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Two-layer decoupling of multivariate polynomials
with coupled ParaTuck and CP decompositions

Konstantin Usevich, Yassine Zniyed, Mariya Ishteva, Philippe Dreesen, André L. F. de Almeida

Abstract—In this paper, we propose a new method for mul-
tivariate function approximation that generalized the classical
decoupling problem. In the context of neural network, this can
be seen as a two-layer feedforward network learning problem.
In this work, we make use of both first and second-order infor-
mation of the original function, modeled through ParaTuck and
canonical polyadic (CP) decompositions, respectively. ParaTuck
decomposition alone is not sufficient due to lack of reliable
algorithms for ParaTuck decomposition. Our approach is a
methodological work that demonstrates how the ParaTuck and
CP decompositions can be combined in a coupled manner
to achieve function decoupling according to the new model.
Numerical simulations show the effectiveness of the proposed
method on a simple synthetic example, demonstrating its ability
to approximate multivariate functions accurately.

Index Terms—tensor decomposition, polynomial decoupling,
ParaTuck, neural networks, coupled decompositions.

I. INTRODUCTION

The problem of learning to imitate and approximate com-
plex nonlinear functions is crucial for solving many scien-
tific challenges, including nonlinear system identification [1]
and neural network learning [2]. The decoupling problem
formulated in [3] and motivated by system identification
problems, aims at decomposing a multivariate map as linear
combinations of univariate functions in linear forms of the
input variables. From the neural network point of view, the
decoupling model of [3] corresponds to the usage of trainable
(flexible) activation functions, see e.g., [4], [5]. Flexible activa-
tion functions attracted recent interest in the machine learning
community since they can improve the expressive power of
neural networks (compared to fixed activation functions).

Several approaches relying on linear and multilinear alge-
bra [3], [6], [7] have been proposed to find the decoupled
representations. The most practically relevant approach of [3]
relies on the canonical polyadic decomposition (CPD) [8]–[10]
of a third-order tensor constructed from stacking evaluations
at different points of the Jacobian matrix of the function. It
proved to be useful in many tasks in block-structured nonlinear
dynamical system identification [1], [11]. While formulated for
the decoupling of polynomial maps, the approach of [3] can be
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also adapted to a wider class of differentiable functions [12].
However, the main drawback of the decoupling approach of
[3] is that it applies only to a single hidden nonlinear layer.

In this paper, we introduce a novel decoupled representation
that includes two hidden layers. For the proposed new repre-
sentation, we show that the Jacobian tensor follows a ParaTuck
decomposition (PTD) [13]–[15], and that the Hessian of the
multivariate map at a single point follows a CPD. Using these
results, we provide an algorithm that is based on a coupled
factorization of Jacobian and Hessian tensors, which allows
for retrieval of the two-layer decoupled representation (i.e.,
the weights and the flexible activation functions in the context
of neural networks) in the polynomial case.

Related work. In the machine learning literature, tensor
decompositions of tensors of higher-order derivatives have
been already used to obtain guarantees for recovery of weights
[16]. (This idea, in fact, goes back to earlier works in blind
source separation [17].) However, most of these results apply
to the case of a single hidden nonlinear layers and fixed
activation functions. The authors are aware of only one work
[18] that treats two-layer architecture, however, that work
concerns single-output map, fixed activation functions with
biases, and also relies on matrix methods (singular value
decomposition), rather than tensor decompositions.

II. NOTATION AND BACKGROUND

The symbols (·)† and rank(·) denote, respectively, the
pseudo-inverse and the rank of a matrix. The outer, Hadamard
and Khatri-Rao products are denoted to by ⊗, ⊡, ⊙, respec-
tively. Tensors are represented by bold calligraphic capital
letters, e.g., X . For an n1 × n2 × n3 tensor X , the i-th
horizontal, j-th lateral and k-th frontal slices are denoted
X i,:,:, X :,j,: and X :,:,k, and are of sizes n2 × n3, n1 × n3

and n1 × n2, respectively. The norm of a tensor X is the
square root of the sum of the squares of all its elements,
i.e., ||X || =

√∑n1

i=1

∑n2

j=1

∑n3

k=1 Xi,j,k. The contraction on
the kth index of a tensor is denoted as •

k
[19], while diag(·)

forms a diagonal matrix from its vector argument or captures
the diagonal of its argument matrix. unfoldkX refers to the
unfolding of tensor X over its k-th mode [20].

A. CPD and matrix diagonalization

The CP decomposition is a decomposition of a tensor X of
size n1 × n2 × n3 into a sum of r rank-1 tensors,

X = [[λ; A,B,C]]
def
=

r∑
k=1

λkak ⊗ bk ⊗ ck, (1)



with λ ∈ Rr and the factor matrices A ∈ Rn1×r,B ∈
Rn2×r,C ∈ Rn3×r are given by A =

[
a1 · · · ar

]
, B =[

b1 · · · br

]
, C =

[
c1 · · · cr

]
. Without loss of generality, we

can omit λ in (1) and decompose X as

X def
= [[A,B,C]] =

r∑
k=1

ak ⊗ bk ⊗ ck.

Note that the frontal, vertical, and horizontal slices of the third-
order tensor X in (1) can be viewed as three sets of matrices
that can be jointly diagonalized by two factor matrices [21].
For example, for the frontal slices, we have

X :,:,k = Adiag(Ck,:)B
T. (2)

B. ParaTuck decomposition

The ParaTuck (PT) decomposition can be seen as two-level
generalization of the CPD. The PT model has been proposed
in psychometrics literature [13] in 1994 but was not widely
used due to a lack of reliable algorithms [15]. However, it has
been exploited in wireless communication problems [22], [23],
[24], [25] mostly assuming prior knowledge on some factor
matrices.

The PT decomposition of a n1×n2×n3 tensor X is defined
throughout its slices, by a pair of ranks (r, s) and five factor
matrices, as:

X :,:,k = W diag(gk)Fdiag(hk)U
T, (3)

with W ∈ Rn1×r, U ∈ Rn2×s, F ∈ Rr×s, G =[
g1 · · · gn3

]
∈ Rr×n3 , and H =

[
h1 · · · hn3

]
∈

Rs×n3 . Note that (3) can be viewed as a multilevel version
of joint decomposition of frontal slices (2). Alternatively, we
can define the PT decomposition in the Tucker [26] form as:

X = C •
1
W •

2
U,

where C ∈ Rr×s×n3 is the ParaTuck core tensor given by

Cijk = FijGikHjk, (4)

or using the Hadamard product as C = F ⊡{r,s} S, where
S is of size r × s × n3, and admits a CPD such that S =
I3,n3 •1 GT •2 HT . It is worth mentioning that if the factor
matrices A and B have full column rank and are known, then
we can recover the PT core C. Moreover, if C is known, the
factor matrices F, G and H can be easily retrieved. Indeed,
an elementwise division of two slices is a rank-one matrix

Cijk
Cijk′

=
Gik

Gik′

Hjk

Hjk′
. (5)

To sum up, the main difficulty for computing a PT decom-
position is to find the factor matrices W and U from X . To the
best of the authors’ knowledge, there are no reliable algorithms
that can find the PT decomposition, unless some factors are
fixed. For example, an alternating least squares algorithm,
introduced in [15], has been shown to have convergence issues.
In most cases where the PT decomposition is used [24],
some of the factor matrices are assumed to be known, which
simplifies considerably the optimization problem.

C. ParaTuck ambiguities

The PT decomposition can be unique, in the same sense
as the CPD, under some mild conditions [14]. This means
that it is prone to scaling and permutation ambiguities, i.e.,
multiple solutions can exist for the same decomposition prob-
lem. It has be shown in [14], that if the third-order tensor
X ∈ Rn1×n2×n3 with PT decomposition (3), then there exists
a family of alternative decompositions [mix-up of X and T ?]

T :,:,k = W̃ diag(g̃k)F̃ diag(h̃k)Ũ
T, (6)

where

W = W̃ · (ΠW ·ΛW), (7)

U = Ũ · (ΠU ·ΛU), (8)

F = (Λ̄W ·Λ−1
W ·ΠT

W) · F̃ · (ΠU ·Λ−1
U · Λ̄U), (9)

gk = (αk · Λ̄−1
WΠT

W) · g̃k, (10)

hk = (α−1
k · Λ̄−1

U ΠT
U) · h̃k, (11)

where ΛW, ΛU, Λ̄W and Λ̄B are diagonal matrices, ΠW and
ΠU are permutation matrices, and αk are nonzero scalars. The
distinction between the CPD and PT ambiguities lies in the
slice-wise ambiguities (coefficients αk), making the ambiguity
management task harder than in the CPD case. However, we
will show how to handle this later.

III. DECOUPLING POLYNOMIAL FUNCTIONS

The problem of decoupling refers to the representation of
a multivariate polynomial function as a linear combination of
univariate polynomials in terms of the input variables (Fig. 1).
In this paper, we take the classical decoupling problem one
step further and generalize the representation to a two-layer
model. By doing so, we aim to enhance the versatility and
expressive power of the decoupling technique and extend its
range of applications.

A. Reminder: one-layer structure

Let f : Rm → Rn be a multivariate polynomial map f(x) =
[f1(x) · · · fn(x)]T, with x = [x1 · · ·xm]T. It is said that f has
a decoupled representation (Fig. 1), if

f(x) = Wg(VTx), (12)

where W ∈ Rn×r, V ∈ Rm×r are transformation matrices,
wk and vk and are respectively their columns, and g : Rr →
Rr follows g(z1, · · · , zr) =

[
g1(z1) · · · gr(zr)

]T
, with

gk : R → R univariate functions. This decomposition is thus
composed of a single layer, containing a transformation matrix
V and a set of univariate functions gk, followed by a second
transformation matrix W.

B. Proposed two-layer structure

This paper extends the decoupled representation in (12) to
a representation with two layers as follows (Fig. 2):

f(x) = Wg
(
VT · h(UTx)

)
, (13)

where W ∈ Rn×r , V ∈ Rs×r, U ∈ Rm×s, are transforma-
tion matrices, and h : Rs → Rs and g : Rr → Rr follow
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Fig. 1. Decoupled representation of f into a single-layer model as in (12).
This naturally leads to the CPD of the corresponding Jacobian tensor.

g(z1, · · · , zr) = [g1(z1) · · · gr(zr)]T and h(t1, · · · , ts) =
[h1(t1) · · ·hs(ts)]

T, respectively.
This two-layer generalization allows having more flexibility

in the decoupling of multivariate nonlinear functions. As we
will show next, it is intricately connected to the ParaTuck and
CP decompositions when considering first- and second-order
information.

IV. TENSOR-BASED FUNCTION DECOMPOSITION

A. Jacobian and ParaTuck decomposition

The main idea to find the decomposition (13) of a nonlinear
function f relies on the evaluation of the Jacobian matrix in
different points x(p), for p = 1, . . . , P . This idea mirrors [3],
where it has been applied to the classical decoupling model.
In the sequel, we will replicate the procedure with the new
proposed structure in (13) and will derive the new expression
of the Jacobian tensor.

Lemma 1: The first-order derivatives of the parameteriza-
tion (13) are given by

Jf (x) : =


∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

...
∂fn
∂x1

(x) · · · ∂fn
∂xm

(x)

 (14)

= W · diag
([

g′1(z1) · · · g′r(zr)
])

·VT

· diag
([

h′
1(t1) · · ·h′

s(ts)
])

·UT. (15)

Proof: Proof follows by applying the chain rule to (13). □
Based on Lemma 1, we can see that Jacobian of (13)

evaluated at the points x(p) follows

Jf (x
(p)) = W · diag

(
g′(z(p))

)
·VT · diag

(
h′(t(p))

)
·UT,

(16)

= W ·D(p)
G ·VT ·D(p)

H ·UT, (17)

where D
(p)
G ∈ Rr×r and D

(p)
H ∈ Rs×s are the diagonal

matrices given by

D
(p)
G = diag

(
gp

)
, D

(p)
H = diag

(
hp

)
,

and the vectors gp ∈ Rr and hp ∈ Rs are given by

gp = g′(z(p)) =
[
g′1(z

(p)
1 ) · · · g′r(z(p)r )

]T
, (18)

hp = h′(t(p)) =
[
h′
1(t

(p)
1 ) · · ·h′

s(t
(p)
s )

]T
, (19)

with t(p) =
[
t
(p)
1 · · · t(p)s

]T
= UTx(p) and

z(p) =
[
z
(p)
1 · · · z(p)r

]T
= VTh(UTx(p)).

We can then define the matrices H ∈ Rs×P and G ∈ Rr×P ,
for p = 1, . . . , P , by their columns

G =
[
g1 · · · gP

]
, H =

[
h1 · · · hP

]
,

or equivalently by their rows as

Hj,: =
[
h′
j(t

(1)
j ) · · ·h′

j(t
(P )
j )

]
,

Gi,: =
[
g′i(z

(1)
i ) · · · g′i(z

(P )
i )

]
.

(20)

This result shows that the expression of the Jacobian of
the new model corresponds to the frontal slices of a PT
decomposition (3) of rank (r, s) with factors U, VT and W. It
is worth noting that the factors U, V and W do not depend on
the choice of the point x(p). Following Lemma 1, a Jacobian
tensor J of size n × m × P is constructed by stacking the
Jacobian evaluation at P different sampling points x(p) ∈ Rm,
for p = 1, . . . , P , where

J:,:,p = Jf (x
(p)), (21)

therefore, tensor J admits a PT decomposition.

B. Second-order information and structured CPD

To improve the usefulness of the PT formulation, we will
examine the second-order information of (13), and show
later how this can help in the decomposition since the PT
decomposition lacks a reliable algorithm for the moment. In
this subsection, we derive an expression for the Hessian tensor
at each point. The Hessian tensor H(x) ∈ Rn×m×m at a point
x is defined as

Hijk(x) =
∂2fi

∂xj∂xk
(x).

Next, we show the Hessian tensor has a CP decomposition.
But first, we introduce some extra notation for the factors of
the Jacobians introduced in the previous subsection. We denote
the matrices A(x) ∈ Rn×s and B(x) ∈ Rr×m such that

A(x) = W · diag
(
g′(z(x))

)
·VT, (22)

B(x) = VT · diag
(
h′(t(x))

)
·UT; (23)

so that with this notation, we can reformulate (16) as

Jf (x) = A(x) diag
(
h′(t(x))

)
·UT

= W · diag
(
g′(z(x))

)
B(x). (24)

Armed with this notation, we are ready to formulate the
following result on the structure of the Hessian tensor.

Lemma 2: The Hessian tensor has the following rank (r+s)
CP (polyadic) decomposition:

H(x) = [[g′′(z(x)); W,BT(x),BT(x)]]

+ [[h′′(t(x)); A(x),U,U]]. (25)

Proof: The proof follows by applying the Leibniz rule to one
of the formulations in (24). □
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Fig. 2. Decoupled representation of f into a two-layer model, as in (13). This naturally leads to a PT decomposition of the corresponding Jacobian tensor.

It is worth noting that (i) the Hessian tensor is partially
symmetric, i.e., Hijk = Hikj , and (ii) the rank is too high so
that the decomposition cannot be obtained from a CPD due to
loss of uniqueness.

V. CONSTRAINED COUPLED DECOMPOSITION APPROACH

In this section, we propose to tackle the previously men-
tioned problems by formulating the new decoupling problem
as a constrained coupled tensor decomposition, using both the
first and second-order information. Before that, we specify the
assumptions considered in our approach:

1) m ≥ s and n ≥ r ≥ s,
2) W is known and has full column rank r,
3) U and unfold2J have full column rank s.

Under the conditions above, we can always reduce the problem
to the case r = n, s = m, and W = Ir. It is important to
mention that (i) despite these assumptions, the PT decompo-
sition remains a challenging problem that cannot be solved by
ALS-type algorithms, such as the one proposed in [15], and
(ii) these assumptions are not overly restrictive and can easily
be met in practical applications, especially in the training of
neural networks, such as autoencoders [27].

A. Reformulation as a constrained CPD

We assume that we are given both Jacobians and Hessians
Jf (x

(p)), and H(x(p)) at P evaluation points, x(p) ∈ Rm,
for p = 1, . . . , P . Let us define stacked Hessian tensor and
Jacobian matrix as follows. We stack all the Hessians into a
third-order Pn×m×m tensor T hess as

(T hess)1+(p−1)n:pn,:,: = H(x(p)). (26)

We also stack Jacobians in one matrix Jall ∈ RPn×m as

Jall
1+(p−1)n:pn,: = Jf (x

(p)). (27)

Then the following proposition shows that T hess admits a
particular coupled CP decomposition.

Proposition 1: Under the assumption that the matrix G does
not have nonzero elements (equivalently, all diagonal matrices
D

(p)
G are nonsingular). Then, T hess has the following CPD

with structured factors:

T hess = [[diag(c), (Jall)T, (Jall)T]] + [[E,U,U]], (28)

where

c =


(D

(1)
G )−2g′′(z(1))

...
(D

(P )
G )−2g′′(z(P ))

 , E =


(D

(1)
G )VT diag(h′′(t(1)))

...
(D

(P )
G )VT diag(h′′(t(P )))

 .

Proof: Based on (24), we remark that the matrices B(x(p))
can be expressed through the known Jacobians as

B(x(p)) = (D
(p)
G )−1J(p), (29)

where J(p) = Jf (x
(p)). In the same way, and based on (22),

matrix A(x(p)) can be expressed as

A(x(p)) = D
(p)
G VT. (30)

Substituting (29) and (30) in (25), the Hessian at the p-th
sampling point has the decomposition

H(x(p)) = [[((D
(p)
G )−2g′′(z(x(p))))T; Ir, (J

(p))T, (J(p))T]]

+[[h′′(t(x(p))); D
(p)
G VT,U,U]]

= [[diag((D
(p)
G )−2g′′(z(x(p)))), (J(p))T, (J(p))T]]

+[[D
(p)
G VT diag(h′′(t(x(p)))),U,U]].

Stacking the expressions for H(x(p)) in (26) completes the
proof. □

We see that the decomposition in (28) is a CPD where the
first term has two known factors Jall and one diagonal factor,
and a second term with unknown factors. Note that the second
CPD has very low rank s and can be retrieved with matrix
methods as we explain in the next subsection.

B. Reformulation as structured low-rank matrix completion

Instead of the tensor T hess, we consider its transposed first
unfolding Tall ∈ Rm2×nP , which has the factorization

Thess =
(
(Jall)T ⊙ (Jall)T

)
diag(c) + (U⊙U)ET.

Assume we are in the exact case, then we just need to find
vector c so that the matrix

S (c) = Thess −
(
(Jall)T ⊙ (Jall)T

)
diag(c)

has rank s. We pose this problem as rank minimization of
S (c), which can be solved as the following minimization
problem over the low-rank manifold:

min
P,L

∥ΠS (PL−Thess)∥F , (31)

where ΠS is the projection on the set of structured matrices,
see e.g., [28] for more details on the reformulation (31).

After the minimizer of (31) is found, there is still some
work need to be done even if the low-rank matrix is exactly
recovered (PL = (U ⊙ U)ET). In fact, this is due to
the ambiguity of low-rank matrix factorization. Therefore, in
general, we have

P = (U⊙U)ST,



and hence U can be retrieved from the CPD [[U,U,S]] of the
reshaping of P ∈ Rm2×d as an m×m× s tensor.

C. Recovering of other factors and functions

After estimation of U, we can find the core tensor (4)
by multiplying by its pseudoiverse the Jacobian tensor (C =
J •2 U†). From the core tensor (4), it is easy to estimate the
other factors. Indeed, without loss of generality, let us assume
assuming that all elements of a frontal slice C:,:,k′ are nonzero,
we set V = C:,:,k′ , so we can set Ĝ:,k′ ≡ 1, Ĥ:,k′ ≡ 1 thanks
to the ambiguities. Then by (5) we must have

Ci,j,k

Ci,j,k′
= ĜikĤjk,

thus the k-th columns of Ĝ and Ĥ can be found from rank-
one factorization of the elementwise division of the slices C:,:,k

and C:,:,k′ .
However, there still remains the problem of slicewise am-

biguities αk, which is particularly important for the recon-
struction of functions. In fact, the approach suggested in [3]
(regression of Hj,: versus (t

(1)
j , . . . , t

(P )
j ), see (20)) does not

directly work. This happens because, even in the case of exact
decomposition, the columns of the estimated matrices Ĝ and
Ĥ contain information about functions only up to the slice-
wise ambiguities:

Hj,: =
[
α−1
1 h′

j(t
(1)
j ) · · ·α−1

P h′
j(t

(P )
j )

]
,

Gi,: =
[
α1g

′
i(z

(1)
i ) · · ·αP g

′
i(z

(P )
i )

]
.

To recover the functions, we need more assumptions (for
example, impose that hk can be polynomials of low order).
To estimate the slice-wise ambiguities, we propose to solve
the following system of equations

aTkX(t, d) = Hk,: diag(α), k = 1, . . . , s,

where d is the degree of the polynomial, X(t, d) is the
Vandermonde matrix (for points t and up to degree d), and
we solve for aTk (coefficients of polynomials) and α (scalings).
This is a problem of intersection of linear subspaces and can
be solved with alternating projections, see Fig. 3.

D. Overall algorithm

The overall algorithm can be summarized as follows: Algo-
rithm: Two-layer decoupling using PTD

assume r = n, s = m, W = Ir
input: Jacobian evaluations Jf (x1), . . . ,Jf (xP )

Hessian evaluations T (x1), . . . ,T (xP )
output: factors U, V; coefficients of g, h

1) stack the Jacobians into matrix Jall, see (27)
2) stack the Hessians into tensor T hess, see (26)
3) find PL from the rank minimization problem (31)
4) reshape P into a m×m×m tensor
5) compute its rank-m CPD [[U,U,Q]] and extract U
6) find the ParaTuck core tensor C = J •2 U†

7) from C and (4), recover V, G, and H
8) fix αk ambiguities by imposing polynomial structure.
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Fig. 3. Due to the presence of slice ambiguities, recovering the functions g
and h from the PTD requires additional attention. Plot of the estimation of
h without (top) and with (bottom) slice ambiguity correction.

Fig. 4. The convergence plot shows a linear convergence to an error of order
10−10 in 46 out of 100 random initializations.

VI. NUMERICAL EXAMPLES

A. Example of decoupling with r = s = 3

We consider a concrete example of decoupling for the
polynomials functions, which are shifts of the same function

h1(t) = ϕ(t− 0.5), h2(t) = ϕ(t+ 0.2), h3(t) = ϕ(t)

g1(t) = ϕ(t+ 0.1), g2(t) = ϕ(t+ 0.4), g3(t) = ϕ(t)

where ϕ(t) = t2 − 0.25t4 + t3 − 3t. In our experiment, the
matrices V and U were generated randomly, with i.i.d. ele-
ments from the uniform distribution on [−1; 1]. The P = 100
sampling points x(p) are drawn uniformly from [−0.5; 0.5].

In Fig. 4, we show the cost function (31) as a function
of iteration (out of maximum 1000 iterations). We run 100
random initializations of P as P0 = U0⊙U0 with U0 drawn
from standard Gaussian i.i.d. distribution. We observe that in
46 cases out of 100, the algorithm shows linear convergence
to an error of order 10−10. Taking one of the runs with the
best cost function value, we are able to recover the original
U and the nonlinearities.



VII. CONCLUSION

We presented a new method for multivariate function ap-
proximation that couples the PT and CP decompositions. Our
approach utilizes both first and second-order information of the
original function and has been shown to be effective through
numerical simulations on a simple synthetic example. Al-
though the PT decomposition remains a challenging problem,
our results demonstrate the potential of the proposed method
for addressing this issue and provide a promising direction for
future work in the field of multivariate function approximation.
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