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Abstract
Spiking neural networks (SNNs) are gaining attention due to their energy-efficient computing
ability, making them relevant for implementation on low-power neuromorphic hardware. Their
biological plausibility has permitted them to benefit from unsupervised learning with bio-inspired
plasticity rules, such as spike timing-dependent plasticity (STDP). However, standard STDP has
some limitations that make it challenging to implement on hardware. In this paper, we propose a
convolutional SNN (CSNN) integrating single-spike integrate-and-fire (SSIF) neurons and trained
for the first time with voltage-dependent synaptic plasticity (VDSP), a novel unsupervised and
local plasticity rule developed for the implementation of STDP on memristive-based
neuromorphic hardware. We evaluated the CSNN on the TIDIGITS dataset, where, helped by our
sound preprocessing pipeline, we obtained a performance better than the state of the art, with a
mean accuracy of 99.43%. Moreover, the use of SSIF neurons, coupled with time-to-first-spike
(TTFS) encoding, results in a sparsely activated model, as we recorded a mean of 5036 spikes per
input over the 172 580 neurons of the network. This makes the proposed CSNN promising for the
development of models that are extremely efficient in energy. We also demonstrate the efficiency of
VDSP on the MNIST dataset, where we obtained results comparable to the state of the art, with an
accuracy of 98.56%. Our adaptation of VDSP for SSIF neurons introduces a depression factor that
has been very effective at reducing the number of training samples needed, and hence, training
time, by a factor of two and more, with similar performance.

1. Introduction

Over the last decade, convolutional neural networks (CNNs) have been widely used in deep learning [1] to
solve several types of tasks, such as visual [2–4] or auditory [5–7] ones, outperforming previous methods.
However, although CNNs can achieve high performance, they are still limited by their computational cost
and their significant energy consumption. Indeed, CNNs use second-generation artificial neurons based on
the McCulloch-Pitts model [8], which states that neurons have floating and continuous activations, which
limits their implementation on resource-restricted hardware.

Towards a bio-inspired approach, spiking neural networks (SNNs) [9], known as the third generation of
artificial neural networks, are increasingly studied because of their low energy consumption. In these
networks, neurons transmit and process information similarly to biological neurons, with asynchronous
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spikes. They integrate a temporal dynamic, making activations event-driven and binary. Convolutional SNNs
(CSNNs) have already been used to solve various tasks with great performance [10–13], although their
development is still in its early stages compared with CNNs.

Given the non-differentiable nature of their activation functions, classical gradient-based learning
algorithms are not directly applicable in SNNs. Adaptations of Backpropagation for SNNs have already been
proposed [10, 14, 15]. However, these rules are limited by their global nature, needing network-level
communications, which is difficult to implement in hardware. While recent works [16, 17] have proposed a
hardware-friendly and local backpropagation rule, its supervised structure requires the use of labels as well as
a cost function. Also, its hardware implementation is not memory-efficient since feedback synapses must be
stored. Inspired by biology, new unsupervised rules based on mechanisms of local plasticity have been
developed. Spike timing-dependent plasticity (STDP) is the most widely used in this context, where the
relative time difference between the pre- and postsynaptic neuron spikes defines the plasticity [18]. STDP is
an interpretation of the main learning rule observed in biological synapses, described by Hebb’s theory [19].
The literature has already shown the efficiency of learning with STDP to solve classical deep learning
tasks [11, 13, 20–22]. Yet, standard STDP still faces a significant challenge: it requires recording and updating
the spike traces of the neurons, i.e. the timing of their last spike, and applies to both pre- and postsynaptic
neuron spikes. This imposes an additional memory requirement, which may limit large-scale software
applications or implementations on resource-restricted hardware, and also imposes an energy requirement
to update the traces. Moreover, STDP is constrained by its time window parameter, in which the spike time
difference must fall to update the weight significantly, which needs to be optimised for each task.

Consequently, a novel unsupervised and local plasticity rule, called voltage-dependent synaptic plasticity
(VDSP) [23], has recently been developed to address STDP issues. VDSP is a hardware-friendly alternative
approach to STDP (and other Hebbian-based rules) developed for the implementation of Hebb’s plasticity
mechanism on memristive-based neuromorphic hardware. In this type of hardware, the synapses are
implemented with an emerging memory technology that enables in-memory computing [24]. The rule uses
the membrane potential of the presynaptic neuron instead of its spike timing to evaluate pre/post neurons
correlation, with the following assumption: high membrane potential reflects a neuron that is about to fire,
whereas a negative membrane potential reflects a neuron that has recently fired. Hence, no extra memory is
needed for storing spike traces, as membrane potential is readily available as part of the neuron
implementation. In addition, only the postsynaptic neuron spike event is used to trigger the updating of the
weights, which reduces by two the number of updates with respect to standard STDP. Finally, VDSP is not
based on a fixed scale of spike time difference to update the weights, which removes the need for the time
window parameter. Note that the suitability of VDSP in neuromorphic hardware is dependent on its
architecture. In the case of in-memory computing based neuromorphic hardware, the synapses are physically
connected to both pre- and postsynaptic neurons. The membrane potential is, hence, readily and locally
available to the synapses. VDSP is new and has been implemented only on a one-layer fully connected
network for now [23]. Further research has to be done to evaluate the scalability and the performance of
VDSP in other network architectures.

In this paper, inspired by the model developed in [11] and the input encoding used in [21], we
implemented for the first time VDSP in a CSNN. We aimed to study the influence of VDSP in convolutional
networks on the performance, while minimising spike counts to create a sparsely activated model suitable for
edge computing with implementation on neuromorphic hardware. The model comprises an input layer, a
convolutional layer, and a max-pooling layer. The input image is encoded efficiently into spike bins with
time-to-first-spike (TTFS) [25] temporal algorithm. Neurons of the CSNN are single-spike
integrate-and-fire (SSIF), which are IF neurons that can fire at most once. The output of the CSNN is used to
train the readout, or output layer, implementing a linear support vector machine (SVM). We show that the
proposed CSNN can be used for various applications, as we have evaluated it on the speaker-independent
isolated spoken digits classification task with the dataset TIDIGITS [26] and on the handwritten digits
classification task with the dataset MNIST [27]. The accuracy of 98.56%, recorded for MNIST, is comparable
to the state of the art. On TIDIGITS, it, helped by our preprocessing pipeline, outperforms the state of the
art, obtaining 99.43%. Further analysis demonstrates that, besides handling unlabelled data, VDSP requires
only a few samples for training and the weights tend toward binary values. Also, TTFS and SSIF neurons
make the network sparsely activated: we recorded a mean of 2.9% activations over 172 580 neurons per input
for TIDIGITS, which is promising for edge computing with implementation on low-power hardware. Our
adaptation of VDSP introduces a depression factor that has been extremely effective at reducing the number
of training samples needed, and hence, training time, by a factor of two and more, with similar performance.
The source code of the proposed CSNN is publicly available at [28].
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2. Methods

2.1. Network architecture
The architecture of the CSNN is composed of an input layer, a convolutional layer, and a max-pooling layer,
illustrated in figure 1. First, TTFS is used to convert efficiently an image into spike bins, with at most one
spike per pixel. The input layer propagates the spike bins to the convolutional layer, which learns features
with a winner-take-all based adaptation of VDSP. The max-pooling layer compresses the feature maps to
reduce the size of the output and provide invariance to translation on the input image. The neuron model
used in the CSNN is SSIF, so they can fire at most once per input, leading to a sparsely activated model. The
sum of the spikes for each max-pooling neuron over all timesteps is recorded and gathered in a
1-dimensional output vector. As neurons can fire at most once, this vector represents the binary state of the
max-pooling neurons and is used to train the readout layer, a linear SVM, for the classification task.

2.2. Input preprocessing
Because of their architecture, CNNs can work with images as input. Indeed, they use two-dimensional
kernels to extract patterns between neighbouring pixels. SNNs integrate a time dimension in their
functioning. Hence, it is necessary to encode the inputs into discrete spike bins before propagating them to
the network. In this way, we designed a preprocessing pipeline for acoustic signals, illustrated in figure 2, to
transform a sound sample into an image and encode it into spike bins. Note that when addressing plain
image inputs, the pipeline is only composed of the encoding step.

For sound inputs, the first stage of the pipeline consists in trimming the samples to extract the human
voice. However, as the CSNN can not handle inputs of various sizes, we then zero-padded all samples to
match the length of the longest trimmed one. Secondly, we transformed the sounds into images with a
log-mel spectrogram (LMS), which is a visual representation of a sound, including both time and frequency
information, and obtained by using the discrete Fourier transform (DFT). LMS is bio-inspired, as it is based
on a mel-scale, proposed by Stevens and Volkmann [29], showing that humans do not hear frequencies on a
linear scale.

The last stage of the pipeline consists in encoding the image into spike bins. Several coding schemes have
already been proposed in the literature [30], grouped into two main categories: rate coding and temporal
coding. Rate coding integrates the information in the neuron firing rate, which can be time-consuming and
inefficient in energy. In contrast, temporal coding represents the information through the precise timing of
the spike. TTFS [25] is a temporal algorithm, already used in [21, 31, 32], that encodes information by the
time difference between the onset of a stimulus and the first spike of the neuron. For an image input, the
pixel value is inversely proportional to its response time. Thus, each pixel is represented by a single spike,
which makes the encoding fast and efficient in energy. This encoding is biologically plausible as it has been
found in the human visual [33] and auditory [34] sensory systems. TTFS encodes an image into N spike
bins, two-dimensional images with the same size as the input image, containing binary pixels, i.e. spikes, for
a precise timestep.

2.3. Spiking neuronmodel
We call the model of the neurons used in the CSNN the SSIF model, presented in figure 1. This model is
described in [11] by integrate-and-fire (IF) neurons that can fire at most once. The IF model is one of the
simplest models, as the neuron membrane potential V is incremented when it receives spikes from
presynaptic neurons, but it does not decrease with time, unlike the leaky IF (LIF) model. In addition, the
single-spike constraint ensures a sparsely activated model, which is relevant for edge computing with
low-power hardware. The membrane potential of neuron i is initialised to Vrest and, at each timestep t, it is
updated according to the following rule:

Vi(t) = Vi(t− 1)+
∑
j

wji · Sj(t− 1) (1)

with Sj spikes of presynaptic neurons j and wji synaptic weights of the connection between neurons j and i.
When V exceeds a threshold Vthr, it is reset to Vreset and the neuron fires. Between samples, the neurons are
reinitialised to Vrest. It is important to mention that Vreset and Vrest must be different for VDSP to work
properly. Hence, we set the voltage convention of Vreset =−1 and Vrest = 0. The single-spike model is
consistent with the TTFS encoding used, as neurons can fire at most once. Thus, during a simulation of t
timesteps, the network is guaranteed to emit no more than N spikes, with N the total number of neurons.
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Figure 1. Architecture of the CSNN, composed of an input layer, a convolutional layer, and a max-pooling layer. The neuron
model is the single-spike integrate-and-fire (SSIF), which are IF neurons that can fire at most once. Spike bins, encoded efficiently
with time-to-first-spike (TTFS), are propagated successively in the network by the input layer. The convolutional layer extracts
features from the input image (encoded into spike bins) and is trained in an unsupervised and local fashion with
voltage-dependent synaptic plasticity (VDSP), a novel hardware-friendly learning rule based on Hebb’s plasticity mechanism.
VDSP uses the presynaptic neuron membrane potential V to evaluate pre/post neurons correlation: connection where
presynaptic neuron membrane potential V> Vrest is depressed whereas it is potentiated when V= Vreset. Max-pooling neurons
perform a maximum operation in their corresponding window to reduce the size of the feature maps and provide invariance to
translation. The output of the CSNN is a flattened feature vector representing the sum of spikes of each max-pooling neuron over
all timesteps. As neurons can fire at most once, the vector’s values are binary. Finally, the output is propagated to the readout layer,
implementing a linear support vector machine (SVM), for the classification task.

Figure 2. Sound preprocessing pipeline. First, the signal is trimmed to capture the human voice and padded at the end, according
to the longest trimmed input, to get samples of the same size. Then, the log-mel spectrogram (LMS) is extracted to obtain an
image of size Frames× Frequency bands. Lastly, the image is encoded efficiently into spike bins with time-to-first-spike (TTFS)
temporal algorithm.

2.4. Input layer
The input layer is used in an offline fashion with spike bins as inputs. In this way, the CSNN is compatible
with both plain images, that we can encode into spike bins, or already encoded ones. However, note that the
layer can also be implemented as an online TTFS encoder, as it is in [21]. The input layer is composed of SSIF
neurons organised in a two-dimensional grid, with the same size as the input images, each neuron
corresponding to a pixel. First, the layer stacks all spike bins from an input image. Then, at each timestep t,
the membrane potential of the input neuron i is updated as follows:

Vi(t) = Vi(t− 1)+ Si

with Si =
Vthr

ti
(2)

4
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Si is called the potential step of the neuron i and ti is the firing timestep (i.e. the spike bin number) of the
pixel corresponding to the neuron i. Neurons fire when their membrane potential exceeds Vthr, which
corresponds to the timestep where their corresponding pixel is activated in the input spike bins. Hence,
forward propagation is done in the same number of timesteps as the number of spike bins. The purpose of
the input layer is to propagate the input spike bins to the convolutional layer with SSIF neurons, which is
mandatory for VDSP.

2.5. Convolutional layer
The convolutional layer is composed of several feature maps, containing SSIF neurons organised in a
two-dimensional grid. Each neuron of a specific feature map is receptive to a unique 2D window in the input
layer, corresponding to the convolution operation carried out to update the neuron’s potential. The
dimension of the 2D windows is equal to the dimension of the kernels containing the synaptic weights for
each feature map. Weights are shared between neurons of the same map, which makes it possible to detect
the same features at different locations of the input. In addition, it makes training much faster, as the number
of weights is considerably reduced.

The convolutional layer also implements a lateral inhibition mechanism, often used in SNNs: when a
neuron of a feature map fires, it deactivates all neurons at the same position in the other feature maps,
resetting their potential to Vrest and preventing them from updating it until the end of the propagation. If
several neurons at the same position in different feature maps fire at the same time, the spike of the one with
the highest potential is preserved and other spikes are inhibited. This principle reduces redundant
information and ensures the model has few activations. E.g., for a convolutional layer of C×N×M neurons
(with C the channels, N the rows,M the columns), only N ×M spikes can be emitted per input.

2.6. Max-pooling layer
The max-pooling layer is identical to the ones used in second generation CNNs. It is composed of the same
number of feature maps as the convolutional layer. Each neuron of a feature map is connected to a unique 2D
window in the corresponding map of the convolutional layer and performs a maximum operation on the
output spikes in the window. Its synaptic weights and its threshold Vthr are both fixed to 1. Hence, the
neuron fires when a presynaptic neuron of its window emits a spike. As with the SSIF model, max-pooling
neurons can also fire at most once per input. The purpose of the layer is to compress the feature maps so as to
reduce the size of the output and make the network robust to translations of the input image.

2.7. Learning with VDSP
Learning in the CSNN is performed online, in an unsupervised and local fashion, with a winner-take-all
based adaptation of VDSP [23] for SSIF neurons. VDSP is a novel, hardware-friendly, alternative approach to
STDP, developed for the implementation of Hebb’s plasticity mechanism on memristive-based
neuromorphic hardware. It is implemented in the convolutional layer and performed at each timestep on the
spikes of the postsynaptic neurons. Unlike global rules, where the update of the weights considers the output
of the model, thus requiring backpropagation through all layers, local rules use only the local information of
the neurons, making them more efficient in terms of computation time. Moreover, this locality significantly
facilitates hardware implementation by avoiding the need for network-level communications. The main idea
behind VDSP is that a high membrane potential reflects a neuron that is about to fire, whereas a negative
membrane potential reflects a neuron that has recently fired. However, as the SSIF model differs from the LIF
model used in the original paper, we made an adaptation of the rule, formulated as follows:

∆wji =

{
wji(wmax −wji) · lr if Vpre = Vreset

wji(wmax −wji) · lr · (V ′
pre − fdep) if Vpre ⩾ Vrest

(3)

where i and j and respectively refer to the index of post- and presynaptic neurons,∆wji is the change in
weights, wji are the current weights, wmax the maximum weight value, lr the learning rate, Vpre the membrane
potential of the presynaptic neuron j, and fdep the depression factor (must be⩾ 1). Note that V ′

pre is the value
of Vpre normalised to the range [0,1]. Also, wmax −wji is a soft-bound term used to clip weights in the range
[0,wmax], to prevent the explosion of the values of the weights.

As the neurons of the CSNN are single-spike, it is not possible to exploit the timing assumption with eVpre

from the original formula of the VDSP paper, making the value of∆w proportional to the last spike timing of
the presynaptic neuron (or the magnitude of its potential). Indeed, in the original formula, the higher Vpre or
−Vpre is, the bigger is the weight update. This mechanism works as the neurons are LIF and can fire multiple
times. With IF neurons, it is not relevant to consider spike timing for potentiation, as the membrane potential
of a postsynaptic neuron can not decrease, making presynaptic neurons that have fired equally important as
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each other. However, for depression, we reproduced the idea of the original formula by introducing a
depression factor with the term V ′

pre − fdep, making the depression of connections where the presynaptic
neuron has a membrane potential close to Vrest faster than when it is too close to Vthr. Here, instead of
seeking the last spike time, we make an assumption about the next spike time, as neurons are single-spike.
Therefore, connections where presynaptic neurons that are likely to fire in a long time are depressed quicker,
leading to a more efficient training. Also, when fdep is sufficiently high, it may speed up training considerably.

Inspired by biological processes in visual search tasks [35], a winner-take-all (WTA) topology is used
during learning. WTA plays an important role in avoiding having neurons at neighbouring positions in
different feature maps react to the same pattern, but it also increases the efficiency of the training and reduces
the computational cost. To do so, at each timestep t, only k winning neurons in the layer are allowed to
update their weights with VDSP. The choice of winners is made by taking the neurons that are about to fire
and have the highest potential. In addition, there can be only one winner per feature map (i.e. global
intra-map competition) and only one winner in the neighbourhood of a position (i.e. local inter-map
competition). The neighbourhood is defined by a 2D window of size rinhib around the winning neuron.
Winning neurons disable the ability to carry out VDSP for all neurons in their feature map as well as neurons
in their neighbourhood in other maps, thus preventing them from updating their weights until the end of the
propagation.

While training continues, VDSP iterations are recorded and the learning rate is multiplied by two every
lrstep learning steps, until reaching a maximum defined by lrmax. The learning rate is initially kept low to
prevent the significant depression effect caused by neurons responding to every pattern. As neurons begin to
recognise and react to fewer patterns, it is gradually increased to amplify long-term potentiation and
depression. Training is stopped when the learning convergence C, described in [11] by the formula 4, is lower
than 0.01, meaning that the weights are sufficiently close to wmin = 0 or wmax.

C=

∑
j

∑
iwji × (wmax −wji)

nw
(4)

with wji the weights and nw the total number of weights in the convolutional layer.

2.8. Readout
The readout is the output layer of the model. This layer uses the 1-dimensional feature vector produced by
the CSNN, as described in figure 1, to classify the input. The feature vector corresponds to the binary state of
the max-pooling neurons (i.e. if they have fired or not). To do so, the output value of each max-pooling
neuron is summed over timesteps and then gathered into a 1-dimensional vector. As the neurons are
single-spike, the values of the vector are binary. The main assumption of the readout is that the CSNN can
extract sufficiently distinct features to make the output data linearly separable, allowing a simple algorithm
to make the decisions. Hence, we implemented a linear SVM as a readout function that is trained on the
CSNN outputs. Note that the SVM is only used to assess how discriminative the features the CSNN extracted
are and it is not part of the model in itself.

3. Results

We evaluated the proposed CSNN on the speaker-independent isolated spoken digits classification task with
the dataset TIDIGITS [26] and on the handwritten digits classification task with the dataset MNIST [27].
The parameters of the CSNN used in all of our experiments are described in table 1. The input images are
encoded into 15 spike bins with TTFS. The weights of the convolutional layer are clipped between wmin = 0
and wmax = 1, and are initialised randomly, following a normal distribution with a mean of 0.8 and a
standard deviation of 0.05. The learning rate of the VDSP in the convolutional layer was defined by
lrinit = 0.01, lrfinal = 0.1, and updated every lrstep = 500 learning steps, with fdep = 2. The readout uses the
implementation of a linear SVM in the library scikit-learn, with the regularisation parameter C= 0.005. To
optimise the parameters of the CSNN, we used manual tuning and randomised search technique. All of the
parameters used in our model are also listed in appendix (tables 4, 5, 6).

The evaluation process consists of:

(a) Train in an unsupervised manner the convolutional layer with VDSP on training samples
(b) Freeze VDSP and record output vectors for both training and testing samples
(c) Train in a supervised manner the readout with training vectors and predict classes for testing vectors.
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Table 1. CSNN parameters used for experiments.

Feature maps Kernel Stride Padding Vthr nwinners rinhib

Conv 70 7 1 3 10 7 3
Pool 70 3 3 0 1 — —

Table 2. Accuracy of proposed CSNN and other methods from the literature on the TIDIGITS dataset.

Model Architecture Learning type Learning rule Number of classes Accuracy (%)

Shrestha and
Orchard [36]

SNN Supervised SLAYER 11 99.09

Jia et al [37] MR-SNN Supervised Reward learning 10 98.63
Jia et al [38] NRR-SNN Supervised NRR 10 98.34
Wu et al [39] SOM-SNN+

Tempotron-like
Unsupervised Competitive learning 11 97.60

Dong et al [21] CSNN+SVM Unsupervised STDP 10 97.50
Zhang et al [40] CSNN Supervised BRP 10 94.86
This work CSNN+SVM Unsupervised VDSP 11 99.43

3.1. Spoken digits classification with TIDIGITS
TIDIGITS is a dataset containing acoustic signals sampled at 20 kHz from 326 speakers (111 men, 114
women, 50 boys, and 51 girls), each pronouncing 77 sequences of varying lengths of digits from ‘zero’ to
‘nine’ and ‘oh’. In our experiment, we used the 4950 isolated spoken digit utterances from men and women
only. The audio signals were re-sampled at 16 kHz, trimmed with a threshold of 20 dB, and padded to a
length of 13 824, or 864ms (maximum sample length after trimming). Then, they were split randomly into
training and test sets with a ratio 7:3. LMS were extracted with the following parameters: 512 FFT frames,
hop length of 256 40 mel bins, frequency range from 0Hz to 8000Hz, producing images with a size of 55
frames× 40 frequency bands.

We evaluated the proposed CSNN on the TIDIGITS dataset and we obtained a mean accuracy of
99.43± 0.14% over ten tries, for the test set. In table 2, the performance of the CSNN is compared with the
literature. With the proposed CSNN and our preprocessing pipeline, we obtained an accuracy higher than
the state of the art for SNNs, with a shallow architecture and an unsupervised hardware-friendly plasticity
rule. Note that our preprocessing pipeline, and especially the trimming step, plays an important role in the
performance. Without trimming, the accuracy of the CSNN is 97.76± 0.46%, which is similar to other
works with unsupervised architectures. Also, the accuracy with and without trimming is, respectively,
98.57% and 94.26% for the linear SVM trained on LMS features. We observed a mean of 5036 spikes per
sample in the network over 172 580 neurons, i.e. around 2.9% activation in the network, demonstrating that
the use of TTFS and SSIF neurons results in a sparsely activated model. This makes the CSNN promising for
hardware implementation on low-power devices, needing extremely energy-efficient models. In addition,
with VDSP, we do not have to save the traces of the neurons, which saves 172580neurons× 4bytes, i.e.
690 32 Kilobytes of memory, assuming the size of a trace is 4 bytes. Note that the amount of memory saved in
this case with respect to STDP is sufficiently small to be ignored but it can be much bigger for large scale
application. Also, for hardware implementation, circuit design and miniaturisation could be easier, as no
extra memory is needed.

To better analyse the learning process with VDSP, we evaluated the performance of the CSNN on the test
set at different times throughout the training. Figure 3 shows the mean accuracy measured over ten tries for
different numbers of training samples. The accuracy without training is 98.77% and it stabilises at∼99.3%
after 250 samples. The accuracy increases quickly from 98.77% without training to 99.38% after 50 training
samples and then stabilises at∼99.3% after 250 samples. However, the convergence of the learning of the
convolutional layer happens at approximately 200 samples, which normally stops the CSNN training. This
makes the WTA-based VDSP learning rule particularly attractive because, besides being able to process
unlabelled datasets, it requires little data for training. It is important to mention that TIDIGITS classification
is a fairly simple task and the mean accuracy of the linear SVM trained on LMS features is already high,
98.57%, which explains why the increase in accuracy with the CSNN is small. Nonetheless, it is also known
that the last gains in accuracy are the hardest to get. Larger accuracy differences are expected with more
challenging classification tasks. The figure also plots the weight distributions after 0, 50, and 300 training
samples. Initially, the weights are initialised randomly, following a normal distribution with a mean of 0.8
and a standard deviation of 0.05. During training, they are either depressed or potentiated until getting
pretty close to wmin = 0 and wmax = 1, demonstrating another property of VDSP, useful for hardware
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Figure 3.Mean accuracy averaged over ten tries on the test set for different numbers of training samples in the training of the
CSNN. The mean accuracy of a linear SVM trained on LMS features is 98.57%. The learning process of the CSNN is illustrated: its
accuracy increases as the number of samples used for training grows, until converging after 250 samples. The convergence of the
learning of the convolutional layer is achieved, on average, after 202 samples, which demonstrates that VDSP requires few data for
training. The weight distributions after training on 0, 50, and 300 samples are presented: learning with VDSP tends to binary
weights.

Figure 4.Mean number of training samples used by the CSNN until the learning converges, plotted against different values of the
VDSP depression factor fdep. The orange curve shows the accuracy averaged over 10 tries on the test set. When set to ‘None’, the
term V ′

pre − fdep of the VDSP formula is replaced by the constant 1. Increasing fdep significantly speeds up the training while
obtaining similar performance. The addition of the depression factor with the term V ′

pre − fdep benefits the training time, as more
training samples are needed for fdep = None.

implementation of pre-trained networks, since the weights could be represented by open-and-closed gates.
Note that the accuracy is higher for 50 than 300 training samples as the standard deviation is much higher,
which leads the weights to be distributed between wmin and wmax, and hence, the class separation by SVM is
easier.

To validate the adaptation of VDSP that we introduced in the previous section, we analysed the benefit of
the fdep parameter. Figure 4 illustrates the number of training samples used for the convolutional layer to
converge, plotted against the chosen value of fdep. When fdep is not specified, the term V ′

pre − fdep of the VDSP
formula is replaced by 1, making VDSP similar to an adaptation of STDP proposed in [41]. Without this
depression factor, the model needs around 455 samples to converge and achieves an accuracy of 99.3%.
Using a value of fdep > 1 considerably reduces the number of training samples needed for convergence, as the
connections where the presynaptic neuron has a low membrane potential are depressed more strongly. We
present the average over 202 samples needed for fdep = 2, with an accuracy of 99.39%, and 154 samples for
fdep = 3, with an accuracy of 99.35%. Hence, these results validate the assumption that presynaptic neurons
more likely to fire in a long time can be depressed stronger than presynaptic neurons that are about to fire.
Note that fdep must be optimised for the dataset and the desired objective. Also, to facilitate hardware
implementation, it may be more convenient to remove the depression term and only use the sign of the
membrane potential. As shown in figure 4, it has a minimal impact on the CSNN’s performance, but it may
make it easier for data to spread throughout hardware.
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Figure 5. Accuracy averaged over ten tries on the test set vs, in (a), pooling size (kernel and stride sizes), and in (b), the number of
feature maps. Orange curves illustrate the output size of the CSNN. Note that no padding is used in the pooling layer. High
pooling sizes yield pretty high performance while having a good compression rate. Increasing the number of feature maps
improves performance to some extent but also increases output size.

In another experiment, we studied the influence of two hyperparameters of the CSNN: the pooling size,
representing both the pooling kernel and stride length, and the number of feature maps. Figure 5 shows the
accuracy on the test set averaged over ten tries, plotted against these two parameters. The orange curves
indicate the number of output features. Surprisingly, high pooling values can lead to high performance while
greatly reducing the size of the output. For instance, an accuracy of 99.41% is achieved for a pooling of 5,
compressing the feature maps of the convolutional layer by 96%. However, the best accuracy is obtained for a
pooling of 3, with 99.43%, while giving a compression rate of 89%. Second, up to 70 feature maps, as the
number of feature maps grows, accuracy improves, but it also increases the number of output features. Note
that the number of winners nwinners has a slight impact on accuracy but also on training time. Nonetheless,
small values help to learn distinct patterns between feature maps. Lastly, depending on the purpose, a bigger
pooling size with fewer feature maps and a lower padding size in the convolutional layer could reduce the size
of the input and thus transform the CSNN into an efficient encoder.

3.2. Handwritten digits classification withMNIST
MNIST is the standard dataset used in computer vision for benchmarking. It is composed of 28× 28
grey-scale images of handwritten digits ranging from 0 to 9. The training set contains 60 000 images and the
test set contains 10 000 images. Table 3 compares the accuracy achieved by the CSNN with other methods in
the literature. We obtained an average accuracy (over ten tries) of 98.56± 0.05% on the test set, which is
comparable to the state of the art performance on SNNs. Again, there were few activations per sample, with a
mean of 561 spikes in the network over 61 334 neurons, i.e. around 0.9% activations. The proposed CSNN
with a linear SVM also outperforms by 8% the accuracy reported in the original VDSP paper [23], where a
one-layer fully connected network is used. However, it is important to note that the author used an
unsupervised readout based on spike counts, which is much less complex. Our approach still has other
advantages compared to the SNN of the author. First, the use of a convolutional architecture reduces the
number of weights by 99%, with 392 000 weights in the SNN against 3430 in the CSNN, which is especially
useful for implementation on analogue neuromorphic hardware. This number of weights can be further
reduced without significantly harming the performance, for instance, by reducing the number of feature
maps. Moreover, TTFS encodes inputs in 15 timesteps only, compared to 100 in the approach with the SNN,
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Table 3. Accuracy of proposed CSNN and methods from the literature on MNIST dataset.

Model Architecture Learning type Learning rule Accuracy (%)

Lee et al [10] CSNN Supervised Backpropagation-like 99.31
Falez et al [22] CSNN+SVM Unsupervised STDP 98.60
Kheradpisheh et al [11] CSNN+SVM Unsupervised STDP 98.40
Tavanaei and Maida [20] SNN Supervised BP-STDP 97.20
Kheradpisheh et al [43] BS4NN Supervised Backpropagation-like 97.00
Garg et al [23] SNN Unsupervised VDSP 90.56
This work CSNN+SVM Unsupervised VDSP 98.56

Figure 6. (a) Evolution of various convolution kernels at different steps in the training process. With an adaptive learning rate,
learning occurs mainly between 100 and 200 training samples. In addition, kernels become selective to edges. (b) Evolution of
output spikes from various feature maps, represented by distinct colours, throughout training. As training continues, the shapes
of the digits become more and more visible and feature maps become receptive to different patterns of digits that match trained
kernels.

using a rate coding scheme. Hence, the propagation is much faster and also more efficient in terms of energy.
However, temporal encoding algorithms are not robust to noise, unlike rate coding ones [42].

To better understand how the convolutional layer learns features, we visualised kernels and feature maps
throughout the training of the CSNN. Figure 6 presents the evolution of various convolution kernels and
feature maps at different steps of the training process. In (a), we can see that some kernels become selective to
edges, enabling the detection of the shapes of the digits. While the learning of the CSNN converges after 715
training samples, we observe only a few changes after 300 samples, meaning the learning is almost finished.
Indeed, as the learning rate is adaptive, it reaches lrfinal = 0.1 after 133 samples, which leads to a faster
learning process. In (b), the output spikes of several feature maps are shown with distinct colours. Without
training, the outputs of the feature maps are scattered and we can not observe distinct patterns, whereas after
training, the feature maps are receptive to distinct patterns that match the trained kernels. For instance, we
observe purple horizontal lines for the digit ‘2’, and green diagonal lines for the digit ‘3’. In addition, the
shape of the digit becomes more and more visible as training proceeds.
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4. Conclusion

Unsupervised learning in SNNs is usually achieved with STDP [18]. However, STDP has some limitations
that makes its hardware implementation difficult. Hence, a novel plasticity rule, called voltage-dependent
synaptic plasticity (VDSP) [23], has been developed for the implementation of STDP on memristive-based
neuromorphic hardware. This rule is also unsupervised and local, as it uses the membrane potential of the
presynaptic neuron (instead of its spike timing in STDP) to evaluate pre/post neurons correlation. However,
VDSP is new and so far has only been implemented on a one-layer fully connected network. Further research
has to be done to evaluate its scalability and its performance in other network architectures.

In the present paper, we studied for the first time the behaviour of VDSP in a convolutional SNN
(CSNN) and its implications with SSIF neurons and TTFS temporal encoding. We developed a WTA based
adaptation of VDSP for SSIF neurons, where the estimated spike timing of a presynaptic neuron by its
membrane potential is used to evaluate pre/post neurons correlation. Indeed, a high membrane potential,
reflecting a neuron about to fire, leads to slow depression whereas a negative membrane potential, reflecting
a neuron that is likely to fire only after a long time, leads to a strong depression, which makes training more
efficient. Also, the WTA topology used here increases the efficiency of the training and reduces the
computational cost. On top of that, we introduced a depression factor in the VDSP formula that may be used
to considerably speed up the training, reducing by a factor of two or more the number of training samples
needed for the model to converge, with similar performance. VDSP is hardware-friendly, which could make
the implementation of the proposed CSNN on memristive-based neuromorphic hardware easier. Note that it
could even be useful for large-scale software applications as it removes the need for additional memory to
store traces compared with standard STDP. The use of SSIF neurons with TTFS encoding, also facilitated by a
lateral inhibition mechanism, makes the CSNN sparsely activated, which is promising for the development of
extremely energy-efficient models. We evaluated the proposed CSNN on a computer vision task with MNIST,
where it achieved an accuracy of 98.56%, and on a speech recognition task with TIDIGITS, where, helped by
our sound preprocessing pipeline, we obtained results better than the state of the art, with an accuracy of
99.43%. We proved that the max-pooling layer is highly efficient at compressing the feature maps while
achieving the same performance. Also, we showed that VDSP requires few samples for training, which is
useful for small and unlabelled datasets. It also makes the weights tend to binary values, which could facilitate
hardware implementation for pre-trained networks. The proposed CSNN with a linear SVM outperforms
the fully connected SNN of the original VDSP paper for the MNIST dataset, demonstrating the potential of
VDSP implemented in CSNNs with SSIF neurons and TTFS encoding. In addition, when compared to a fully
connected SNN, using a CSNN significantly reduces the number of weights, and the use of TTFS decreases
the number of timesteps, making both the encoding and the propagation faster and more efficient.

In the future, we will explore supervised learning with spike-based classifiers [21, 44] to replace the SVM
used in the readout layer. We are particularly interested in feedback connections, as studied in [44], because
they can be used in conjunction with VDSP. We will also study hardware-friendly and energy-efficient
preprocessing pipelines. We intend to create an end-to-end SNN solution suitable for neuromorphic
hardware implementation.
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Appendix. Parameters

Table 4. Parameters of the CSNN.

Feature maps Kernel Stride Padding Vthr nwinners rinhib

Conv 70 7 1 3 10 7 3
Pool 70 3 3 0 1 — —

Table 5. Parameters of VDSP.

lrinit lrfinal lrstep fdep

0.01 0.1 500 2

Table 6. Other parameters.

wmin wmax wmean
init wstd

init Csvm Nbins

0 1 0.8 0.05 0.005 15
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