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a b s t r a c t

In this article we analyze several mathematical models with singularities where the classical cotangent
model is replaced by a b-cotangent model. We provide physical interpretations of the singular
symplectic geometry underlying in b-cotangent bundles featuring two models: the canonical (or non-
twisted) model and the twisted one. The canonical one models systems on manifolds with boundary
and the twisted one represents Hamiltonian systems with a singularity on the fiber. The twisted
cotangent model includes (for linear potentials) the case of fluids with dissipation. We prove (non)-
existence of cotangent lift dynamics and show the existence of an infinite number of escape orbits
in this model. We also discuss more general physical interpretations of the twisted and non-twisted
b-symplectic models. Twisted b-symplectic models yield in a natural way escape orbits that go to
the critical set. Under compactness assumptions those escape orbits are continued as singular periodic
orbits in the sense of Miranda and Oms (2021) and Miranda (2020). These models offer a Hamiltonian
formulation for systems which are dissipative, extending the horizons of Hamiltonian dynamics and
opening a new approach to study non-conservative systems.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of fluid mechanics has a long and rich history,
evealing a complex structure on both the physical and the math-
matical levels. We point to recent work detailing how new
eometric facets of this complexity have been revealed through
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several reincarnations (see [1,2]). As it is well-known, in the
Navier–Stokes equation the Reynolds number provides a measure
of fluid complexity, giving rise to turbulence for high Reynolds
number flows (with infinite Reynolds number corresponding to
the Euler flow). The present work is not specifically about fluid
mechanics, but an aligned investigation of the singular geomet-
ric nature of the case of a 0 (or very low) Reynolds number
flow, corresponding to a laminar flow, expressed in terms of a
finite-dimensional analogy.

In this article we give a mathematical interpretation of the
physics of fluids obeying the Stokes’ Law using the Hamiltonian
formalism on a singular cotangent model. However, the inherent
geometry of this system does not let us identify this model as a
twisted cotangent lift in general.

Symplectic geometry provides the landscape where classical
mechanics take place. The pair of position and momenta is the
physical manifestation of the existence of a cotangent bundle
underlying this picture. The role of the base and fibers of the
cotangent bundle is an important landmark that fixes and makes
precise Hamiltonian dynamics. However, this perfect symplec-
tic picture is often insufficient to describe the complexity of
physical phenomena. Poisson geometry provides a more general
scenery appropriate to capture the intricacy of physical systems.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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evertheless, Poisson geometry is, in general, too involved and
ven the existence of appropriate local coordinates is a difficult
attleground. From this perspective, singular symplectic mani-
olds provide a much more controlled terrain to fulfill some of
hese needs. In this article we explore some physical systems
hat can be described as singular symplectic manifolds. We focus
n the class of b-symplectic manifolds and identify two models:
canonical and a twisted one. We associate relevant physical

ystems to these two models.
In the context of symplectic geometry, singular forms have

een an important object of study in the last years. A main class
f such singular forms is the class of b-symplectic forms, formally

introduced in [3,4]. They provide a way to model systems with
boundary and to study manifolds through compactification.

Among the variety of applications of b-symplectic geometry
(and its b-contact counterpart), there have been obtained remark-
able results on general integrable systems, celestial mechanics
and fluid dynamics (see, for instance, [5–10]).

The phase space of a physical problem can be associated with
the cotangent bundle of the configuration space. Therefore, it is
automatically symplectic and this is one of the main reasons that
makes symplectic geometry the natural language of mechanics.
In the general setting, the physical Hamiltonian is the sum of
a kinetic term depending on the momentum and a potential
term depending only on the position. It provides an associated
Hamiltonian flow which describes exactly the physical dynamics
and yields the usual Newton’s laws.

At the crossroads of b-symplectic techniques and cotangent
models for physical systems, singular cotangent models supply the
techniques to generalize procedures such as the cotangent lift
from symplectic manifolds to b-symplectic manifolds. These tech-
niques were explored in [11] in the integrable case and following
two different approaches. In the first approach, the singularity of
the integrable system defined in a cotangent bundle of a smooth
manifold is placed at the base manifold. In the second case, the
so-called twisted case, the singularity is placed at the fiber. In
both cases, the singularity permeates the geometric structure
and the b-symplectic form carries the characterization of the
singularity. Singular cotangent models have also been considered
in [5,6,9]. Connections to other singularities in physical systems
are explored in [12] (see also [13,14] for the geometrical study
of a more general class of singular structures called E-symplectic
structures).

In this article we give a new application of the twisted cotan-
gent model. In particular, we present the Stokes’ Law of motion
for free-falling particles in fluids with viscosity as a twisted
cotangent model. We prove that, in general, a one-dimensional
motion with a dissipation which is proportional to the velocity
can be modeled by a twisted b-symplectic form.

The fact that b-symplectic techniques can be used to model
fluid systems is interesting because, classically, the study of the
evolution of moving fluids has been tackled via partial differential
equations such as the Navier–Stokes equations. A set of PDEs
can model viscous Newtonian fluids expressing their mass and
momentum conservation but, usually, solutions to these PDEs
can only be found numerically. Besides, in general it has been
difficult to prove if, for some initial conditions, they are smooth or
even continuous. This complexity has led to other approaches to
model the behavior of fluids. Among the alternative formulations
of fluid dynamics, there are the Hamiltonian and Lagrangian
formulations, which are used naturally in a wide collection of
mechanics problems. In this respect, the b-symplectic approach
given in this paper contributes to this alternative approach.

In [15], Morrison introduced the metriplectic formalism as
an extension of the Hamiltonian formalism so as to include

dissipation while maintaining a conserved energy-like quantity.

2

This formalism couples Poisson brackets, coming from the Hamil-
tonian symplectic formalism, with metric brackets, coming from
out-of-equilibrium thermodynamics (see also [16–20]). Thus, the
formalism describes systems with both Hamiltonian and dissi-
pative components that can model friction, electric resistivity,
collisions and more, in various contexts ranging over biophysics,
geophysics, and plasma physics. The construction builds in
asymptotic convergence to a pre-selected equilibrium state.

Following these ideas, in this article we make use of Hamil-
ton’s equations to model a system which is dissipative in the
classical sense. The original idea is that we do not rearrange the
conservative Hamilton’s equations but, instead, we introduce a
singularity at the level of the symplectic structure of the manifold,
which we equip with a twisted b-symplectic form.

Organization of this article

In Section 2 we give a crash course on b-symplectic geom-
etry. In Section 3 we introduce the new model for fluids with
dissipation based on a twisted b-symplectic structure. We start
with the one-dimensional case and the linear potential, which
provides an analogue of the Stokes’ Law, and we extend it to
higher dimensions and more general potentials. We observe the
existence of escape orbits in the twisted model and prove that the
dynamics of our model does not come from the cotangent lift of
a group action. In Section 4 we consider time-dependent singular
models in which friction arises from a re-scaling of time. Finally,
in Section 5 we summarize the results of the paper and present
our conclusions.

2. Preliminaries

2.1. b-Symplectic geometry

A symplectic manifold is a manifold M which admits a sym-
plectic form ω which is closed and non-degenerate 2-form. Given
a function H over a symplectic manifold, called Hamiltonian, it
is useful to consider its associated Hamiltonian flow, which is
the flow of the vector field X defined by ιXω = −dH . The
existence and uniqueness of X and its flow are a consequence of
the non-degeneracy of the symplectic form.

In physics, the usual and more general formalism used to
study dynamics is Poisson geometry [21]). Poisson manifolds are
generalizations of symplectic manifolds in which the symplectic
form ω is replaced by a bivector Π . Indeed, a symplectic form ω in
a symplectic manifold (M, ω) may be seen as a smooth map from
the space of vector fields X(M) to the space of 1-forms Ω1(M).
Among the large class of Poisson manifolds we find b-symplectic
manifolds, that can also be considered a wider class of manifolds
which contains symplectic manifolds.

The basic definitions of b-symplectic geometry start with the
notions of b-manifold (a pair (M, Z) where Z is a hypersurface in
a manifold M), b-map (a map f : (M1, Z1) −→ (M2, Z2) between
b-manifolds with f transverse to Z2 and Z1 = f −1(Z2)) and
b-vector field (a vector field on M which is tangent to Z at all
points of Z).

Let (Mn, Z) be a b-manifold. If x is a local defining function for
Z on an open set U ⊂ M and (x, y1, . . . , yn−1) is a chart on U ,
then the set of b-vector fields on U is a free C∞(M)-module with
basis

(x
∂

∂x
,

∂

∂y1
, . . . ,

∂

∂yn − 1
).

There exists a vector bundle associated to this module called b-
angent bundle and denoted by bTM . The b-cotangent bundle bT ∗M
of M is defined to be the vector bundle dual to bTM .
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For each k > 0, let bΩk(M) denote the space of sections of
the vector bundle Λk(bT ∗M), which are called b-de Rham k-forms.
For any defining function f of Z , every b-de Rham k-form can be
written as

ω = α ∧
df
f

+ β, with α ∈ Ωk−1(M) and β ∈ Ωk(M). (1)

A special class of closed b-de Rham 2-forms is the class of
b-symplectic forms as defined in [4]. It contains forms with sin-
gularities and can be introduced formally for b-symplectic mani-
folds, making it possible to extend the symplectic structure from
M\Z to the whole manifold M .

Definition 2.1 (b-Symplectic Manifold). Let (M2n, Z) be a
b-manifold and ω ∈

bΩ2(M) a closed b-form. We say that ω is
b-symplectic if ωp is of maximal rank as an element of Λ2( bT ∗

p M)
for all p ∈ M . The triple (M, Z, ω) is called a b-symplectic manifold.

2.2. b-cotangent lifts

The cotangent bundle of a smooth manifold M is naturally
equipped with a symplectic structure, since there is always an
intrinsic canonical linear form λ on T ∗M defined by

⟨λp, v⟩ = ⟨p, dπpv⟩, p = (m, ξ ) ∈ T ∗M, v ∈ Tp(T ∗M),

where dπp : Tp(T ∗M) −→ TmM is the differential of the canonical
projection at p. In local coordinates (qi, pi), the form is written
as λ =

∑
i pi dqi and is called the Liouville 1-form. Its differential

ω = dλ =
∑

i dpi ∧ dqi is a symplectic form on T ∗M .
For b-symplectic manifolds there are two natural choices for

the singular Liouville form, each of them giving a different sym-
plectic form ω:

1. Non-twisted forms: λ =
c
q1
p1dq1 +

∑n
i=2 pidqi and ω =

c
q1
dp1 ∧ dq1 +

∑n
i=2 dpi ∧ dqi,

2. Twisted forms: λ = c log(p1)dq1 +
∑n

i=2 pidqi and ω =
c
p1
dp1 ∧ dq1 +

∑n
i=2 dpi ∧ dqi.

The non-twisted, or canonical, symplectic form carries the
singularity at the base (the transversal hypersurface Z is given by
q1 = 0), while the twisted symplectic form carries the singularity
at the fiber (the transversal hypersurface Z is given by p1 = 0).
The constant c in the expression of the forms is called themodular
weight.

The cotangent lift of a group action is defined in the following
way.

Definition 2.2. Let ρ : G × M −→ M be a group action of a Lie
group G on a smooth manifold M . For each g ∈ G, there is an
nduced diffeomorphism ρg : M −→ M . The cotangent lift of ρg ,
enoted by ρ̂g , is the diffeomorphism on T ∗M given by

ρ̂g (q, p) := (ρg (q), ((dρg )∗q)
−1(p)), with (q, p) ∈ T ∗M,

which makes the following diagram commute (see also Fig. 1):

T ∗M T ∗M

M M

π

ρ̂g

ρg

π

Given a diffeomorphism ρ : M −→ M , its cotangent lift is
efined in an analogous way and it preserves the Liouville 1-form
. As a consequence, it also preserves the symplectic form on
∗M . In the twisted case, the twisted b-cotangent lift preserves
he twisted 1-form λ = c log(p1)dq1 +

∑n
i=2 pidqi and the twisted

-symplectic form ω =
c dp ∧ dq +

∑n dp ∧ dq .
p1 1 1 i=2 i i −

3

Proposition 2.3 (Kiesenhofer–Miranda, [11]). Given a group action
ρ : G×M → M on a smooth manifold of dimension n, the twisted b-
cotangent lift ρ̂ is b-Hamiltonian with moment map µ : T ∗M → g∗

given by

⟨µ(p), X⟩ := ⟨λp, X#
|p⟩ = ⟨p, X#

|π (p)⟩,

where p ∈ T ∗M, X is an element of the Lie algebra g and X# denotes
the fundamental vector field of X generated by the action on T ∗M.

Moreover, for a toric action, the moment map of the lifted action
with respect to the twisted b-symplectic form ω =

c
p1
dθ1 ∧ dp1 +

n
i=2 dθi ∧ dpi on T ∗M is given by µ = (c log |p1|, p2, . . . , pn).

2.3. Cotangent models for integrable systems

The dynamics of an integrable system F = (f1, . . . , fn) defined
n a manifold M is explained by the classical Arnold–Liouville–
ineur Theorem at the regular points of F , namely, at the points
f M where the differential dF = (df1, . . . , dfn) is not singular.
his theorem was restated by Kiesenhofer and Miranda in [11] re-
ealing that at a semilocal level the regular leaves are equivalent
o a completely toric cotangent lift model.

heorem 2.4 (Kiesenhofer–Miranda, [11]). Let F = (f1, . . . , fn)
e an integrable system on a symplectic manifold (M, ω). Then,
emilocally around a regular Liouville torus, the system is equivalent
o the cotangent model (T ∗Tn)can restricted to a neighborhood of the
ero section (T ∗Tn)0 of T ∗Tn.

Cotangent lifts arise naturally in physical problems and the
ink between integrable systems and cotangent models is clear
n view of Theorem 2.4. For the singular cases, and, in particular,
or b-integrable systems, cotangent models can be made explicit
n terms of action–angle coordinates.

heorem 2.5 (Kiesenhofer–Miranda–Scott [22]). Suppose (M, Z, ω,

F ) is a b-integrable system and let m ∈ Z be a regular point of F for
which the integral manifold containing m is compact, i.e. a Liouville
torus. Then, there exists an open neighborhood U of the torus and
coordinates (θ1, . . . , θn, p1, . . . , pn) : U → Tn

× Bn such that

ω|U =

n−1∑
i=1

dpi ∧ dθi +
c
pn

dpn ∧ dθn, (2)

where the coordinates p1, . . . , pn depend only on F and the constant
c is the modular weight of the component of Z containing m.

3. The twisted b-symplectic model for dissipation

In this section, we describe how b-symplectic geometry offers
a way to model, in a Hamiltonian fashion, a particle moving in
a dissipative fluid with viscosity. In particular, we construct an
example that uses the twisted b-symplectic form in the cotangent
bundle of R. This example gives precisely the equation of the
friction drag force exerted on a small spherical particle moving
through a viscous laminar fluid in one dimension, the so-called
Stokes’ Law. Then, we generalize this model to higher dimensions
and to other configuration spaces different from Rn.

Take M = R and T ∗M ∼= R2 with coordinates (q, p). Consider
the Hamiltonian

H(q, p) =
p2

2
+ f (q), (3)

which corresponds to the energy of a massive particle subject to
a potential f (q). The Hamilton’s equations derived from ιXHω =

dH with the standard symplectic form ω = dp∧ dq provide the
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Fig. 1. The cotangent lift of an action ρg is a map on the cotangent bundle T ∗M .
ω
a
t

ollowing system, which models the main toy models in classical
echanics:

q̇ = p
ṗ = −

∂ f
∂q .

(4)

But, more interestingly, the Hamilton’s equations derived from
ιXH ω = −dH with the twisted b-symplectic form

ω =
1
p
dp ∧ dq

are:{
q̇ = p2

ṗ = −p ∂ f
∂q .

(5)

At p = 0 there are just fixed points and system (5) gives no
dynamics. Hence, we can reduce the dynamical study to p > 0,
and for p < 0 it will be symmetric up to a change of sign.

Differentiating the first equation of system (5) and substituting
into the second one, we find

q̈ = −2q̇
∂ f
∂q

, (6)

which is a second order ODE depending only on q. Notice that,
although we have associated q to the position coordinate, q̇ is not
equal to the standard physical momentum p but to p2. However,
we can still think of p =

√
q̇ as a modified physical momentum,

since it is an increasing function of q̇. Taking into account this
point of view, we proceed to obtain various models of dynamics
for different families of potentials f (q).

3.1. A new model of Hamiltonian dissipation. The Stokes’ law as a
twisted model

A natural choice for the potential f (q) is a function of linear
type. This simple model already gives an original way of consid-
ering dissipation as a b-symplectic model, as the following result
proves.

Theorem 3.1 (Dissipation as a Twisted Singular Cotangent Model).
Consider the twisted b-symplectic model in T ∗R, given by Eq. (5). The
particular case f (q) =

λ
2q corresponds to the model of a spherical

particle moving in a fluid with viscosity and suffering a friction
proportional to its velocity, i.e., to the Stokes’ Law.

Proof. Consider f (q) =
λ
2q, with λ > 0, in the case of the

Hamilton’s equations coming from the twisted b-symplectic form,
namely, in system (5). Explicitly, Hamilton’s equations are{
q̇ = p2

λ (7)

ṗ = − 2p.

4

The corresponding second order ODE becomes

q̈ = −λq̇, (8)

which corresponds exactly to the equation of a free massive
particle moving in one dimension and affected by viscous friction.
In fact, the Stokes’ Law (9) describes precisely the same case,
which appears in the study of non-ideal fluids. It states that the
frictional force F is:

F = 6πµRv, (9)

where µ is the dynamic viscosity, R is the radius of the particle
and v is the flow velocity relative to the object (or minus the
object velocity relative to the flow). The Stokes’ Law computes
the magnitude of the drag force that is acting against the particle
motion and slowing it. This force is proportional to the velocity
of the particle with respect to the fluid and of opposite direction.

Denoting the velocity v by q̇, assuming that the force F is pro-
portional to the acceleration q̈ and combining physical constants,
we deduce that Eq. (8) is equivalent to the Stokes’ Law. □

Remark 3.2. In the classical symplectic setting, the particular
case f (q) =

λ
2q in Eq. (5), with λ > 0, gives rise to the dynamics

of a rectilinear motion with constant acceleration (of λ
2 ). It is, for

instance, the model for the free fall of a particle subject to a one-
dimensional constant gravity field. Notice that there is no loss of
energy of the system.

3.1.1. Description of the dynamics
From the point of view of dynamical systems, the phase por-

trait in the (q, p)-plane of system (5) is highly similar to the phase
portrait of the standard system (4), since the vectors (q̇, ṗ) of the
two systems are proportional by a p factor at each point. The
main difference between both systems is found at the horizontal
axis p = 0. There, the orbits that where crossing transversally
in the classical system (4) are ‘‘broken’’ and new punctual orbits
appear in the twisted b-symplectic system (5). Besides, orbits in
the lower plane p < 0 change direction in system (5) (see Fig. 2
for the phase space representation of both systems).

The dynamical evolution of a physical system driven by the
Hamiltonian H(q, p) =

1
2p

2
+

λ
2q and the standard symplectic form

= dp ∧ dq is really different from the dynamical evolution of
physical system governed by the same Hamiltonian but taking
he twisted b-symplectic form ω =

1
pdp ∧ dq.

In the standard case, orbits are parabolas of the form q =

−p2 + c , with c a constant, everywhere (see the phase portrait
on the left of Fig. 2). The trajectory of a particle in this system
is unbounded and, for any initial conditions, q, p →t→∞ −∞.
This is the model of a massive particle moving in an infinite one-
dimensional well, subject to a constant force field and with no
friction.
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Fig. 2. Some orbits in the phase spaces of system (4) on the left and system (5) on the right for f (q) =
λ
2 q.
In the twisted b-symplectic the orbits are of two types. On the
one hand, there are fixed points for p = 0 and any q. On the other
hand, there are half-parabolas of the same form q = −p2 + c at
each side of the horizontal axis p = 0. The evolution of a particle
starting either in the upper or in the lower plane is similar: in
both cases it will approach asymptotically p = 0 and a fixed q = c
greater than the initial q. Nevertheless, at a finite time, a particle
will be found at p = 0 if and only if it already started there. This
has physical sense, since the force is acting proportionally to the
speed of the particle and in the opposite direction. Then, a particle
with non-zero initial velocity will be permanently slowed down,
but it will never completely stop because the acting force will also
decrease in correspondence.

The nature of the trajectories in both systems is also very
different. In Fig. 3 we can see some trajectories correspond-
ing to both the classical Hamilton’s equations and the twisted
b-symplectic Hamilton’s equations coming from the same Hamil-
tonian H(q, p) =

1
2p

2
+

λ
2q.

The trajectory q(t) of a particle under the classical model of
system (4) is of the form q(t) = −

λ
4 t

2
+ c1t + c0. It depends on

he constants c0, c1 (equivalently, on the starting q and p) but, for
ny initial conditions, q(t), p(t) →t→∞ −∞. This corresponds to

the aforementioned one-dimensional ‘‘free fall’’ of a particle in a
constant force field.

On the other hand, the trajectory q(t) of a particle under the
twisted model of system (5) is of the form q(t) = d0 −

d21
λ
e−λt .

ence, the particle’s trajectory is bounded and has a limit at a
ixed q = d0 greater or equal than the initial q(0), no matter
hich initial conditions are chosen.
The orbits that ‘‘break’’ at the horizontal axis can be identified

ith ‘‘escape orbits’’ of a b-symplectic manifold. In the recent arti-
cle [23] the existence of escape orbits is investigated connected to
the singular Weinstein conjecture for singular contact manifolds
which had been conjectured in [6]. The phenomena we see in the
twisted model is the even-dimensional analogue of escape orbits
in [23] as there the system is the induced system on a level set of
the Hamiltonian (which is an odd-dimensional manifold endowed
with a singular contact structure, see Lemma 8.6 and Proposition
8.8 in [5]). The outstanding fact is that in the twisted model there
exists an infinite number of escape orbits going to the critical set,
so Lemma 8.6 and Proposition 8.8 in [5] provide a machinery to
produce examples of (singular) Reeb vector fields with infinite
singular periodic orbits. In [23] the existence of a lower bound is
established for compact 3-dimensional manifolds.

What we have observed is exceptional because friction is a
non-conservative force and, while it cannot be described by the
usual basic Hamiltonian setup, it can be described using the
5

twisted b-symplectic setting. In this setting, the critical hyper-
surface in our example corresponds to zero velocity or mo-
mentum. This is physically consistent with the fact that viscous
friction alone cannot bring a particle to zero velocity in finite
time.

3.2. The higher-dimensional linear case

We have introduced the one-dimensional model of the Stokes’
Law using the twisted b-symplectic setting and now it is natural
to consider higher-dimensional models. The most direct gener-
alization is to extend the particle’s Hamiltonian to T ∗Rn in the
following way:

H(q1, . . . , qn, p1, . . . , pn) =
1
2

n∑
i=1

p2i +
λ

2
q1.

The dynamics governed by this Hamiltonian together with the
twisted b-symplectic form

ω = c
1
p1

dp1 ∧ dq1 +

n∑
i=2

dpi ∧ dqi (10)

are the following. In the direction of q1, the particle behaves
by the Stokes’ Law: it suffers dissipation and the corresponding
velocity component tends to zero. In the other directions, the
motion corresponds to that of a free particle. As a consequence,
the evolution of the trajectory is a curve that starts with some
initial direction given by a velocity (v1, . . . , vn) in Rn and tends
to a motion restricted to the direction (0, v2, . . . , vn). However,
this first generalization does not allow to consider friction in all
directions. We shall see in Section 4 how to tackle this problem.

The modular weight c appearing in the twisted b-symplectic
form (10) is giving a measure of the predominance of the singular
term over the regular terms. In a way, the modular weight is also
a measure of the relative importance of the direction in which
there is dissipative friction with respect to the rest of directions.

Definition 3.3 (Reynolds Number). In the fluid context, the
Reynolds number is the ratio of the inertial force to the viscous
force. It is defined as

Re =
ρvd
µ

,

where ρ is the density of the fluid, v the velocity of the fluid,
d the diameter or characteristic length of the system and µ the
dynamic viscosity of the fluid.

The Reynolds number quantifies the relative importance of ad-
vective nonlinearity and viscosity, with lower Reynolds number
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Fig. 3. On the left, some trajectories q(t) and p(t) given by the classical Hamilton’s Equations (4). On the right, some trajectories q(t) and p(t) given by the twisted
b-symplectic Hamilton’s Equations (5). Both are for a potential f (q) =

λ
2 q.
t
s

q

i

eaning viscous forces are dominant. In practice, it is used to
etermine whether a fluid exhibits laminar or turbulent flow. The
tokes’ Law (9) is obtained by solving the axisymmetric and sta-
ionary incompressible Navier–Stokes equations disregarding the
onlinear term. Accordingly, the Stokes’ law describes a fluid flow
ith an spherical object in the laminar regime, strictly speaking
hen the Reynolds number is 0, although it is a good approxima-
ion when the Reynolds number is small enough. Analogously, we
ave the following:

emark 3.4. The modular weight c gives a measure of the
mportance of the dissipative direction compared to the other
irections in which there is free motion. Then, it can be associated
ith an analogue of the Reynolds number Re when Re ≈ 0. A
igh modular weight c implies that there is a big influence of the

dissipation by viscosity in the overall system, which is equivalent
to a low Re.

3.3. The pure quadratic potential

Consider now a quadratic potential of the type f (q) =
λ
4q

2.
he dynamics of a physical system driven by the Hamiltonian
(q, p) =

1
2p

2
+

λ
4q

2 and the standard symplectic form ω =

p ∧ dq corresponds to a simple harmonic oscillator. Explicitly,
he Hamilton’s equations in this case are:

q̇ = p
ṗ = −

λ
2q.

(11)

Orbits in the phase space of system (11) are circles everywhere
xcept from a fixed point at the origin (see the phase portrait on
he left of Fig. 4). They are of the form p2 +

λ
2q

2
= c , with c

a constant. The position of a particle in this system is bounded
and so is its velocity for any initial conditions, since q(t) and p(t)
6

are sine waves. This behavior corresponds exactly to the classical
model of a simple harmonic oscillator, which is natural for a
quadratic potential.

However, and more interestingly, the same Hamiltonian to-
gether with the twisted b-symplectic form ω =

1
pdp∧dq gives an-

other dynamics. In particular, we obtain the following equations
of motion:{
q̇ = p2

ṗ = −
λ
2pq.

(12)

On the right of Fig. 4 we can see the phase space representa-
ion of the orbits of system (12) and on the left of Fig. 5 we can
ee some trajectories q(t) and p(t) of the same system.
The second order ODE equivalent to system (12) is:

¨ = −λq̇q. (13)

Eq. (13) is a highly non-linear equation which has the follow-
ng solution for the trajectory q(t):

q(t) =
c1
√

λ
tanh

(
c1

√
λ

2
t + c2

)
,

with c1 and c2 depending on the initial conditions. On the right
of Fig. 5, we can see some trajectories q(t) and p(t) for different
values of c1 and c2.

Again, as in the linear case, p(t) →t→±∞ 0. On the other hand,
the position q(t) of a particle under this potential is bounded on
the range (−c1, c1), which makes the dynamics really different
from the linear potential case.

In this setting, we can think that the particle is really enclosed
in a uni-dimensional container and goes from one end to the
other as time passes. It does so by starting to separate slowly from
one border, then accelerating fast to pass over the mid space of
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Fig. 4. Some orbits in the phase spaces of system (11) on the left and system (12) on the right for f (q) =
λ
4 q

2 .
Fig. 5. On the left, some trajectories q(t) and p(t) given by the classical Hamilton’s Equations (11). On the right, some trajectories q(t) and p(t) given by the twisted
b-symplectic Hamilton’s Equations (12). Both are for a potential f (q) =

λ
4 q

2 .
f
a

H

the container, and then slowing again when arriving to the other
border.

The quadratic potential, then, models a particle crossing the
interior of a box at a slow speed when it is near each edge
and at a high speed in the middle. Observe that the orbits in
the twisted model ‘‘break’’ again like in the linear twisted case,
allowing an infinite number of ‘‘escape orbits’’. This example has
a bonus, as the escape orbits here correspond exactly to genuine
singular periodic orbits as the ones described in [6]. These singular
periodic orbits are indeed the union of 4 different trajectories:
two symmetric hetero-clinic half-circles and the two fixed points
on the horizontal axis at their ends.
7

3.4. The general quadratic potential

It is natural to consider the coupling of the pure quadratic
potential with the linear potential studied previously. Consider
a physical particle moving in a viscous fluid and obeying the
Stokes’s law. Suppose that the fluid has a non-uniform viscosity
η, which is, for instance, the case whenever there is a gradient
of temperature (as the viscosity usually depends on the temper-
ature). For small fluctuations, up to first order in position q, the
viscosity can be written as η = η0(1+αq). Therefore, the potential
(q) accounting for the drag coefficient becomes f (q) = λ(1+αq)
nd the associated Hamiltonian is

(p, q) =
p2

+
λ
q
(
1 + α

q)
.

2 2 2
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Fig. 6. A dissipating trajectory in the cylinder in which the singularity is in the
R component of the fiber.

The corresponding second order ODE is

¨ = −λ(1 + αq)q̇,

nd includes both the linear regime (which is expected to be
ominant) and the quadratic regime as a perturbation. It is the
ost natural generalization of the linear regime from the physical
oint of view.
Another option is to consider dissipation in one direction

f motion in space configurations which are not Rn, such as a
particle moving over a cylinder S1×R. In this case, if the potential
is linear (with respect to the axial coordinate), the dynamics is the
one depicted in Fig. 6. There, the trajectory of a particle under the
Hamiltonian

H(θ, q, pθ , pq) =
p2θ + p2q

2
+

λ

2
q,

ogether with the twisted b-symplectic form ω = c 1
pq
dpq ∧ dq +

pθ ∧ dθ tends to a periodic orbit around the cylinder. In the
ylinder S1 ×R it also makes sense to consider a potential which
s function of the angular coordinate, which is what we do next.

.5. A periodic potential

Consider the periodic potential f (θ ) =
λ
2 cos θ , with θ ∈ S1.

he phase space in this case is T ∗S1 ∼= S1 × R and we denote by
θ the conjugate momentum coordinate. The dynamical evolution

of a physical system driven by the Hamiltonian H(θ, pθ ) =
1
2p

2
θ +

λ
2 cos θ and the standard symplectic form ω = dpθ ∧ dθ cor-
esponds to the model of the simple pendulum. The Hamilton’s
quations of this model are:

θ̇ = pθ

ṗθ =
λ
2 sin θ.

(14)

The orbits of this system are of four types. There are two fixed
oints at (0, 0) (of stable type) and (π, 0) (of saddle type), two

homoclinic orbits at the fixed point (π, 0), a 1-parametric family
of periodic orbits encircling the stable point between the two
homoclinic orbits, and a 1-parametric family of periodic orbits
around the cylinder filling the rest of the space away from the
homoclinic orbits (see the phase portrait on the left of Fig. 7).
The position of a particle in this system is bounded and so is its
velocity, but it depends on the initial conditions whether it keeps
moving periodically or stabilizes (which only happens at the fixed
points or the homoclinic orbits).

The same Hamiltonian together with the twisted b-symplectic
form ω =

1
pθ
dpθ ∧ dθ gives a very different dynamics, which is

ncoded in the following equations of motion:

θ̇ = p2θ
ṗθ =

λ
2pθ sin θ.

(15)

On the right of Fig. 7 we can see the phase space representa-
ion of the orbits of this system.
 c

8

The equivalent second order ODE is:

θ̈ = λθ̇ sin θ. (16)

We observe that, differently from the twisted b-symplectic
models studied before, in this one there are still periodic orbits,
namely, the 1-parametric family of periodic orbits that fill the two
half-spaces away from the two homoclinic orbits. On the other
hand, the dynamics inside the region enclosed by the homoclinic
orbits is the same dynamics that we obtained for the quadratic
potential.

3.6. General dynamics of the twisted b-symplectic model

With the previous illustrative examples in mind, the inter-
pretation of the twisted b-symplectic model in the general case
is straightforward. Recall that the Hamilton’s equations derived
from the Hamiltonian H =

p2
2 + f (q) and the twisted b-symplectic

orm ω =
1
pdp ∧ dq are:{

q̇ = p2

ṗ = −p ∂ f
∂q .

If (q, p) are assumed to be the coordinates of the phase space
of a mechanical system, the behavior of a particle under H is
clearly conditioned by the singularity of the system at p = 0.

If a particle starts at any p ̸= 0 and follows a trajectory
that tends to p = 0, the most direct physical interpretation of
the model is that of a decelerating motion, for instance the one
encountered in a dissipative system. If it escapes from p = 0, it
can be interpreted just in the same way but with time reversed.

The implications of having the singularity at the fibers of the
cotangent bundle extend further than it seems at first glance.
The singularity determines an unreachable location in the fiber,
i.e., that zero momentum is unreachable. But the momentum
of the particle will tend there (or escape from there) for many
different initial conditions. As a consequence, the position of the
particle is also indirectly conditioned by the singularity, since
tending to zero momentum will cause the position to stabilize.

The twisted b-symplectic model with the singular fiber at zero
is, then, a physical model that can explain systems in which
velocity decays and so does the change in position of the particle
as a consequence.

Remark 3.5. For a Hamiltonian of the type H =
p2
2 + f (q),

the relation between the twisted b-Hamiltonian vector field Xb
H

given by Eq. (5)) and the usual Hamiltonian vector field XH (given
y Eq. (4)) is Xb

H = pXH . Accordingly, the orbits of Xb
H coincide with

hose of XH away from the critical line {p = 0} (which is now
filled by a set of stagnation points of Xb

H ) and up to a reversed
time parametrization for p < 0. As a consequence, any point
(q, p = 0) which is not a critical point of potential f (q) yields
n escape orbit of Xb

H because the corresponding orbit of XH is
egular and transverse to the line p = 0.

.7. Geometric considerations

One could ask whether the dynamics of the model can be
btained as the cotangent lift of an action or, more precisely, as a
-cotangent lift (see Sections 2.2 and 2.3). As we show next using
eometric arguments, the answer to this question is negative.

emma 3.6. The dynamics of the model presented in Section 3
annot be obtained as the cotangent lift in Proposition 2.3. Thus, it
annot be a cotangent model as in Theorem 2.4.
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roof. In the lowest dimensional case, suppose that there is an
ction ρ : G×R → R with cotangent lift ρ̂ : G×T ∗R → T ∗R and
ith moment map H =

p2
2 + f (q). By definition, ρ̂g (q, p) restricted

o the base R of T ∗R ∋ (q, p) is equal to ρg (q) for any g ∈ G, q ∈ R.
hen, the restriction does not depend on the fiber coordinate p
nd the same happens for the ∂

∂q component of the infinitesimal
enerator of ρ̂g (q, p). But this infinitesimal generator has to be of
he form

= p2
∂

∂q
−

∂ f (q)
∂q

p
∂

∂p

in order to satisfy ιXω = −dH , where ω is the twisted
-symplectic form 1

pdp ∧ dq. And the term p2 ∂
∂q depends on the

fiber coordinate p, which is a contradiction. □

Another way to see it is the following. By Proposition 2.3, the
twisted b-cotangent lift ρ̂ is b-Hamiltonian and its moment map
µ : T ∗M → g∗ contains a logarithm term associated to the toric
component of the action ρ. In Proposition 26 of [24], it is proved
that the action of G on the mapping torus Z always lifts to an
action of a product group S1 × H on a finite trivializing cover
of Z , where H is compact and connected. G is necessarily of the
form G = (S1 × H)/Γ for a finite cyclic subgroup Γ . Hence, the
moment map of the lifted action of a group action with non-
vanishing modular weight [24,25] has to include a term of the
form µ = c log |p|, which is not compatible with the Hamiltonian
H =

p2
2 + f (q). In higher dimensions, the model cannot be a

cotangent lift for the same reason.

4. Time-dependent singular models

In order to generalize this friction model to multiple dimen-
sions, the key idea is to extend the configuration space Q to

×R. The R component in Q ×R describes the real time t while
he dynamics inside the phase space is computed according to
curvilinear time s. This is conceptually the idea of the well-

known method of characteristics in PDEs. After computing the
solution, one only needs to project the trajectory on the space
Q and read the time on the real axis. We require ṫ > 0 to be
onsistent and we denote by q the position in Q and by p the
associated momentum. We also denote by E the conjugated vari-
able associated with t , since the energy is the natural conjugate
of time in physics. Using the results of Section 3, where we have
seen how to introduce dissipation in one dimension thanks to a
b-symplectic form, our goal is to include the dissipation in this
new energy variable. Therefore, the non-dissipative dynamics will
proceed classically, with an energy which is dissipated through
time.
9

To start, consider the Hamiltonian

H(p, q, t, E) =
p2

2
+ V (q, t) − E. (17)

ssuming E is the energy of the system, one expects the preser-
vation of the Hamiltonian (the conservation of H = 0) along the
physical trajectory. We use the canonical symplectic form

ω =

∑
i

dpi ∧ dqi − dE ∧ dt. (18)

The associated dynamics writes

q̇i = pi ṗi = −
∂V (q, t)

∂qi
(19)

ṫ = 1 Ė =
∂V (q, t)

∂t
(20)

herefore, in this case, the curvilinear coordinate is the real time:
= t . The particle follows the expected dynamics with a potential
hat may depend on time.

Now, to model friction, it is natural to consider adding to the
amiltonian a factor depending on a friction coefficient λ. The

friction will slow down the dynamics and thus t compared with
s. However, the potential remains associated to the real time
and thus it appears accelerated compared with the curvilinear
time. In order to use this effective time, we need to re-scale
the Hamiltonian to deduce the suitable time re-scaling. When
considering dissipative dynamics, it is natural to expect an expo-
nential re-scaling. Indeed, a close-to-the-equilibrium relaxation
mode provides a Lyapunov coefficient to control the decay of
the perturbation [26,27]. Such re-scaling ideas have already been
suggested in different contexts, see for instance [28]. For our
purpose, we consider the following Hamiltonian

H(p, q, t, E) =
p2

2
+

e2λt

λ2 V (q, t) −
eλt

λ
E, (21)

ith the same canonical symplectic form. The associated dynam-
cs writes

˙ i = pi ṗi = −
e2λt

λ2

∂V (q, t)
∂qi

(22)

ṫ =
eλt

λ
Ė =

e2λt

λ2

∂V (q, t)
∂t

+
2e2λt

λ
V (q, t) − eλtE (23)

The two first terms describe the energy linked with the time-
dependence of the potential. The last term describes the loss of
energy caused by the viscous dissipation. The equation for t can
be solved exactly: t(s) = −

ln(−s)
λ

. In particular, ds = λe−λtdt . Let
us now reconstruct the particle dynamics in real time:

dqi
= λe−λt q̇i = λe−λtpi

dpi
= λe−λt ṗi = −

eλt ∂
V (q, t),
dt dt λ ∂qi
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(24)

nd, therefore,

d2qi
dt2

= −λ
dqi
dt

−
∂

∂qi
V (q, t), (25)

hich is the equation of a particle in a n-dimensional space with a
iscous friction of coefficient λ and in a time-dependent potential

V (q, t).
The friction arises from an exponential re-scaling of time.

Such a re-scaling is actually the source of a singularity and, then,
singular geometry arises naturally after a change of variables
from t to s in the symplectic form using s(t) = e−λt and dt = −

ds
λs .

or convenience, we also redefine Es = E/λ. Then, we obtain

=

∑
i

dqi ∧ dpi +
1
s
ds ∧ dEs, (26)

hich is the non-twisted canonical b-symplectic form. In these
coordinates, the Hamiltonian becomes

H(p, q, s, Es) =
p2

2
+

V (q, t(s))
(λs)2

−
Es
s

, (27)

hich has a singularity of higher order. Indeed, it is a b2-function
nd not a b-function. Such a discrepancy between the degree
f the singularity in the symplectic form and the degree of the
ingularity in total energy of the system is not new (see [10,29]
or other examples).

Summing up, the Hamiltonian is simpler in these coordinates.
ut the main advantage is that the intrinsic time (the curvilinear
oordinate) now corresponds to the coordinate s. Indeed, the
equations of motion now read as follows:

q̇i = pi ṗi = −
1

(λs)2
∂V (q, t(s))

∂qi
(28)

ṡ = 1 Ė =
∂

∂s

(
1

(λs)2
V (q, t(s))

)
+

Es
s2

(29)

The coordinate s is now trivial and we may omit this dimen-
sion, leaving a standard Hamiltonian dynamics with a modified
time-dependent potential. The dynamics then writes as:

q̈i(s) = −
1

(λs)2
∂V (q, s)

∂qi
(30)

and the real-time solution is obtained by undoing the change of
variables s(t) = e−λt .

Remark 4.1 (Connection with Magnetism).
One could think about extending the singular models consid-

ered in this article to include the effects of an electromagnetic
field acting on a charge. In that case, the configuration space is
R3, with an electric potential function φ and a magnetic vector
potential A. The corresponding electric and magnetic fields is
E = ∇φ and B = ∇ × A respectively, both depending on the
position q ∈ R3 of the particle. The force F acting on the particle
is the Lorentz force F = e(E + v × B), a function of both position
and velocity.

The problem can be studied in the Hamiltonian setting by
identifying the tangent and the cotangent vectors via a fixed
Riemannian metric. The magnetic field B is associated with a 2-
form B = ιBΩ where Ω is the volume form associated with
the fixed Riemannian metric and ι is the internal product. The
Maxwell equation ∇ · B = 0, which allows the existence of the
vector potential, becomes the condition dB = 0. By means of the
Poincaré Lemma, there exists a 1-form A such that B = dA. Actu-
ally, we have the correspondence A = ⟨A, ·⟩. The electrodynamics
naturally appears in the phase space (T ∗Q , ω ), where ω is the
B B

10
sum of the canonical symplectic form ωQ on T ∗Q and the pull-
back of the 2-form B by the natural projection π : T ∗Q → Q ,
i.e., ωB = ωQ + π∗B.

The discussion on the multidimensional case is still valid un-
der the presence of a time-dependent magnetic potential B =

Bij(q, t)dqi ∧ dqj, and the subtlety in the case of dissipation is to
djust the speed of the magnetic field. Similarly to what has been
one in this section, the recipe in this case would be given by the
hange B →

eλt
λ
B. Nevertheless, since the magnetic field would no

longer be closed, the method presented here would need further
development to be convenient for magnetic dynamics.

5. Conclusions

This paper aims to provide a finite-dimensional analogy of
fluid mechanics using the techniques of b-symplectic geometry to
model dissipation in conditions of no turbulence. The twisted b-
symplectic model presented here is suited for the case of laminar
viscous flows in which the Reynolds number is small enough. In
general, the model is good for flows of low complexity and no
turbulence and for which the Stokes’ law is a valid approximation.

The fact that the twisted b-symplectic model cannot be ob-
tained from a cotangent lift is a geometrical result that reveals
that there is essential information about the dynamics of the
system contained in the fibers of the configuration space T ∗Q .
Indeed, the core of the 1-dimensional linear model is that the
fixed singularity at the 0 fiber of the cotangent bundle T ∗Q
makes any trajectory tend to a fixed point on the base. And in
the non-linear models, the effect is analogous for any orbit that
would intersect the 0 fiber in the classical non-twisted symplectic
setting.

The key features of the model are perfectly illustrated in the
phase portraits of Figs. 2, 4 and 7. There, the orbits that inter-
sect transversally the 0 fiber in the classical symplectic setting
are transformed into escape orbits when replacing the standard
symplectic form by the twisted b-symplectic form. This type of
orbits, which can be seen as union of trajectories, also arises
in other contexts such as celestial mechanics, and has been re-
cently investigated in the b-contact context by Miranda, Oms and
Peralta-Salas [6,23]. See also [30] for singular periodic orbits in
the realm of b-symplectic geometry where the existence of such
periodic orbits escapes the classical identification with critical
points of the action functional inaugurated by Rabinowitz [31].
Our twisted models detect an infinite number of this type of
singular orbits. This situation aligns with the conjecture of ‘‘2 or
infinity’’ in the number of periodic Reeb orbits also in the singular
set-up [32,33].

We have seen that dissipation naturally emerges from a singu-
lar symplectic form in the direction of the singularity. In particu-
lar, this provides a simple model for uni-dimensional friction. This
can be generalized to multiple dimensions with arbitrary external
field by including an additional dimension to describe the physi-
cal time and energy. The dissipation and then the singularity must
be applied on this extra-dimension, while the Hamiltonian must
be re-scaled accordingly to the dissipation coefficient. Therefore,
any d-dimensional system with an external potential and a global
dissipation given by a fixed dissipation factor can be naturally
described by an Hamiltonian dynamics on a (d + 1)-dimensional
b-symplectic manifold.
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