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Abstract
We consider a linear symmetric and elliptic PDE and a linear goal functional. We
design and analyze a goal-oriented adaptive finite element method, which steers the
adaptive mesh-refinement as well as the approximate solution of the arising linear
systems by means of a contractive iterative solver like the optimally preconditioned
conjugate gradient method or geometric multigrid. We prove linear convergence of
the proposed adaptive algorithm with optimal algebraic rates. Unlike prior work, we
do not only consider rates with respect to the number of degrees of freedom but even
prove optimal complexity, i.e., optimal convergence rates with respect to the total
computational cost.
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1 Introduction

Let � ⊂ R
d be a bounded Lipschitz domain, d ≥ 2. For given f ∈ L2(�) and

f ∈ [L2(�)]d , we consider a linear symmetric and elliptic partial differential equation

−div A∇u� + c u� = f + div f in �,

u� = 0 on � := ∂�,
(1)

where A(x) ∈ R
d×d
sym is symmetric and c(x) ∈ R. As usual, we assume that A, c ∈

L∞(�), that A is uniformly positive definite and that theweak form (see (5) below) fits
into the setting of the Lax–Milgram lemma. Standard adaptivity aims to approximate
the unknown solution u� ∈ H1

0 (�) of (1) in the energy norm at optimal rate; see [1, 6,
7, 9, 11, 19, 23] for adaptive finite element methods (AFEMs) and [5] for an overview
of available results. Instead, the quantity of interest for goal-oriented adaptivity is only
some functional value of the unknown solution u� ∈ H1

0 (�) of (1), and the present
paper aims to compute the linear goal functional

G(u�) :=
∫

�

(
gu� − g · ∇u�

)
dx, (2)

for given g ∈ L2(�) and g ∈ [L2(�)]d . To approximate G(u�) accurately, it is not
necessary (and might even waste computational time) to accurately approximate the
solution u� on the whole computational domain. Due to this potential decrease of
computational cost, goal-oriented adaptivity is of high relevance in practice as well as
in mathematical research; see, e.g., [3, 4, 10, 17] for some prominent contributions.

The present work formulates a goal-oriented adaptive finite element method
(GOAFEM), where the sought goal G(u�) is approximated by some computable G�

such that

|G(u�) − G�| �→∞−−−→ 0 even at optimal algebraic rate. (3)

The earlier works [2, 12, 14, 20] are essentially concerned with optimal conver-
gence rates for GOAFEM, where all arising linear FEM systems are solved exactly.
While [12, 14] particularly aim to transfer ideas from the AFEM analysis of [5, 6]
to GOAFEM for general elliptic PDEs, the seminal work [20] considers the Poisson
model problem and additionally addresses the total computational cost by formulating
realistic assumptions on a generic inexact solver (called GALSOLVE in [20, 23]).

The focus of the present work is also on the iterative (and hence inexact) solu-
tion of the arising FEM systems. However, we avoid any realistic assumptions on
the solver, but rather rely on energy contraction per solver step, which is proved to
hold for the preconditioned CGmethod with optimal multilevel additive Schwarz pre-
conditioner [8] or the geometric multigrid method [25]. In the proposed GOAFEM
algorithm, the termination of such a contractive iterative solver is then based on appro-
priate computable a posteriori error estimates by a similar criterion as in [20, 23]. We
discuss several implementations of such termination criteria and prove that these allow
to control the total computational cost of computing the approximate goal value G�,
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Goal-oriented adaptive finite element methods... 113

where we already stress now that G(u�) ≈ G� = G(u�) + R�, where u� ≈ u� is a
FEM approximation of u� and R� is a residual correction related to inexact solution
of the FEM formulation. While [20] shows algebraic convergence with optimal rates
(in the present setting of FEM on quasi-uniform meshes) with respect to the overall
computational cost for the final iterates on every level for sufficiently small adaptivity
parameters (for mesh-refinement and solver termination), our main contribution is full
linear convergence, i.e., linear convergence of the estimator product independently of
the algorithmic decision for either mesh-refinement or solver step and even for arbi-
trary adaptivity parameters. An immediate consequence is that the convergence rate
of the computed solutions with respect to the number of elements will be the same
as with respect to the overall computational cost (i.e., the cumulative computational
time). Moreover, for sufficiently small adaptivity parameters, we show convergence
with optimal rates with respect to the number of elements and, hence, with respect to
the overall computational cost. This extends the results of [20] to the present setting
of symmetric second-order linear elliptic PDEs. Finally, we stress that, unlike [20],
our GOAFEM algorithm does not require any inner loop for data approximation and
therefore does not require different (but still nested) meshes for the primal and dual
problem. Overall, the present paper thus provides further mathematical understanding
for bridging the gap between applied GOAFEM and theoretical optimality results.

Outline InSect. 2,wepresent ourGOAFEMalgorithm (Algorithm3) and the details
of its individual steps. This includes the details of our finite element discretization as
well as the precise assumptions for the iterative solver, the marking strategy, and the
error estimators. We then state in Sect. 3 that Algorithm 3 leads to linear convergence
for arbitrary stopping parameters (Theorem 6) and even achieves optimal rates with
respect to the total computational cost if the adaptivity parameters are sufficiently small
(Theorem 8). We emphasize that linear convergence applies to all steps of the adaptive
strategy, independently of whether the algorithm decides for one solver step or one
step of local mesh-refinement. This turns out to be the key argument for optimal rates
with respect to the total computational cost (see Corollary 7). Section 3.2 comments
on alternative termination criteria for the iterative solver. Section 4 then illustrates our
theoretical findings with numerical experiments. Finally, we give a proof of our main
Theorems 6 and 8 in Sects. 5 and 6, respectively.

Notation In the following text, wewrite a � b for a, b ∈ R if there exists a constant
C > 0 (which is independent of the mesh width h) such that a ≤ C b. If there holds
a � b � a, we abbreviate this by a 
 b. Furthermore, we denote by #A the cardinality
of a finite set A and by |ω| the d-dimensional Lebesgue measure of a subset ω ⊂ R

d .

2 Goal-oriented adaptive finite element method

2.1 Variational formulation

Defining the symmetric bilinear form

a(u, v) :=
∫

�

A∇u · ∇vdx +
∫

�

cuvdx, (4)
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114 R. Becker et al.

we suppose that a(·, ·) is continuous and elliptic on H1
0 (�) and thus fits into the setting

of the Lax–Milgram lemma, i.e., there exist constants 0 < Cell ≤ Ccnt < ∞ such that

Cell‖u‖2
H1
0 (�)

≤ a(u, u) and a(u, v) ≤ Ccnt‖u‖H1
0 (�)‖v‖H1

0 (�) for all u, v ∈ H1
0 (�).

In particular, a(·, ·) is a scalar product that yields an equivalent norm |||v|||2 := a(v, v)

on H1
0 (�). The weak formulation of (1) reads

a(u�, v) = F(v) :=
∫

�

(
f vdx − f · ∇v

)
dx for all v ∈ H1

0 (�). (5)

TheLax–Milgram lemmaproves existence and uniqueness of the solution u� ∈ H1
0 (�)

of (5). The same argument applies and proves that the dual problem

a(v, z�) = G(v) for all v ∈ H1
0 (�) (6)

admits a unique solution z� ∈ H1
0 (�), where the linear goal functional G ∈

H−1(�) := H1
0 (�)′ is defined by (2).

Remark 1 For ease of presentation, we restrict our model problem (1) to homoge-
neous Dirichlet boundary conditions. We note, however, that for mixed homogeneous
Dirichlet and inhomogeneous Neumann boundary conditions our main results hold
true with the obvious modifications. In particular, with the partition ∂� = �D ∪ �N

into Dirichlet boundary �D with |�D| > 0 and Neumann boundary �N , the space
H1
0 (�) (and its discretization) has to be replaced by H1

D(�) := {
v ∈ H1(�) :

v|�D = 0 in the sense of traces
}
and the Neumann data has to be given in L2(�N ).

Furthermore, the coefficient f must vanish in a neighborhood of �N to go from the
strong form (1) to the weak form (5) via integration by parts.

2.2 Finite element discretization and solution

For a conforming triangulation TH of � into compact simplices and a polynomial
degree p ≥ 1, let

XH := {
vH ∈ H1

0 (�) : ∀T ∈ TH , vH |T is a polynomial of degree ≤ p
}
. (7)

To obtain conforming finite element approximations u� ≈ uH ∈ XH and z� ≈
zH ∈ XH , we consider the Galerkin discretizations of (5)–(6). First, we note that the
Lax–Milgram lemma yields the existence and uniqueness of exact discrete solutions
u�
H , z�H ∈ XH , i.e., there holds that

a(u�
H , vH ) = F(vH ) and a(vH , z�H ) = G(vH ) for all vH ∈ XH . (8)

In practice, the discrete systems (8) are rarely solved exactly (or up to machine pre-
cision). Instead, a suitable iterative solver is employed, which yields approximate
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Goal-oriented adaptive finite element methods... 115

discrete solutions umH , znH ∈ XH . We suppose that this iterative solver is contractive,
i.e., for all m, n ∈ N, it holds that

|||u�
H − umH ||| ≤ qctr |||u�

H − um−1
H ||| and |||z�H − znH ||| ≤ qctr |||z�H − zn−1

H |||, (9)

where 0 < qctr < 1 is a generic constant and, in particular, independent of XH .
Assumption (9) is satisfied, e.g., for an optimally preconditioned conjugate gradient
(PCG) method (see [8]) or geometric multigrid solvers (see [25]); see also the dis-
cussion in [16]. We note that these solvers are also guaranteed to satisfy the realistic
assumptions from [20, 23] (which require that any initial energy error can be improved
by a factor 0 < τ < 1 at O(| log(τ )|#TH ) cost). However, while (9) is slightly less
general, it allows to prove full linear convergence; see Theorem 6 below.

2.3 Discrete goal quantity

To approximate G(u�), we proceed as in [17]: For any uH , zH ∈ XH , it holds that

G(u�) − G(uH ) = G(u� − uH )
(6)= a(u� − uH , z�)

= a(u� − uH , z� − zH ) + a(u� − uH , zH )

(5)= a(u� − uH , z� − zH ) + [
F(zH ) − a(uH , zH )

]
.

Defining the discrete quantity of interest

GH (uH , zH ) := G(uH ) + [
F(zH ) − a(uH , zH )

]
, (10)

the goal error can be controlled by means of the Cauchy–Schwarz inequality

∣∣G(u�) − GH (uH , zH )
∣∣ ≤ ∣∣a(u� − uH , z� − zH )

∣∣ ≤ |||u� − uH ||| |||z� − zH |||. (11)

Wenote that the additional term in (10) is the residual of the discrete primal problem (8)
evaluated at an arbitrary function zH ∈ XH and hence G(u�

H ) = GH (u�
H , zH ).

In the following, we design an adaptive algorithm that provides a computable upper
bound to (11) which tends to zero at optimal algebraic rate with respect to the number
of elements #TH as well as with respect to the total computational cost.

2.4 Mesh refinement

Let T0 be a given conforming triangulation of �. We suppose that the mesh-
refinement is a deterministic and fixed strategy, e.g., newest vertex bisection [24].
For each conforming triangulation TH and marked elements MH ⊆ TH , let Th :=
refine(TH ,MH ) be the coarsest conforming triangulation, where all T ∈ MH

have been refined, i.e., MH ⊆ TH\Th . We write Th ∈ T(TH ), if Th results from TH

by finitely many steps of refinement. To abbreviate notation, let T := T(T0). We note
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116 R. Becker et al.

that the order on T is respected by the finite element spaces, i.e., Th ∈ T(TH ) implies
that XH ⊆ Xh .

We further suppose that each refined element has at least two sons, i.e.,

#(TH\Th) + #TH ≤ #Th for all TH ∈ T and all Th ∈ T(TH ), (12)

and that the refinement rule satisfies the mesh-closure estimate

#T� − #T0 ≤ Ccls

�−1∑
j=0

#M j for all � ∈ N, (13)

where Ccls > 0 depends only on T0. For newest vertex bisection, this has been proved
under an additional admissibility assumption on T0 in [1, 24] and for 2D even without
any additional assumption in [18]. Finally, we suppose that the overlay estimate holds,
i.e., for all triangulations TH , Th ∈ T, there exists a common refinement TH ⊕ Th ∈
T(TH ) ∩ T(Th) which satisfies that

#(TH ⊕ Th) ≤ #TH + #Th − #T0, (14)

which has been proved in [6, 23] for newest vertex bisection.

2.5 Estimator properties

For TH ∈ T and vH ∈ XH , let

ηH (T , vH ) ≥ 0 and ζH (T , vH ) ≥ 0 for all T ∈ TH

be given refinement indicators. For μH ∈ {ηH , ζH }, we use the usual convention that

μH (vH ) := μH (TH , vH ), where μH (UH , vH ) =
( ∑

T∈UH

μH (T , vH )2
)1/2

(15)

for all vH ∈ XH and all UH ⊆ TH .
We suppose that the estimators ηH and ζH satisfy the so-called axioms of adaptivity

(which are designed for, but not restricted to, weighted-residual error estimators)
from [5]: There exist constants Cstab,Crel,Cdrel > 0 and 0 < qred < 1 such that for
all TH ∈ T(T0) and all Th ∈ T(TH ), the following assumptions are satisfied:

(A1) Stability: For all vh ∈ Xh , vH ∈ XH , and UH ⊆ Th ∩ TH , it holds that

∣∣ηh(UH , vh) − ηH (UH , vH )
∣∣ + ∣∣ζh(UH , vh) − ζH (UH , vH )

∣∣ ≤ Cstab |||vh − vH |||.
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Goal-oriented adaptive finite element methods... 117

(A2) Reduction: For all vH ∈ XH , it holds that

ηh(Th\TH , vH ) ≤ qred ηH (TH\Th, vH ) and

ζh(Th\TH , vH ) ≤ qred ζH (TH\Th, vH ).

(A3) Reliability: The Galerkin solutions u�
H , z�H ∈ XH to (8) satisfy that

|||u� − u�
H ||| ≤ Crel ηH (u�

H ) and |||z� − z�H ||| ≤ Crel ζH (z�H ).

(A4) Discrete reliability: The Galerkin solutions u�
H , z�H ∈ XH and u�

h, z
�
h ∈ Xh to (8)

satisfy that

|||u�
h − u�

H ||| ≤ Cdrel ηH (TH\Th, u�
H ) and |||z�h − z�H ||| ≤ Cdrel ζH (TH\Th, z�H ).

By assumptions (A1) and (A3), we can estimate for every discrete function wH ∈
XH the errors in the energy norm of the primal and the dual problem by

|||u� − wH ||| ≤ C
[
ηH (wH ) + |||u�

H − wH |||] and

|||z� − wH ||| ≤ C
[
ζH (wH ) + |||z�H − wH |||],

respectively, where C = max{Crel,CrelCstab + 1} > 0. Together with (11), we then
obtain that the goal error for approximations umH ≈ u�

H and znH ≈ z�H inXH is bounded
by

∣∣G(u�) − GH (umH , znH )
∣∣ ≤ C2 [

ηH (umH ) + |||u�
H − umH ||| ] [

ζH (znH ) + |||z�H − znH ||| ].
(16)

In the following sections, we provide building blocks for our adaptive algorithm that
allow to control the arising estimators (by a suitable marking strategy) as well as the
arising norms in the upper bound of (16) (by an appropriate stopping criterion for the
iterative solver).

2.6 Marking strategy

We suppose that the refinement indicators ηH (T , umH ) and ζH (T , znH ) for somem, n ∈
N are used to mark a subset MH ⊆ TH of elements for refinement, which, for fixed
marking parameter 0 < θ ≤ 1, satisfies that

2θηH (umH )2ζH (znH )2 ≤ ηH (MH , umH )2ζH (znH )2 + ζH (MH , znH )2ηH (umH )2. (17)

Remark 2 Given 0 < ϑ ≤ 1, possible choices ofmarking strategies satisfying assump-
tion (17) are the following:

(a) The strategy proposed in [2] defines the weighted estimator

ρH (T , umH , znH )2 := ηH (T , umH )2ζH (znH )2 + ηH (umH )2ζH (T , znH )2
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118 R. Becker et al.

and then determines a set MH ⊆ TH such that

ϑ ρH (umH , znH ) ≤ ρH (MH , umH , znH ) (18)

which is the Dörfler marking criterion introduced in [9] and well-known in the
context of AFEM analysis; see, e.g., [5]. This strategy satisfies (17) with θ = ϑ2.

(b) The strategy proposed in [20] determines setsMu
H ,Mz

H ⊆ TH such that

ϑ ηH (umH ) ≤ η�(M
u
H , umH ) and ϑ ζH (znH ) ≤ ζH (Mz

H , znH ) (19)

and then chooses MH := argmin{ #Mu
H , #Mz

H }. This strategy satisfies (17)
with θ = ϑ2/2.

(c) A more aggressive variant of (b) was proposed in [14]: Let Mu
H and Mz

H as
above. Then, choose Mu

H ⊆ Mu
H and Mz

H ⊆ Mz
H with #Mu

H = #Mz
H =

min{ #Mu
H , #Mz

H }. Finally, define MH := Mu
H ∪ Mz

H . Again, this strategy
satisfies (17) with θ = ϑ2/2.

Note that our main results of Theorem 6 and 8 below hold true for all presented
marking criteria (a)–(c). For our numerical experiments, we focus on criterion (a),
which empirically tends to achieve slightly better performance in practice.

2.7 Adaptive algorithm

Any adaptive algorithm strives to drive down the bound in (16). However, the errors
of the iterative solver, |||u�

H − umH ||| and |||z�H − znH |||, cannot be computed in general
since the exact discrete solutions u�

H , z�H ∈ XH to (8) are unknown and will not be
computed. Thus, we note that (9) and the triangle inequality prove that

(1 − qctr) |||u�
H − um−1

H ||| ≤ |||umH − um−1
H ||| ≤ (1 + qctr) |||u�

H − um−1
H ||| (20a)

as well as

(1 − qctr) |||z�H − zn−1
H ||| ≤ |||znH − zn−1

H ||| ≤ (1 + qctr) |||z�H − zn−1
H |||. (20b)

With Cgoal = max{Crel,CrelCstab + 1} (
1 + qctr/(1 − qctr)

)
, (16) leads to

∣∣G(u�) − GH (umH , znH )
∣∣ ≤ C2

goal

[
ηH (umH ) + |||umH − um−1

H |||][ζH (znH ) + |||znH − zn−1
H |||],

(21)

which is a computable upper bound to the goal error if m, n ≥ 1. Moreover, given
some λctr > 0, this motivates to stop the iterative solvers as soon as

|||umH − um−1
H ||| ≤ λctr ηH (umH ) and |||znH − zn−1

H ||| ≤ λctr ζH (znH )
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Goal-oriented adaptive finite element methods... 119

to equibalance the contributions of the upper bound in (21); alternative stopping criteria
are introduced and analyzed below. Overall, we thus consider the following adaptive
algorithm.

Algorithm 3 Let u00, z
0
0 ∈ X0 be initial guesses. Let 0 < θ ≤ 1 as well as λctr > 0 be

arbitrary but fixed marking parameters. For all � = 0, 1, 2, . . . , perform the following
steps (i)–(vi):

(i) Employ (at least one step of) the iterative solver to compute iterates u1�, . . . , u
m
�

and z1�, . . . , z
n
� together with the corresponding refinement indicators η�(T , uk�)

and ζ�(T , zk�) for all T ∈ T�, until

|||um� − um−1
� ||| ≤ λctr η�(u

m
� ) and |||zn� − zn−1

� ||| ≤ λctr ζ�(z
n
� ). (22)

(ii) Define m(�) := m and n(�) := n.
(iii) If η�(um� ) = 0 or ζ�(zm� ) = 0, then define � := � and terminate.
(iv) Otherwise, find a setM� ⊆ T� such that the marking criterion (17) is satisfied.
(v) Generate T�+1 := refine(T�,M�).
(vi) Define the initial guesses u0�+1 := um� and z0�+1 := zn� for the iterative solver.

Remark 4 Theorem 6 below proves (linear) convergence for any choice of the marking
parameters 0 < θ ≤ 1 and λctr > 0, and for any of the marking strategies from
Remark 2. Theorem 8 below proves optimal convergence rates (with respect to the
number of elements and the total computational cost) if both parameters are sufficiently
small (see (32) for the precise condition) and if the setM� is constructed by one of the
strategies from Remark 2, where the respective sets have quasi-minimal cardinality.

Remark 5 Note that Algorithm 3(i) requires to evaluate the error estimator after each
solver step. Clearly, it would be favorable to replace η�(um� ) (resp. ζ�(zn� )) by η�(u0�)
(resp. ζ�(z0�)) in (22). Arguing as in [13, Lemma 8], this allows to prove convergence
of the adaptive strategy, but full linear convergence (Theorem 6 below) and optimal
convergence rates (Theorem 8 below) are exptected to fail.

For each adaptive level �, Algorithm 3 performs at least one solver step to compute
um� as well as one solver step to compute zn� . By definition,m(�) ≥ 1 is the solver step,

for which the discrete solution u
m(�)

� is accepted (to contribute to the set of marked
elementsM�). Analogously, n(�) ≥ 1 is the solver step, forwhich the discrete solution

z
n(�)

� is accepted (to contribute to M�). If the iterative solver for either the primal or
the dual problem fails to terminate for some level � ∈ N0, i.e., (22) cannot be achieved
for finite m, or n, we define m(�) := ∞, or n(�) := ∞, respectively, and � := �. With
k(�) := max{m(�), n(�)}, we define

uk� := u
m(�)

� for all k ∈ N with m(�) < k ≤ k(�),

zk� := z
n(�)

� for all k ∈ N with n(�) < k ≤ k(�).
(23)

For ease of presentation, we omit the �-dependence of the indices for final iterates
m(�), n(�), and k(�) in the following, if they appear as upper indices and write, e.g.,
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120 R. Becker et al.

u
m
� := u

m(�)

� and u
m−1
� := u

m(�)−1
� . If Algorithm 3 does not terminate in step (iii) for

some � ∈ N, then we define � := ∞. To formulate the convergence of Algorithm 3,
we define the ordered set

Q := {
(�, k) ∈ N

2
0 : � ≤ � and 1 ≤ k ≤ k(�)

}
, where |(�, k)| := k +

�−1∑
j=0

k( j).

(24)

Note that |(�, k)| is proportional to the overall number of solver steps to compute the
estimator product η�(uk�)ζ�(zk�). Additionally, we sometimes require the notation

Q0 := {
(�, k) ∈ N

2
0 : � ≤ � and 0 ≤ k ≤ k(�)

} = Q ∪ {
(�, 0) ∈ N

2
0 : � ≤ �

}
.

(25)

To estimate the work necessary to compute a pair (uk�, z
k
�) ∈ X� × X�, we make the

following assumptions which are usually satisfied in practice:

• The iterates uk� and zk� are computed in parallel and each step of the solver in
Algorithm 3(i) can be done in linear complexity O(#T�);

• Computation of all indicators η�(T , uk�) and ζ�(T , zk�) for T ∈ T� requiresO(#T�)

steps;
• Themarking in Algorithm 3(iv) can be performed at linear costO(#T�) (according
to [23] this can be done for the strategies outlined in Remark 2 with M� having
almost minimal cardinality; moreover, we refer to a recent own algorithm in [21]
with linear cost even forM� having minimal cardinality);

• We have linear cost O(#T�) to generate the new mesh T�+1.

Since a step (�, k) ∈ Q of Algorithm 3 depends on the full history of preceding steps,
the total work spent to compute (uk�, z

k
�) ∈ X� × X� is then of order

work(�, k) :=
∑

(�′,k′)∈Q
|(�′,k′)|≤|(�,k)|

#T�′ for all (�, k) ∈ Q. (26)

Finally, we note that Algorithm 3(vi) employs nested iteration to obtain the initial
guesses u0�+1, z

0
�+1 of the solver from the final iterates um� , z

n
� for the mesh T�. Accord-

ing to (21), this allows for a posteriori error control for all indices (�, k) ∈ Q0\{(0, 0)}
beyond the initial step.

3 Main results

3.1 Linear convergence with optimal rates

Our first main result states linear convergence of the quasi-error product

�k
� := [ |||u�

� − uk�||| + η�(u
k
�)

][ |||z�� − zk�||| + ζ�(z
k
�)

]
for all (�, k) ∈ Q0 (27)
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for every choice of the stopping parameter λctr > 0. Recall from (16) that the quasi-
error product is an upper bound for the error |G(u�) − G�(uk�, z

k
�)|. Moreover, if

k = k(�), then (20) and (22) give that �k
� 
 η�(u

k
�)ζ�(z

k
�).

Theorem 6 Suppose (A1)–(A3). Suppose that 0 < θ ≤ 1 and λctr > 0. Then, Algo-
rithm 3 satisfies linear convergence in the sense of

�k′
�′ ≤ Clinq

|(�′,k′)|−|(�,k)|
lin �k

� for all (�, k), (�′, k′) ∈ Q ∪ {(0, 0)} with |(�′, k′)| ≥ |(�, k)|.
(28)

The constants Clin > 0 and 0 < qlin < 1 depend only on Cstab, qred, Crel, qctr, and the
(arbitrary) adaptivity parameters 0 < θ ≤ 1 and λctr > 0.

Full linear convergence implies that convergence rates with respect to degrees of
freedom and with respect to total computational cost are equivalent. From this point
of view, full linear convergence indeed turns out to be the core argument for optimal
complexity.

Corollary 7 Recall the definition of the total computational cost work(�, k) from (26).
Let r > 0 and Cr := sup(�,k)∈Q(#T� − #T0 + 1)r�k

� ∈ [0,∞]. Then, under the
assumptions of Theorem 6, it holds that

Cr ≤ sup
(�,k)∈Q

(#T�)
r �k

� ≤ sup
(�,k)∈Q

work(�, k)r �k
� ≤ Crate Cr , (29)

where the constant Crate > 0 depends only on r, #T0, and on the constants qlin,Clin
from Theorem 6.

Proof The first two estimates in (29) are obvious. It remains to prove the last estimate
in (29). To this end, note that it follows from the definition of Cr that

#T� − #T0 + 1 ≤ (
�k

�

)−1/r
C1/r
r for all (�, k) ∈ Q.

Moreover, elementary algebra yields that

#T�′ ≤ #T0(#T�′ − #T0 + 1) for all (�′, 0) ∈ Q0.

For (�, k) ∈ Q, Theorem 6 and the geometric series thus show that

work(�, k)
(26)=

∑
(�′,k′)∈Q

|(�′,k′)|≤|(�,k)|

#T�′ ≤ #T0
∑

(�′,k′)∈Q
|(�′,k′)|≤|(�,k)|

(#T�′ − #T0 + 1)

≤ #T0C1/r
r

∑
(�′,k′)∈Q

|(�′,k′)|≤|(�,k)|

(
�k′

�′
)−1/r ≤ #T0C1/r

r C1/r
lin

1

1 − q1/rlin

(
�k

�

)−1/r
.
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With Crate := (#T0)rClin 1/(1 − q1/rlin )r , this gives that

work(�, k)r�k
� ≤ CrateCr for all (�, k) ∈ Q.

This shows the final inequality in (29) and thus concludes the proof.

If θ and λctr are small enough, we are able to show that linear convergence from
Theorem 6 even guarantees optimal rates with respect to both the number of unknowns
#T� and the total cost work(�, k). Given N ∈ N0, let T(N ) be the set of all TH ∈ T

with #TH − #T0 ≤ N . With

‖u�‖Ar := sup
N∈N0

(N + 1)r min
Topt∈T(N )

ηopt(u
�
opt) ∈ [0,∞] (30a)

and

‖z�‖Ar := sup
N∈N0

(N + 1)r min
Topt∈T(N )

ζopt(z
�
opt) ∈ [0,∞] (30b)

for all r > 0, there holds the following result.

Theorem 8 Recall the definition of the total computational cost work(�, k) from (26).
Suppose the mesh properties (12)–(14) as well as the axioms (A1)–(A4). Define

θ� := 1

1 + C2
stabC

2
drel

and λ� := 1 − qctr
qctrCstab

. (31)

Let both adaptivity parameters 0 < θ ≤ 1 and 0 < λctr < λ� be sufficiently small
such that

0 <
(√

2θ + λctr/λ�

1 − λctr/λ�

)2
< θ�. (32)

Let 1 ≤ Cmark < ∞. Suppose that the set of marked elementsM� in Algorithm 3(iv)
is constructed by one of the strategies from Remark 2(a)–(c), where the sets in (18)
and (19) have up to the factor Cmark minimal cardinality. Let s, t > 0 with ‖u�‖As +
‖z�‖At < ∞. Then, there exists a constant Copt > 0 such that

sup
(�,k)∈Q

work(�, k)s+t�k
� ≤ Copt max{‖u�‖As‖z�‖At ,�

0
0}. (33)

The constant Copt depends only on Ccls, Cstab, qred, Crel, Cdrel, qctr, Cmark , θ , λctr, #T0,
s, and t.

Remark 9 The constraint (32) is enforced by our analysis of the marking strategy from
Remark 2(a), while the marking strategies from Remark 2(b)–(c) allow to relax the
condition to

0 <
(√

θ + λctr/λ�

1 − λctr/λ�

)2
< θ�. (34)
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3.2 Alternative termination criteria for iterative solver

The above formulations ofAlgorithm3 stops the iterative solver for um� and the iterative
solver for zn� independently of each other as soon as the respective termination criteria
in (22) are satisfied. In this section, we briefly discuss two alternative termination
criteria:

Stronger termination: The current proof of linear convergence (and of the sub-
sequent proof of optimal convergence) does only exploit that uk� and z

k
� satisfy the

stopping criterion and the previous iterates do not (cf. Lemma 10(iii)). This can also
be ensured by the following modification of Algorithm 3(i):

(i) Employ the iterative solver to compute iterates u1�, . . . , u
k
� and z

1
�, . . . , z

k
� together

with the corresponding refinement indicators η�(T , uk�) and ζ�(T , zk�) for all T ∈
T�, until

|||uk� − uk−1
� ||| ≤ λctr η�(u

k
�) and |||zk� − zk−1

� ||| ≤ λctr ζ�(z
k
�). (35)

Note that this will lead to more solver steps, since now k = k(�) (if it exists) is the

smallest index for which the stopping criterion holds simultaneously for both u
k
� and

z
k
� .
Inspecting the proof of Lemma 10 below, we see that all results hold verbatim also

for this stopping criterion. Thus, we conclude linear and optimal convergence (in the
sense of Theorem 6 and Theorem 8) also in this case.

Natural termination: The following stopping criterion (which is somehow the most
natural candidate) also leads to linear convergence: Let m(�), n(�) ∈ N be minimal
with (22). If either of them do not exist, we set again m(�) = ∞, or n(�) = ∞,
respectively. Define k(�) := max{m(�), n(�)}. Then, employ the iterative solver k(�)
times for both the primal and the dual problem, i.e., the solver provides iterates uk�
and zk� until both stopping criteria in (22) have been satisfied once (which avoids the
artificial definition (23)). For instance, if m(�) < n(�) = k(�) < ∞, we continue to

iterate for the primal problem until uk� is obtained (or never stop the iteration if n(�) =
k(�) = ∞). If λctr > 0 is sufficiently small such that 1− qctr

1−qctr
Cstab (1+qctr)λctr > 0,

then we can define

λctr ≤ λ′
ctr := max

{
1,

(1 + qctr)qctr
(1 − qctr)

(
1 − qctr

1−qctr
Cstab (1 + qctr)λctr

)}
λctr < ∞,

and we can guarantee the stopping condition (22) with the larger constant λ′
ctr, i.e.,

|||uk� − u
k−1
� ||| ≤ λ′

ctr η�(u
k
�) and |||zk� − z

k−1
� ||| ≤ λ′

ctr ζ�(z
k
�); (36)

see the proof below. Again, we notice that then the assumptions of Lemma 10 below
are met. Hence, we conclude linear convergence (in the sense of Theorem 6) also for
this stopping criterion. Moreover, optimal rates in the sense of Theorem 8 hold if λctr
in (32) is replaced by λ′

ctr.
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Proof of (36) Without loss of generality, let us assume thatm(�) < k(�) = n(�) < ∞.
First, we have that

|||uk� − u
m
� ||| ≤ |||u�

� − u
k
�||| + |||u�

� − u
m
� ||| ≤ (1 + q

k(�)−m(�)
ctr )|||u�

� − u
m
� |||.

Then, using the fact that um� satisfies the stopping criterion in (22) and stability (A1),
we get that

|||u�
� − u

m
� |||(20)≤ qctr

1 − qctr
|||um� − u

m−1
� |||(22)≤ qctrλctr

1 − qctr
η�(u

m
� )

(A1)≤ qctrλctr
1 − qctr

(
η�(u

k
�) + Cstab|||uk� − u

m
� |||

)

≤ qctrλctr
1 − qctr

(
η�(u

k
�) + Cstab(1 + q

k(�)−m(�)
ctr )|||u�

� − u
m
� |||

)
.

For λctr < (1− qctr)/[Cstabqctr(1+ q
k(�)−m(�)
ctr )] we can absorb the last term to obtain

|||u�
� − u

m
� ||| ≤ qctr

1 − qctr

(
1 − Cstabqctr

1 − qctr
(1 + q

k(�)−m(�)
ctr )λctr

)−1
λctrη�(u

k
�).

Finally, we observe that

|||uk� − u
k−1
� ||| ≤ (1 + qctr)|||u�

� − u
k−1
� ||| ≤ (1 + qctr)q

k−m−1
ctr |||u�

� − u
m
� |||.

Combining the last two estimates we obtain that

|||uk� − u
k−1
� ||| ≤ (1 + qctr)q

k(�)−m(�)
ctr

(1 − qctr)
(
1 − qctr

1−qctr
Cstab (1 + q

k(�)−m(�)
ctr )λctr

) λctr η�(u
k
�).

Hence, (36) follows with q
k(�)−m(�)
ctr ≤ qctr and |||zk� − z

k−1
� ||| ≤ λctr ζ�(z

k
�) ≤

λ′
ctr ζ�(z

k
�). ��

4 Numerical examples

In this section, we consider two numerical examples which solve the equation

−�u� = f in �,

u� = 0 on �D,

∇u� · n = φ on �N ,

(37)

where φ ∈ L2(�N ) and n is the element-wise outwards facing unit normal vector. We
refer the reader to Remark 1 for a comment on the applicability of our results to this
model problem. We further suppose that the goal functional is a slight variant of the
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one proposed in [20], i.e.,

G(v) = −
∫

ω

∇v · gdx for v ∈ H1
D(�), (38)

with a subset ω ⊆ � and a fixed direction g(x) = g0 ∈ R
2. Moreover, for error

estimation, we employ standard residual error estimators, which in our case, for all
(�, k) ∈ Q and all T ∈ T�, read

η�(T , uk�)
2 := h2T ‖�uk� + f ‖2L2(T )

+ hT ‖[[∇uk� · n]]‖2L2(∂T∩�)

+ hT ‖∇uk� · n − φ‖2L2(∂T∩�N )
,

ζ�(T , zk�)
2 := h2T ‖div (∇zk� + g)‖2L2(T )

+ hT ‖[[(∇zk� + g) · n]]‖2L2(∂T∩�)
,

where hT = |T |1/2 is the local mesh-width and [[·]] denotes the jump across interior
edges. It is well-known [5, 14] that η� and ζ� satisfy the assumptions (A1)–(A4).
The examples are chosen to showcase the performance of the proposed GOAFEM
algorithm for different types of singularities.

Throughout this section, we solve (37) as well as the corresponding dual problem
numerically using Algorithm 3, where we make the following choices:

• We solve the problems on the lowest order finite element space, i.e., with polyno-
mial degree p = 1.

• As initial values, we use u00 = z00 = 0.
• To solve the arising linear systems, we use a preconditioned conjugate gradient
(PCG) method with an optimal additive Schwarz preconditioner. We refer to [8,
22] for details and, in particular, the proof that this iterative solver satisfies (9).

• We use the marking criterion from Remark 2(a) and choose M� such that it has
minimal cardinality.

• Unless mentioned otherwise, we use ϑ = 0.5 and λctr = 10−5.

4.1 Singularity in goal functional only

In our first example, the primal problem is (37) with f = 2x1(1− x1) + 2x2(1− x2)
on the unit square � = (0, 1)2, and �D = ∂� (and thus, �N = ∅). For this problem,
the exact solution reads

u�(x) = x1x2(1 − x1)(1 − x2).

The goal functional is (38) with ω = T1 := {
x ∈ � : x1 + x2 ≥ 3/2

}
and

g0 = (−1, 0). The exact goal value can be computed analytically to be

G(u�) =
∫
T1

∂u�

∂x1
dx = 11/960.

The initial mesh T0 as well as a visualization of the set T1 can be seen in Fig. 1.
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Fig. 1 Left: Initial mesh T0. The shaded area is the set T1 from Section (4.1). Right: Mesh after 14 iterations
of Algorithm 3 with #T14 = 4157

Fig. 2 Comparison between
iterative solvers for the problem
from Sect. 4.1. A conjugate
gradient method without
preconditioner (CG) leads to
optimal rates with respect to #T�

for the final iterates where
k = k(�), but not with respect to
work(�, k) for every (�, k) ∈ Q.
Our choice of the iterative solver
(ML) achieves optimal rates
with respect to both measures

For this setting, we compare our iterative solver to a conjugate gradient method
without preconditioner in Fig. 2, wherewe plot the computable upper bound from (21),

�k
� := [

η�(u
k
�) + |||uk� − uk−1

� |||][ζ�(z
k
�) + |||zk� − zk−1

� |||] for all (�, k) ∈ Q,

over work(�, k) for all iterates (�, k) ∈ Q and the estimator product for the final
iterates η�(u

k
�)ζ�(z

k
�) over #T�. We stress that, for (�, k) ∈ Q, the computable upper

bound �k
� and the quasi-error product �k

� from (27) are related by �k
� � �k

� �
�k−1

� so that linear convergence (28) with optimal rates (33) of �k
� also yields linear

convergence with optimal rates of �k
� . Since in our experiments λctr = 10−5 is small,

it is plausible to assume that the final estimates on every level approximate the exact
solutions sufficiently well in the sense of estimator products, i.e., η�(u

k
�)ζ�(z

k
�) ≈

η�(u�
�)ζ�(z��) (cf. Lemma 13 below) for which [14] proves optimal convergence rates

with respect to #T�. Indeed, we see optimal rates for η�(u
k
�)ζ�(z

k
�) with respect to #T�

for both solvers in Fig. 2. However, the non-preconditioned CGmethod fails to satisfy
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Fig. 3 Comparison between �k
�
, discrete goal G�(u

k
�
, zk

�
), primal residual evaluated at the dual solution

zk
�
, and direct evaluation of goal functional G(uk

�
) for every iterate (�, k) ∈ Q and different values of

λctr ∈ {1, 10−2, 10−4, 10−6}. The primal residual evaluated at the dual solution zk
�
is the difference

between goal and discrete goal; see (10)

uniform contraction (9) and thus Theorem 8 cannot be applied. In fact, Fig. 2 shows
that this method fails to drive down �k

� with optimal rates with respect to work(�, k)
(cf. (26)), as opposed to the optimally preconditioned CG method.

Furthermore, we plot in Fig. 3 different error measures over work(�, k) for every
iterate (�, k) ∈ Q. This shows that the corrector term

a(uk�, z
k
�) − F(zk�) (39)

(which is the residual of uk� evaluated at the dual solution zk�) in the definition of the
discrete goal functional (10) is indeed necessary. We see that throughout the iteration,
the goal value G(uk�) highly oscillates and, for large values of λctr, even shows a
different rate than the �k

� over work(�, k). In general, we thus cannot expect the
quantity �k

� to bound the uncorrected goal-error |G(u�) − G(uk�)|.
For the discrete goal, the corrector term compensates the oscillations of the goal

functional, such that their sum decreases with the same rate as�k
� , as predicted by (21).

123



128 R. Becker et al.

Fig. 4 Left: Initial mesh T0. The shaded area is the set T2 from Section (4.2) and the Dirichlet boundary at
the re-entrant corner is marked in red. Right: Mesh after 13 iterations of Algorithm 3 with #T13 = 4534

Smaller values of λctr imply that on every level � the approximate solutions uk�, z
k
� are

computedmore accurately, such that the corrector term becomes smaller and the effect
on the rate of the goal value becomes negligible.

4.2 Geometrical singularity

Our second example is the classical example of a geometric singularity on the so-
called Z-shape � = (−1, 1)2 \ conv{(−1,−1), (0, 0), (−1, 0)}, where �D is only the
re-entrant corner (cf. Fig. 4). The primal problem is (37) with f = 0 and φ = ∇u� ·n,
where the exact solution in polar coordinates r(x) and ϕ(x) of x ∈ R

2 is prescribed
as

u�(x) = r(x)4/7 sin( 47ϕ(x) + 3π
7 ).

The goal functional is (38) with ω = T2 := (0.5, 0.5)2 ∩ � and g0 = (−1,−1) and
can be computed directly via numerical integration to be

G(u�) =
∫
T2

(∂u�

∂x1
+ ∂u�

∂x2

)
dx ≈ 0.82962247157810.

In Fig. 4, the initial triangulation T0 as well as the mesh after several iterations of
Algorithm 3 can be seen. The adaptive algorithm resolves the singularity at the re-
entrant corner, as well as critical points of the goal functional, which are at the corners
of T2.

Figure 5 shows the rate of the estimator product η�(u
k
�)ζ�(z

k
�) of the final iterates

over #T� as well as the rate of �k
� over work(�, k) for all (�, k) ∈ Q.
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Fig. 5 Rates of the estimator
product for final iterates over
#T� and �k

�
as well as goal error

over work(�, k) for all
(�, k) ∈ Q

5 Proof of Theorem 6

The following core lemma extends one of the key observations of [16] to the present
setting, where we stress that the nonlinear product structure of �k

� leads to technical
challenges which go much beyond [16].

Lemma 10 Suppose (A1)–(A3). Then, there exist constants μ,Caux > 0, and 0 <

qaux < 1, and some scalar sequence (R�)�∈N0 ⊂ R such that the quasi-error product

�k
� := [ |||u�

� − uk�||| + μη�(u
k
�)

][ |||z�� − zk�||| + μζ�(z
k
�)

]
for all (�, k) ∈ Q0

satisfies the following statements (i)–(v):

(i) �k
� ≤ �

j
� for all 0 ≤ j ≤ k ≤ k(�).

(ii) �
k−1
� ≤ Caux �

k
� if k(�) < ∞.

(iii) �k
� ≤ qaux �k−1

� for all 0 < k < k(�).

(iv) �0
�+1 ≤ qaux �

k−1
� + R� for all 0 < � < �.

(v)
∑�−1

�=�′ R2
� ≤ Caux(�

k−1
� )2 for all 0 ≤ �′ < � − 1.

The constants μ, Caux, and qaux depend only on Cstab, qred, Crel, and qctr as well as
on the (arbitrary) adaptivity parameters 0 < θ ≤ 1 and λctr > 0.

For the following proofs, we define

αk
� := |||u�

� − uk�|||, x�
� := |||u�

�+1 − u�
�|||,

βk
� := |||z�� − zk�|||, y�

� := |||z��+1 − z��|||,

such that the quasi-error product reads �k
� = [

αk
� + μη�(uk�)

][
βk

� + μζ�(zk�)
]
with a

free parameter μ > 0 which will be fixed below.
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Proof of Lemma 10(i) Recall from (23) that uk� = u
m
� for all m(�) < k ≤ k(�). Thus,

we have that

αk
� + μη�(u

k
�) = α

m
� + μη�(u

m
� ) for all m(�) < k ≤ k(�).

For 0 < k < m(�), on the other hand, the solution uk� is obtained by one step of
the iterative solver. From stability (A1) and solver contraction (9), we have for all
0 ≤ j < k ≤ m(�) that

αk
� + μη�(u

k
�)

(A1)≤ αk
� + μ

[
η�(u

j
�) + Cstab|||uk� − u j

� |||
]

(9)≤ (
qk− j
ctr + μCstab(1 + qk− j

ctr )
)
α
j
� + μη�(u

j
�)

≤ (
qctr + 2μCstab

)
α
j
� + μη�(u

j
�).

Ifμ is chosen small enough such that qctr +2μCstab ≤ 1, together with the trivial case
j = k, the last two equations show that

αk
� + μη�(u

k
�) ≤ α

j
� + μη�(u

j
�) for all 0 ≤ j ≤ k ≤ k(�).

The same argument shows that

βk
� + μζ�(z

k
�) ≤ β

j
� + μζ�(z

j
� ). for all 0 ≤ j ≤ k ≤ k(�). (40)

Multiplication of the last two estimates shows the assertion. ��

Proof of Lemma 10(ii) Recall that for the index k(�) there holds (22). From the triangle
inequality, we thus get for the primal estimator that

α
k−1
� = |||u�

� − u
k−1
� ||| ≤ |||u�

� − u
k
�||| + |||uk� − u

k−1
� |||(22)≤ α

k
� + λctr η�(u

k
�).

Furthermore, stability (A1) leads to

η�(u
k−1
� )

(A1)≤ η�(u
k
�) + Cstab |||uk� − u

k−1
� |||(22)≤ (

1 + λctrCstab
)
η�(u

k
�).

Combining the last two estimates, we see that

α
k−1
� + μη�(u

k−1
� ) ≤ (

1 + λctr(Cstab + μ−1)
) [

α
k
� + μη�(u

k
�)

]
.

Together with the analogous estimate for β
k−1
� + μζ�(z

k−1
� ), we conclude the proof

with Caux = (
1 + λctr(Cstab + μ−1)

)2. ��

123



Goal-oriented adaptive finite element methods... 131

Proof of Lemma 10(iii) Without loss of generality, suppose that k(�) = m(�) and thus
|||uk� − uk−1

� ||| > λctr η�(uk�). Then, this yields that

η�(u
k
�) < λ−1

ctr |||uk� − uk−1
� |||(20)≤ λ−1

ctr (1 + qctr) αk−1
� for all 0 < k < k(�).

With contraction of the solver (9), this leads to

αk
� + μη�(u

k
�) ≤ qctrα

k−1
� + μλ−1

ctr (1 + qctr) αk−1
� for all 0 < k < k(�).

From (40) for μ small enough, we see that βk
� + μζ�(zk�) ≤ βk−1

� + μζ�(z
k−1
� ).

Together with the previous estimate, this shows that

�k
� ≤ (

qctr + μλ−1
ctr (1 + qctr)

)
�k−1

� . (41)

Up to the choice of μ, this concludes the proof. ��

Proof of Lemma 10(iv) First, we note that η�(u
k
�)ζ�(z

k
�) �= 0, according to Algo-

rithm 3(iii) and the assumption that � < �. From reduction of the solver (9) and
nested iteration, we get that

α0
�+1 = |||u�

�+1 − u
k
�||| ≤ |||u�

�+1 − u�
�||| + qctr |||u�

� − u
k−1
� ||| = x�

� + qctr α
k−1
� ,

β0
�+1 = |||z��+1 − z

k
�||| ≤ |||z��+1 − z��||| + qctr |||z�� − z

k−1
� ||| = y�

� + qctr β
k−1
�

(42)

and thus

α0
�+1β

0
�+1 ≤ q2ctr α

k−1
� β

k−1
� + qctr(α

k−1
� y�

� + β
k−1
� x�

� ) + x�
� y

�
� . (43)

For the estimator terms, we have with stability (A1) and reduction (A2) that

η�+1(u
0
�+1)

2 = η�+1(u
k
�)

2 = η�+1(T�+1 ∩ T�, u
k
�)

2 + η�+1(T�+1 \ T�, u
k
�)

2

≤ η�(T�+1 ∩ T�, u
k
�)

2 + q2red η�(T� \ T�+1, u
k
�)

2

= η�(u
k
�)

2 − (1 − q2red) η�(T� \ T�+1, u
k
�)

2.

On the one hand, with C1 := Cstab(1 + qred), this implies that

η�+1(u
0
�+1) ≤ η�(u

k
�)

(A1)≤ η�(u
k−1
� )+Cstab|||uk� −u

k−1
� |||(20)≤ η�(u

k−1
� )+C1 α

k−1
� . (44)

On the other hand, with 0 < qθ := 1 − (1 − q2red)θ < 1, we get that

η�+1(u0�+1)
2

η�(u
k
�)

2
≤ qθ + (1 − q2red)

[
θ − η�(T� \ T�+1, u

k
�)

2

η�(u
k
�)

2

]
. (45)
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Using (45), the corresponding estimate for the dual estimator, and theYoung inequality,
we obtain that

η�+1(u0�+1)

η�(u
k
�)

ζ�+1(z0�+1)

ζ�(z
k
�)

≤ qθ + (1 − q2red)

2

[
2θ − η�(T� \ T�+1, u

k
�)

2

η�(u
k
�)

2
− ζ�(T� \ T�+1, z

k
�)

2

ζ�(z
k
�)

2

]
.

The marking criterion (17), which is applicable due to � < �, estimates the term in
brackets by zero. Thus stability (A1) leads to

η�+1(u
0
�+1)ζ�+1(z

0
�+1) ≤ qθ η�(u

k
�)ζ�(z

k
�)

(A1)≤ qθ

[
η�(u

k−1
� ) + Cstab|||uk� − u

k−1
� |||][ζ�(z

k−1
� ) + Cstab|||zk� − z

k−1
� |||]

(20)≤ qθ η�(u
k−1
� )ζ�(z

k−1
� ) + qθC1

[
η�(u

k−1
� )β

k−1
� + ζ�(z

k−1
� )α

k−1
�

] + C2
1 α

k−1
� β

k−1
� .

(46)

For the mixed terms in �0
�+1, we have with (42) and (44) that

η�+1(u
0
�+1)β

0
�+1 ≤ [

η�(u
k−1
� ) + C1 α

k−1
�

][
y�
� + qctr β

k−1
�

]
= qctr η�(u

k−1
� )β

k−1
� + η�(u

k−1
� )y�

� + C1 α
k−1
� y�

� + C1qctr α
k−1
� β

k−1
� .

(47)

Analogously, we see that

ζ�+1(z
0
�+1)α

0
�+1 ≤ qctr ζ�(z

k−1
� )α

k−1
� + ζ�(z

k−1
� )x�

� + C1 β
k−1
� x�

� + C1qctr α
k−1
� β

k−1
� . (48)

Combining (43) and (46)–(48), we get that

�0
�+1 = α0

�+1β
0
�+1 + μ

[
η�+1(u

0
�+1)β

0
�+1 + ζ�+1(z

0
�+1)α

0
�+1

]
+ μ2 η�+1(u

0
�+1)ζ�+1(z

0
�+1)

≤ q2ctr α
k−1
� β

k−1
� + qctr(α

k−1
� y�

� + β
k−1
� x�

� ) + x�
� y

�
�

+ μ
[
qctr η�(u

k−1
� )β

k−1
� + η�(u

k−1
� )y�

� + C1 α
k−1
� y�

� + C1qctr α
k−1
� β

k−1
�

]
+ μ

[
qctr ζ�(z

k−1
� )α

k−1
� + ζ�(z

k−1
� )x�

� + C1 β
k−1
� x�

� + C1qctr α
k−1
� β

k−1
�

]
+ μ2 [

qθ η�(u
k−1
� )ζ�(z

k−1
� ) + qθC1

(
η�(u

k−1
� )β

k−1
� + ζ�(z

k−1
� )α

k−1
�

)
+ C2

1 α
k−1
� β

k−1
�

]
.

Rearranging the terms, we obtain that

�0
�+1 ≤ (

q2ctr + 2μqctrC1 + μ2C2
1

)
α
k−1
� β

k−1
�

+ μ
(
qctr + μqθC1

) [
η�(u

k−1
� )β

k−1
� + ζ�(z

k−1
� )α

k−1
�

]
+ μ2 qθ η�(u

k−1
� )ζ�(z

k−1
� ) + R�,

(49)
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where the remainder term is defined as

R� := μ
[
η�(u

k−1
� )y�

� +ζ�(z
k−1
� )x�

�

]+(qctr+μC1)
[
α
k−1
� y�

� +β
k−1
� x�

�

]+x�
� y

�
� . (50)

Up to the choice of μ, this concludes the proof. ��
Proof of Lemma 10 (choosing μ) For Lemma 10(i), we choose μ small enough such
that qctr + 2μCstab ≤ 1. From (41) and (49) in the proofs of Lemma 10(iii)–(iv), we
see that we additionally require

qctr+μλ−1
ctr (1+qctr) < 1, q2ctr+2μqctrC1+μ2C2

1 < 1, and qctr+μqθC1 < 1.
(51)

Choosingμ small enough,we satisfy all estimates.Wedefineqaux < 1 as themaximum
of all terms in (51) and qθ . ��
Proof of Lemma 10(v) First, we note that from stability (A1) it follows that

η�(u
k−1
� ) � η�(u

�
�) + α

k−1
� and η�(u

�
�)ζ�(z

�
�) � �

j
� for all 0 ≤ j ≤ k. (52)

Furthermore, Galerkin orthogonality and reliability (A3) imply that, for all n ∈ Nwith
�′ + n < �,

�′+n∑
�=�′

(y�
� )

2 =
�′+n∑
�=�′

|||z��+1 − z��|||2 = |||z��′+n+1 − z��′ |||2 ≤ |||z� − z��′ |||2
(A3)
� ζ�′(z��′)2. (53)

With (52) and (53) for n = 1, we can bound the remainder term from (50) by

R� � η�(u
�
�)y

�
� + ζ�(z

�
�)x

�
� + α

k−1
� y�

� + β
k−1
� x�

� .

Next, let us recall from [5, Lemma 3.6] the quasi-monotonicity of the estimator, which
follows from (A1)–(A3) and the Céa lemma, i.e., for all �′ ≤ � < �,

η�(u
�
�) ≤ η�′(u�

�′) +Cstab |||u�
� − u�

�′ ||| ≤ η�′(u�
�′) +Cstab |||u� − u�

�′ ||| � η�′(u�
�′). (54)

For η�(u�
�)y�, we get by summation for all 0 ≤ j ≤ k(�′) and all n ∈ Nwith �′+n < �

that

�′+n∑
�=�′

η�(u
�
�)

2(y�
� )

2
(54)
� η�′(u�

�′)2
�′+n∑
�=�′

(y�
� )

2
(53)
� η�′(u�

�′)2ζ�′(z��′)2
(52)
� (�

j
�′)2.

Analogously, we see that

�′+n∑
�=�′

(x�
� )

2 � η�′(u�
�′)2 as well as

�′+n∑
�=�′

ζ�(z
�
�)

2(x�
� )

2 � (�
j
�′)2. (55)
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We proceed with α
k−1
� y�

� . From (42) and the Young inequality with δ > 0, we see for
0 < �′ ≤ � < � that

(α
k−1
� )2 ≤ (α0

� )
2 (42)≤ (1 + δ−1) (x�

�−1)
2 + qctr(1 + δ) (α

k−1
�−1 )

2.

For δ small enough such that q2 := qctr(1 + δ) < 1 and all for 0 ≤ � ≤ �′ < �, the
geometric series proves that

(α
k−1
� )2 ≤ (1 + δ−1)

�−1∑
j=�′

(x�
j )
2 + (α

k−1
� )2

∞∑
j=0

q j
2

(55)
� η�′(u�

�′)2 + (α
k−1
�′ )2

and thus

�′+n∑
�=�′

(α
k−1
� )2(y�

� )
2 ≤ [

η�′(u�
�′)2 + (α

k−1
�′ )2

] �′+n∑
�=�′

(y�
� )

2
(53)
�

[
η�′(u�

�′)2 + (α
k−1
�′ )2

]
ζ�′(z��′)2

� (�
k−1
�′ )2.

Analogously, we see that
∑�′+n

�=�′ (β
k−1
� )2(x�

� )
2 � (�

k−1
�′ )2. Combining all estimates

with

R2
� � η�(u

�
�)

2(y�
� )

2 + ζ�(z
�
�)

2(x�
� )

2 + (α
k−1
� )2(y�

� )
2 + (β

k−1
� )2(x�

� )
2,

we conclude the proof. ��
With the foregoing auxiliary result, we are in the position to prove linear conver-

gence.

Proof of Theorem 6 Let (�, k) ∈ Q. We recall the quasi-error products

�k
� = [ |||u�

� − uk�||| + η�(u
k
�)

][ |||z�� − zk�||| + ζ�(z
k
�)

]
,

�k
� = [ |||u�

� − uk�||| + μη�(u
k
�)

][ |||z�� − zk�||| + μζ�(z
k
�)

]

from Theorem 6 and Lemma 10, respectively. Note that

�k
� ≤ �k

� ≤ μ2 �k
� if μ ≥ 1, �k

� ≤ �k
� ≤ μ−2 �k

� if μ < 1,

which yields the equivalence

min{1, μ2} �k
� ≤ �k

� ≤ max{1, μ2} �k
�. (56)

We first show linear convergence of �k
� . By Lemma 10(i), we can absorb the term

�
k
�′ ≤ �

k−1
�′ for all �′. Paying attention to the possible case k = k(�), this allows us
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to estimate

∑
(�′,k′)∈Q

|(�′,k′)|≥|(�,k)|

(�k′
�′ )2 � (�k

�)
2 +

k(�)−1∑
k′=k

(�k′
� )2 +

�∑
�′=�+1

k(�′)−1∑
k′=0

(�k′
�′ )2.

Lemma 10(iii) shows uniform reduction of the quasi-error on every level. This yields
that

∑
(�′,k′)∈Q

|(�′,k′)|≥|(�,k)|

(�k′
�′ )2 � (�k

�)
2
k(�)∑
k′=k

q2(k
′−k)

aux +
�∑

�′=�+1

(�0
�′)2

k(�′)−1∑
k′=0

q2k
′

aux

� (�k
�)

2 +
�∑

�′=�+1

(�0
�′)2.

To estimate the sum over all levels, we use that, for the refinement step, Lemma 10(iv)
shows contraction up to a remainder term. The Young inequality with δ > 0 and
Lemma 10(i) then prove that

(�0
�′)2 ≤ q2aux(1 + δ) (�

k−1
�′−1)

2 + (1 + δ−1) R2
�′−1

≤ q2aux(1 + δ) (�0
�′−1)

2 + (1 + δ−1) R2
�′−1 for all 0 < �′ ≤ �.

Choosing δ small enough such that q := q2aux(1 + δ) < 1, we obtain from repeatedly
applying the previous estimates that

(�0
�′)2 ≤ q�′−� (�

k−1
� )2 + (1 + δ−1)

�′−1∑
n=�

q(�′−1)−n R2
n for all 0 ≤ � < �′ ≤ �.

Using this estimate and a change of summation indices, the geometric series and
Lemma 10(v) uniformly bound the sum over all levels by

�∑
�′=�+1

(�0
�′)2 �

�∑
�′=�+1

[
q�′−� (�

k−1
� )2 +

�′−1∑
n=�

q(�′−1)−n R2
n

]

� (�
k−1
� )2 +

�−1∑
n=�

R2
n

∞∑
i=0

qi � (�
k−1
� )2 +

�−1∑
n=�

R2
n

(v)
� (�

k−1
� )2.

Combining the estimates above, we obtain that

∑
(�′,k′)∈Q

|(�′,k′)|≥|(�,k)|

(�k′
�′ )2 � (�k

�)
2 +

�∑
�′=�+1

(�0
�′)2 � (�k

�)
2 + (�

k−1
� )2.
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In the case k < k(�), Lemma 10(i) proves that

∑
(�′,k′)∈Q

|(�′,k′)|≥|(�,k)|

(�k′
�′ )2 ≤ C (�k

�)
2.

In the case k = k(�), this follows with Lemma 10(ii). In either case, the constant
C > 0 depends only on Caux and qaux from Lemma 10. Basic calculus then provides
the existence of C ′

lin := (1+C)1/2 > 1 and 0 < qlin := (1−C−1)−1/2 < 1 such that

�k′
�′ ≤ C ′

linq
|(�′,k′)|−|(�,k)|
lin �k

� for all (�, k), (�′, k′) ∈ Q with (�′, k′) ≥ (�, k);

see [5, Lemma 4.9]. Finally, the claim of Theorem 6 follows from (56) with Clin =
max{μ−2, μ2}C ′

lin. ��

6 Proof of Theorem 8 (optimal rates)

We recall the following comparison lemma from [12]. While [12] is concerned with
point errors in boundary element computations, we stress that the proof of [12,
Lemma 14] works on a completely abstract level and thus is applicable here as well.

Lemma 11 ([12, Lemma 14]) The overlay estimate (14) and the axioms (A1)–(A2)
and (A4) yield the existence of a constant C1 > 0 such that, given 0 < κ < 1, each
mesh TH ∈ T admits some refinement Th ∈ T(TH ) such that for all s, t > 0, it holds
that

ηh(u
�
h)

2ζh(z
�
h)

2 ≤ κ2ηH (u�
H )2ζH (z�H )2, (57a)

#Th − #TH ≤ 2
(
C1κ

−1‖u�‖As‖z�‖At

)1/(s+t)(
ηH (u�

H )ζ(z�H )
)1/(s+t)

. (57b)

The constant C1 depends only on Cstab, qred, and Cdrel. �

Note that (57a) immediately implies that

ηh(uh)
2 ≤ κηH (u�

H )2 or ζh(z
�
h)

2 ≤ κζH (z�H )2. (58)

We will employ this lemma in combination with the so-called optimality of Dörfler
marking from [5].

Lemma 12 ([5, Proposition 4.12]) Under (A1) and (A4), for all 0 < �′ < 1/(1 +
C2
stabC

2
drel), there exists 0 < κ�′ < 1 such that for all TH ∈ T and all Th ∈ T(TH ),

(58) with κ = κ�′ implies that

�′ηH (u�
H )2 ≤ ηH (TH \ Th, u�

H )2 or �′ζH (z�H )2 ≤ ζH (TH \ Th, z�H )2. (59)

The constant κ�′ depends only on Cstab, Cdrel, and �′. �
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The next lemma is already implicitly found in [15]. It shows that, if λctr > 0
is sufficiently small, then Dörfler marking for the exact discrete solution implicitly
implies Dörfler marking for the approximate discrete solution. This will turn out to be
the key observation to prove optimal convergence rates. We include the proof for the
convenience of the reader.

Lemma 13 Suppose (A1)–(A3). Let 0 < � ≤ 1 and 0 < λctr < λ� := (1 −
qctr)/(qctrCstab). Define �′ := (√

�+λctr/λ�

1−λctr/λ�

)2
. Then, as soon as the iterative solver

terminates (22), there hold the following statements (i)–(iv) for all 0 ≤ � < � and all
U� ⊆ T�:

(i) (1 − λctr/λ�) η�(u
m
� ) ≤ η�(u�

�) ≤ (1 + λctr/λ�) η�(u
m
� ).

(ii) �η�(u
m
� )2 ≤ η�(U�, u

m
� )2 provided that �′ η�(u�

�)
2 ≤ η�(U�, u�

�)
2.

(iii) (1 − λctr/λ�) ζ�(z
n
� ) ≤ ζ�(z��) ≤ (1 + λctr/λ�) ζ�(z

n
� ).

(iv) �ζ�(z
n
� ) ≤ ζ�(U�, z

n
� ) provided that �′ ζ�(z��)

2 ≤ ζ�(U�, z��)
2.

Proof It holds that

η�(U�, u
�
�)(A1)≤η�(U�, u

m
� ) + Cstab |||u�

� − u
m
� |||(20)≤η�(U�, u

m
� )

+ Cstab
qctr

1 − qctr
|||um� − u

m−1
� |||

(22)≤η�(U�, u
m
� ) + Cstab

qctr
1 − qctr

λctr η�(u
m
� ) = η�(U�, u

m
� ) + λctr

λ�

η�(u
m
� ).

The same argument proves that

η�(U�, u
m
� ) ≤ η�(U�, u

�
�) + λctr

λ�

η�(u
m
� ).

For U� = T�, the latter two estimates lead to

(1 − λctr/λ�) η�(u
m
� ) ≤ η�(u

�
�) ≤ (1 + λctr/λ�) η�(u

m
� ).

This concludes the proof of (i). To see (ii), we use the assumption

(1 − λctr/λ�)
√

�′ η�(u
m
� )

(i)≤ √
�′ η�(u

�
�) ≤ η�(U�, u

�
�) ≤ η�(U�, u

m
� ) + λctr

λ�

η�(u
m
� ).

Noting that
√

� = (1 − λctr/λ�)
√

�′ − λctr/λ�, this concludes the proof of (ii). The
remaining claims (iii)–(iv) follow verbatim. ��
Proof of Theorem 8 By Corollary 7, it is sufficient to prove that

Cs+t = sup
(�,k)∈Q

(
#T� − #T0 + 1

)s+t
�k

� � max{‖u�‖As‖z�‖At ,�
0
0}.

We prove this inequality in two steps.
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Step 1: In this step, we bound the number of marked elements #M�′ for arbitrary
0 ≤ �′ < �. Let � > 0 and corresponding �′ from Lemma 13 such that

�′ =
(√

� + λctr/λ�

1 − λctr/λ�

)2
<

1

1 + C2
stabC

2
drel

. (60)

Let Th(�′) ∈ T(T�′) be the corresponding mesh as in Lemma 11. With Lemma 12, this
yields that

�′η�′(u�
�′)2 ≤ η�′(T�′ \ Th(�′), u

�
�′)2 or �′ζ�′(z��′)2 ≤ ζ�′(T�′ \ Th(�′), z

�
�′)2.

Lemma 13 with U�′ = T�′ \ Th(�′) shows that

�η�′(um
�′ )2 ≤ η�′(T�′ \ Th(�′), u

�
�′)2 or �ζ�′(zn

�′)2 ≤ ζ�′(T�′ \ Th(�′), z
�
�′)2. (61)

We consider the marking strategies from Remark 2 separately.
For strategy (a), we have with � := 2θ and assumption (32) that (60) is satisfied.

Hence, (61) implies that there holds (17), i.e.,

2θη�′(um
�′ )2ζ�′(zn

�′)2 ≤ η�′(T�′ \ Th(�′), u
m
�′ )2ζ�′(zn

�′)2 + η�′(um
�′ )2ζ�′(T�′ \ Th(�′), z

n
�′)2.

By assumption of Theorem 8, M�′ is essentially minimal with (17). We infer that

#M�′ ≤ Cmark#(T�′ \ Th(�′))
(12)
� #Th(�′) − #T�′ . (62)

For the strategies (b)–(c), we set � = θ and note that assumption (32) (as well as
the weaker assumption (34)) imply (60), and hence (61). Again, by assumption of
Theorem 8, M� is chosen essentially minimal (with an additional factor two for the
strategy (c)) such that (61) holds. For all three strategies, we therefore conclude that

#M�′ � #Th(�′) − #T�′
(57b)
�

(‖u�‖As‖z�‖At

)1/(s+t)(
η�′(u�

�′)ζ�′(z��′)
)−1/(s+t)

Lem.13
�

(‖u�‖As‖z�‖At

)1/(s+t)(
η�′(um

�′ )ζ�′(zn
�′)

)−1/(s+t)
.

Recall that (20) and (22) give that η�′(uk
�′)ζ�′(zk

�′) 
 �
k
�′ . This finally shows that

#M�′ �
(‖u�‖As‖z�‖At

)1/(s+t)
(�

k
�′)−1/(s+t).
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Step 2: Let (�, k) ∈ Q. First, we consider � > 0 and thus #T� > #T0. The closure
estimate and Step 1 prove that

#T� − #T0 + 1 
 #T� − #T0
(13)
�

�−1∑
�′=0

#M�′ �
(‖u�‖As‖z�‖At

)1/(s+t)
�−1∑
�′=0

(�
k
�′)−1/(s+t)

≤ (‖u�‖As‖z�‖At

)1/(s+t) ∑
(�′,k′)∈Q

|(�′,k′)|≥|(�,k)|

(�k′
�′ )−1/(s+t).

Linear convergence of Theorem 6, further shows that

#T� − #T0 + 1 �
(‖u�‖As‖z�‖At

)1/(s+t)
C1/(s+t)
lin (�k

�)
−1/(s+t)

∑
(�′,k′)∈Q

|(�′,k′)|≥|(�,k)|

(q1/(s+t)
lin )|(�,k)|−|(�′,k′)|

≤ (‖u�‖As‖z�‖At

)1/(s+t) C1/(s+t)
lin

1 − q1/(s+t)
lin

C1/(s+t)
lin (�k

�)
−1/(s+t).

Rearranging this estimate, we see that

(#T� − #T0 + 1)s+t�k
� � ‖u�‖As‖z�‖At for all (�, k) ∈ Q with � > 0.

It remains to consider � = 0. By Theorem 6, we have that

(#T� − #T0 + 1)s+t�k
� = �k

0 � �0
0 for all (�, k) ∈ Q with � = 0.

This concludes the proof. ��
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