'minskii's lemma for discrete Markov chainsThe following theorem is another discrete analogue of Khas'minskii's lemma, compare with Lemma 2.2.Theorem C.1. Let (Y n ) n be any markov chain on a discrete state-space E and letf : E → R + . Then for all k ∈ N, f (Yn) ≤ 1 1 -η 0 .Proof. Denote by D n = e f (Yn) -1. We have, Let (Y n ) n be any markov chain on a discrete state-space E andlet f : E → [0, 1]. Then for all k ∈ N, ifProof. Simply observe that e f (x) -1 ≤ e c f (x) and apply Theorem C.1. Clément Cosco, Ceremade, Universite Paris Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France Ofer Zeitouni, Department of Mathematics, Weizmann Institute of Sciences, Rehovot 76100, Israel.

  Let Z be the set of all nearest-neighbor walks on Z 2 , that is Z ∈ Z if Z = (Z i ) i∈N where Z i ∈ Z 2 and Z i+1 -Z i ∈ {±e j , j ≤ d} where e j are the canonical vectors of Z 2 . If for some k ∈ N and κ ∈ R, one has

	2.2. A short time a priori estimate. The following lemma is a variation on
	Khas'minskii's lemma [30, p.8, Lemma 2.1].
	Lemma 2.2. (16)

  + 2u r+1 + 2ũ r+1 with the monotonicity of p n in n, which follows from .3. Estimates on U N . It is clear from Proposition 3.3 that the function U N plays a crucial rote in our moment estimates, which we will obtain by an induction in the next subsection. In the current subsection, we digress and obtain a-priori estimates on U N (and E[W N (β N ) 2 ]). Appendix B contains some improvements that are not needed in the current work but may prove useful in follow up work. Proposition 3.4. There exists N 0 = N 0 ( β) such that for all N ≥ N 0 and all

	(51)	y p n+1 = sup	x	p

) follows from combining that 2a r+1 -bk1 r+1 -bk2 r+1 ≥ v r n (x)p 1 (y -x) ≤ p n . 3n ≤ N ,

(52)

  2 . Specically, let γ > 0 be given and dene Y

* N = sup x∈D Y N (x), where |D| = N 2γ . By Chebyshev's inequality we have that

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 692452). The rst version of this work was completed while the rst author was with the Weizmann Institute.
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Appendix A. Proof of [START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF] First note that p 2n ≤ p 2n (0) since, by the Cauchy-Schwarz inequality,

2n be the return probability of d-dimensional SRW to 0. A direct computation gives that p

2n ) 2 (see e.g. [START_REF] Durrett | Probability: theory and examples[END_REF]Page 184]). We will show that a n = √ 2np

(1) 2n is increasing. We have,

Hence,

Since (a + b)/2 ≥ √ ab, we conclude (using a = n and b = n + 1) that a n+1 /a n ≥ 1.

Let p 

where the rst fraction is bigger than 1 by the formula (a + b)/2 ≥ √ ab, as well as the second fraction by expanding the products. Now, we know from the local limit theorem that a n and b n converge to 2/ √ 2π, thus they are always smaller than this limit. This leads to [START_REF] Duplantier | Liouville quantum gravity and KPZ[END_REF].

Appendix B. Improved estimates on U N

When n is taken large enough, the estimate (56) can be improved as follows.

Proposition B.1. There exists ε n = ε(n, β) → 0 such that as n → ∞ with n ≤ N , (78)