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ABSTRACT
Industry 4.0 currently prepares a major shift towards extreme flexi-
bility into production linesmanagement. Its goal is to fully automate
the process by which series of client orders are transformed into
executable production plans on reconfigurable production lines
in order to produce series of shorter and highly customized lots
of produces in an economically sustainable way. In this paper, we
present our first steps towards the design and implementation of an
automated I4.0 flexible plant supervision and control system based
on MDE concepts within the "Papyrus for Manufacturing" toolset.
We show how an MDE approach can aggregate around system
modeling tools from the Papyrus platform both I4.0 technologies,
such as digital twins and standard Asset Administration Shells, to
represent produces, production plans and plant resources, and AI
tools such as the MaRCO (Manufacturing Resource Capability On-
tology) to provide semantic matching capabilities. More precisely,
we address the matchmaking required to find among currently
available plant resources the ones able to fulfill the requirements of
a production plan. To overcome the limitation of current syntactic-
only matching algorithms, we transform AAS concepts and data
modeling plant resources into MaRCO ontological concepts and
then query the expanded ontology to get the needed resources
transformed back into modeling elements. This method has two
main advantages (1) to provide semantic descriptions for the AAS
models, (2) to complement model-driven engineering tools with
reasoning features. This paper showcases this approach through
a robotic cell use case. Future work will complete the process i.e.,
extend our Papyrus-based implementation to generate executable
production plans using the identified resources, reconfigure the
plant to adapt it to this production plan, then execute the plan and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’22, October 23-28, 2022, Montreal, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

monitor it using a digital twin approach to adapt in case of failure
or other run-time incidents.

CCS CONCEPTS
• Software and its engineering→ Systemmodeling languages;
Interoperability; • Computing methodologies → Modeling
methodologies.
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facturing
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1 INTRODUCTION
Industry 4.0 currently emerges as a comprehensive effort to bring
extreme flexibility to production lines management. Our modern
economy is seeking ever more customised produces to be made in
ever smaller lots. To keep upwith this trend and remain competitive,
industry is shifting towards fully automated production processes
by which client orders are transformed into a production plan and
then executed on per lot reconfigured plants, taking the shortest
time possible to go from one lot to the next. This automated process
requires:

(1) To model produces, their production plans and the plant
resources in their finest-grain details to generate timely
targeted executable production plans on-the-fly.

(2) For each order in turn, to select currently available plant
resources (tools, conveyors, robots, etc.) able to fulfill the
requirements of the corresponding production plan.

(3) To reconfigure the plant to efficiently and timely execute
each production plan with the selected resources.
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(4) To monitor the execution of plans through a closed-loop
supervisory control to adapt it upon production failures or
incidents.

Developing such production line management systems promises
to be a very challenging endeavour, especially in the highly het-
erogeneous and multi-vendors area of the plant equipment mar-
ket. Besides well-known challenges in the supervisory control of
complex cyber-physical systems, providing a comprehensive repre-
sentation of produces, production plans and plant resources in an
interoperable way among heterogeneous equipments represent a
major challenge. To address these challenges, this vision of future
flexible plants is currently supported by technical solutions such as
(1) the digital twin technology to design structural and behavioral
models@runtime, (2) interoperability standards, such as the Asset
Administration Shell promoted by I4.0 as a standard interface to
digitally represent all of I4.0 elements as well as (3) capability-based
modeling which aims at representing and reasoning about produc-
tion activities, taking into account functional and non-functional
properties to generate and operate effective, efficient and economi-
cally sustainable production plans.

Digital twin technology [3] provides the direction for future
intelligent manufacturing systems with a high degree of autonomy
and self-adaptability. Reconfigurable manufacturing systems [24]
permit a safe and reliable way to deal with the unforeseen situ-
ations that may be encountered on the production line. Despite
that if without the interoperability and the adaptability of all the
components involved in the production practice, this fantastic idea
of reducing costs and improving business profits can only remain
in the conception.

The emergence of the AAS [16] standard has put forward the
specification of the unified interface of all the participants in a
Industry 4.0 digital twin system, making them no longer vendor-
dependent and technology-dependent. The adaptability of a system
refers to the monitoring, re-planning and reconfiguration ability.
An extension of the capability-based engineering [15] has been
proposed in [13], where it explains different phases of the produc-
tion activity and how the AAS models are intervening. Here the
advantages of model-driven engineering (MDE) [4] can be man-
ifested, as it can clearly bridge the gap between principles and
implementation.

Indeed, though these technologies are very useful building blocks,
they need to be brought together consistently and concretely to
implement production line management systems. In this paper, we
propose to use an MDE approach to do so and present the first steps
towards a full-fledged automated I4.0 process based on MDE con-
cepts and implemented within the "Papyrus for Manufacturing"[19]
toolset. More precisely, we address the first two steps of the above
automated process. Starting from the AAS concept, we develop
a Papyrus model of AAS in order to implement as models all of
required I4.0 elements: produces, production plans and plant re-
sources. Then, the models can be exploited to implement concretely
a capability-based modeling approach.

However, if the AAS standard provides syntactic interoperabil-
ity for cross-vendor assets, it leaves the major issue of semantic
interoperability unresolved. Many research units and groups have

realized this semantic gap as a major shortcoming of AAS and stud-
ied on to better describe assets or try to propose a solution rather by
referring to ontologies [31] or conduct model transformations [28].
However, no solution towards enabling comprehensive semantic
interoperability of asset administration shells has been shown yet.

Ontologies indeed appear as a highly relevant approach to bring
such semantic interoperability as they exhibit the ability to define
semantic models of data combined with relevant domain knowl-
edge, and to formulate inference strategies [25]. The construction of
ontologies requires the knowledge of many domain experts, provid-
ing a core reusable ontology into Domain Specific Modeling (DSM)
will save a lot of time in bringing semantic interoperability to the
model [20]. Based on this concept, we are going to present our
ontology-based AAS capability modeling approach which enables
the semantic interoperability of AAS, as well as the implementa-
tion of an automated capability checking procedure in Papyrus
modeling framework [14], hence a first step in the concrete real-
isation of capability-based engineering. In our approach, model-
transformations are used to keep aligned a model-based and an
ontology-based representation of the assets. By using this tool, we
can obtain candidate resource combinations for production line
reconfiguration from a well-defined AAS product model. And the
result will be justified in a robotic cell use case.

This article is organized as follows, Section 2 presents the back-
grounds and related works. Section 3 introduces the capability
checking design. Section 4 focuses on the implementation of the
capability matchmaking process in Papyrus. Section 5 provides a
matchmaking example in a robotic cell use case. Finally, Section 6
concludes and introduces future works.

2 BACKGROUND & RELATEDWORKS
2.1 Model-based Digital Twins, Industrie 4.0 &

AAS
The purpose of the digital twin technology [3] is to simulate the
operation of equipments with the best mathematical and behav-
ioral models. With the rise of IoT and sensor networks, real time
data from physical devices and business information have been
incorporated into the scope of the model. As the complexity of the
system increases, the transformation of the model itself as well
as the integrability, connectivity and scalability between models
become crucial. Under this premise, the Model-Driven Engineering
(MDE) paradigm [4], which revolves around models and focuses
on alignments and transformations between models, brings new
potential to digital twins. At the same time, the modeling of the
asset’s entire life cycle at the core of the digital twin also brings self-
adaptation and autonomy from design to operation to Model-Based
Systems Engineering (MBSE) [21].

Digital twins do not exist in isolation, but are used in the con-
struction of CPS (Cyber-Physical System) [10] and, in our area,
CPPS (Cyber-Physical Production System) [30]. Since no unified
description for them exists, it is difficult to realize the interoperabil-
ity and scalability of digital twin models when they are designed
and implemented independently. This problem becomes even more
significant with the expansion of the system scale. In this con-
text, the reference architecture model for Industry 4.0 (RAMI4.0)
[12] and the Asset Administration Shell (AAS)[16] standard were
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proposed to provide a unified architectural framework and stan-
dardized interfaces for Industry 4.0 (I4.0) systems. The RAMI4.0 can
help manufacturing enterprises to open up vertical integration to
solve the problem of data flow and transmission from production
equipment, production execution, production planning to enter-
prise business operation management, that is, the connection from
Level 0 to Level 4 in the ISA-95 manufacturing pyramid [1]. AAS is
the digital representation of an asset, and an asset can represent
any element within the I4.0 context.

An AAS as shown in Figure 1 may contain several submodels to
describe functional aspects for different use cases by using suitable
submodelelements. But these submodelelements do not deal with
the semantic representation of capabilities and other submodelele-
ments. So each submodelelement has a semanticId, which might
either refer directly to a corresponding semantic definition provided
by an external reference (e.g. eCl@ss [7] or IEC CDD property defi-
nition [5] or an ontology concept).

Figure 1: AAS Structure

2.2 Cabability-based Engineering
The adaptability is a crucial issue to ensure the reliability of a digital
twin system. To address the problem of adaptability, an approach
called capability-based engineering for the flexible production lines
has been proposed. First published by Plattform Industrie 4.0 [15],
which describes the concept and its operational realization. The
term "capability" refers to an abstract description of the function
of a production resource, while the ability to achieve a specific
effect depends on the asset’s "skill". PPR (processes, products and
resources) are the three most fundamental building blocks in manu-
facturing. Capability-based engineering is intended to dynamically
deploy resources i.e., rather than specifying the actual production
process directly, by defining the capabilities required by the produc-
tion process of the product and let an automated production line
management system find the resources and implement the process.

Based on this concept, the three key steps of capability-based
engineering has been refined in [13] as capability checking, feasi-
bility checking & skill execution. We then introduced a set of AAS
modeling tools within a novel capability-based modeling environ-
ment [14]. This approach has been proposed to ensure continuous
capability-based engineering while minimizing production line
downtime.

2.3 Semantic Interoperability in manufacturing
In this article, we expand our previous work by focusing on seman-
tic interoperability of AAS. Semantic interoperability has long been
recongnized as a major concern in the field of industrial digital twin
systems. This subsection introduces this problem, and then leads
to two related works that will be reused in our solution.

The Digital Twin Consortium published a whitepaper [2] on
the digital twin system interoperability framework. It introduces
seven interoperability concepts that frame the design considera-
tions necessary to make systems interoperate at scale. The article
[6] introduces the definition of semantic interoperability in the
context of Industry 4.0 and Smart Manufacturing as follows: "Se-
mantic interoperability enables systems to interpret meaning from
structured data in a contextual manner. Semantic interoperabil-
ity relies on ontology-based “contextual metadata” supplementing
“data” to form “information” exchanged among connected systems.
This ontology must account for metadata exchanged between dis-
parate systems and environments. It represents the highest level
of interoperability between connected systems - beyond syntactic
interoperability".

[31] provides an overview of various articles and applications
of data analysis, expert knowledge, and knowledge-based system
drivers in production systems. On top of that, it describes how to
use "data analysis" in a production system to create knowledge-
based digital twin systems. [22] articulates new concepts of value
creation through the use of digital twin decision support services in
industrial service ecosystems, and discusses mixed semantic model-
ing and model-based systems engineering for their implementation.
A customizable conversion system for converting ABB Ability™
digital twins to Asset Administration Shell format is presented in
[28], showing a real-world example for interoperability in industrial
environments.

Ontologies bring to systems engineers and researchers the the
high value of semantic interoperability and makes them aware of
the importance of combining ontology vocabularies with system
model design. [9] introduced an approach of a dynamic mapping of
the ontology vocabularies into system models stereotyped by meta-
classes defined in a profile. This approach enriches the semantic
meanings of system modeling without affecting the definition of
existing metamodels.

According to the above work and many other articles not men-
tioned, the use of ontologies to solve semantic interoperability
appears as a common solution in the field. Our idea is to com-
bine ontology-based knowledge representation with the AAS digi-
tal twins to achieve the semantic interoperability between digital
twins. To achieve this, we rely on two former works described next:
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MaRCO [18] provides capability-related ontology for manufactur-
ing systems, and the OML Adapter [8] provides a transformation
basis from OWL ontologies to OML and UML models.

2.3.1 Manufacuturing resource capability ontology (MaRCO). The
OWL-basedManufacturing Resource Capability Ontology (MaRCO)
[18] is used to describe the capabilities of manufacturing resources.
Ontologies are widely accepted for knowledge representation in
specific domains. The expressive power of MaRCO supports the
representation of simple resources but also their combination into
collaborative resources, hence a good candidate for capability-based
engineering. In addition, MaRCO is also provided as a complete
capability matchmaking web service [23]. While its implementa-
tion language OWL has good knowledge representation features,
pure OWL is limited when it comes to querying. To effectively sup-
port semantic-based resource selection, SPARQL (SPARQL Protocol
and RDF Query Language) [29] has been chosen to implement the
capability matchmaking rules. More precisely, SPARQL allows to
write queries that combines the capability parameters of several
resources to select sets of compatible and covering resources for
given requirements. Finally, the use of SPIN (SPARQL Inference
Notation) allows to represent SPARQL queries as knowledge within
the ontology and then the SPIN API allows to make inferences and
generate new individuals within the ontology.

2.3.2 OML Adapter. The OML (Ontological Modelling Language)
[8] is defined by the openCAESAR1 platform, which is also an on-
tology description language inspired by OWL and SWRL (Semantic
Web Rule Language). OML is a modeling language designed for
ontologies, which aims to close the gap between modeling and
programming languages. OML is implemented using the Eclipse
Modeling Framework (EMF), which gives it a Java API and inte-
gration with useful tools such as OML Adapter provided by the
openCAESAR project. However, the OML adapter only provides
round-trip transformation between OML and UML. More details
about this conversion is described in the following section, as we
use OML in our platform.

3 MODEL BASED CAPABILITY CHECKING
Figure 2 shows the whole process of the capability-based engi-
neering approach [15]. In a model-based Digital Twin production
system, each resource (or asset) has its own representative AAS
provided by different stakeholders (product and process design-
ers, equipment supplier, integrator, etc.). The AAS contains the
technical descriptions (nameplate), the simulation models, the oper-
ational data and other business information. The resource pool of a
plant contains all the resources as well as the system layout design.
During the design phase, the system architect specifies the prod-
ucts and their manufacturing processes. The rounded rectangles
in the figure represent different levels in the automation pyramid.
From top to bottom, they are representing the manufacturing oper-
ation management (level3), the monitoring and automated control
(level2), and the manipulation of production processes (level1). In
the latter level, the "Asset Administration Shells" (or digital twins)
are considered as models@runtime since they are continuously up-
dated to represent the assets real time status. Capability checking

1http://www.opencaesar.io/oml/

takes the PPR capability models as input and computes the possible
resource combinations that may achieve the production. During
the feasibility checking step, these combinations and environmen-
tal contexts will be simulated to validate the selected resources
combination against their current constraints. Then the next step
automatically supervises the skill execution of the selected models
by the reconfiguration plan. The supervisor deploys the selected
resource pool models according to the system reconfiguration plan
obtained through the capability-based reconfiguration phase. Dur-
ing the whole process execution, the supervisor monitors the status
of all asset models and will re-plan the production process in a
timely manner when abnormalities are detected. The overall goal
of our work is to gradually implement all of these steps, shown
in Figure 2, in the model based engineering toolset "Papyrus for
Manufacturing".

Figure 2: Capability-based reconfiguration approach

The rest of this section presents in details our capability checking
module. A concrete example to describe this capability checking
process, is how to select a device that can provide transporting
capability from the alternative resources when an object needs
to be moved in the production process. In order to simplify the
presentation, we consider only design time models as input. Since
runtime models will contain similar meta data to the ones of the
design time models, the capability checking module will have a
similar behavior when interacting with the two types of models.

3.1 Capability Checking Design Flow
As shown in Figure 3, the capability checking module interacts
with the AAS models to set/get their semantics and then to trigger
the capability matchmaking reasoner in order to compute the best
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Figure 3: Capability checking architecture

resources matching the requirements of each production process.
The four stages depicted in Figure 3 are:

(1) The designer annotate to the AAS models with semantic
definitions (semanticIds) from the MaRCO ontologies.

(2) The designer automatically transforms the AAS models
(Product, Process, Resources) into MaRCO individuals.

(3) With the input individuals, the automated reasoning engine
is triggered tomatch the capabilities required by the process
with the capabilities provided by the resources.

(4) Finally the capability checking module returns the match-
making result to the designer.

Since there was an expert’s commitment on ontology concepts,
the ontology will not frequently change over time. Consequently,
the first stage (OWL to UML profile conversion) only needs to be
performed once, as long as the ontology concepts do not changed.
The second, third and fourth stages will be repeated, whenever a
PPR model update occurs. All the actions represented by the arrows
shown in Figure 3 are automated, system architects only need to
define and select the required production models.

3.2 Modeling Languages Mapping
Our platform relies on the alignment of models (in UML) and on-
tologies (in MaRCO). This alignment requires a comprehensive
definition of mappings between concepts in the different languages
used to express our models and ontologies.

3.2.1 General concepts mapping. In our approach, AAS models are
UML models extended with an AAS-UML profile. To achieve the
transformations between AAS and OWL models (stage 1 and 2 in
Figure 3), we have used the OML adapter for Papyrus . We chose to

Table 1: General Concept Mapping

OWL OML UML Metaclass UML Profile
Class Aspect/ Abstract Class/ Stereotype

Concept Class
Individual Instance Instance Stereotype

specification applicable
element

Object Property Relation Association/ Stereotype
Entity Property attribute

Data Property Property Property Stereotype
attribute

Cardinality, exactly Multiplicity Multiplicity
MinCardinality, min
MaxCardinality max

use the OML adapter because it allows automatic conversion of the
ontology concepts into a UML Profile, and its extraction from UML
back to OWL. OML is a language to describe ontologies, where
adapters for transformations from OML to UML, and UML to OWL
are provided. In this context OML can be seen as an intermediate
language to enable the conversions.

To pave the way to models alignment, we defined a mapping
between OWL, OML, UML general concepts and the AAS-UML
profile concepts (Table 1). As the output of the OML Adapter is a
UML profile, we decided to add the OML and UML profile column
to this table. The classes in OWL are represented as aspects and
concepts in OML. The aspect refers to the abstract class, while the
concept refers to the class. They are all transformed to stereotypes
of a UML profile. An individual in OWL refers to an instance in OML
and instance specification in UML, this represents a UML element
to which a stereotype is applied to. The OWL object properties are
represented in OML as relation entities and refer to associations
or properties in UML. The OWL data properties refer to properties
both in OML and UML. The object properties and data properties
are transformed to the attributes of a stereotype.

3.2.2 AAS & MaRCO vocabularies mapping. In order to use OML
for our MaRCO-specific semantics, the mappings between general
concepts are not enough. Hence, we defined transformation rules
between the vocabularies of MaRCO and AAS in Figure 4. MaRCO
concepts are on the left, while AAS concepts are in the middle. As
presented in Table 1, the OWL classes are transformed to stereo-
types in a UML Profile. A subset of MaRCO concepts have been
chosen, such as Resource, ProductElement and Activity, which are
transformed to stereotypes that can be applied to the AASmodels of
resources, products and processes. The Capabilities or ProcessTaxon-
omyDescriptions stereotypes should be applied to AAS capabilities.
Then the object properties requiresProcessCapability and hasCapa-
bility refer to the attributes of these stereotypes. And the value
type of these attributes should be Capabilities or ProcessTaxono-
myDescriptions. Each stereotype may contain two different types
of attributes, one is the scalar properties such as weight or depth
which refers to the data property parameter, the other is object
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Figure 4: AAS Marco vocabularies mapping

properties that points to other stereotyped elements in the model
package. By applying stereotype to an AAS model, the semanticId
of the AAS model will be associated with the vocabulary IRI in
MaRCO ontology.

Once we have annotated the AAS model content with the stereo-
types coming from MaRCO ontology, these stereotype applicable
elements will be regenerated back to OWL individuals. So an AAS
class is transformed to an OWL individual, and its type is either
a Resource, a ProductElement or an Activity. It may contain object
properties hasCapability or requiresProcessCapability with the value
of individual capabilities as defined in the AAS model.

4 IMPLEMENTATION
The capability checking implementation involves three different
modules as shown in Figure 5: (1) the OML Adapter for the on-
tology concept conversions between different file natures, (2) the
capability matchmaker for inferences, and (3) user interface mod-
ule for launching capability checking requests and displaying the
reasoning results in Papyrus4Manufacturing [19]. Both modules,
OML Adapter and capability matchmaker, take MaRCO ontology
as input. The final output of the entire capability checking process
is the computed list of combinations of resources that can fulfill
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Figure 5: Technical architecture of capability checking
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the capabilities required by the process to achieve the product
production.

4.1 OML Adapter Module
Figure 6 illustrates the four steps applying the OML adapter:

(1) Choose a subset of OWL-based MaRCO ontology concepts
and define corresponding OML Vocabularies.

(2) Convert the OML vocabularies to a UML profile.
(3) Apply the generated MaRCO UML profile to AAS models.
(4) Regenerate the specified AAS models to MaRCO compliant

instances in an OWL file.

AAS ModelsOWL
Ontology

OML
Vocabulary UML Profile

(1) Define (2) Generate (3) Apply

(4) Generate compliant instances

Figure 6: OML Adapter workflow

The first three steps correspond to the first stage introduced in
Section 3.1, which enriches AAS models with semantic annotations
in the manufacturing capability domain. Since there was experts’
commitment on the ontology, once generated, the UML profile
generated from the ontology can be reused for all the actions after-
wards. The fourth step refers to the second stage in the capability
checking architecture (Figure 3), that generates the MaRCO concept
instances from the AAS system model for further inferences.

Here we will briefly introduce some concepts from the MaRCO
ontology involved in this capability matchmaking process. The
MaRCO ontology is composed of several distributed ontologies
[18]. By using the OML Adapter, a subset of MaRCO vocabularies
was transformed into a UML profile that can be applied to AASmod-
els as stereotypes, including different sub-classes of the concepts
appearing in 3.2.2. The capabilities are separated into simple capa-
bilities like Moving and combined capabilities like PickAndPlace,
and these capabilities have parameters to describe their charac-
teristics. The combined capabilities are compositions of simple
or other combined capabilities, these information are defined in
the Capability Model ontology. The resource model stereotypes
define different resource types, including atomic resources (Device-
Blueprint and IndividualDevice) and different resource combination
types including DeviceCombination, and the combination at the
FactoryUnit level. The concepts of Product,Process and a selection of
ProcessTaxonomyDescription have been included in the UML profile
as well.

4.2 Capability Matchmaker Module
The capability matchmaker is responsible for resource combination
and combined capability computation, as well as the matchmaking
reasoner which aligns the corresponding capabilities between pro-
duction processes and resources. The implementation of this mod-
ule reuses as much as possible other existing open-source projects.
First of all, theMaRCO ontology and the associated SPARQL queries

and SPIN rules come from the open-source MaRCO ontology[17].
The functionalities of ontology read and write is provided by Jena
semantic web framework2 and the SPARQL queries can be executed
by Openllet reasoner3. As for the reasoning process of SPIN rules,
it is realized by SpinAPI (provided by TopBraid4), which aims at
encouraging the adoption of SPIN in the domain.

The pre-defined SPARQL queries update the capabilities for the
individual devices and compute combined capabilities for the de-
vice combinations. The SPIN rules integrated in the Parameter Rule
ontology will be executed in order to infer these novel capabilities’
parameters. The matchmaking reasoner deals with the matching be-
tween capabilities required by the process and capabilities provided
by the newly updated resource system. During this process, not
only are the capabilities matched at the name level has capability
match, but also the adaptations of the parameters canBeImplement-
edWith are computed. These reasoned relationships and inferred
elements will be saved in a separate file.

4.3 User Interface Module
This user interface exists in the form of an Eclipse plug-in that
ties the above two modules together and establishes a relationship
with the model in the modeling environment. The usage scenario
we envisage is shown in Figure 7. First, the user defines the pro-
duction process in Papyrus4Manufacturing [19], and triggers the
capability checking function through a right-click menu "Capability
Checking", from which he/she can select the product for which the
capability checking must be performed. This command sequentially
invokes the OML Adapter, the capability matchmaker and the re-
sults retrieving module. After a series of processing, the results
are returned to Papyrus4Manufacturing by a popup window, pro-
viding the user with a list of devices to choose from. Finally, the
user selects a set of equipment combinations and then performs
the feasibility checking (which is out of the scope of this paper, as
said earlier).

The result retrieval aims to integrate and extract the results
of ontology inferences, return them to the user, and save them
for later use. The result of capability matchmaking shows the De-
viceBlueprints that can realize the capability, however in our actual
application, the production process is actually realized by the device
instances (IndividualDevices). In this step, we need to find quali-
fied device instances and device combinations through SPARQL
queries, so we still need the help of ontology and SPARQL query
processing tools previously mentioned. The results will be sorted
out via a popup window for the user to choose from. The selected
information will be included as input in feasibility checking which
the second step of the capability-based engineering.

It is worth mentioning that, if we look back to the capability-
based engineering approach in Figure 2, the capability checking in
this article only involves the period from the design process stage
to the period before it is put into production. It does not include the
re-capability checking triggered by the monitoring process after the

2https://jena.apache.org/
3https://github.com/Galigator/openllet
4https://www.topbraid.org/spin/api/
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Figure 7: User interaction scenario

production line is put into production. This capability checking pro-
cedure is only the first part of our vision to implement a capability-
based engineering digital twin system. Papyrus4Manufacturing
provides an AAS (Asset Administration Shell) modeling environ-
ment for manufacturing where digital twins (AASs) of assets can
be modeled and automatically deployed to BaSys[11]. The AASs
communicate with physical devices via the OPC UA protocol. The
robotic cell, considered in this paper, has already an OPC UA com-
munication layer [26] which connects the devices with the AASs’
executable BaSyx code. The resource combination options obtained
in this step will be simulated and verified during the feasibility
checking process. Finally, the selected resources should be deployed
automatically.

5 ROBOTIC CELL USE CASE
A robotic cell (LocalSEA) use case is now presented to demonstrate
the entire process of capability checking. The AAS modeling of this
example has already been described in [14]. In this senario, a new
product has been designed and the system architect want to config-
ure the production line with the help of Papyrus4Manufacturing
toolset. The production resources consist of two Niryo Neds, one
conveyor belt, one TurtleBot3, two human workers, two storage
units, and an assembly workstation. Niryo Ned is a robotic arm that
includes a six-axis arm to realize PickAndPlace, a camera to realize

LocatingVisual. The conveyor belt owns the capability Transporting.
The TurtleBot3 Waffle is a mobile robot that can achieve Transport-
ing capability as well. Ideally, a human could replace any type of
device, with abilities including PickAndPlaceFlexible, Transporting,
and Hammering.

Next, The AAS model of the product and its production pro-
cess needs to be defined, including the information of the product
and the manufacturing capabilities required by the process. The
product defined in our robotic cell example is the assembly of two
objects of different colors and shapes. Therefore, the corresponding
production process (Figure 8) is as follows:

• Detect and grasp the two types of required pieces from
two different storage unit in parallel and place them on the
transporting device.

• Transport the required parts to the assembly area
• Complete the screw action

It is represented as a BPMN [27] process diagram. The capabilities
required by this manufacturing process are: PickAndPlaceFlexibles,
Transporting and Hammering.

Figure 8: LocalSEA BPMN production process

During the design phase, the MaRCO Ontology profile is ap-
plied to the LocalSEA models, as presented in 3.2.2. Also, the AASs
have applied stereotypes corresponding to the different types of Re-
sources existing in MaRCO. Figure 9 is an example of different types
of devices existing in LocalSEA and their attributes. The stereotype
DeviceBlueprint is applied to "AASHumanOperator_type" contains
the information about a human operator in LocalSEA. The capabili-
ties mentioned above are attached to AAS capabilities owned by
the "AASHumanOperator_type" as stereotypes. Alice, an instance
of human operator type, is defined as an IndividualDevice, so the
attribute hasDeviceBlueprint is set to "AASHumanOperator_type".
And the last model shown in Figure 9 "AASNiryoNed1" is a Device-
Combination.

Once the user selects the product to produce, the rest of capability
checking process are automated by a right-click command. Firstly,
the OML Adapter is automatically called in order to transform the
AAS models into MaRCO instances. The resulting AASs.owl file
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Figure 9: Different types of LocalSEA Resources

contains all the AASmodel capability-related information. Then the
capability matchmaker takes the resources and product descriptions
as input in order to infer the matchmaking results. These inference
results will be generated in the same folder as AASs.owl under the
name of matches.ttl. Figure 11 shows the changing status of the
required capability Hammering in the LocalSEA production process
at different stages of capability checking. In the modeling environ-
ment, the corresponding stereotypes are applied to "AASProcess1"
model. As shown at the upper part of the figure, the attribute of
matchmakingRequired is set to true to trigger the matchmaking
inference. This information is written to AASs.owl intact, as shown
in the middle screenshot. The lower part of the figure shows the
inferred information stored in matches.ttl after inference by the
capability matchmaker. The figure shows the hammering process
can be implemented with the human operator typed devices.

The capability checking results of the "AASProduct1" are grouped
in a pop-up window shown in Figure 10. According to these results,
PickAndPlaceFlexible can be implemented by NiryoNeds, Transport-
ing can be done by TurtleBot or conveyor belt, and human operators
can realize all the capabilities required in this process, which just
matches our previous definition of LocalSEA devices. Through this
result list, the user can select the production line combination to
be further checked in the feasibility checking module.

6 CONCLUSIONS AND FUTUREWORKS
The work described in this paper takes part in a larger project
aiming at designing and implementing an automated Industry 4.0
flexible plant supervision and control system based on MDE con-
cepts within the "Papyrus for Manufacturing" toolset. Within such
a system, capability checking is the phase that, given a client order
for some produce, select plant resources able to fulfill the needs

Figure 10: Capability checking result window

of the produce production plan. A matchmaking process between
requirements of the plan and the plant resources automatically per-
forms this selection. The main contribution of the paper is a new
matchmaking algorithm that extends current syntactic-only match-
ing with semantic matching based on information represented in
the MaRCO manufacturing ontology.

This new algorithm has been fully implemented within the re-
cently released "Papyrus for Manufacturing" platform, using a large
set of tools from I4.0 standards (RAMI 4.0, Asset Administration
Shells, etc.) to ontologies (MaRCO) and ontological query languages
(SPARQL and SPIN), orchestrated through a set of models, UML
profiles and model transformations (OML adapter), targeted to flex-
ible production line management, that we have either developed or
integrated in our platform. MDE concepts and tools have been used
to integrate ontological tools in order to provide semantics and
semantic interoperability among I4.0 concepts and assets, hence
bringing an effective implementation of a semantic-based capability
checking to flexible plant management.

The paper thoroughly explains the entire capability checking
design flow that we have implemented. This flow uses model align-
ments to keep synchronized MDE-based models and an ontological
representation of produces, production plans and plant resources in
order to select the plant resources able to fulfill the production plan
requirements through semantic-based ontological queries, and then
get the results back into the MDE-based representation for further
processing. We have demonstrated the effectiveness of this capabil-
ity checking algorithm in Papyrus4Manufacturing on a robotic cell
use case (LocalSEA).

The next steps and future work that we have undertaken for the
implementation of our flexible plant management system concerns
(1) the feasibility checking phase and then (2) the plant reconfigura-
tion prior to (3) the supervision and control of the production plan
execution. The feasibility checking extends the capability check-
ing by taking into account the current contextual constraints and
the actual time-dependent aspects of plan execution to generate
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Figure 11: An AAS2MaRCO generation of a required capability

feasible plans for production. Feasibility checking will leverage
the previously developed knowledge-based representation, but it
will also need a time-related reasoning capability that may go as
far as simulating the plan to ensure its actual feasibility. From the
feasible plan and its selected resources, the system will then have
to reconfigure the plant to prepare for the production per se, which
will also need to be supervised to react to failures or abnormal
events. When such events happen, the system may have to stop
the production, revise the plan, adjust the plant configuration and
restart the production. To implement this supervisory control phase
as well as the simulation part of feasibility checking, our system
will require a comprehensive usage of models@runtime and digital
twins representation of the plant to enable effective plan execution
and runtime adaptations.
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