Yining Huang
email: yining.huang@cea.fr

Saadia Douib
email: saadia.dhouib@cea.fr

Luis Palacios Medinacelli

Jacques Malenfant
email: jacques.malenfant@lip6.fr

Enabling Semantic Interoperability of Asset Administration Shells Through an Ontology-based Modeling Method

Keywords: Software and its engineering → System modeling languages, Interoperability, • Computing methodologies → Modeling methodologies Model-Driven Engineering, Digital Twins, Ontology, Industry4.0, Asset Administration Shell, Semantic Interoperability, Smart Manufacturing

published or not. The documents may come

INTRODUCTION

Industry 4.0 currently emerges as a comprehensive effort to bring extreme flexibility to production lines management. Our modern economy is seeking ever more customised produces to be made in ever smaller lots. To keep up with this trend and remain competitive, industry is shifting towards fully automated production processes by which client orders are transformed into a production plan and then executed on per lot reconfigured plants, taking the shortest time possible to go from one lot to the next. This automated process requires:

(1) To model produces, their production plans and the plant resources in their finest-grain details to generate timely targeted executable production plans on-the-fly. (2) For each order in turn, to select currently available plant resources (tools, conveyors, robots, etc.) able to fulfill the requirements of the corresponding production plan. [START_REF] Barbara | A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications[END_REF] To reconfigure the plant to efficiently and timely execute each production plan with the selected resources.

(4) To monitor the execution of plans through a closed-loop supervisory control to adapt it upon production failures or incidents.

Developing such production line management systems promises to be a very challenging endeavour, especially in the highly heterogeneous and multi-vendors area of the plant equipment market. Besides well-known challenges in the supervisory control of complex cyber-physical systems, providing a comprehensive representation of produces, production plans and plant resources in an interoperable way among heterogeneous equipments represent a major challenge. To address these challenges, this vision of future flexible plants is currently supported by technical solutions such as [START_REF]ISA95, Enterprise-Control System integration-ISA[END_REF] the digital twin technology to design structural and behavioral models@runtime, (2) interoperability standards, such as the Asset Administration Shell promoted by I4.0 as a standard interface to digitally represent all of I4.0 elements as well as (3) capability-based modeling which aims at representing and reasoning about production activities, taking into account functional and non-functional properties to generate and operate effective, efficient and economically sustainable production plans.

Digital twin technology [START_REF] Barbara | A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications[END_REF] provides the direction for future intelligent manufacturing systems with a high degree of autonomy and self-adaptability. Reconfigurable manufacturing systems [START_REF] Morgan | Industry 4.0 smart reconfigurable manufacturing machines[END_REF] permit a safe and reliable way to deal with the unforeseen situations that may be encountered on the production line. Despite that if without the interoperability and the adaptability of all the components involved in the production practice, this fantastic idea of reducing costs and improving business profits can only remain in the conception.

The emergence of the AAS [START_REF]Details of the Asset Administration Shell -Part 1[END_REF] standard has put forward the specification of the unified interface of all the participants in a Industry 4.0 digital twin system, making them no longer vendordependent and technology-dependent. The adaptability of a system refers to the monitoring, re-planning and reconfiguration ability. An extension of the capability-based engineering [START_REF]Describing capabilities of Industrie 4.0 components[END_REF] has been proposed in [START_REF] Huang | AAS Capability-Based Operation and Engineering of Flexible Production Lines[END_REF], where it explains different phases of the production activity and how the AAS models are intervening. Here the advantages of model-driven engineering (MDE) [START_REF] Bézivin | Model Driven Engineering: An Emerging Technical Space[END_REF] can be manifested, as it can clearly bridge the gap between principles and implementation.

Indeed, though these technologies are very useful building blocks, they need to be brought together consistently and concretely to implement production line management systems. In this paper, we propose to use an MDE approach to do so and present the first steps towards a full-fledged automated I4.0 process based on MDE concepts and implemented within the "Papyrus for Manufacturing" [START_REF]Papyrus for Manufacturing Model Driven Workbench[END_REF] toolset. More precisely, we address the first two steps of the above automated process. Starting from the AAS concept, we develop a Papyrus model of AAS in order to implement as models all of required I4.0 elements: produces, production plans and plant resources. Then, the models can be exploited to implement concretely a capability-based modeling approach.

However, if the AAS standard provides syntactic interoperability for cross-vendor assets, it leaves the major issue of semantic interoperability unresolved. Many research units and groups have realized this semantic gap as a major shortcoming of AAS and studied on to better describe assets or try to propose a solution rather by referring to ontologies [START_REF] Vogel-Heuser | Potential for combining semantics and data analysis in the context of digital twins[END_REF] or conduct model transformations [START_REF] Platenius-Mohr | Interoperable Digital Twins in IIoT Systems by Transformation of Information Models: A Case Study with Asset Administration Shell[END_REF]. However, no solution towards enabling comprehensive semantic interoperability of asset administration shells has been shown yet.

Ontologies indeed appear as a highly relevant approach to bring such semantic interoperability as they exhibit the ability to define semantic models of data combined with relevant domain knowledge, and to formulate inference strategies [START_REF] Munir | The use of ontologies for effective knowledge modelling and information retrieval[END_REF]. The construction of ontologies requires the knowledge of many domain experts, providing a core reusable ontology into Domain Specific Modeling (DSM) will save a lot of time in bringing semantic interoperability to the model [START_REF] Lortal | Integrating Ontological Domain Knowledge into a Robotic DSL[END_REF]. Based on this concept, we are going to present our ontology-based AAS capability modeling approach which enables the semantic interoperability of AAS, as well as the implementation of an automated capability checking procedure in Papyrus modeling framework [START_REF] Huang | An AAS Modeling Tool for Capability-Based Engineering of Flexible Production Lines[END_REF], hence a first step in the concrete realisation of capability-based engineering. In our approach, modeltransformations are used to keep aligned a model-based and an ontology-based representation of the assets. By using this tool, we can obtain candidate resource combinations for production line reconfiguration from a well-defined AAS product model. And the result will be justified in a robotic cell use case.

This article is organized as follows, Section 2 presents the backgrounds and related works. Section 3 introduces the capability checking design. Section 4 focuses on the implementation of the capability matchmaking process in Papyrus. Section 5 provides a matchmaking example in a robotic cell use case. Finally, Section 6 concludes and introduces future works.

BACKGROUND & RELATED WORKS 2.1 Model-based Digital Twins, Industrie 4.0 & AAS

The purpose of the digital twin technology [START_REF] Barbara | A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications[END_REF] is to simulate the operation of equipments with the best mathematical and behavioral models. With the rise of IoT and sensor networks, real time data from physical devices and business information have been incorporated into the scope of the model. As the complexity of the system increases, the transformation of the model itself as well as the integrability, connectivity and scalability between models become crucial. Under this premise, the Model-Driven Engineering (MDE) paradigm [START_REF] Bézivin | Model Driven Engineering: An Emerging Technical Space[END_REF], which revolves around models and focuses on alignments and transformations between models, brings new potential to digital twins. At the same time, the modeling of the asset's entire life cycle at the core of the digital twin also brings selfadaptation and autonomy from design to operation to Model-Based Systems Engineering (MBSE) [START_REF] Azad | Leveraging Digital Twin Technology in Model-Based Systems Engineering[END_REF]. Digital twins do not exist in isolation, but are used in the construction of CPS (Cyber-Physical System) [START_REF] Flumerfelt | Complex Systems Engineering: Theory and Practice[END_REF] and, in our area, CPPS (Cyber-Physical Production System) [START_REF] Thomas | The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4[END_REF]. Since no unified description for them exists, it is difficult to realize the interoperability and scalability of digital twin models when they are designed and implemented independently. This problem becomes even more significant with the expansion of the system scale. In this context, the reference architecture model for Industry 4.0 (RAMI4.0) [START_REF] Heidel | The Reference Architecture Model RAMI 4.0 and the Industrie 4.0 component[END_REF] and the Asset Administration Shell (AAS) [START_REF]Details of the Asset Administration Shell -Part 1[END_REF] standard were proposed to provide a unified architectural framework and standardized interfaces for Industry 4.0 (I4.0) systems. The RAMI4.0 can help manufacturing enterprises to open up vertical integration to solve the problem of data flow and transmission from production equipment, production execution, production planning to enterprise business operation management, that is, the connection from Level 0 to Level 4 in the ISA-95 manufacturing pyramid [START_REF]ISA95, Enterprise-Control System integration-ISA[END_REF]. AAS is the digital representation of an asset, and an asset can represent any element within the I4.0 context.

An AAS as shown in Figure 1 may contain several submodels to describe functional aspects for different use cases by using suitable submodelelements. But these submodelelements do not deal with the semantic representation of capabilities and other submodelelements. So each submodelelement has a semanticId, which might either refer directly to a corresponding semantic definition provided by an external reference (e.g. eCl@ss [START_REF] Eclass | Le standard ECLASS[END_REF] or IEC CDD property definition [START_REF]Common data dictionary (CDD)[END_REF] or an ontology concept).

Cabability-based Engineering

The adaptability is a crucial issue to ensure the reliability of a digital twin system. To address the problem of adaptability, an approach called capability-based engineering for the flexible production lines has been proposed. First published by Plattform Industrie 4.0 [START_REF]Describing capabilities of Industrie 4.0 components[END_REF], which describes the concept and its operational realization. The term "capability" refers to an abstract description of the function of a production resource, while the ability to achieve a specific effect depends on the asset's "skill". PPR (processes, products and resources) are the three most fundamental building blocks in manufacturing. Capability-based engineering is intended to dynamically deploy resources i.e., rather than specifying the actual production process directly, by defining the capabilities required by the production process of the product and let an automated production line management system find the resources and implement the process.

Based on this concept, the three key steps of capability-based engineering has been refined in [START_REF] Huang | AAS Capability-Based Operation and Engineering of Flexible Production Lines[END_REF] as capability checking, feasibility checking & skill execution. We then introduced a set of AAS modeling tools within a novel capability-based modeling environment [START_REF] Huang | An AAS Modeling Tool for Capability-Based Engineering of Flexible Production Lines[END_REF]. This approach has been proposed to ensure continuous capability-based engineering while minimizing production line downtime.

Semantic Interoperability in manufacturing

In this article, we expand our previous work by focusing on semantic interoperability of AAS. Semantic interoperability has long been recongnized as a major concern in the field of industrial digital twin systems. This subsection introduces this problem, and then leads to two related works that will be reused in our solution.

The Digital Twin Consortium published a whitepaper [START_REF] Migliori | Digital Twin System Interoperability Framework. Digital twin consortium whitepaper[END_REF] on the digital twin system interoperability framework. It introduces seven interoperability concepts that frame the design considerations necessary to make systems interoperate at scale. The article [START_REF] Demeer | Semantics for I4.0 Smart Manufacturing[END_REF] introduces the definition of semantic interoperability in the context of Industry 4.0 and Smart Manufacturing as follows: "Semantic interoperability enables systems to interpret meaning from structured data in a contextual manner. Semantic interoperability relies on ontology-based "contextual metadata" supplementing "data" to form "information" exchanged among connected systems. This ontology must account for metadata exchanged between disparate systems and environments. It represents the highest level of interoperability between connected systems -beyond syntactic interoperability".

[31] provides an overview of various articles and applications of data analysis, expert knowledge, and knowledge-based system drivers in production systems. On top of that, it describes how to use "data analysis" in a production system to create knowledgebased digital twin systems. [START_REF] Meierhofer | Digital Twin-Enabled Decision Support Services in Industrial Ecosystems[END_REF] articulates new concepts of value creation through the use of digital twin decision support services in industrial service ecosystems, and discusses mixed semantic modeling and model-based systems engineering for their implementation. A customizable conversion system for converting ABB Ability™ digital twins to Asset Administration Shell format is presented in [START_REF] Platenius-Mohr | Interoperable Digital Twins in IIoT Systems by Transformation of Information Models: A Case Study with Asset Administration Shell[END_REF], showing a real-world example for interoperability in industrial environments.

Ontologies bring to systems engineers and researchers the the high value of semantic interoperability and makes them aware of the importance of combining ontology vocabularies with system model design. [START_REF] Ernadote | Ontology-Based Pattern for System Engineering[END_REF] introduced an approach of a dynamic mapping of the ontology vocabularies into system models stereotyped by metaclasses defined in a profile. This approach enriches the semantic meanings of system modeling without affecting the definition of existing metamodels.

According to the above work and many other articles not mentioned, the use of ontologies to solve semantic interoperability appears as a common solution in the field. Our idea is to combine ontology-based knowledge representation with the AAS digital twins to achieve the semantic interoperability between digital twins. To achieve this, we rely on two former works described next: MaRCO [START_REF] Järvenpää | Capability matchmaking software for rapid production system design and reconfiguration planning[END_REF] provides capability-related ontology for manufacturing systems, and the OML Adapter [START_REF] Elaasar | Definition of Modeling vs. Programming Languages[END_REF] provides a transformation basis from OWL ontologies to OML and UML models.

Manufacuturing resource capability ontology (MaRCO).

The OWL-based Manufacturing Resource Capability Ontology (MaRCO) [START_REF] Järvenpää | Capability matchmaking software for rapid production system design and reconfiguration planning[END_REF] is used to describe the capabilities of manufacturing resources.

Ontologies are widely accepted for knowledge representation in specific domains. The expressive power of MaRCO supports the representation of simple resources but also their combination into collaborative resources, hence a good candidate for capability-based engineering. In addition, MaRCO is also provided as a complete capability matchmaking web service [START_REF] Mital | Web-based solution to automate capability matchmaking for rapid system design and reconfiguration[END_REF]. While its implementation language OWL has good knowledge representation features, pure OWL is limited when it comes to querying. To effectively support semantic-based resource selection, SPARQL (SPARQL Protocol and RDF Query Language) [START_REF] Prud | SPARQL Query Language for RDF[END_REF] has been chosen to implement the capability matchmaking rules. More precisely, SPARQL allows to write queries that combines the capability parameters of several resources to select sets of compatible and covering resources for given requirements. Finally, the use of SPIN (SPARQL I nference N otation) allows to represent SPARQL queries as knowledge within the ontology and then the SPIN API allows to make inferences and generate new individuals within the ontology.

OML Adapter.

The OML (Ontological Modelling Language) [START_REF] Elaasar | Definition of Modeling vs. Programming Languages[END_REF] is defined by the openCAESAR1 platform, which is also an ontology description language inspired by OWL and SWRL (Semantic Web Rule Language). OML is a modeling language designed for ontologies, which aims to close the gap between modeling and programming languages. OML is implemented using the Eclipse Modeling Framework (EMF), which gives it a Java API and integration with useful tools such as OML Adapter provided by the openCAESAR project. However, the OML adapter only provides round-trip transformation between OML and UML. More details about this conversion is described in the following section, as we use OML in our platform.

MODEL BASED CAPABILITY CHECKING

Figure 2 shows the whole process of the capability-based engineering approach [START_REF]Describing capabilities of Industrie 4.0 components[END_REF]. In a model-based Digital Twin production system, each resource (or asset) has its own representative AAS provided by different stakeholders (product and process designers, equipment supplier, integrator, etc.). The AAS contains the technical descriptions (nameplate), the simulation models, the operational data and other business information. The resource pool of a plant contains all the resources as well as the system layout design.

During the design phase, the system architect specifies the products and their manufacturing processes. The rounded rectangles in the figure represent different levels in the automation pyramid.

From top to bottom, they are representing the manufacturing operation management (level3), the monitoring and automated control (level2), and the manipulation of production processes (level1). In the latter level, the "Asset Administration Shells" (or digital twins) are considered as models@runtime since they are continuously updated to represent the assets real time status. Capability checking takes the PPR capability models as input and computes the possible resource combinations that may achieve the production. During the feasibility checking step, these combinations and environmental contexts will be simulated to validate the selected resources combination against their current constraints. Then the next step automatically supervises the skill execution of the selected models by the reconfiguration plan. The supervisor deploys the selected resource pool models according to the system reconfiguration plan obtained through the capability-based reconfiguration phase. During the whole process execution, the supervisor monitors the status of all asset models and will re-plan the production process in a timely manner when abnormalities are detected. The overall goal of our work is to gradually implement all of these steps, shown in Figure 2, in the model based engineering toolset "Papyrus for Manufacturing". The rest of this section presents in details our capability checking module. A concrete example to describe this capability checking process, is how to select a device that can provide transporting capability from the alternative resources when an object needs to be moved in the production process. In order to simplify the presentation, we consider only design time models as input. Since runtime models will contain similar meta data to the ones of the design time models, the capability checking module will have a similar behavior when interacting with the two types of models.

Capability Checking Design Flow

As shown in Figure 3, the capability checking module interacts with the AAS models to set/get their semantics and then to trigger the capability matchmaking reasoner in order to compute the best is triggered to match the capabilities required by the process with the capabilities provided by the resources. (4) Finally the capability checking module returns the matchmaking result to the designer. Since there was an expert's commitment on ontology concepts, the ontology will not frequently change over time. Consequently, the first stage (OWL to UML profile conversion) only needs to be performed once, as long as the ontology concepts do not changed. The second, third and fourth stages will be repeated, whenever a PPR model update occurs. All the actions represented by the arrows shown in Figure 3 are automated, system architects only need to define and select the required production models.

Modeling Languages Mapping

Our platform relies on the alignment of models (in UML) and ontologies (in MaRCO). This alignment requires a comprehensive definition of mappings between concepts in the different languages used to express our models and ontologies.

General concepts mapping.

In our approach, AAS models are UML models extended with an AAS-UML profile. To achieve the transformations between AAS and OWL models (stage 1 and 2 in Figure 3), we have used the OML adapter for Papyrus . We chose to use the OML adapter because it allows automatic conversion of the ontology concepts into a UML Profile, and its extraction from UML back to OWL. OML is a language to describe ontologies, where adapters for transformations from OML to UML, and UML to OWL are provided. In this context OML can be seen as an intermediate language to enable the conversions.

To pave the way to models alignment, we defined a mapping between OWL, OML, UML general concepts and the AAS-UML profile concepts (Table 1). As the output of the OML Adapter is a UML profile, we decided to add the OML and UML profile column to this table. The classes in OWL are represented as aspects and concepts in OML. The aspect refers to the abstract class, while the concept refers to the class. They are all transformed to stereotypes of a UML profile. An individual in OWL refers to an instance in OML and instance specification in UML, this represents a UML element to which a stereotype is applied to. The OWL object properties are represented in OML as relation entities and refer to associations or properties in UML. The OWL data properties refer to properties both in OML and UML. The object properties and data properties are transformed to the attributes of a stereotype.

AAS & MaRCO vocabularies mapping.

In order to use OML for our MaRCO-specific semantics, the mappings between general concepts are not enough. Hence, we defined transformation rules between the vocabularies of MaRCO and AAS in Figure 4. MaRCO concepts are on the left, while AAS concepts are in the middle. As presented in Table 1, the OWL classes are transformed to stereotypes in a UML Profile. A subset of MaRCO concepts have been chosen, such as Resource, ProductElement and Activity, which are transformed to stereotypes that can be applied to the AAS models of resources, products and processes. The Capabilities or ProcessTaxon-omyDescriptions stereotypes should be applied to AAS capabilities. Then the object properties requiresProcessCapability and hasCapability refer to the attributes of these stereotypes. And the value type of these attributes should be Capabilities or ProcessTaxono-myDescriptions. Each stereotype may contain two different types of attributes, one is the scalar properties such as weight or depth which refers to the data property parameter, the other is object properties that points to other stereotyped elements in the model package. By applying stereotype to an AAS model, the semanticId of the AAS model will be associated with the vocabulary IRI in MaRCO ontology. Once we have annotated the AAS model content with the stereotypes coming from MaRCO ontology, these stereotype applicable elements will be regenerated back to OWL individuals. So an AAS class is transformed to an OWL individual, and its type is either a Resource, a ProductElement or an Activity. It may contain object properties hasCapability or requiresProcessCapability with the value of individual capabilities as defined in the AAS model.

IMPLEMENTATION

The capability checking implementation involves three different modules as shown in Figure 5: (1) the OML Adapter for the ontology concept conversions between different file natures, (2) the capability matchmaker for inferences, and (3) user interface module for launching capability checking requests and displaying the reasoning results in Papyrus4Manufacturing [START_REF]Papyrus for Manufacturing Model Driven Workbench[END_REF]. Both modules, OML Adapter and capability matchmaker, take MaRCO ontology as input. The final output of the entire capability checking process is the computed list of combinations of resources that can fulfill Administration Shell

P1_Process1

Administration Shell

Resource1

Administration Shell

Resource2

Administration Shell

Resource5

Administration Shell

Product2

Administration Shell

Resource3

Administration Shell

Resource4

Administration Shell

Product1

Administration Shell

P1_Process2

Administration Shell

P2_Process1

Resource1

Administration Shell

Resource3

Administration Shell

P1_Process1

Capability Checking Result (3)

Figure 5: Technical architecture of capability checking 6 the capabilities required by the process to achieve the product production. The first three steps correspond to the first stage introduced in Section 3.1, which enriches AAS models with semantic annotations in the manufacturing capability domain. Since there was experts' commitment on the ontology, once generated, the UML profile generated from the ontology can be reused for all the actions afterwards. The fourth step refers to the second stage in the capability checking architecture (Figure 3), that generates the MaRCO concept instances from the AAS system model for further inferences.

OML Adapter Module

Here we will briefly introduce some concepts from the MaRCO ontology involved in this capability matchmaking process. The MaRCO ontology is composed of several distributed ontologies [START_REF] Järvenpää | Capability matchmaking software for rapid production system design and reconfiguration planning[END_REF]. By using the OML Adapter, a subset of MaRCO vocabularies was transformed into a UML profile that can be applied to AAS models as stereotypes, including different sub-classes of the concepts appearing in 3.2.2. The capabilities are separated into simple capabilities like Moving and combined capabilities like PickAndPlace, and these capabilities have parameters to describe their characteristics. The combined capabilities are compositions of simple or other combined capabilities, these information are defined in the Capability Model ontology. The resource model stereotypes define different resource types, including atomic resources (Device-Blueprint and IndividualDevice) and different resource combination types including DeviceCombination, and the combination at the FactoryUnit level. The concepts of Product,Process and a selection of ProcessTaxonomyDescription have been included in the UML profile as well.

Capability Matchmaker Module

The capability matchmaker is responsible for resource combination and combined capability computation, as well as the matchmaking reasoner which aligns the corresponding capabilities between production processes and resources. The implementation of this module reuses as much as possible other existing open-source projects. First of all, the MaRCO ontology and the associated SPARQL queries and SPIN rules come from the open-source MaRCO ontology [START_REF] Järvenpää | Utilizing SPIN Rules to Infer the Parameters for Combined Capabilities of Aggregated Manufacturing Resources[END_REF]. The functionalities of ontology read and write is provided by Jena semantic web framework2 and the SPARQL queries can be executed by Openllet reasoner 3 . As for the reasoning process of SPIN rules, it is realized by SpinAPI (provided by TopBraid4), which aims at encouraging the adoption of SPIN in the domain.

The pre-defined SPARQL queries update the capabilities for the individual devices and compute combined capabilities for the device combinations. The SPIN rules integrated in the Parameter Rule ontology will be executed in order to infer these novel capabilities' parameters. The matchmaking reasoner deals with the matching between capabilities required by the process and capabilities provided by the newly updated resource system. During this process, not only are the capabilities matched at the name level has capability match, but also the adaptations of the parameters canBeImplement-edWith are computed. These reasoned relationships and inferred elements will be saved in a separate file.

User Interface Module

This user interface exists in the form of an Eclipse plug-in that ties the above two modules together and establishes a relationship with the model in the modeling environment. The usage scenario we envisage is shown in Figure 7. First, the user defines the production process in Papyrus4Manufacturing [START_REF]Papyrus for Manufacturing Model Driven Workbench[END_REF], and triggers the capability checking function through a right-click menu "Capability Checking", from which he/she can select the product for which the capability checking must be performed. This command sequentially invokes the OML Adapter, the capability matchmaker and the results retrieving module. After a series of processing, the results are returned to Papyrus4Manufacturing by a popup window, providing the user with a list of devices to choose from. Finally, the user selects a set of equipment combinations and then performs the feasibility checking (which is out of the scope of this paper, as said earlier).

The result retrieval aims to integrate and extract the results of ontology inferences, return them to the user, and save them for later use. The result of capability matchmaking shows the De-viceBlueprints that can realize the capability, however in our actual application, the production process is actually realized by the device instances (IndividualDevices). In this step, we need to find qualified device instances and device combinations through SPARQL queries, so we still need the help of ontology and SPARQL query processing tools previously mentioned. The results will be sorted out via a popup window for the user to choose from. The selected information will be included as input in feasibility checking which the second step of the capability-based engineering.

It is worth mentioning that, if we look back to the capabilitybased engineering approach in Figure 2, the capability checking in this article only involves the period from the design process stage to the period before it is put into production. It does not include the re-capability checking triggered by the monitoring process after the production line is put into production. This capability checking procedure is only the first part of our vision to implement a capabilitybased engineering digital twin system. Papyrus4Manufacturing provides an AAS (Asset Administration Shell) modeling environment for manufacturing where digital twins (AASs) of assets can be modeled and automatically deployed to BaSys [START_REF]BaSyx: the open source Industry 4.0 middleware[END_REF]. The AASs communicate with physical devices via the OPC UA protocol. The robotic cell, considered in this paper, has already an OPC UA communication layer [START_REF] Nguyen | Early lessons learned from the development of a local OPC UA-based robotic testbed for research[END_REF] which connects the devices with the AASs' executable BaSyx code. The resource combination options obtained in this step will be simulated and verified during the feasibility checking process. Finally, the selected resources should be deployed automatically.

ROBOTIC CELL USE CASE

A robotic cell (LocalSEA) use case is now presented to demonstrate the entire process of capability checking. The AAS modeling of this example has already been described in [START_REF] Huang | An AAS Modeling Tool for Capability-Based Engineering of Flexible Production Lines[END_REF]. In this senario, a new product has been designed and the system architect want to configure the production line with the help of Papyrus4Manufacturing toolset. The production resources consist of two Niryo Neds, one conveyor belt, one TurtleBot3, two human workers, two storage units, and an assembly workstation. Niryo Ned is a robotic arm that includes a six-axis arm to realize PickAndPlace, a camera to realize

LocatingVisual. The conveyor belt owns the capability Transporting. The TurtleBot3 Waffle is a mobile robot that can achieve Transporting capability as well. Ideally, a human could replace any type of device, with abilities including PickAndPlaceFlexible, Transporting, and Hammering.

Next, The AAS model of the product and its production process needs to be defined, including the information of the product and the manufacturing capabilities required by the process. The product defined in our robotic cell example is the assembly of two objects of different colors and shapes. Therefore, the corresponding production process (Figure 8) is as follows:

• Detect and grasp the two types of required pieces from two different storage unit in parallel and place them on the transporting device. During the design phase, the MaRCO Ontology profile is applied to the LocalSEA models, as presented in 3.2.2. Also, the AASs have applied stereotypes corresponding to the different types of Resources existing in MaRCO. Figure 9 is an example of different types of devices existing in LocalSEA and their attributes. The stereotype DeviceBlueprint is applied to "AASHumanOperator_type" contains the information about a human operator in LocalSEA. The capabilities mentioned above are attached to AAS capabilities owned by the "AASHumanOperator_type" as stereotypes. Alice, an instance of human operator type, is defined as an IndividualDevice, so the attribute hasDeviceBlueprint is set to "AASHumanOperator_type". And the last model shown in Figure 9 "AASNiryoNed1" is a Device-Combination.

Once the user selects the product to produce, the rest of capability checking process are automated by a right-click command. Firstly, the OML Adapter is automatically called in order to transform the AAS models into MaRCO instances. The resulting AASs.owl file The capability checking results of the "AASProduct1" are grouped in a pop-up window shown in Figure 10. According to these results, PickAndPlaceFlexible can be implemented by NiryoNeds, Transporting can be done by TurtleBot or conveyor belt, and human operators can realize all the capabilities required in this process, which just matches our previous definition of LocalSEA devices. Through this result list, the user can select the production line combination to be further checked in the feasibility checking module.

CONCLUSIONS AND FUTURE WORKS

The work described in this paper takes part in a larger project aiming at designing and implementing an automated Industry 4.0 flexible plant supervision and control system based on MDE concepts within the "Papyrus for Manufacturing" toolset. Within such a system, capability checking is the phase that, given a client order for some produce, select plant resources able to fulfill the needs This new algorithm has been fully implemented within the recently released "Papyrus for Manufacturing" platform, using a large set of tools from I4.0 standards (RAMI 4.0, Asset Administration Shells, etc.) to ontologies (MaRCO) and ontological query languages (SPARQL and SPIN), orchestrated through a set of models, UML profiles and model transformations (OML adapter), targeted to flexible production line management, that we have either developed or integrated in our platform. MDE concepts and tools have been used to integrate ontological tools in order to provide semantics and semantic interoperability among I4.0 concepts and assets, hence bringing an effective implementation of a semantic-based capability checking to flexible plant management.

The paper thoroughly explains the entire capability checking design flow that we have implemented. This flow uses model alignments to keep synchronized MDE-based models and an ontological representation of produces, production plans and plant resources in order to select the plant resources able to fulfill the production plan requirements through semantic-based ontological queries, and then get the results back into the MDE-based representation for further processing. We have demonstrated the effectiveness of this capability checking algorithm in Papyrus4Manufacturing on a robotic cell use case (LocalSEA).

The next steps and future work that we have undertaken for the implementation of our flexible plant management system concerns (1) the feasibility checking phase and then (2) the plant reconfiguration prior to (3) the supervision and control of the production plan execution. The feasibility checking extends the capability checking by taking into account the current contextual constraints and the actual time-dependent aspects of plan execution to generate feasible plans for production. Feasibility checking will leverage the previously developed knowledge-based representation, but it will also need a time-related reasoning capability that may go as far as simulating the plan to ensure its actual feasibility. From the feasible plan and its selected resources, the system will then have to reconfigure the plant to prepare for the production per se, which will also need to be supervised to react to failures or abnormal events. When such events happen, the system may have to stop the production, revise the plan, adjust the plant configuration and restart the production. To implement this supervisory control phase as well as the simulation part of feasibility checking, our system will require a comprehensive usage of models@runtime and digital twins representation of the plant to enable effective plan execution and runtime adaptations.

Figure 1 :

 1 Figure 1: AAS Structure

MODELS ' 22 ,

 22 October 23-28, 2022, Montreal, Canada Huang, et al.

Figure 2 :

 2 Figure 2: Capability-based reconfiguration approach

 of Asset Administration Shells Through an Ontology-based Modeling Method MODELS '22, October 23-28, 2022, Montreal, Canada

Figure 3 :

 3 Figure 3: Capability checking architecture

Figure 4 :

 4 Figure 4: AAS Marco vocabularies mapping

Figure 6

 6 Figure 6 illustrates the four steps applying the OML adapter: (1) Choose a subset of OWL-based MaRCO ontology concepts and define corresponding OML Vocabularies. (2) Convert the OML vocabularies to a UML profile. (3) Apply the generated MaRCO UML profile to AAS models. (4) Regenerate the specified AAS models to MaRCO compliant instances in an OWL file.

Figure 6 :

 6 Figure 6: OML Adapter workflow

MODELS ' 22 ,

 22 October 23-28, 2022, Montreal, Canada Huang, et al.

Figure 7 :

 7 Figure 7: User interaction scenario

•

 Transport the required parts to the assembly area • Complete the screw action It is represented as a BPMN [27] process diagram. The capabilities required by this manufacturing process are: PickAndPlaceFlexibles, Transporting and Hammering.

Figure 8 :

 8 Figure 8: LocalSEA BPMN production process

 of Asset Administration Shells Through an Ontology-based Modeling Method MODELS '22, October 23-28, 2022, Montreal, Canada

Figure 9 :

 9 Figure 9: Different types of LocalSEA Resources

Figure 10 :

 10 Figure 10: Capability checking result window

Figure 11 :

 11 Figure 11: An AAS2MaRCO generation of a required capability

Table 1 :

 1 General Concept Mapping

	OWL	OML	UML Metaclass UML Profile
	Class	Aspect/	Abstract Class/ Stereotype
		Concept Class	
	Individual	Instance Instance	Stereotype
			specification	applicable
				element
	Object Property Relation Association/	Stereotype
		Entity	Property	attribute
	Data Property	Property Property	Stereotype
				attribute
	Cardinality,	exactly	Multiplicity	Multiplicity
	MinCardinality, min		
	MaxCardinality max		

http://www.opencaesar.io/oml/

https://jena.apache.org/

https://github.com/Galigator/openllet

https://www.topbraid.org/spin/api/

ACKNOWLEDGMENTS REFERENCES