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Abstract

In this paper, we propose a new method for multivariate function approxima-
tion that generalized the classical decoupling problem. In the context of neural
network, this can be seen as a two-layer feedforward network learning problem.
In this work, we make use of both first and second-order information of the
original function, modeled through paratuck and canonical polyadic (CP) de-
compositions, respectively. However, it is currently a challenge in the literature
to handle the paratuck decomposition effectively. Our approach is a method-
ological work that demonstrates how the paratuck and CP decompositions can
be combined in a coupled manner to achieve function decoupling according to
the new model. Numerical simulations show the effectiveness of the proposed
method on a simple synthetic example, demonstrating its ability to approximate
multivariate functions accurately.

Keywords: paratuck decomposition, cp decomposition, polynomial
decoupling, neural network, coupled/structured tensor decomposition

1. Introduction

The problem of learning to imitate and approximate complex nonlinear func-
tions is crucial for solving many scientific challenges, including neural network
learning [18] and system identification [8]. Neural networks have become a
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widespread tool for various applications in areas such as computer vision [16],
natural language processing [6], and predictive modeling [26]. Their ability to
learn complex relationships between inputs and outputs has resulted in impres-
sive performance on a wide range of tasks. One of the key components of neural
networks is the activation function, which determines the output of a neuron
given its input. The choice of activation function can have a significant impact
on network performance [2]. Currently, activation functions are typically fixed
prior to training, limiting the expressiveness of the network. This is why re-
searchers have proposed various shapes of activation functions in the literature,
such as step, sigmoid [7], tanh [5], and ReLU [9], to improve the representational
capacity of neural networks.

Flexible activation functions [2] are a key factor in enabling neural networks
to approximate complex input-output relationships. Traditional activation func-
tions are fixed prior to learning and do not adapt to the specific input-output
relationship being modeled. Flexible activation functions, on the other hand,
are learned during the training process, allowing them to adapt to the underly-
ing data and capture complex non-linear dependencies. This results in a more
expressive and powerful model of the system dynamics. Some examples of flex-
ible activation functions include the Generalized sigmoid [21], the switch [23],
the paratemeric ReLU [13], to mention a few.

In the context of neural networks, the Universal Approximation Theorem
[15] states that a feedforward neural network with a single hidden layer, using
a non-constant, bounded, and continuous activation function, can approximate
any continuous function to an arbitrary degree of accuracy. However, this the-
orem does not hold for discontinuous functions. A one-layer network with a
continuous activation function is not capable of approximating functions with
discontinuities, as it can only model continuous relationships. This means that
a one-layer network may not be suitable for certain applications where discon-
tinuous relationships are present, such as in certain control problems [22] or
digital signal processing tasks [29]. To model these types of relationships, a
multi-layer neural network or an alternative approach may be necessary. The
use of a two-layer neural network provides a more expressive and powerful model
of the system dynamics compared to a one-layer network. This implies that a
two-layer network has the ability to model a wider range of input-output rela-
tionships compared to a one-layer network. The added complexity of a second
layer combined with the flexible activation functions allows the network to learn
a more complex mapping between inputs and outputs, capturing non-linear de-
pendencies that are not possible with a one-layer network.

In the field of system identification, the classical decoupling problem [8] refers
to the task of decomposing a multivariate polynomial function as linear combi-
nations of univariate polynomials in linear forms of the input variables. Such an
approach has applications in system identification, approximation theory, neu-
ral networks, etc. The decoupling problem is equivalent to modeling the system
as a one-layer feedforward neural network with polynomial activation functions.

Several tensor-based solutions [8, 24, 20] have been proposed to find the
decoupled representation. Each solution uses a different tensor representation,
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but they all lead to a canonical polyadic decomposition (CPD) [14, 11, 3]. In
this paper, we propose to use the first-order information of the polynomials for
a new decoupled representation. Such a solution has been used in [8] for the
classical decoupling problem and it leads to a CPD Jacobian tensor. For the
new proposed representation here, the Jacobian tensor will follow a ParaTuck
(PT) decomposition [12, 10, 4]. To the best of the authors’ knowledge, there
is no existing algorithm that can solve the PT decomposition when no prior
knowledge is given. The ALS-type algorithm, introduced in [4], has been shown
to have convergence issues. In most cases where the PT decomposition is used
[28], some of the parameters are assumed to be known, which simplifies the
optimization problem.

In summary, we introduce a novel decoupled representation that includes
two layers instead of one in the classical representation. This work provides
an expression for the first and second-order information of the new model and
shows that the jacobian-based tensor follows a PT decomposition. Additionally,
the paper provides an algorithm that computes a coupled factorization, allowing
to retrieve the new decoupled representation (i.e., the weights and the flexible
activation functions in the context of neural networks), which combines the
jacobian and hessian-based tensors.

2. Notation and tensor definitions

2.1. Notation

The symbols (·)† and rank(·) denote, respectively, the pseudo-inverse and the
rank of a matrix. The outer, Hadamard and Khatri-Rao products are denoted
to by ⊗, ⊡, ⊙, respectively. Tensors are represented by bold calligraphic capital
letters, e.g., X . Xi,:,:, X:,j,: and X:,:,k are the i-th horizontal, j-th lateral and
k-th frontal slices of sizes n2 × n3, n1 × n3 and n1 × n2, respectively, of the
tensor X of size n1 × n2 × n3. The norm of a tensor X is the square root of the

sum of the squares of all its elements, i.e., ||X || =
√∑n1

i=1

∑n2
j=1

∑n3
k=1 Xi,j,k.

I3,r denotes the 3-order identity tensor of size r × r × r. The contraction on
the kth index of a tensor is denoted as •

k
[25]. The operator diag(·) forms a

diagonal matrix from its vector argument, or captures the diagonal of a matrix
if the argument is a matrix. unfoldkX refers to the unfolding of tensor X over
its k-th mode [17].

2.2. CPD and matrix diagonalization

The CPD decomposes a tensor X into a sum of r rank-1 tensors. Following
this definition, we can express a CPD tensor X of size n1 × n2 × n3 as follows.

X = [[λ; A,B,C]]
def
=

r∑
k=1

λkak ⊗ bk ⊗ ck,
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with λ ∈ Rr and the factor matrices A ∈ Rn1×r,B ∈ Rn2×r,C ∈ Rn3×r are
given by

A =
[
a1 · · · ar

]
, B =

[
b1 · · · br

]
, C =

[
c1 · · · cr

]
.

For simplicity, and without loss of generality, we can omit the first factor, and
denote X as

X = [[A,B,C]] = I3,r •
1
A •

2
B •

3
C. (1)

Considering the definition of the CPD, we can observe that the frontal, vertical,
and horizontal slices of the third-order tensor X in (1) can be viewed as three
sets of matrices that can be jointly diagonalized by two factor matrices [1]. For
example, for the frontal slices, we have

X:,:,k = Adiag(Ck,:)B
T. (2)

2.3. ParaTuck decomposition

The paratuck decomposition can be seen as two level generalization of the
CP decomposition. The PT model has been proposed in psychometric litera-
ture [12] in 1994, but has not been applied due to lack of published algorithm
[4]. However, it has been utilized in telecommunication applications [28] with
the presence of prior knowledge. The PT decomposition is defined as follows.
Assume we have a n1 × n2 × n3 tensor X . The PT decomposition is defined
throughout its slices, by a pair of ranks (r, s) and five factor matrices, as:

X:,:,k = Adiag(gk)F diag(hk)B
T, (3)

withA ∈ Rn1×r, B ∈ Rn2×s, F ∈ Rr×s, G =
[
g1 · · · gn3

]
∈ Rr×n3 , andH =[

h1 · · · hn3

]
∈ Rs×n3 . One can notice that (3) can be viewed as a multilevel

version of (2). Alternatively, we can define the paratuck decomposition in the
Tucker [27] form as:

T = C •
1
A •

2
B,

where C ∈ Rr×s×n3 is the paratuck core tensor given by

Cijk = FijGikHjk, (4)

or equivalently, using the Hadamard product, as:

C = F⊡{r,s} S,

where S, of size r×s×n3, follows a CPD such that S = I3,n3
•1 GT •2 HT . It is

worth mentioning that if the factor matrices A and B are full column rank and
are known, then we can recover the paratuck core C. One should also notice
that if C is known, the factor matrices F, G and H can be easily retrieved.
Indeed, an elementwise division of two slices is a rank one matrix

Cijk
Cijk′

=
Gik

Gik′

Hjk

Hjk′
.

To sum, the main difficulty for computing a PT decomposition is to find the
factor matrices A and B from X .
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2.4. Paratuck ambiguities

The PT decomposition can be unique, in the same sense as the CPD, under
some mild conditions [10]. This means that PT is prone to scaling and permu-
tation ambiguities, i.e., multiple solutions can exist for the same decomposition
problem. It has be shown in [10], that if the 3-order tensor X ∈ Rn1×n2×n3 with
paratuck decomposition (3), then there exists an alternative decomposition

T:,:,k = Ã diag(g̃k)F̃diag(h̃k)B̃
T, (5)

where

A = Ã · (ΠA ·ΛA), (6)

B = B̃ · (ΠB ·ΛB), (7)

F = (Λ̄A ·Λ−1
A ·ΠT

A) · F̃ · (ΠB ·Λ−1
B · Λ̄B), (8)

gk = (αk · Λ̄−1
A ΠT

A) · g̃k, (9)

hk = (α−1
k · Λ̄−1

B ΠT
B) · h̃k, (10)

where ΛA, ΛB, Λ̄A and Λ̄B are diagonal matrices, ΠA andΠB are permutation
matrices, and αk are nonzero scalars. The distinction between the CPD and
PT ambiguities lies in the slice-wise ambiguities (coefficients αk), making the
ambiguity management task harder than the CPD case. However, we will show
how to handle this later.

3. Polynomial functions decoupling

The concept of decoupling is widely recognized in the field of mathematics,
particularly in the realm of polynomial functions. Classically, the decoupling
problem refers to the challenge of expressing a multivariate polynomial function
as a linear combination of univariate polynomials in terms of the input variables.
In this paper, we take the classical decoupling problem one step further and
generalize the representation to a two-layer model. By doing so, we aim to
enhance the versatility and expressive power of the decoupling technique and
extend its range of applications.

3.1. Reminder: one-layer structure

Let f : Rm → Rn be a multivariate polynomial map, with

f(x) = [f1(x) · · · fn(x)]T, (11)

and x = [x1 · · ·xm]T. (12)

It is said that f has a decoupled representation, if we have

f(x) = Wg(VTx), (13)
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where W ∈ Rn×r , V ∈ Rm×s are transformation matrices,wk and vk and are
respectively their columns, and g : Rr → Rr follows

g(z1, · · · , zr) =
[
g1(z1) · · · gr(zr)

]T
. (14)

with gk : R → R is a univariate function. In Fig. 1, we give a graphic representa-
tion of the decoupled representation in (13). We can see that this decomposition

VT

g1(·)
...

gr(·)

W

x1

xm

z1

zr

y1

yn

Figure 1: Decoupled representation of f as in (13).

is composed of a single block/layer, containing a transformation matrix V and
a set of univariate functions gk, followed by a second transformation matrix W.

3.2. Proposed two-layer structure

In this paper, we propose to extend the decoupled representation in (13) to
a representation with two blocks/layers as follows:

f(x) = Wg
(
VT · h(UTx)

)
, (15)

where W ∈ Rn×r , V ∈ Rs×r, U ∈ Rm×r, are transformation matrices, h :
Rs → Rs and g : Rr → Rr follow

g(z1, · · · , zr) = [g1(z1) · · · gr(zr)]T, (16)

and

h(t1, · · · , ts) = [h1(t1) · · ·hs(ts)]
T. (17)

UT

h1(·)
...

hs(·)
VT

g1(·)
...

gr(·)
W

x1

xm

t1

ts

z1

zr

y1

yn

Figure 2: Decoupling representation in (15).

Graphically, the decoupled representation in (15) is given in Fig. 2. We can
see that this decomposition has two blocks/layers compared to Fig. 1. This
generalization allows to have more flexibility in the decoupling of multivariate
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nonlinear functions. In theory, a single layer network may suffice for approxi-
mating continuous functions. However, in practical settings, not all functions
are continuous and even for those that are, one-layer networks may struggle to
fit and generalize well for complex functions. Additionally, a two-layer network
has a larger capacity for representation, allowing it to store more information.
Intuitively, the increased complexity of a two-layer network leads to improved
expressiveness, approximation, generalization, and representation compared to
a one-layer network.

4. Tensor-based function decomposition

4.1. Jacobian and paratuck decomposition

The main idea to find the decomposition (15) of a nonlinear function f relies
on the evaluation of the jacobian matrix in different points x(p), for p = 1, . . . , P .
This idea mirrors [8], where it has been applied for the classical decoupling
model. In the sequel, we will replicate the procedure with the new proposed
structure in (15), and will derive the new expression of the Jacobian tensor.

Lemma 1. The first-order derivatives of the parameterization (15) are given
by

Jf (x) : =


∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

...
∂fn
∂x1

(x) · · · ∂fn
∂xm

(x)

 (18)

= W · diag
([

g′1(z1) · · · g′r(zr)
])

·VT · diag
([

h′
1(t1) · · ·h′

s(ts)
])

·UT.

(19)

Proof. The proof follows by applying the chain rule to (15).

Based on Lemma 1, we can see that jacobian of (15) evaluated at the points
x(p) follows

Jf (x
(p)) = W · diag

(
g′(z(p))

)
·VT · diag

(
h′(t(p))

)
·UT, (20)

= W ·Dp
G ·VT ·Dp

H ·UT, (21)

where t(p) =
[
t
(p)
1 · · · t

(p)
s

]
= UTx(p), z(p) =

[
z
(p)
1 · · · z

(p)
r

]
= VTh(UTx(p)),

and Dp
H ∈ Rs×s and Dp

G ∈ Rr×r are the diagonal matrices given by

Dp
H = diag

([
g′1(z

(p)
1 ) · · · g′r(z(p)r )

])
,

Dp
G = diag

([
h′
1(t

(p)
1 ) · · ·h′

s(t
(p)
s )

])
.

We can then define the matrices H ∈ Rs×P and G ∈ Rr×P , for p = 1, · · · , P ,
as

H:,p = diag
(
Dp

H

)
, G:,p = diag

(
Dp

G

)
,
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or equivalently by their entries as

Hjp = h′
j(t

(p)
j ), Gip = g′i(z

(p)
i ).

This result shows that expression of the jacobian of the new model corresponds
to the frontal slices of a PT decomposition of rank (r, s) with factors UT , VT

and W. It is worth noting that the factors U , V and W do not depend on
the choice of the point x(p). Following Lemma 1, a jacobian tensor J of size
n × m × P is constructed by stacking the jacobian evaluation at P different
sampling points x(p) ∈ Rm, for p = 1, · · · , P , where

J:,:,p = Jf (x
(p)), (22)

therefore, tensor J admits a paratuck decomposition.

4.2. Second-order information and structured CPD
To improve the usefulness of the paratuck formulation, we will examine

the second-order information of (15), and show later how this can help in the
decomposition, since the paratuck decomposition lacks a reliable algorithm for
the moment. In this subsection, we derive an expression for the Hessian tensor
at each point. The Hessian tensor T (x) ∈ Rn×m×m at a point x is defined as
follows.

Tijk(x) =
∂2fi

∂xj∂xk
(x).

Next, we show that the Hessian tensor has a CP decomposition. But before
that, we introduce some extra notation for the factors of the jacobians intro-
duced in the previous subsection. We denote the matrices A(x) ∈ Rn×s and
B(x) ∈ Rr×m such that

A(x) = W · diag
(
g′(z(x))

)
·VT, (23)

B(x) = VT · diag
(
h′(t(x))

)
·UT; (24)

so that with this notation, we can reformulate (20) as

Jf (x) = A(x)diag
(
h′(t(x))

)
·UT = W · diag

(
g′(z(x))

)
B(x). (25)

Armed with this notation, we are ready to formulate the following result on the
structure of the Hessian tensor.

Lemma 2. The Hessian tensor has the following rank (r + s) CP (polyadic)
decomposition:

T (x) = [[g′′(z(x))T; W,BT(x),BT(x)]] + [[h′′(t(x))T; A(x),U,U]]. (26)

Proof. The proof follows by applying the Leibniz rule to one of the formula-
tions in (25).

It is worth noting that (i) the Hessian tensor is partially symmetric, i.e., Tijk =
Tikj , and (ii) the rank is too high so that the decomposition cannot be obtained
from a CPD due to loss of uniqueness.
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5. A constrained coupled tensors decomposition approach

In this section, we propose to tackle the previously mentioned problems
by formulating the new decoupling problem as a constrained coupled tensors
decomposition, using both the first and second-order information. Before that,
we specify the assumptions considered in our approach:

1. m ≥ r and n ≥ s,

2. W is known and has full column rank r,

3. U has full column rank s and unfold2J is also of rank s.

Under the aforementioned conditions, we can always reduce the problem to
the following case: n = r, m = s and W = Ir. It is important to mention
that (i) despite the considered assumptions, the PT decomposition remains a
challenging problem that cannot be solved by ALS-type algorithms, such as the
one proposed in [4], and (ii) these assumptions are not overly restrictive and
can easily be met in practical applications, especially in the training of neural
networks, such as autoencoders [19].

5.1. Reformulation as a constrained CPD

We assume that we are given both jacobians and hessians Jf (x
(p)), and

T (x(p)) at P evaluation points. Additionally, we impose that all matrices Dp
G

are nonsingular to simplify the formulation of the problem. Based on (25), we
remark that the matrices B(x(p)) can be expressed through the known jacobians
as

B(x(p)) = (Dp
G)−1J(p), (27)

where J(p) = Jf (x
(p)). In the same way, and based on (23), matrix A(x(p)) can

be expressed as
A(x(p)) = Dp

GVT. (28)

Substituting (27) and (28) in (26), the hessian at the p-th sampling point has
the following decomposition.

T (x(p)) = [[((Dp
G)−2g′′(z(x(p))))T; Ir, (J

(p))T, (J(p))T]]+[[h′′(t(x(p))); Dp
GVT,U,U]].

In what follows, we take all the hessians at P points and stack them into the
following third-order Pn×m×m tensor T all:

(T all)1+(p−1)n:pn,:,: = T (x(p)).

We also do the same for the jacobians, which we stack into Jacobian matrix
Jall ∈ RPn×m:

Jall
1+(p−1)n:pn,: = Jf (x

(p)).

Then, from the previous derivations, the tensor had the following CPD with
structured factors:

T all = [[diag(c), (Jall)T, (Jall)T]] + [[E,U,U]] (29)

9



where

c =

(D
1
G)−2g′′(z(x(1)))

...
(DP

G)−2g′′(z(x(p)))

 , E =

(D
1
G)VTdiag(h′′(t(x(1))))

...
(DP

G)VTdiag(h′′(t(x(p))))

 .

We see that the latter problem in (29) is a CPD where the first term has two
known factors Jall and one diagonal factor, and a second term with unknown
factors. Note that the second CPD has very low-rank s and can be retrieved
with matrix methods as we explain in the next subsection.

5.2. Reformulation as structured low-rank matrix completion

Instead of the tensor T all, we consider its transposed first unfolding Tall ∈
Rm2×nP , which has the following factorization.

Tall =
(
(Jall)T ⊙ (Jall)T

)
diag(c) + (U⊙U)ET.

Assume we are in the exact case, then we just need to find vector c so that the
matrix

S (c) = Tall −
(
(Jall)T ⊙ (Jall)T

)
diag(c)

has rank s. We propose to pose this problem as rank minimization over the set
of structured matrices S (c), which can be solve as the following minimization
problem over the low-rank manifold:

min
PL

∥ΠS (PL−Tall)∥F , (30)

where ΠS denotes the projection on the set of structured matrices.

5.3. Ambiguities in the problem and recovering the functions

After estimation of U, the matrices V, G and H can be easily found, as
noted before. The problem which remains for decoupling approach is the recon-
struction of functions. The issue is that even plotting the Hk,: with versus

(t1, . . . , tP ) = (uTx(1), . . . ,uTx(P ))

does not work, as in the CPD case, see Fig. 5.3.
This is due to the presence of the ambiguities αp for each of the columns

of G. In order to recover nice plots of functions, we need more assumptions
(for example, impose that gk can be polynomials of low order. To estimate the
ambiguities, we need to solve the following system of equations

aTkX(t, d) = Hk,: diag(α), k = 1, . . . , s

where d is the degree of the polynomial X(t, d) is the Vandermonde matrix (for
points t and up to degree d), and we solve for aTk (coefficients of polynomials)
and α (scalings). This is a problem of intersection of linear subspaces and can
be solved with alternating least squares, see Fig. 5.3.
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Figure 3: Estimation of activation function without correction for slice ambiguities.
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Figure 4: Estimation of activation function with correction for slice ambiguities.

6. Conclusion

In conclusion, this paper presents a new method for multivariate function
approximation that combines paratuck and CP decompositions in a coupled
manner. Our approach utilizes both first and second-order information of the
original function and has been shown to be effective through numerical simu-
lations on a simple synthetic example. Although the paratuck decomposition
remains a challenging problem, our results demonstrate the potential of the
proposed method for addressing this issue and provide a promising direction for
future work in the field of multivariate nonlinear function approximation.
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