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A Survey and Benchmark of Automatic
Surface Reconstruction from Point Clouds

Raphael Sulzer, Loic Landrieu, Renaud Marlet, and Bruno Vallet

Abstract—We survey and benchmark traditional and novel learning-based algorithms that address the problem of surface
reconstruction from point clouds. Surface reconstruction from point clouds is particularly challenging when applied to real-world
acquisitions, due to noise, outliers, non-uniform sampling and missing data. Traditionally, different handcrafted priors of the input points
or the output surface have been proposed to make the problem more tractable. However, hyperparameter tuning for adjusting priors to
different acquisition defects can be a tedious task. To this end, the deep learning community has recently addressed the surface
reconstruction problem. In contrast to traditional approaches, deep surface reconstruction methods can learn priors directly from a
training set of point clouds and corresponding true surfaces. In our survey, we detail how different handcrafted and learned priors affect
the robustness of methods to defect-laden input and their capability to generate geometric and topologically accurate reconstructions.
In our benchmark, we evaluate the reconstructions of several traditional and learning-based methods on the same grounds. We show
that learning-based methods can generalize to unseen shape categories, but their training and test sets must share the same point
cloud characteristics. We also provide the code and data to compete in our benchmark and to further stimulate the development of
learning-based surface reconstruction: https://github.com/raphaelsulzer/dsr-benchmark.

Index Terms—surface reconstruction, point clouds, deep learning, mesh generation, survey, benchmark

✦

1 INTRODUCTION

MODERN three-dimensional (3D) acquisition technol-
ogy, such as range scanning or multi-view stereo

(MVS) brought the ability to record the world in the form
of 3D point clouds. However, point clouds are usually not
sufficient to model complex physical processes such as fluid
dynamics. Instead, a variety of applications in science and
engineering require a representation of objects or scenes
in the form of a continuous surface. Therefore, surface
reconstruction from point clouds is a key step between
acquisition and analysis of surface models and is a long-
standing problem in digital geometry processing. In this
paper, we survey and benchmark several traditional and
learning-based methods that address the problem of surface
reconstruction from point clouds.

If no prior information about the sought surface is
known, surface reconstruction from point clouds is an ill-
posed problem, as there are an infinite number of surfaces
with different geometry and topology that can pass through,
or near, the point samples. Furthermore, acquisition defects
in the point cloud, such as non-uniform sampling, noise,
outliers or missing data complicate the reconstruction of
a geometrically and topologically accurate surface [1]. See
Figure 1 for an illustration. Traditionally, surface reconstruc-
tion methods made the problem more tractable by using
handcrafted priors, imposed on the input, such as point
density, level of noise or outliers, and on the output, such
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as smoothness, topological properties or the shape category.
In contrast, recent methods introduced by the deep learning
community can learn point cloud defects or shape patterns
directly from training data and therefore promise to recon-
struct more accurate surfaces without the need for manual
parameter tuning. However, so far deep surface reconstruc-
tion (DSR) methods have mostly been applied on datasets
with a small number of different object categories. Such
datasets are not representative for real-world applications,
where algorithms have to reconstruct surfaces containing a
large variety of shapes unseen during training.

Furthermore, DSR methods are often applied on uni-
formly sampled point clouds. Likewise, such point clouds
are not representative for real-world acquisitions, as they
do not model non-uniformity or missing data stemming
e.g. from occlusions, or transparent and low texture areas.
The ability to reconstruct shapes, either from unseen shape
classes or from point clouds with unseen defects is rarely
studied in a systematic manner for DSR methods.

To this end, we propose several experiments to bench-
mark algorithms for surface reconstruction from point
clouds. We make use of a variety of publicly available shape
datasets with object surfaces of different complexities. The
objects are represented by a true surface S , which is a
boundary-free 2-manifold, i.e. each point on the surface has
a neighborhood that is homeomorphic to an open subset
of the Euclidean plane. We synthetically scan the objects to
produce point clouds with real characteristics. Having ac-
cess to the true surfaces allows us to measure the geometric
and topological reconstruction quality of the benchmarked
methods. We also verify our findings on real-world point
clouds.

We compare novel learning-based algorithms to tradi-
tional test-of-time methods to specifically study the influ-
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ence of learned priors incorporated into the surface recon-
struction process. We thereby pay special attention to the
generalization capability of methods to unseen domains.
Our main contributions are as follows:

• We review methods for surface reconstruction from
point clouds from over three decades up to recent
learning-based methods. We contrast popular test-of-
time with novel DSR methods.

• We benchmark traditional and learning-based methods
on the same ground across several experiments, using
openly available shape datasets and point clouds gen-
erated with synthetic and real scanning.

2 RELATED WORK

2.1 Surveys
There exists only few works that survey the broad field
of surface reconstruction from point clouds [1], [2], [3],
[4], most of them predating the advance of learning-based
surface reconstruction [1], [2], [4]. Surface reconstruction
methods are often grouped into interpolating or approx-
imating methods [5]. Interpolating methods “connect” all
points of the input point cloud, or a subset thereof, usually
by linearly interpolating between pairs of points. Approx-
imating methods often define one or several smooth func-
tions approximating the point cloud globally or locally. See
Figure 2 for an illustration. Berger et al. [1] and Cazals &
Giesen [2] provide detailed reviews for approximating and
interpolating surface reconstruction methods, respectively.

To the best of our knowledge, only one survey includes
learning-based methods [3]. However, this survey predates
important developments for learning-based methods, such
as the incorporation of local information [6], [7], [8], [9],
[10], [11], [12]. In this work, we review both interpolat-
ing and approximating methods and focus on novel ideas
in learning-based surface reconstruction. While many re-
construction methods can be distinguished by the prior
assumptions they impose [1], we argue that a variety of
successful methods combine different priors. This makes
grouping by priors difficult. We thus organize methods into
two groups: surface-based and volume-based approaches.
This breakdown closely relates to the two main classes of
mathematical representations of a surface: parametric and
implicit.

2.2 Benchmarks
To date, benchmarks for surface reconstruction from point
clouds are rare. Many methods use custom datasets to
evaluate their approach, usually generated by uniformly
sampling point clouds from ground truth shapes of exist-
ing shape collections [6], [7], [8], [11], [12], [13]. However,
the characteristics of the sampled point clouds often differ
across publications, which hampers the ability to fairly
compare the results of different works. Furthermore, the
point clouds often lack common defects of real acquisitions,
such as missing data or outliers. One notable exception is
the benchmark of Berger et al. [14]. The authors develop
a synthetic range scanning procedure to produce scans
with realistic artifacts, such as noise, non-uniformity and
misaligned scans and create point clouds from shapes with

non-trivial topology and details of various feature sizes.
While providing interesting results, the benchmark predates
learning-based surface reconstruction and only considers
traditional approximating methods. In the benchmarks pro-
posed in this paper, we reuse their synthetic range scanning
procedure and their five test shapes, as they provide realistic
and challenging input for both learning-based and tradi-
tional algorithms. We also implement our own synthetic
scanning procedure for MVS-like point clouds. We use the
synthetic scanning to scan existing large shape datasets to
create training datasets with true surfaces and point clouds
with realistic characteristics.

A problem related to surface reconstruction is the gen-
eration of point clouds from 2D information such as over-
lapping images. There exists a variety of benchmarks using
data captured in a laboratory environment [15], [16] or in
the wild [17], [18], [19]. These benchmarks often use a low
quality image acquisitions as reconstruction input. Simulta-
neously, a higher quality acquisition, e.g. from LiDAR scans,
serves as reference.

One problem with this approach is that, even for high
quality acquisition techniques, it is difficult to produce
complete ground truth point clouds. This issue is sometimes
addressed by decreasing the ground truth domain to specific
evaluation areas, in which reliable information is available
either from recorded points or sightlines between points
and sensors [16], [18]. However, in contrast to true surfaces,
reference point clouds, do not allow to calculate topologic
metrics such as the number of components or differen-
tial metrics such as surface normals. Furthermore, most
learning-based methods require closed reference surfaces
instead of reference point clouds for training.

3 SURFACE DEFINITION, REPRESENTATIONS,
PROPERTIES AND RECONSTRUCTION

In this section, we first provide a definition of a surface and
its mathematical and digital representations. We then dis-
cuss important surface properties. Finally, we establish the
connection between mathematical surface representations,
and the grouping of surface reconstruction algorithms used
in our survey.

3.1 Definition
A surface can be defined as an orientable, continuous 2-
manifold in R3, with or without boundaries [5], [20], [21].
These properties are important for surface visualisation
and processing, and we will discuss them further down.
Mathematically, there are two main classes of surface repre-
sentations: parametric and implicit.

3.2 Representations
Parametric surfaces are defined by a function f : Ω 7→ S
that maps a parameter domain Ω ∈ R2 to the surface
S = f(Ω) ∈ R3. However, for complex surfaces it is not
feasible to find a single function that can parameterise S .
Therefore, the parameter domain Ω is usually split into sub-
regions for which an individual function is defined [5]. The
most common way is to segment Ω into triangles, which
are planar by definition. A set of triangles approximating S
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(a) Unknown Topology (b) Unknown Geometry (c) Acquisition Defects

Figure 1: Difficulties in surface reconstruction from point clouds: In each plot, we show the real surface , point
samples , and possible reconstructions . The correct topology and geometry of the real surface are not known from
the point samples (a,b). The point samples may also include acquisition defects such as noise (c). The goal of any surface
reconstruction algorithm is finding a good approximation of the real surface, in terms of its geometry and topology.
Learning-based surface reconstruction can learn shape patterns or sampling errors such as the one exemplified here, and
use the learned knowledge during reconstruction for a better approximation.

(a) Open Interpolating (b) Open Interpolating (c) Closed Interpolating (d) Closed Interpolating

(e) Open Approximating (f) Open Approximating (g) Closed Approximating (h) Closed Approximating

Figure 2: Approximating and interpolating surfaces from point clouds: A surface generated from point samples can either
interpolate (top row) or approximate (bottom row) the samples. Theoretically, there exist an infinite number of surfaces
with different geometry and topology that can pass through, or near, the samples. We show eight different surfaces
reconstructed from the same point cloud in (a) - (h). The point cloud can be seen as a sampling of a part of a real
surface. All reconstructed surfaces are watertight, as they are either closed and boundary-free, or their only boundary is
the intersection with the domain boundary . The surface in (d) is non-manifold in the center-vertex. All other surfaces are
manifold. Except for (h), all surfaces are comprised of only one component. In contrast to the point cloud depicted here, in
our benchmark, we mainly consider point clouds sampled from closed surfaces.

can be efficiently stored and processed as a triangle surface
mesh M = (V, E ,F), with triangle facets F , edges E and
vertices V .

Implicit surfaces are defined by the level-set c of a scalar
valued function F : R3 7→ R:

Sc = {x ∈ R3 | F (x) = c}. (1)

The most common choice of the implicit function F is
either a signed distance or an occupancy function. A signed
distance function (SDF) gives the distance from a 3D point
x in space to the surface; with points in the interior signed a
negative value, and points on the exterior signed a positive
value. An indicator or occupancy function (OF) usually has
a value of 1 inside the surface and 0 outside. The c-level-
set of F then yields the surface S , where c = 0 in the case
of a signed distance function and c = 0.5 in the case of
an occupancy function. Similar to the parametric case, the
implicit function domain is often split into sub-regions, such

as voxels, octree-nodes or tetrahedra, and constant functions
are defined in each sub-region.

3.3 Properties

The reconstructed surface Sr should be close in terms of
geometry and topology to the real surface S from which
the point cloud P is sampled. To facilitate subsequent geo-
metric operations on Sr, such as sampling or deforming the
surface, a mesh reconstruction M is also desirable. Sr and
M, respectively, should have the following properties (see
Figure 2 for illustrations):

• Watertight: A geometric surface is closed if it is
boundary-free. A mesh M is closed—or boundary-
free—if no edge is incident to exactly one facet. How-
ever, a reconstructed surface of a real scene necessarily
has a border defined e.g. by the limit of the scan cov-
erage. One may still reconstruct a closed surface by in-
tersecting it with the boundary of the domain in which
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f or F is defined: e.g. the convex hull or bounding box
of P . However, this procedure may not be desirable,
as it can hinder simple geometric analysis such as the
calculation of surface area. Instead, we define a surface
as watertight if it is boundary free, except for a possible
intersection with the domain boundary.

• Manifold: We consider real and geometric surfaces to
be 2-manifolds, i.e. each point on the surface has a
neighborhood that is homeomorphic to an open subset
of the Euclidean plane. A mesh M is manifold if it is
edge- and vertex-manifold, and intersection-free.
– Edge-manifold: For each edge E , the set of facets F

sharing this edge form a topological (half-)disk. This
means that no edge can be incident to more than two
facets.

– Vertex-manifold: For each vertex V , the set of facets
sharing this vertex form a topological (half-)disk. This
means that facets with a common vertex form an
open or closed fan, i.e. there are no dangling facets.

• Intersection-free: M is intersection free if all pairs of
facets not sharing an edge or vertex do not intersect.

• Orientable: M is orientable if one can define a consis-
tent continuous orientation of each facet. This means
that the order of the vertices of all facets is either
clockwise or counter-clockwise and a common edge
of two adjacent facets has opposite orders on the two
sides.

The watertight property is useful for simulations such
as fluid dynamics. Manifoldness and orientability are often
required for mesh storing and processing, in particular be-
cause they are a prerequisite for the widely-used half-edge
data structure [22], [23]. Furthermore, intersection-free and
orientable surfaces lead to a well-defined notion of inside
and outside, which is important for mesh visualization and
a variety of geometric opertations.

3.4 Reconstruction

Surface reconstruction from point clouds is the process of
constructing a continuous surface of which discrete point
samples have been acquired. In our survey, we group
methods for surface reconstruction from point clouds into
two groups: surface- and volume-based. Surface-based re-
construction methods consists in finding (a set of) param-
eterised surfaces Sr that approximate the point cloud P ,
either in the form of triangles or larger two-dimensional
(2D) patches, or by deforming parameterised enclosing
envelops such as meshed spheres. The main challenge for
surface-based methods using a single function f is that the
topology of Ω has to be equivalent to the topology of S,
which is usually unknown. The main challenge for surface-
based methods with individual functions for sub-regions of
S, on the other hand, is to guarantee a consistent transition
between each region. Hence, these methods often struggle
to produce an intersection-free, manifold and watertight
surface.

Volume-based methods, on the other hand, segment a
subset of R3 into interior (inside) and exterior (outside)
subspaces. The surface is implicitly defined as the interface
between the two subspaces. Most, but not all algorithms in

this class formulate the problem as finding an implicit func-
tion. Surfaces from volume-based methods are guaranteed
to be watertight and intersection-free, but not necessarily
manifold [2].

While surface-based methods can directly yield a mesh,
e.g. by triangulating Ω, volume-based methods usually re-
quire an additional processing step. If the implicit field is
discretized with tetrahedra, one can simply use a process
which is sometimes called triangle-from-tetrahedra (TFT).
TFT builds a triangle mesh from all triangles that are ad-
jacent to one inside- and one outside-tetrahedra. Another
option is the algorithm of Boissonnat and Oudot [24] that
iteratively samples F along lines from inside to outside to
find points that lie on S and builds a triangle mesh from
these points. One of the most popular methods for mesh
extraction from an implicit field is Marching Cubes [25],
which (i) discretizes the implicit function into voxels, (ii)
constructs triangles inside each voxel that have at least one
inside and one outside vertex and (iii) extracts a triangula-
tion as the union of all triangles. Recently, mesh extraction
has also been addressed by the deep learning community.
Neural meshing [26] specifically addresses the case where
an implicit function is represented by a neural network, and
aims to extract meshes with fewer triangles compared to
Marching Cubes from such a function.

In both, surface- and volume-based groups, there are
methods that come with theoretical guarantees about the
topology and geometry of the reconstruction in the absence
of noise and when the point sampling is dense enough [2].
However, in this paper, we are mostly interested in the
robustness of methods to defect-laden input point clouds
from 3D scanning.

4 SURVEY

In this section, we review important surface- and volume-
based surface reconstruction methods and discuss their
robustness against different point cloud defects. We also
show that learning-based approaches are often related to
more traditional methods.

4.1 Surface-based reconstruction

4.1.1 Interpolating approaches
Advancing-front techniques.: Most traditional

surface-based approaches linearly interpolate between the
point samples P , or a subset thereof. This can be done
efficiently by triangulating triplets of points which respect
the empty ball property i.e. no other point lies within their
circumsphere. Triangulating all triplets of P that have this
property leads to the 3D Delaunay tetrahedralisation (3DT)
of P . The Ball Pivoting algorithm [27] is a greedy approach
to find local triplets of points that form a triangle which
is part of the surface. The first step is to (i) define a ball
with constant radius, related to the density of P and to
(ii) select a seed triplet of points. The ball must touch all
three points and have no other point in its interior. The
points then form the first surface triangle. Then, (iii) the
ball pivots around an edge of the triangle until it touches
a new point, forming a new surface triangle. Once all
possible edges have been processed the algorithm starts
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Table 1: Overview of surface- and volume-based surface
reconstruction methods: We show an overview of surface-
and volume-based surface reconstruction methods, both
non-learning and learning-based, together with their input
requirements (normals, sensor pose) and output type (triangle
mesh or implicit field). Attributes denoted in brackets are
optional. Methods with a local receptive field divide the
point cloud into smaller sub-regions and define individual
functions or surface patches for each sub-region. Methods
with a global receptive field consider the entire point cloud at
once. Methods denoted with both combine local and global
receptive fields. We test methods in bold in our benchmark.

Method lea
rn

in
g

norm
als

se
nso

r pose

rec
ep

tiv
e field

outp
ut

Surface-based

BPA [27] local triangle mesh
Sharf et al. [28] both triangle mesh
AtlasNet [29] ✓ local triangle mesh
IER [30] ✓ both triangle mesh
PointTriNet [31] ✓ local triangle mesh
DSE [11] ✓ local triangle mesh
P2M [32] both triangle mesh

Volume-based

SPSR [33] ✓ both implicit field
Labatut et al. [34] ✓ global triangle mesh
ONet [35] ✓ global implicit field
DeepSDF [13] ✓ global implicit field
IM-Net [36] ✓ global implicit field
ConvONet [6] ✓ both implicit field
IGR [37] (✓) (✓) global implicit field
LIG [8] ✓ ✓ local implicit field
DGNN [10] ✓ ✓ both triangle mesh
SAP [38] ✓ both implicit field
P2S [9] ✓ both implicit field
SAP [38] (✓) both implicit field
POCO [12] ✓ (✓) local implicit field

with a (iv) new seed triangle until all points of P have
been considered. The algorithm has later been refined to
be more robust to non-uniform sampling [39], [40]. The
Ball Pivoting algorithm and its related variations are often
called advancing-front techniques. Their main drawback is
that they are not robust to point cloud defects such as noise
or point clouds with large missing parts.

Selection-based: Similar to advancing-front tech-
niques, the idea to iteratively build the triangulation
from initial candidate triangles has also been explored in
learning-based methods [30], [31]. PointTriNet [31] (i) starts
with an initial set of seed triangles from a k-nearest neighbor
graph of P . Then, (ii) a first network takes in neighboring
points and triangles of each seed triangle, and estimates its
probability to be part of the surface. (iii) Triangles with
high probability are selected to be part of the final sur-
face and (iv) a second network proposes new candidate
triangles constructed from two points of already selected
surface triangles and neighboring points. The proposed new
candidates are, again, processed by the first network and the
algorithm continues for n user-defined iterations. The loss
function is based on Chamfer distance between input points
and the reconstructed surface, which allows the method to

be trained without the need for ground truth meshes. IER-
meshing [30] also (i) starts with a large set of seed triangles
from a k-nearest neighbor graph. It then defines a so-called
intrinsic-extrinsic ratio (IER), as the quotient of geodesic
and Euclidean distance between points of a triangle. (ii)
This ratio is estimated by an multilayer perceptron (MLP)
from learned point features per triangle and supervised with
IER’s from a ground truth mesh. (iii) Only triangles with an
IER close to 1 (i.e. Euclidean distance ≈ geodesic distance)
are considered to be part of the surface and (iv) selected
based on handcrafted heuristics. Both aforementioned meth-
ods have shown to be robust against small amounts of
noise in the input point cloud. However, their reconstructed
surfaces are neither manifold nor watertight.

Tangent plane and other projection methods: An-
other class of surface-based interpolating approaches are
tangent plane methods. This class includes the algorithm
of Boissonnat [41], which is according to Cazals and Giesen
[2] probably the first algorithm to address the surface re-
construction problem. The basic idea is to (i) find a tan-
gent plane for each sample point, (ii) project the points
local neighborhood on the tangent plane, (iii) construct 2D
Delaunay triangulations of the projected points and (iv)
merge the local reconstructions. A shortcoming of such an
approach is that tangent planes are difficult to use in areas
with high curvature or thin structures [11]. To this end, the
idea of using local 2D Delaunay triangulations of projected
points has been refined in a recent learning-based approach
[11]. Instead of tangent planes, DSE-meshing [11] uses loga-
rithmic maps, local surface parametrizations around a point
p, based on geodesics emanating from p. This method (i)
classifies geodesic neighbors of each point in P from a set
of k-nearest neighbors. Then, (ii) an MLP approximates a
logarithmic map parametrization to gain a 2D embedding
of the geodesic neighbors. Lastly, (iii) neighboring logarith-
mic maps are mutually aligned and triangulated. This step
allows the method to reconstruct surfaces with fewer non-
manifold edges, compared to methods that process triangles
independently. However, the surface is still not watertight
and the method has not been tested for reconstruction from
noisy point clouds.

4.1.2 Patch-fitting
Patch-fitting methods are related to tangent plane ap-
proaches. Instead of interpolating the initial point set, a
new triangulation patch is formed. AtlasNet [29] is based
on this idea and was one of the first learning-based surface
reconstruction methods. Small 2D triangulated patches are
transformed to fit P based on transformations predicted by
an MLP. Similar to interpolating approaches, this method
cannot guarantee to fill all gaps between patches, which
results in a non-watertight and potentially self-intersecting
surface.

4.1.3 Surface deformation
One of the only classes of surface-based approaches that
can guarantee a watertight surface are deformation-based
methods. Sharf et al. [28] introduced a method that (i) iter-
atively expands an intial mesh contained within the input
point cloud along the face normal directions, and (ii) moves
the mesh vertices to fit the input point cloud using moving
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least squares. The method is shown to be robust against
missing data, but requires careful parameter tuning to be
robust against noise or outliers. Point2Mesh (P2M) [32] is
also based on the aforementioned idea, but avoids the need
for tuning parameters by hand. The method takes as input
a convex hull or a low resolution Poisson reconstruction
[33] of P , and shrink-wraps this initial surface to best fit
the point cloud. The process is guided by multiple local
convolutional neural networks (CNNs) that share weights.
The idea is that the weight sharing between the CNNs acts
as a prior that identifies symmetric features in the shape
while being able to ignore unsystematic, random defects in
the point cloud. One problem with this approach is that the
topology of the initial surface stays constant during recon-
struction. If the correct topology of the surface is not known,
it cannot be recovered. For example, if the sought surface
has holes, they cannot be reconstructed from a convex
hull initialisation. This poses a limitation for reconstructing
arbitrary objects in the wild.

4.2 Volume-based reconstruction

4.2.1 Interpolating approaches

Volume-based interpolating approaches commonly start by
constructing a 3DT of P . In R3 a Delaunay triangulation
(or tetrahedralization) subdivides the convex hull of P with
tetrahedra. The 3DT is created in such a way that no point
of P is contained in the circumspheres of any tetrahedra.
For well distributed point clouds it can be constructed
in O(n log n) [42]. The Delaunay triangulation does not
directly generate the surface, as it connects points in any
direction. However, if the sampling P of S is dense enough
a subcomplex of the 3DT is guaranteed to include a surface
Sr closely approximating the geometry and topology of S
[2]. One of the simplest ways to recover this subcomplex
from a 3DT is to (i) prune all tetrahedra with circumspheres
larger than a user specified constant radius α and then (ii)
keeping only the boundary triangles. This leads to a so-
called α-shape [43]. Similar to the Ball Pivoting algorithm
the radius of the ball (here α) depends on the point density.
For error free and dense samplings, alpha-shapes and some
other interpolation methods [2], [41], [44] provide provable
guarantees that the reconstructed surface is topologically
correct [2]. Another way to recover a surface from a 3DT
is inside-outside labelling [10], [10], [34], [45], [46], [47], [48],
[49], [50], [51], [52], [53]. Here, all tetrahedra of a 3DT of
P are (i) labelled as either inside or outside with respect to
Sr , and (ii) the surface is defined as the interface between
tetrahedra with different labels. This guarantees to produce
intersecting-free and watertight surfaces. The inside-outside
labelling is usually implemented through a global energy
minimized with graph-cuts. Inside-outside potentials are
computed using visibility information and spatial regular-
ization is achieved through surface smoothness or low area
priors in the energy. This approach has been shown to be
robust against most kinds of acquisition defects of moderate
levels [34], [50], [51] and is capable of reconstructing (very)
large scale scenes [49]. Delaunay-Graph Neural Network
(DGNN) [10] is a learning-based method that replaces the
handcrafted potentials in the aforementioned energy with

a graph neural network (GNN). The GNN takes local ge-
ometric attributes and visibility information as input and
operates locally on small subgraphs of the 3DT. The locality
makes the method scale to large scenes. The method of Luo
et al. [54] proceeds similarly, but without the use of visibility
information and a global energy formulation. Instead, the
GNN processes the 3DT of entire objects at once, which can
hamper scalability.

4.2.2 Implicit functions

Arguably the largest class of surface reconstruction algo-
rithms represent the surface with an implicit function (cf.
Equation 1). One of the first methods that used implicit
functions for surface reconstruction was presented in Hoppe
et al. [20]. Hoppe et al. (i) calculate tangent planes at each
input point of P , using principal component analysis (PCA)
of the local neighborhood. They then (ii) approximate an
SDF by mapping an arbitrary point x ∈ R3 to its signed
distance to the closest tangent plane. (iii) The surface is
defined as the 0-level-set of the SDF. The local tangent
plane estimation makes the process sensitive to low density
sampling and noise, and computationally expensive.

Poisson surface reconstruction.: The most popular
approach for surface reconstruction based on implicit func-
tions is Poisson Surface Reconstruction (PSR) [55]. The idea
is that the Laplacian of an indicator function χ, whose
c-level-set approximates the unknown surface S , should
equate the divergence of a vector field N⃗ associated with
P :

∆χ = ∇ · N⃗ . (2)

The vector field N⃗ is defined by the oriented normals of P .
To define χ the algorithm (i) builds an octree on P and (ii)
sets up a system of hierarchical functions, locally supported
in each octree node, and (iii) globally solved by using a
sparse linear system, which makes the method time and
memory efficient. Dirichlet conditions can be imposed on
the bounding box of the surface with χ = 0 to ensure that
the surface is closed. The approach is known to inherently
produce smooth surfaces, but also over-smooth the surface
in parts. The later introduced Screened Poisson Surface
Reconstruction (SPSR) [33] can reconstruct much sharper
surfaces by constraining Equation 2 to pass through P .
Additionally, it introduces the choice of Neumann bound-
ary conditions which allows the surface to intersect the
boundary of the domain in which F is defined. This is
useful for open scene reconstruction. Recently the method
has been revisited again, to impose Dirichlet constraints on
a tight envelope around P , enabling better reconstructions
in areas of missing data [56]. Poisson surface reconstruction
produces watertight meshes and has shown to be robust
against almost all kinds of acquisition defects of moderate
levels. However, all Poisson-based approaches require well
oriented normals as input, which can pose a significant
limitation in practice.

Neural implicit functions: The most common ap-
proach to surface reconstruction with deep networks is to
model F in Equation 1 with a neural network. This was first
done in the pioneering works of Mescheder et al. [35], Park
et al. [13], and Chen & Zhang [36].
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In the case of Occupancy Networks (ONet) [35], F is
modelled with a simple fully connected network (FCN)
architecture. The network takes as input a point cloud P
and one or several test points x and outputs the occupancy
of the test points in relation to the surface from which P was
sampled. The conditioning on the input point cloud slightly
changes the formulation of Equation 1 to:

S = {x ∈ R3 | Fθ(x,P) = c} . (3)

To estimate the network weights θ, the network is
trained with batches B of K objects using a simple binary
cross entropy (BCE) loss:

LB (θ) =
1

|B|

|B|∑
i=1

K∑
j=1

BCE (Fθ (xij ,Pi) , oij) , (4)

where oij is the ground truth occupancy of test point xij .
To compute the ground truth occupancy oij , the training
objects have to be available in the form of watertight sur-
faces. A common approach is to use large shape collections,
such as ShapeNet [57] for training. Similar ideas have been
introduced in IM-Net [36] and DeepSDF [13] to model an oc-
cupancy or signed distance function with a neural network.
Instead of an encoder-decoder architecture as in ONet, the
authors of DeepSDF [13] introduce an auto-decoder which
is trained to find a shape code z that best explains an objects
shape. This slightly changes Equation 3 and Equation 4,
where the point cloud input P is replaced by a shape code
z in the form of a 256-dimensional vector. The DeepSDF
architecture then allows to reconstruct a complete signed
distance field (and thus the shape), given a shape code z.
However, to find the shape code for a specific shape during
inference, at least a few ground truth signed distance values
are necessary. This can be a significant limitation in practice.
A common downside of the first DSR networks based on
neural implicit fields is their simple fully connected network
architecture. This architecture does not allow the incorpora-
tion of local point cloud information [6] and often leads to
oversmoothing or inaccuracies of the inferred surface.

To this end, occupancy networks have later been refined
by prepending 2D or 3D U-Nets [58], [59] before the fully
connected occupancy network, to better incorporate local
information. The idea is to (i) extract point features from
local neighborhoods and (ii) aggregate these features in
2D or 3D grid cells. The U-Nets are then used to (iii)
integrate local and global information using multiple down-
and upsamplings. (iv) Finally, the fully connected ONet is
used to compute test point occupancies. The approach is
called Convolutional Occupancy Networks (ConvONet) [6].
Just as for the fully connected architectures, the network
can be trained with test points x with known occupancy
values o. In the same work, the authors also introduce an
overlapping sliding-window approach in which a single
trained ConvONet can be used to reconstruct entire indoor
scenes. However, this approach requires to carefully scale
the scene, such that the sliding window captures parts of
the scene with comparable surface features during training
and inference. Furthermore, for large-scale scenes, a sliding-
window approach can be very time-consuming.

Local Implicit Grids (LIG) and DeepLS [7] also split
input point clouds into overlapping subregions, and treat
each subregion separately. The methods infer local shape
codes z for parts of objects or scenes. These local shape
codes have the additional benefit that they can represent
parts from several different object classes. For example, a flat
part-surface may belong to a table top or to a TV screen. This
makes the methods less prone to overfit on specific shape
categories used during training. However, the methods are
largely based on IM-Net and DeepSDF. This means they also
require a sort of ground truth test point during inference to
optimize for the shape codes. Additionally, similar to the
sliding window method of ConvONet, the region size (i.e.
part size) has to be tuned.

Using the same encoder architecture as ConvONet,
Shape As Points (SAP) [38] introduces the combination of
neural implicit fields with a differentiable Poisson solver.
The method estimates (i) oriented normals as well as k point
offsets for each input point, to correct and densify the point
cloud P . (ii) The resulting point cloud of size k|P| is fed to a
differentiable Poisson solver [33] that computes an indicator
grid, i.e. χ̂ evaluated on all nodes of a regular voxel grid.
(iii) This indicator grid is supervised with a ground truth
indicator grid χ. The ground truth indicator grid is created
prior to training, from a Poisson reconstruction of a dense
and error free point cloud, sampled from a ground truth
mesh. A simple mean square error (MSE) loss is used for
training the network:

L = |χ̂− χ|2 (5)

The entire pipeline is differentiable which allows to
update point offsets, oriented normals and the network
parameters during training (with batches of shapes). Dur-
ing inference, the computed indicator grid can simply be
converted to a mesh using marching cubes. In contrast to
the original Poisson Surface Reconstruction, SAP allows
to incorporate learned priors and does not need P to be
equipped with oriented normals.

In general, all of the methods based on voxel grids in this
paragraph require the size of the initial voxels to be constant
during training, because the resolution of the convolution
layers depends on the voxel grid. This poses problems for
training on point clouds with different densities. A dense
voxel grid can be memory intensive and long to train, while
a coarse voxel grid can oversmooth the input and lead to
loss of information.

Another way to combine local and global information,
that avoids the use of grids was introduced in Points2Surf
(P2S). P2S uses both a local test point neighborhood sam-
pling, and a global point cloud sampling which are both
processed using MLPs and combined to predicted a signed
distance for the test point. The k-nearest neighbor sampling
makes this method less sensitive to point density, at the
cost of increasing computational complexity, since the local
neighborhood sampling has to be performed for each test
point during inference.

Point Convolution for Surface Reconstruction (POCO)
only relies on local neighborhoods and computes a latent
vector per point using a point convolution backbone. The
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occupancy of a test point x is then predicted using attention-
based weighing of neighboring latent vectors. This approach
can focus the parameters of the learned implicit function
to be used close to the surface. However, it also requires
neighborhood sampling during inference. Similar to most
other DSR methods, POCO is trained on object point clouds
with a fixed number of points for easy mini-batching. How-
ever, to make the method more robust to point clouds with
higher density during inference, the authors use a procedure
called test-time augmentation. During inference, the latent
vectors of each input point p are computed several times,
from different local subsamples and then averaged.

Another approach to use neural implicit surface rep-
resentations is to ”train” (or optimize) the weights of a
deep neural network per shape [37], [38]. The idea is to
leverage inherent symmetries of deep neural networks to
act as priors in the reconstruction process, similar to the
surface deformation based Point2Mesh discussed above. To
this end, Gropp et al. [37] designed a simple fully con-
nected network representing a signed distance function. To
encourage the reconstruction of a smooth 0-level-set, given
an input point cloud P , they design a loss function which (i)
should vanish on P and (ii) which gradients ∆PF should
be of unit 2-norm and similar to the normals of P . The
method is called Implicit Geometric Regularisation (IGR).
SAP also has an optimization-based variant where (i) the
indicator grid, computed with the differential Poisson solver
from the input point cloud P is used to compute a mesh.
(ii) The mesh is then sampled, which allows to calculate a
Chamfer loss between the sampled and input point cloud
and, again, update the network weights, point offsets and
oriented normals. (iii) This process is repeated until a user
defined stopping criterion. The optimization-based variants
of SAP and IGR can be trained per shape, without the
need for ground truth meshes for supervision. However,
in this optimization-based setting, they cannot learn and
incorporate shape priors from a training set.

An upside of all DSR methods based on neural implicit
representations is that they can store an implicit function,
potentially conditioned on a point cloud, in the weights
of a neural network. Especially DSR architectures that are
entirely grid-less can directly relate their degrees of free-
dom to represent the surface. This can be more flexible
compared to voxel, octree, or tetrahedral representations.
Being a relatively new discovery, the full potential of neural
network-based surface representations has probably yet to
be explored.

5 BENCHMARK SETUP

In this section, we describe our set up of a series of exper-
iments for benchmarking several surface reconstruction al-
gorithms discussed in the previous section. We first describe
how we generate realistic point clouds by using synthetic
range and MVS scanning procedures. We then describe the
datasets we used and several experiments to evaluate the
performance of reconstruction methods. Finally, we provide
an overview of the competing methods.

Synthetic scanning for point cloud generation: In an
ideal setting, we would evaluate methods on real point

cloud acquisitions together with their true surfaces. How-
ever, generating true surfaces of real objects requires error
free and dense input point clouds or substantial manual
intervention. Therefore, such a dataset is difficult to pro-
duce. MVS benchmarks [15], [16], [17], [18], [19] commonly
use image acquisitions for the reconstruction input and a
highly complete and precise acquisition, e.g. from multiple
stationary Light Detection and Ranging (LiDAR) scans as
reference. We make use of such datasets for evaluation.
Using such a dataset for training surface reconstruction net-
works requires reconstructing a watertight surface from the
high-quality acquisition. However, even with high-quality
acquisitions, parts of the object or scene may be missing due
to occlusions, for example. These issues ultimately lead to
inconsistencies in the ground truth and make this source of
data unreliable to train DSR networks. Additionally, existing
datasets of point cloud acquisitions and reliable ground
truth surface information only consist of a handful of ob-
jects or scenes. Instead, training and evaluation of learning-
based surface reconstruction is often done on point clouds
sampled from synthetic surfaces stemming from large shape
collections. However, such point clouds are not representa-
tive for real-world acquisitions, as they do not model non-
uniformity or missing data stemming e.g. from occlusions,
or transparent and low texture areas. To this end, we resort
to synthetic scanning to produce point clouds from synthetic
surfaces in our benchmark. In contrast to directly sampling
the surfaces, synthetic scanning can produce point clouds
with realistic defects, such as anisotropy and missing data
from (self-)occlusion, see Figure 3. At the same time, the
synthetic surfaces provide reliable information for training
and evaluation.

Synthetic range scanning: We use the range scanning
procedure from the surface reconstruction benchmark of
Berger et al. [14]. To this end, we modified their provided
code to export the camera positions of the scanning process
along with the point cloud. We also add outliers to the
produced point clouds by uniformly sampling the bounding
box of the object. The scanning procedure produces uniform,
evenly spaced point clouds. We choose five different scanner
settings to scan each test shape: (i) a low resolution setting
replicates point clouds obtained from long range scanning
and (ii) a high resolution setting produces point clouds with
close to no defects. Three further settings produce high
resolution point clouds with challenging defects such as (iii)
noise, (iv) outliers or (v) noise and outlier defects combined.
See the supplementary material for details. Because Berger
et al.’s provided code pipeline is too time and memory
extensive, we cannot generate a dataset sufficiently large for
training DSR methods. Thus, we only use this dataset for
testing. We refer the reader to the original benchmark paper
[14] for further details about the scanning pipeline.

Synthetic MVS: To mimic MVS acquisitions, we syn-
thetically scan objects by placing virtual sensors on two
bounding spheres around an object and shooting rays to the
circumsphere of the object. Sensor positions (ray origin) and
ray target points are uniformly sampled on the surface of
the spheres. A 3D point is then given as the intersection of
the ray and the objects surface. Our goal is not to mimic
an MVS pipeline but rather produce point clouds with
similar characteristics. We depict our scanning procedure in
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(a) High Quality Mesh (b) MVS (c) Range scan

(d) Uniform sampling (e) Synthetic MVS (f) Synthetic range scan

Figure 3: Synthetic and real point clouds: Surface reconstruction methods are often tested on uniform surface samplings
(d). Instead, we test methods on synthetic MVS (e) and synthetic range scans (f). In contrast to uniform surface sampling,
synthetic scanning can produce realistic point cloud defects, such as missing data from occlusion, often present in real
scans (b,c).

(a) Synthetic scanning setup (b) Synthetic MVS (c) Synthetic range scanning

Figure 4: Synthetic scanning procedure: We randomly place sensors on bounding spheres with multiple radii around the
object (a). To produce MVS like point clouds, we consider rays aiming at uniformly sampled points on the circumsphere of
the object (b). This produces non-uniform point clouds with missing data similar to real MVS point clouds. For synthetic
range scanning, we use Berger et al.’s [14] pipeline, which considers ray targets arranged on a uniform grid aiming at the
object (c). This produces uniform point clouds with missing data similar to real range scanning point clouds.
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Figure 4. We produce two different scans with our approach:
(i) sparse point clouds with 3, 000 points per object and
Gaussian noise on the point position with zero mean and
standard deviation 0.005 as in [6], and (ii) dense point
clouds with 10, 000 points per object of which 10% are
outliers and Gaussian noise on the point position with zero
mean and standard deviation 0.005. For both versions we
scan from 10 different sensor positions.

5.1 Datasets

We consider a variety of datasets to evaluate the versatility
and precision of different reconstruction methods. We use
closed surfaces from ShapeNet, ModelNet and Berger et al.,
as they are widely available. ShapeNet and ModelNet are
sufficiently big to train surface reconstruction networks.
Most learning-based methods require reliable inside/out-
side querying of the models for training. To this end, we
make the models watertight using ManifoldPlus [60]. Note
that we also use the train sets to tune the parameters
of learning-free methods. The watertight surfaces of the
test sets allow for a reliable quantitative evaluation of the
reconstructions. For qualitative evaluation, we also test on
real scans [15], [16], [19] which further allows us to evaluate
the reconstruction of open surfaces. All surfaces are scaled to
be contained inside the unit cube. In the following we give
additional details for each dataset used in our benchmark.
See the supplementary material for example shapes.

ShapeNet: As is common practice in related studies,
we use Choy et al.’s [61] 13 class subset of ShapeNet as
well as its train/val/test split. We generate point clouds
with 3, 000 and 10, 000 points using our synthetic MVS-like
scanning.

ModelNet10: We use ModelNet10 shapes as a sec-
ond object shape dataset. Its shapes are less complex than
ShapeNet’s, with more flat surfaces and fewer details. Ad-
ditionally, the number of training shapes is smaller (4k vs
30k objects). We use the full train set and the test sets for the
6 out of 10 classes which are not represented in ShapeNet
(see supplementary material for details). We generate point
clouds with 3, 000 points with our synthetic MVS-like scan-
ning.

Berger et al.: We select five shapes from the bench-
mark of Berger et al.. These shapes include challenging
characteristics such as details of various sizes or a non-trivial
topology, which makes them more difficult to reconstruct
than ModelNet shapes. We generate point clouds between
3, 000 and 10, 000 points using our synthetic MVS and range
scanning procedures.

Real MVS and range scans: We select a range scan
from Tanks and Temples [19], and two MVS point clouds
from DTU [16] and from Middlebury [15]. We subsample
these point clouds to 50, 000 points.

5.2 Experimental Setup

We show a summary of our experimental setup on Table 2.
In the following, we provide details for each experiment.

In-distribution (E1): First, we train and evaluate
methods on ShapeNet using all 13 categories and sparse
point clouds with 3, 000 points and Gaussian noise with

zero mean and standard deviation 0.005. With this exper-
iment, we evaluate the capacity of learning methods to
complete missing data of sparse point clouds and eliminate
noise.

Out-of-distribution (unseen point cloud characteris-
tics) (E2): We evaluate the models trained in E1 on test
shapes scanned with a different setting than the train
shapes. We use dense point clouds with 10, 000 points of
which 10% are outliers. We add the same noise as in E1.
Here, we investigate whether learning methods are able to
generalize to different point cloud characteristics.

Out-of-distribution (unseen shape categories, less
complex) (E3): We evaluate the models trained in E1 on
shapes from unseen categories but with the same point
cloud characteristics. We use six categories of ModelNet
which are not present in the ShapeNet training set. In
this experiment, we investigate whether learning methods
generalize to unseen categories.

Out-of-distribution (unseen shape categories, similar
complexity) (E4): This experiment is similar to E3, but
the test set is comprised of five shapes from Berger et al.
which do not correspond to ShapeNet’s categories, but have
similar complexity.

Out-of-distribution (unseen shape categories, more
complex (E5): This experiment is similar to E3 and E4,
but we retrain all methods on the simpler shapes from
ModelNet10. Here, we assess whether learning methods
can generalize from simple shapes to more complex ones,
a difficult out-of-distribution setting.

Optimization (E6): We evaluate several recently de-
veloped optimization-based methods, and two traditional
test-of-time optimization-based methods. We use the Berger
et al. dataset for this experiment.

Out-of-category vs. optimization (E7): We compare
learning- and optimization-based methods on the same
dataset. For this we run optimization-based methods on
MVS scans of the Berger et al. shapes and compare the
results to experiment E4.

Out-of-distribution vs. optimization (E8): Finally, we
compare learning- and optimization-based methods on real
MVS and range scanning point clouds. For learning-based
methods we use the models from E1.

5.3 Surface reconstruction methods

We briefly describe the optimization- and learning-based
methods that we will benchmark below. For a more com-
plete description of these methods and their related con-
cepts we refer the reader to our survey in Section 4. Note
that while some of the optimization-based methods are
based on deep networks, and we call them DSR methods,
they do not learn shape priors from a training set. Instead,
the networks are “trained” (or optimized) for each new
point cloud to reconstruct a surface and rely on novel regu-
larization techniques to increase their robustness to noise,
outliers and missing data. Conversely, while some tradi-
tional methods are not based on a deep network architec-
ture, we tune their (hyper)parameters on the training set by
using a grid search over different parameter combinations.
When we need to extract a surface from an implicit field, we
use marching cubes [25] with a resolution of 1283.
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Table 2: Benchmark setup: In E1 to E4, we train surface reconstruction methods on noisy point clouds of ShapeNet objects.
In E1, we test on ShapeNet. In E2, we test on ShapeNet, but with denser point clouds and 10% outliers. In E3, we test on
the simpler ModelNet objects with the same point cloud characteristics as in the train set. In E4, we test on the Berger et al.
shapes with the same point cloud characteristics as in the train set. In E5, we train the methods on the simpler ModelNet
dataset and test on ShapeNet, both with the same point cloud characteristics. In E6, we test optimization-based methods
on synthetic range scans of the Berger et al. dataset. In E7 and E8, we directly compare learning- and optimization-based
methods on synthetic and real point clouds.

Experiment Training set Test set

1
In-distribution

ShapeNet (synthetic MVS) ShapeNet (synthetic MVS)

2
Out-of-distribution

unseen point cloud characteristics

ShapeNet (synthetic MVS) ShapeNet (synthetic MVS)

3
Out-of-distribution
unseen shape categories,

less complex

ShapeNet (synthetic MVS) ModelNet (synthetic MVS)

4
Out-of-distribution
unseen shape categories,

similar complexity

ShapeNet (synthetic MVS) Berger et al. (synthetic MVS)

5
Out-of-distribution
unseen shape categories,

more complex

ModelNet (synthetic MVS) ShapeNet (synthetic MVS)

6
Optimization

– –

Berger et al. (synthetic range scan)

7
Out-of-distribution vs. optimization

unseen shape categories vs. optimization

ShapeNet (synthetic MVS) Berger et al. (synthetic MVS)

8
Out-of-distribution vs. optimization

unseen point cloud characteristics and
shape categories vs. optimization

–

ShapeNet (synthetic MVS) Middlebury, DTU (MVS), TaT (range scan)
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5.3.1 Optimization-based methods

IGR [37]: Implicit Geometric Regularisation (IGR) is
a DSR method, operating directly on the point cloud using
a simple fully connected network architecture that estimates
an indicator function from point positions and normals. We
optimize the network weights for 100, 000 iterations for each
scan/shape.

LIG [8]: Local Implicit Grids (LIG) trains an autoen-
coder to encode crops of a signed distance function gained
from ground truth shapes. For inference, only the decoder
part of the autoencoder is retained. Then, crops of the input
point cloud with oriented normals are augmented with 10
new points along each normal, representing ground truth
signed distance information. An initial latent vector is then
decoded to produce an SDF and iteratively optimized so
that the augmented point cloud crop best matches the SDF.
A post-processing removes falsely-enclosed volumes. As
code for training is unavailable, we only use the optimiza-
tion part, with a pretrained model on ShapeNet (without
noise). We use the sensor position to orient jet-estimated
normals [62].

P2M [32]: Point2Mesh (P2M) is an optimization-
based method which iteratively moves vertices of an initial
mesh to fit a point cloud.

SAP [38]: Shape As Points (SAP) has a supervised
learning- and an optimization-based variant. In the learning
variant, the method estimates the oriented normals as well
as k point offsets for each input point, to adjust and densify
the point cloud. The resulting point cloud of size k | P |
is then used by a differentiable Poisson solver [33] to com-
pute an indicator grid, which is supervised with a ground
truth indicator grid computed prior to training. The entire
pipeline is differentiable which allows for updating point
offsets, oriented normals and the network parameters.

SPSR [33]: Screened Poisson Surface Reconstruction
(SPSR) is a classic non learning-based method which ap-
proximates the surface as a level-set of an implicit function
estimated from point positions and normal information. We
use the sensor position to orient jet-estimated normals [62].
We chose an octree of depth 10 and Dirichlet boundary
condition. We also use the provided surface trimming tool
for post-processing, but could not find parameters that
consistently improve the reconstructed surface.

Labatut et al. [34]: Labatut et al. is a graph-cut-based
method for range scans that makes use of visibility infor-
mation. Because there is no official implementation of the
algorithm, we reimplemented it ourselves. To compare with
optimization-based methods, we use the parametrization
suggested by the authors: point weights αvis = 32 and
σ = 0.01; regularization strength λ = 5.

5.3.2 Learning-based methods

ConvONet [6]: Convolutional Occupancy Networks
(ConvONet) is a DSR method that first extracts point fea-
tures and averages them on cells of three 2D grids, or one
3D grid (variant). 2D or 3D grid convolutions then create
features capturing the local geometry. Last, the occupancy
of a query-point is estimated with a fully connected network
from interpolated features stored on each node of the 2D or
3D grid.

SAP [38]: In the optimization variant, the method
starts as the learning-based variant described above. Then,
the estimated indicator grid is used to compute a mesh and
points are sampled on the mesh to calculate a Chamfer loss
between the mesh and input point cloud.

DGNN [10]: This method uses a graph neural net-
work to estimate the occupancy of Delaunay cells in a point
cloud tetrahedralization from cell geometry and visibility
features. A graph-cut-based optimization then reinforces
global consistency.

POCO [12]: Point Convolution for Surface Recon-
struction (POCO) extracts point features using point cloud
convolution [63], then estimates the occupancy of a query
point with a learning-based interpolation from nearest
neighbors.

SPRS [33]: See method description above. For the
learning-based experiments, we perform a grid search over
octree depth d = {6, 8, 10, 12} and boundary conditions
b = {dirichlet, neumann, free}. We use the parametrization
with the best mean volumetric IoU for reconstructions of the
training set.

Labatut et al. [34]: See method description above. For
the learning-based experiments, we perform a grid search
over regularization strength λ = {1.5, 2.5, 5, 10}, and point
weights α = {16, 32, 48} and σ = {0.001, 0.01, 0.1, 1}. We
use the parametrization with the best mean volumetric IoU
for reconstructions of the training set.

5.4 Evaluation metrics

We want the reconstructed surface Sr to be as close as
possible to the real (or ground truth) surface S in terms
of geometry and topology. To measure this “closeness” we
use several metrics.

5.4.1 Geometric metrics

We evaluate the geometric quality of reconstructions with
the volumetric intersection over union (IoU), symmetric
Chamfer distance (CD) and normal consistency (NC).

Volumetric IoU: In the following, let Sg and Sr be
the set of all points that are inside or on the ground truth
and reconstructed surface, respectively. The volumetric IoU
is defined as:

IoU (Sg,Sr) =
|Sg ∩ Sr|
|Sg ∪ Sr|

.

We approximate volumetric IoU by randomly sampling
100, 000 points in the union of the bounding boxes of Sg

and Sr .
Chamfer distance: To compute the Chamfer distance

and normal consistency, we sample a set of points Pg and
Pr on the facets of the ground truth mesh and the recon-
structed mesh, respectively, with |Pg| = |Pr| = 100, 000.
We approximate the symmetric Chamfer distance between
Sg and Sr as follows:

CD(Sg,Sr) =
1

2|Pg|
∑
x∈Pg

min
y∈Pr

||x− y||2

+
1

2|Pr|
∑
y∈Pr

min
x∈Pg

||y − x||2 .
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Normal consistency: Let n(x) be the unit normal of
a point x. We set this normal to be the normal of the facet
from which x was sampled. Let ⟨·,·⟩ the Euclidean scalar
product in R3. Normal consistency is defined as:

NC(Sg,Sr) =
1

2|Pg|
∑
x∈Pg

〈
n(x), n

(
argmin
y∈Pr

||x− y||2

)〉

+
1

2|Pr|
∑
y∈Pr

〈
n(y), n

(
argmin
x∈Pg

||y − x||2
)〉

.

5.4.2 Topological metrics
We evaluate the topological quality of reconstructions
through the number of components, the number of non-
manifold edges and the number of boundary edges.

Number of components: If not stated otherwise, the
ground truth surfaces of our datasets have exactly one com-
ponent. In consequence, the reconstructed surfaces should
also have one component.

Number of boundary edges: The surfaces of all
ground truth objects in our datasets are closed. We verify
this by measuring the number of boundary edges of the
reconstructed meshed surface which should be zero. Note
that if boundary edges only appear on the intersection of
the reconstruction with its bounding box we still classify
the reconstruction as watertight, according to the definition
in Section 3.3.

Number of non-manifold edges: The surfaces of all
ground truth objects in our datasets are 2-manifolds. We
verify this by measuring the number of non-manifold edges
of the reconstructed meshed surface which should be zero.

5.4.3 Runtimes
To evaluate the scalability of methods, we measure the
average time it takes to reconstruct a surface of ShapeNet
from 3,000 points.

6 EXPERIMENTS

6.1 Learning-based surface reconstruction from syn-
thetic MVS point clouds (E1 - E5)
We examine the precision and versatility of novel
supervised-learning methods and two traditional methods
for which training sets were used for parameter tuning.

All evaluated methods perform well when reconstruct-
ing shapes from known categories and known point cloud
characteristics (E1). The learning-based methods show a
significantly superior performance of at least 5% over SPSR
and Labatut et al. (see Table 3). The methods based on
neural implicit fields (POCO, SAP and ConvONet) produce
visually and quantitatively the best reconstructions (see
Figure 5, first column). DGNN does not perform as well as
most other learning methods in this experiment. The sparse
point clouds used in this experiment do not contain point
samples on all details. However, due to the interpolating
nature of DGNN surface details cannot be reconstructed
without input points.

In E2, domain shifts results in worse performance,
both quantitatively and qualitatively for all methods except
SPSR. SPSR shows robustness against outliers and benefits
from the higher point density. Most learning methods do

not produce satisfying results (see Figure 5, second column).
The reconstruction of SAP is too smooth and lacks details,
but does not show as severe defects as the reconstructions
of other learning-based methods. Labatut et al. suffers from
the low regularization weight tuned for the outlier-free
point clouds and could benefit from higher regularization
to remove erroneous floating components from outliers.

When reconstructing out-of-category ModelNet shapes
(E3), the neural implicit field methods exhibit visually the
best reconstructions. SAP and POCO produce quantitatively
the best reconstructions (see Table 3). The interpolating
method DGNN performs better than ConvONet.

In E4, we reconstruct shapes from Berger et al. which
have similar complexity than the shapes from ShapeNet
used for training. The only learning methods able to lever-
age information from the common point cloud characteris-
tics to improve the test results are DGNN and POCO.

In E5, most methods overfit the simpler ModelNet
shapes when retrained and used to reconstruct the more
complex ShapeNet shapes. Even SPSR slightly suffers from
tuning parameters on ModelNet. The best reconstructions
on ModelNet are achieved with an octree depth of d = 8
(instead of d = 10 on ShapeNet) leading to worse results
on ShapeNet: 77.1 vIoU in E1 vs. 74.6 vIoU in E5. The
parameter tuning of Labatut et al. stays unchanged. DGNN
is the only method that does not overfit on ModelNet and
yields the best results, both quantitatively and qualitatively.
In fact, it performs as well as when trained on ShapeNet
directly.

ConvONet is only able to outperform traditional meth-
ods when the training and test sets share the same point
cloud characteristics and shape categories. SAP produces
much better reconstructions and is the learning-based
method with the highest robustness against outliers. It is
also the only method explicitly predicting normals. As a
result SAP reconstructs surfaces with the highest mean
normal consistency over all experiments. The local learn-
ing and global regularisation approach of DGNN produces
competitive results in all experiments, except for the out-
lier setting of E2. DGNN is the learning-based method
reconstructing surfaces with highest mean IoU over all
experiments. The local attention-based learning mechanism
of POCO leads to the best results when the task does not
involve reconstruction from unseen domains. It provides
the most faithful reconstructions in three experiments in
which point cloud characteristics are identical in train and
test set (E1, E3, E4). However, POCO is heavily affected by
outliers (E2), which can be explained by its purely local
approach. POCO also tends to overfit on simple training
shapes (E5). The reconstructions of POCO, as well as the
ones of SAP contain boundary edges only in areas where
the reconstructions intersect the bounding box i.e. they are
still watertight. SPSR proves robust to various defects and
shape characteristics, providing fair results, with the highest
mean IoU and Chamfer distance across the board. However,
its reconstructions are the least compact, i.e. they have the
highest number of components. Labatut et al.’s parametriza-
tion proves slightly less robust, as the method is affected
by outliers. Its reconstructions have a mean IoU higher than
any learning method, and they are the most compact with
an average number of components of 2.7. However, it is
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Figure 5: Learning-based reconstructions (E1 to E5): DGNN [10], SAP [38] and SPSR [33] provide visually the best
reconstructions, without prevalent defects.
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Table 3: Numerical results for learning-based reconstructions (E1 to E5): SPSR [33] is the only method that reconstructs
surfaces with a high volumetric intersection over union (IoU) and a low Chamfer distance (CD) in each experiment.
Therefore, its reconstructions have the highest mean volumetric IoU and the lowest mean CD. However, SPSR also
reconstructs the least compact surfaces on average (i.e. surfaces with the highest number of components). Labatut et al. [34]
reconstructs the most compact surfaces. The reconstructions of DGNN [10] have the highest mean volumetric IoU of the
tested learning methods. The reconstructions of SAP [38] have the lowest mean CD of the tested learning methods and the
highest normal consistency. ConvONet and SPSR are the only methods that reconstruct surfaces without boundary and
non-manifold edges.

Volumetric IoU (%) [↑] Normal consistency (%) [↑]
Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean

ConvONet2D [6] 85 47.3 79.3 65.1 68.3 69 92.7 76.4 90 78 87.8 85
ConvONet3D [6] 84.8 15.1 83.6 76.4 51 62.2 93 71.8 93.1 87.2 82.5 85.5
SAP [38] 88.7 59.8 89.2 78.3 54.9 74.2 93.5 86.7 94.1 89 87.1 90.1
DGNN [10] 84.5 38.1 87 82.9 84.4 75.4 85.4 68.8 88.5 85.2 85.5 82.7
POCO [12] 89.5 8.74 90.6 83.9 40.9 62.7 93.6 75.6 94.2 89.5 82.9 87.1
SPSR [33] 77.1 80.7 80.7 77.6 74.6 78.1 87.7 83.2 89.1 86.3 88 86.9
Labatut et al. [34] 80.3 60.4 83.9 79.4 80.3 76.9 81 73 84.6 80.8 81 80.1

Chamfer distance (per-point ave. %) [↓] Number of components [↓]
Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean

ConvONet2D [6] 0.553 7.51 0.997 1.43 0.979 2.29 1.6 34.8 2.55 3.6 3.2 9.16
ConvONet3D [6] 0.546 10.9 0.76 0.887 2.44 3.1 1.37 13.6 1.6 2.6 1.5 4.13
SAP [38] 0.437 2.09 0.547 0.734 0.924 0.946 2.71 86 3.45 5.6 10.5 21.7
DGNN [10] 0.549 2.54 0.635 0.586 0.55 0.973 1.31 16.1 1.13 1 1.31 4.16
POCO [12] 0.416 10.5 0.516 0.579 1.32 2.67 2.32 178 2.82 2 16.3 40.2
SPSR [33] 0.801 0.659 0.873 0.786 0.886 0.801 9.26 185 11.1 8 3.24 43.3
Labatut et al. [34] 0.665 6.97 0.747 0.671 0.665 1.94 1.22 9.02 1.05 1 1.22 2.7

Number of boundary edges [↓] Number of non-manifold edges [↓]
Method E1 E2 E3 E4 E5 Mean E1 E2 E3 E4 E5 Mean

ConvONet2D [6] 0 0 0 0 0 0 0 0 0 0 0 0
ConvONet3D [6] 0 0 0 0 0 0 0 0 0 0 0 0
SAP [38] 0 0.00923 0 0 8.44 1.69 0 0 0 0 0 0
DGNN [10] 0 0 0 0 0 0 1.35 2.24 0.646 0.4 1.69 1.26
POCO [12] 0 121 0 0 41.7 32.5 0 0.00154 0 0 0 0.000308
SPSR [33] 0 0 0 0 0 0 0 0 0 0 0 0
Labatut et al. [34] 0 0 0 0 0 0 9.35 28.5 8.47 9.6 9.35 13.1

also the only method that produces a significant amount of
non-manifold edges.

6.2 Optimization-based surface reconstruction from
synthetic range scanning point clouds (E6)
This experiment evaluates the precision and versatility of
non-learning methods. The benchmarked approaches con-
sist in neural network based methods optimizing a function
to fit an input point cloud and rely on novel regularization
techniques to increase their robustness to noise, outliers
and missing data. Furthermore, we benchmark the two
traditional methods SPSR and Labatut et al. with standard
parameter settings. We reconstruct surfaces of Berger et al.
from synthetic range scanning point clouds with various
different defects. We show numerical results in Table 4 and
visualisations in the supplementary material. Almost all
reconstructions provided by the two traditional methods are
much more truthful than the DSR methods, with a mean
volumetric IoU almost 10 points higher across all point
cloud defects. IGR does visually not provide a good result
on the exemplary shape, especially on thin surface parts.
Quantitatively, the method provides the best reconstruction
for the neural networks based methods in the absence of
outliers, and even the best overall reconstruction for the

noisy high resolution scans. LIG does not provide good
reconstructions for any of the settings. This can be explained
by its pretrained model on defect-free uniform high density
point clouds. Furthermore, its post-processing makes the
reconstructions non-watertight. P2M provides geometrically
fair reconstructions and the topologically best reconstruc-
tions with a low number of components, and watertight
and manifold surfaces for all reconstructions. SAP provides
fair reconstructions in the absence of outliers. None of the
neural network based methods is robust against outliers.
As in the learning-based experiments, SPSR generates high
quality reconstructions for all input defects, and achieves
the best mean normal consistency. Labatut et al. achieves the
best mean IoU and mean Chamfer distance while providing
the reconstructions with the lowest number of components.
However, the reconstructions of Labatut et al. are the only
ones with a significant number of non-manifold edges.

6.3 Learning- and optimization-based surface recon-
struction from synthetic MVS point clouds (E7)
To directly compare learning- and optimization-based re-
constructions on the same dataset, we also reconstruct the
Berger et al. shapes from synthetic MVS scans (cf. E4) with
the optimization-based methods. Thus, for learning-based
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Table 4: Numerical results for optimization-based reconstructions (E6): LR is a low resolution scan, HR a high resolution
scan, HRN a high resolution scan with noise, HRO a high resolution scan with outliers, and HRNO a high resolution scan
with noise and outliers. The methods are optimized per shape and per scan using standard settings as mentioned in the
corresponding publications. The traditional method of Labatut et al. [34] reconstructs the surfaces with the highest mean
volumetric intersection over union and lowest mean Chamfer distance.

Volumetric IoU (%) [↑] Normal consistency (%) [↑]
Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean

IGR [37] 80.8 92.5 83.6 63.7 62.7 76.7 88 96.3 83.9 77.8 71.5 83.5
LIG [8] 46.9 50.3 63.9 66 63.8 58.2 88.7 92.2 89 77 75.2 84.4
P2M [32] 75.2 83.3 75.5 71.3 67.8 74.6 86.3 92.2 88.1 84.5 82.1 86.6
SAP [38] 75.6 89.1 72.4 55.3 34.9 65.4 83.4 94.8 61.6 74.5 55.3 73.9
SPSR [33] 77.7 90.2 82.8 90.3 82.1 84.6 88.1 96 88.1 96.2 85.8 90.9
Labatut et al. [34] 81.3 93.4 80.1 93.4 79.1 85.5 87.6 96 66.3 94.9 66.5 82.3

Chamfer distance (per-point ave. %) [↓] Number of components [↓]
Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean

IGR [37] 0.674 0.322 0.554 7.96 7.72 3.45 6.8 1.2 35.2 44 97.4 36.9
LIG [8] 0.745 0.581 0.781 7.89 7.8 3.56 1 1 1 1.6 1 1.12
P2M [32] 0.817 0.473 0.729 1.53 2.13 1.13 1.2 1 1.2 1.4 1.6 1.28
SAP [38] 0.852 0.32 0.701 3.99 3.93 1.96 73.2 85.6 937 1.8e+03 1.96e+03 971
SPSR [33] 0.794 0.369 0.572 0.362 0.607 0.541 1.2 1.6 3.6 3.8 20.2 6.08
Labatut et al. [34] 0.635 0.314 0.608 0.339 0.641 0.507 1 1 1.2 1.2 1 1.08

Number of boundary edges [↓] Number of non-manifold edges [↓]
Method LR HR HRN HRO HRNO Mean LR HR HRN HRO HRNO Mean

IGR [37] 0 0 0 0 0 0 0 0.8 0.8 5.2 4.2 2.2
LIG [8] 69 42.8 17.2 0 0 25.8 0 0 0 0 0 0
P2M [32] 0 0 0 0 0 0 0 0 0 0 0 0
SAP [38] 0 0 0 0 449 89.8 0 0 0 0 0 0
SPSR [33] 0 0 0 0 0 0 0 0 0 0 0 0
Labatut et al. [34] 0 0 0 0 0 0 1 5.8 24.4 3.8 22 11.4

Table 5: Numerical results for learning- and optimization-based reconstructions (E7): Learning- and optimization-based
reconstruction of the Berger et al. test shapes from synthetic MVS scans. The learning methods were trained on synthetic
MVS scans from ShapeNet. Optimization-based methods are optimized per scan using standard settings. BE stands for
boundary edges and NME for non-manifold edges. Only the learning-based methods POCO and DGNN reconstruct
surfaces with a higher mean volumetric intersection over union and lower mean Chamfer distance than all optimization-
based methods.

Method Vol. IoU [↑] Normal consist. [↑] Chamfer dist. [↓] Components [↓] BE [↓] NME [↓]

Learning

ConvONet2D [6] 65.1 78 1.43 3.6 0 0
ConvONet3D [6] 76.4 87.2 0.887 2.6 0 0
SAP [38] 78.3 89 0.734 5.6 0 0
DGNN [10] 82.9 85.2 0.586 1 0 0.4
POCO [12] 83.9 89.5 0.579 2 0 0

Optimization

IGR [37] 78.3 83.8 0.775 15.4 0 0.4
LIG [8] 45.7 86.6 0.831 1 65.6 0
P2M [32] 74.5 85 0.768 2 0 0
SAP [38] 71.9 77 0.811 133 0 0
SPSR [33] 77.6 86.4 0.785 8 0 0
Labatut et al. [34] 79.4 80.8 0.671 1 0 9.6
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Table 6: Runtimes of surface reconstruction methods:
Times (in seconds) for reconstructing one object from a point
cloud of 3,000 points averaged over the ShapeNet test set.
GC stand for Graph-cut; SE stands for surface extraction,
such as marching cubes or triangle-from-tetrahedron. Note
that different variants and implementations of marching
cubes are used by different methods, which also influences
the runtimes. SAP [38] has the fastest total runtime.

Model Feature extraction Decoding/GC SE Total

ConvONet2D [6] 0.016 0.32 0.17 0.51
ConvONet3D [6] 0.008 0.21 0.17 0.40
SAP [38] 0.022 0.017 0.047 0.088
DGNN [10] 0.11 0.28 0.01 0.39
POCO [12] 0.088 13.72 0.33 15.74
P2S [9] 69.06 11.51 80.57
SPSR [33] 1.25
Labatut et al. [34] 0.1 0.07 0.01 0.18

methods, we use the models trained on synthetic MVS
scans from ShapeNet (cf. E4) and we optimize non-learning
methods per shape using standard settings. We show the
numerical results in Table 5 and visualisations in the supple-
mentary material. The learning-based methods DGNN and
POCO benefit from the training on point clouds with the
same characteristics as in the test set and reconstruct more
truthful surfaces than the optimization-based methods.

As in E6, Labatut et al. produces the best results among
the optimization-based methods.

6.4 Learning- and optimization-based surface recon-
struction from real point clouds (E8)

Finally, we reconstruct surfaces from real MVS and range
scanning point clouds. Again, for learning-based methods,
we use the models trained on synthetic MVS scans from
ShapeNet (cf. E4) and we optimize non-learning methods
per point cloud. We show the reconstructions in Figure 6.
The MVS point cloud from Middlebury (Figure 6a) is con-
taminated with a large amount of varying noise. SAP is the
only learning method which reconstructs a smooth surface
without missing details (Figure 6d). However, it suffers from
small amounts of topological noise in the form of holes. The
optimization-based method P2M provides a visually good
reconstruction with few defects (Figure 6i). In Figures 6m
and 6y, optimization-based methods handle the additional
domain shift to an open scene better compared to learning-
based methods. The two traditional methods SPSR and
Labatut et al. provide the visually best results on average.

This experiment also shows that our findings on syn-
thetic point clouds coincide with those on real-world point
clouds, validating our experimental setup.

6.5 Runtimes

On Table 6, we report detailed runtimes for the methods
tested in the learning-based experiments. SAP is the fastest
of all reconstruction methods. DGNN also shows fast run-
times, while POCO is slow, due to its extensive use of
neighborhood sampling. We also compare runtimes of P2S.
We were not able to include this method in experiments E1
to E5 due to its long runtime for training and inference.

6.6 Summary and analysis
In the right circumstances, learning-based methods can
produce highly detailed surfaces while remaining robust to
noise and missing data. However, this requires training on
large sets (30k shapes in our experiments) of sufficiently
complex surfaces and associated point clouds. Even if the
tested learning methods can generalize to unseen shape
categories to some extent, the training and test sets must
share the same point cloud characteristics. This suggests that
these methods mainly learn priors related to the acquisition
characteristics of the input point clouds, and less on the
shapes themselves. However, learning-based methods do
not produce satisfying results when the training shapes are
too simple, or when the point clouds include unknown
defects, such as outliers (see Table 7). Mixing traditional
and learning-based methods, as in SAP or DGNN, re-
sults in higher robustness to domain shifts and leads to
short reconstruction times. Except for IGR, the tested novel
optimization-based methods are not robust to acquisition
defects and they rarely provide better results compared to
the two traditional methods SPSR and Labatut et al..

7 CONCLUSION

Surface reconstruction from point clouds is a well studied
subject in the field of digital geometry processing. However,
constant developments in acquisition techniques and novel
ideas for surface reconstruction and analysis bring forward
new challenges. In this paper, we survey the field of surface
reconstruction from point clouds and benchmark several re-
lated methods. We revisit traditional test-of-time approaches
for surface reconstruction and detail how they inspired
novel approaches. We evaluate traditional and novel opti-
mization and learning-based methods on various tasks and
datasets. We show that novel optimization-based methods
are not as robust against defects as traditional methods.
For in-distribution point clouds with characteristics similar
to the ones of the training set, learning methods provide
more accurate reconstructions than traditional approaches.
However, real-world scenes often include a multitude of
different and highly complex objects, and their acquisitions
may contain a variety of defects. Most learning methods
require shapes of similar complexity in training and test sets
and they are not robust to out-of-distribution acquisition
defects. These limitations of learning-based methods hinder
the reconstruction of point clouds in the wild. Generating or
finding adequate training data that includes a large variety
of complex shapes scanned with realistic defects is a difficult
task. Future work in learning-based surface reconstruction
should focus on training on point clouds with realistic ac-
quisition defects, e.g. from common sensors and acquisition
settings, or on increasing the methods’ robustness to unseen
defects.
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Tech. He is commited to open and reproducible
research that aims to solve real-world problems,
mainly in the areas of 3D scene understanding
and 3D reconstruction. https://raphaelsulzer.de

Loic Landrieu received a PhD in machine learn-
ing from ENS Paris in 2016. He is now a re-
search scientist at IGN, the French mapping
agency, working on 3D point clouds and satellite
time series analysis. He is the main investigator
of the ANR Ready3D on dynamic 3D analysis,
co-chair of the ISPRS working group on tem-
poral data understanding, co-lead of the GRSS
group on image analysis, and was program chair
of the XXIV ISPRS Congress. Committed to
open and reproducible research, he has partic-

ipated in numerous open-source projects and released several large-
scale benchmarks. https://loiclandrieu.com

Renaud Marlet is a Senior Researcher at École
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