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Abstract

With the recent 802.11ax amendment to the IEEE standard commercialized
as Wi-Fi 6, WLANs have the potential to greatly improve the spatial reuse
of radio channels. This resorts to the new ability for APs (Access Points)
to dynamically modify their transmission power as well as the signal energy
threshold beyond which they consider the radio channel to be free or busy. In
general, selecting adequate values for these parameters is complex because of
(i) the high dimensionality of the problem and (ii) the uncertainty of the radio
environment. To overcome these difficulties, we frame this problem as a MAB
(Multi-Armed Bandit) problem and propose an efficient and robust solution
using Thompson sampling, an original sampling of WLAN configurations,
and a tailor-made reward function. We evaluate the efficiency of our solution
as well as several other ones with scenarios inspired by real-life WLANs’
deployments using the network simulator ns-3. The numerical results show
the ability of our solution along with its superiority over the others at finding
adequate parameterization at each AP thereby significantly improving the
overall performance of WLANs.

Keywords: WLANs, Spatial Reuse, Fairness, Reinforcement Learning,
Thompson Sampling, Power Control, Clear Channel Assessment

1. Introduction

Over the last decade, access to WLANs has gradually come to be regarded
as a basic service by many, much in the same way as running water, elec-
tricity, and heating. Yet for all of its importance, WLANs rarely run at its
maximum efficiency. This is because setting up WLANs is complicated as
they need to address the specific requirements of their STAs (Stations) while
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accommodating the constraints of their physical environment. In addition,
when the area to be connected is large, WLANs are often comprised of a fleet
of APs (Access Points), each of them serving as a gateway for its associated
STAs. For the sake of practicality, all APs are typically managed by a single
controller hosted on a server of the wired network.

Due to the relative scarcity of space on the radio spectrum and the increas-
ing need of STAs for throughput, current deployments of WLANs tend to
contain a dense number of APs. This can have strong implications on the
WLANs’ performance because of the listen-before-talk principle, which gov-
erns the behavior of the 802.11 standard behind the Wi-Fi protocol (e.g., [1]).
For instance, if two APs are far enough away from each other (beyond each
other’s detection range), they can successfully exchange their frames at the
same time despite operating on the same radio channel. This is referred to
as the “spatial reuse of the channel bandwidth”. Conversely, if they are too
close (within each other’s detection range), as soon as one of them transmits,
it automatically blocks (or freezes) the other. While spatial reuse can greatly
increase the throughput capacity of a WLAN, it has remained, until now, far
from optimal because: (i) APs are fixed and are not easily movable; and (ii)
the physical properties of the radio channels are rather unpredictable at the
deployment of WLANs’ APs.

The recent amendment to the 802.11 standard, namely 802.11ax [2] (the in-
terested reader can refer to [3] for a good tutorial) has the potential to be a
game-changer as it enables WLANs to dynamically modify the transmission
power of APs (a.k.a. TX PWR), and it allows the signal energy threshold to
go beyond the level which APs consider the radio channel to be free or busy
(a.k.a. the Overlapping Basic Service Set Packet Detect or OBSS/PD). When
done properly, the tuning of these two parameters can greatly increase the
performance of WLANs (e.g., [4]).

To illustrate the potential of 802.11ax, let us consider a simple scenario where
two APs are each serving one STA. First, assume that with their default con-
figuration for TX PWR and OBSS/PD, each AP falls in the detection range of
the other, as shown in Figure 1a. This makes it virtually impossible for the
two APs to transmit simultaneously. By gradually decreasing TX PWR at each
AP, we can obtain a configuration where each AP lies out of the other’s de-
tection range as depicted in Figure 1b. Now, both can exchange data with
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(a) By default, the APs are located in the
communication range of each other. As-
suming they are on the same radio chan-
nel, they cannot transmit simultaneously.

(b) By decreasing the transmission power
of each AP, they end up out of the com-
munication range of each other so that, de-
spite being on the same radio channel, they
can transmit simultaneously (and success-
fully).

Figure 1: Illustrating the potential of 802.11ax at improving the spatial reuse of a channel
bandwidth.

their STAs at the same time. Another way of doing this is to increase the
OBSS/PD threshold at each AP so that the energy received at each AP (due
to the other’s transmissions) becomes insufficient to block its own transmis-
sions. It is worth noting that although these two approaches may be viewed
as similar (in the sense that both allow the two APs to transmit simultane-
ously), the performance of each STA may differ as they will have different
RSS (Received Signal Strength). Indeed, changing TX PWR directly affects
the value of RSS for the STAs associated with this AP whereas changing
OBSS/PD affects the AP’s opportunism in its transmissions.

In general, selecting adequate values for TX PWR and OBSS/PD for a given
WLAN is far from trivial. First, according to the 802.11ax amendment [2],
each parameter can take 21 values. Values for TX PWR and OBSS/PD range
from 1 to 21 dBm and from -82 to -62 dBm, respectively. The number of
combinations grows exponentially with the number of APs composing the
WLAN. Denoting the number of APs by NA, we have a total of 212∗NA com-
binations. Even in the simple case of Figure 1 with only two APs, this leads
to 194,481 combinations. Second, the search for adequate values must be
conducted quickly since WLANs will be typically maintained in operation
during the search process. Third, the radio environment is complex and
uncertain. This virtually precludes any optimization approach that relies
on a constructive theoretical model to translate surrounding radio properties
into high-level performance (for instance STAs’ throughput). This is because
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most constructive models are either coarse-grained representations that do
not permit a fine tuning of the TX PWR and OBSS/PD parameters (e.g., [5, 6]),
or are so detailed that they do not easily scale with the number of APs and
STAs (e.g., [7]).

Conversely, data-driven approaches are often designed to deal with large di-
mensionality and uncertainty, making them natural candidates to address
the problem of finding adequate values for the TX PWR and OBSS/PD. For
this study, we chose to frame this problem as a MAB (Multi-Armed Ban-
dit) problem and proposed an efficient and robust solution using Thompson
sampling, an original sampling of WLAN configurations, and a tailor-made
reward function. More precisely, this paper’s contributions are:

• A solution that uses an objective (reward) function suited to the pe-
culiarities of WLANs, a Bayesian optimizer, and an original sampler
to determine adequate values for the TX PWR and OBSS/PD parameters
that will improve the spatial reuse in WLANs.

• An evaluation of the efficiency of the above solution with scenarios
inspired by real-life WLANs’ deployments. We also incorporated im-
portant aspects that were ignored in previous works such as the rate
adaptation, letting the speed of the wireless links between APs and
STAs depend to their actual RSS and the presence of upstream traf-
fic (from STAs to the APs) and downstream traffic, instead of solely
downstream traffic. To the best of our knowledge, we are the first to
evaluate the efficiency of a solution based on machine learning tech-
niques for the TX PWR and OBSS/PD problem using the well-established
network simulator ns-3 [8].

• A comparison of the performance of our solution with several previously
proposed ones and a demonstration of the superiority of ours at finding
adequate parameter values for TX PWR and OBSS/PD at each AP. The
simulation results show that our solution is able to quickly discover
WLAN configurations that significantly reduce the number of STAs
suffering from poor performance, improve the fairness among STAs
and increase the cumulated throughput.

The remainder of the paper is organized as follows. The next section discusses
the related works. Section 3 describes the objective function in use while
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Section 4 presents the optimizer and sampler agents. We relate the numerical
results in Section 5. Section 6 concludes this paper.

2. Related Work

For a detailed explanation of how the IEEE 802.11ax standard implements
the adaptation of the transmission power (TX PWR) or the clear channel as-
sessment threshold (OBSS/PD) for nodes of WLANs, we refer the reader to
the recent work of Wilhelmi et al. [4]. The paper also illustrates, through
simple scenarios, the benefit of adapting these latter parameters in terms of
spatial reuse of the channels and throughput.

Before the adaptation of the TX PWR and OBSS/PD parameters was officially
enabled by the IEEE 802.11ax standard, some researchers had explored this
idea. A case in point is Zhu et al. in [9] who present an analytical model
to derive the optimal value for OBSS/PD in Wi-Fi-based mesh networks. The
selected values for OBSS/PD are dynamically tuned on each node depending
on the current conditions of the radio channel. In [10], Kim et al. show
how adapting the TX PWR parameter of nodes can increase the throughput of
nodes while reducing the energy consumption of communications.

In 2020, Qiu et al. [11] cast the issues of AP positioning and their power
allocation as a single optimization problem. Their solution addresses the ini-
tial positioning of APs, the channel allocation, and the configuration of the
parameter TX PWR on each AP. However, it delivers a static configuration for
the sole TX PWR parameter of every AP (the threshold parameter OBSS/PD is
not considered) that does not account for the number of STAs, nor for the
amount of traffic exchanged between STAs and APs.

More practical approaches have been proposed to adapt the TX PWR and
OBSS/PD parameters in real time. Afaqui et al. in [12] studied the prob-
lem of configuring the OBSS/PD parameter on the STAs. They proposed a
distributed algorithm, called Dynamic Sensitive Control algorithm (DSC),
in which STAs regularly measure the RSS of the beacons they receive from
their associated AP. Recall that beacons are small messages that APs period-
ically broadcast to advertise their WLAN. In a nutshell, with DSC, each STA
gradually decreases its value of OBSS/PD to favor concurrent transmissions
from nearby nodes (APs or STAs) while keeping this value high enough to
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ensure the proper reception of beacons. In [13], Lee et al. proposed another
distributed algorithm referred to as Link-aware Spatial Reuse (LSR). With
LSR, each AP chooses a concurrent AP that will be allowed to transmit si-
multaneously and then prescribes the value of its TX PWR. Like DSC, these
choices are based on the RSS. More precisely, each AP chooses its concurrent
AP as the one having the lowest RSS while the prescribed value for TX PWR is
based on the frame error rate when the AP and its concurrent AP transmit
simultaneously. Overall, both DSC and LSR algorithms [12, 13] represent
practical and effective solutions that can typically increase the throughput
of a WLAN by a factor of up 20-30%. However, none of them fully exploit the
potential benefits offered by the 802.11ax standard. DSC only modifies the
value of the OBSS/PD parameter for STAs so that performance improvements
mostly apply to the small portion of traffic that goes upstream. In the case
of LSR, the solution applies to APs and downstream traffic, but LSR limits
to one the number of concurrent APs allowed to transmit simultaneously.
In practice, this limitation is further increased since concurrent APs do not
always have frames to send at once.

Several researchers made use of machine learning methods to address the
issue of tuning the TX PWR and OBSS/PD parameters in WLANs. Ak and
Canberk in [14] propose a two-scale solution that relies on the learning ca-
pabilities of ANN (Artificial Neural Networks). In their framework, STAs
and APs first locally adjust their value of OBSS/PD to decrease interference.
Then, thanks to an ANN whose parameters have been set thanks to offline
simulations, they mitigate potential unfairness among STAs in terms of at-
tained throughput, which may otherwise occur due to the various locations
of STAs. The authors use the ns-3 simulator to show that their solution
can improve the throughput and fairness of WLANs up to 36% and 82%,
respectively. As far as we know, there is no performance dataset recognized
by the networking community whose content captures the large diversity
of scenarios that can be encountered in WLANs. Because of this lack of
representative dataset, the predefined parameters of the ANN may not be
accurate for all WLAN topologies. Therefore, an online approach, where the
agent sequentially learns how to optimize the performance metrics, seems
better suited here. Among the online approaches, the Multi-Armed Bandit
(MAB) framework is the one that best fits our problem since the agent can
perform an action (choosing a configuration) without causing any change in
the environment (the network is assumed to be static). This rationale led

6



multiple researchers (including ourself), to rely on the MAB framework to
tackle the issue of configuring the TX PWR and OBSS/PD parameters of APs in
WLANs. Indeed, in 2017 [15] and then in 2019 [16], Wilhelmi et al. framed
this problem as a MAB problem and proposed a distributed algorithm to be
executed on each AP. The two works from 2017 and 2019 mostly differ by
their definition of the reward, which represents the quality of a configuration.
In [15], the reward at each AP is computed as its own throughput, which can
be described as a “selfish” solution since each AP aims at optimizing its own
reward regardless of the others. Conversely, in [16], the authors introduce a
new definition for the reward based on a max-min function of the through-
puts of the AP and its neighboring APs. Using a self-made simulator, the
authors show that their solution significantly outperforms the default config-
uration of TX PWR and OBSS/PD and that the selfish reward in [15] may lead
to unfair situations between APs or STAs. In [17], Bardou et al. proposed
another solution based on MAB to solve the problem of configuring TX PWR

and OBSS/PD parameters. They introduced an original way of sampling new
configuration from the search space (as opposed to an uniform sampling as
is the case with the classical ε-GREEDY strategy) and they use the realistic
ns-3 simulator to validate the efficiency of their solution.

It is worth noting that, with the exception of [13], all aforementioned works
assume a constant Modulation and Coding Scheme (MCS) for the nodes.
However, in a real-life, every STA and AP dynamically adapt their MCS
(determining the data rate at which frames are exchanged) as a function of
the RSS and/or the frame error rate (e.g., [18]). This dynamic in the selec-
tion of MCS is further enhanced when the values of the TX PWR and OBSS/PD

parameters of nodes may vary. Although the interplay between these two
adaptive mechanisms brings further complexity, evaluating the performance
of an adaptive algorithm of TX PWR and OBSS/PD in the presence of an au-
tomatic MCS selection mechanism can only strengthen the accuracy of any
study.

To summarize, machine learning-based solutions methods appears more ca-
pable than others at finding efficient parameter settings for the sake of spatial
reuse, especially when the number of APs and STAs comprising the WLAN
is large. The MAB framework seems particularly well suited for that pur-
pose as it has the capacity to learn from the current environment without
prior knowledge of the network, unlike pretrained ANN. As compared to
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existing MAB approaches addressing the same problem, our solution makes
no assumption regarding the variance of the reward function unlike [15, 16],
and introduces a novel and more efficient way of sampling the search space
as compared to [17]. The combined effect of these contributions allows our
solution to quickly find better configurations for the WLAN as shown in Sec-
tion 5.

We use Table 1 to review the characteristics of the different approaches dis-
cussed so far for the problem of tuning TX PWR and OBSS/PD in WLANs.
This table shows that, except for [17], no machine learning-based solutions
have been tested on realistic scenarios with the help of a detailed simulator
such as ns-3, let alone the MCS automatic selection. Also, only the solution
presented in [14] considered bidirectional (upstream and downstream) traffic
in its performance evaluation. In this paper we are the first, to the best
of our knowledge, to consider a machine learning-based solution for which
the performance evaluation features (i) a realistic simulator such as ns-3 or
Opnet, (ii) an MCS automatic selection on nodes, and (iii) the coexistence
of upstream and downstream traffic.

Table 1: Comparison of the the state-of-the-art approaches. The last column refers to
the number of APs and the number of orthogonal radio channels used in the performance
evaluation. For instance, 100/11 indicates that the simulations consider a total of 100 APs
distributed over 11 orthogonal channels.

Proposed Tuning of Tuning of Dynamic Traffic Centra- Simulator APs /
solutions OBSS/PD TX PWR MCS Up/Down lized channels
WCMC’04 [9] Up/Down Opnet 100/1
VTC’04 [10] Up Self-made 8/1
Infocom’20 [11] Up/Down Self-made 100/11
WCNC’15 [12] Up Self-made 100/3
WCNC’21 [13] Down ns-3 6/1
Globecom’20 [14] Up/Down ns-3 3/1
ADHOC’19 [15] Down Self-made 8/1
JNCA’19 [16] Down Self-made 8/1
MSWiM’21 [17] Down ns-3 10/1
Our work Up/Down ns-3 180/18
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3. Objective Function

In order to properly frame our model as an optimization problem, we need to
define an objective function that evaluates the quality of a network configu-
ration for any WLAN. Recall that, in our case, a configuration consists in NA

pairs of parameters (TX PWR, OBSS/PD). We want the objective function to
return a score between 0 and 1, with 0 being the lowest score a configuration
can get, and 1 the best possible score. From the standpoint of a network
administrator, a good configuration must (i) guarantee enough throughput
for each AP and STA, (ii) ensure a fair share of throughput among the APs
and STAs, and (iii) maximize the WLAN overall throughput. Each of these
three criteria may be associated to specific performance metrics. Criterion
(i) relates to the number of starving STAs in the WLAN. In our work, a STA
is said to be in starvation when its attained throughput is too low. Criterion
(ii) is fulfilled by maximizing a definition of fairness such as Jain’s index [19].
Finally, criterion (iii) corresponds to the system overall throughput, obtained
by summing the individual throughputs of STAs. However, these criteria are
most often not correlated and, in our case, criterion (i) prevails. For example,
assume that a new configuration leads most STAs to significantly improve
their attained throughput and thus the WLAN overall throughput. If this
configuration also leads a single STA to become in starvation, then, as good
as this solution may be, it should be viewed as less efficient than the current
one.

We denote by Ti the throughput attained by STA i and by TAi the attain-
able throughput of STA i. The latter refers to the throughput STA i would
have in the absence of all other competing devices in the WLAN. Clearly,
we have Ti ≤ TAi . Note that both Ti and TAi are not constant since their
values depend on the tested configuration (due to the competition with other
STAs and APs for the former and to the RSS and MCS in use for the latter).
Throughout this work, STA i is labeled as starving of throughput whenever
Ti/T

A
i is less than a given threshold γ (say γ = 10%). Table 2 presents the

principal notation used for the definition of the objective function.

We consider the proportional fairness (PF), which is simply obtained by
multiplying the normalized throughputs of STAs, i.e.,

∏
i Ti/T

A
i , to obtain a

natural tradeoff between criteria (ii) and (iii). To account for criterion (i),
which is the most critical concern, we partition the set of STAs into two
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Table 2: Principal notation for the proposed method.

Parameter Description
C Configuration space
NA Number of APs
NS Number of STAs
Ti Attained throughput of STA i
TA
i Attainable throughput of STA i
T− STAs in starvation situation
T+ STAs not in starvation situation
γ Starvation threshold for a STA

subsets: T− the set of starving STAs and T+ the set of non-starving STAs,
and we compute the PF for each subset before combining them through a
weighted average. This leads us to define the objective function f as follows:

f (c) =
|T−|

∏
j∈|T−|

T−
j

γTA
j

+ |T+|
(
NS +

∏
j∈|T+|

T+
j

TA
j

)
NS(NS + 1)

(1)

where c represents any given network configuration and |X| denotes the car-
dinality of X.

By definition of T− and T+, we have: |T−| + |T+| = NS. Moreover, the
numerator in Equation 1 verifies that any configuration causing more STAs
to be in starvation than another will be associated to a lower returned value
(thanks to the extra NS term in the right component). Finally, the returned
value of f is always in the range of 0 and 1 thanks to the denominator of
Equation 1where NS is used to normalize the weights |T−| and |T+|, while

NS + 1 normalizes the two other terms (since we have:
∏

j∈|T−|
T−
j

TA
j
≤ 1 and

NS +
∏

j∈|T+|
T+
j

TA
j
≤ NS + 1). Finally, let us remark that all variables involved

in Equation 1 are fully observable. Of course, there are other ways of defin-
ing starvations. For instance, this could depend on the STA requirements.
If the administrator is able to determine the required throughput for every
STA of its WLAN, then it is straightforward to adapt the reward function
of Equation 1 to account for this new definition of starvation.
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4. Multi-Armed Bandit Solution

We model the optimization task as a MAB problem. Each WLAN configu-
ration is viewed as an arm that the network controller can pull to observe its
reward (the value returned by the objective function). Because of the large
cardinality of the set of arms (212NA), the network controller cannot realisti-
cally test all the arms in a reasonable amount of time. Therefore, although
the set of configurations is finite, we argue that the optimization task is more
precisely described as an Infinitely Many-Armed Bandit (IMAB) problem.

When dealing with IMAB problems, a common approach to circumvent the
issue of dimensionality is to restrain the optimization to a subset of (randomly
drawn) arms referred to as the reservoir (e.g., [20, 21, 22]). If no assumptions
can be made between the arms and their rewards, then a natural way of
making up the reservoir is to uniformly sample the arms. In our case, close
configurations, say in the sense of the L1 distance, are likely to obtain similar
rewards. We express this hypothesis through Equation 2, which states that
when the distance between two configurations is 1 (which is the smallest
distance between two different configurations as the parameters TX PWR and
OBSS/PD are discrete and which corresponds to a change of parameter on a
single AP), the difference between their rewards does not exceed δ.

∀ci, cj ∈ C, ∃δ ∈ [0, 1], ||ci − cj||1 = 1 =⇒ |f(ci)− f(cj)| < δ (2)

Although Equation 2 cannot be ensured for every pair of neighboring config-
urations in the configuration space, our empirical study suggests that, for a
value of δ = 1

NS+1
(recall that NS denotes the number of STAs in the topol-

ogy), Equation 2 is verified by a large majority of configuration pairs. More
details on this empirical study can be found in Appendix A.

Taking Equation 2 for granted, we can break down the optimizing task into
two subproblems that must be solved concurrently: (i) Sampling promising
configurations from the large configuration space, and (ii) Quickly identifying
the best configuration out of the current reservoir. In [17], Bardou et al.
showed the relevance of having a sampler agent to address subproblem (i)
and an optimizer agent for subproblem (ii) when searching for an effective
configuration for a WLAN. In the current paper, we adapt the definition
of the two agents to better perform in realistic conditions (namely, with a
larger number of APs and STAs, the presence of bidirectional traffic, and the
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presence of rate adaptation letting STAs and APs dynamically select their
MCS according to the quality of the radio channel).

4.1. Optimizer

Similarly to [15, 16, 17], our optimizer is based on Thompson sampling [23],
which was proven to achieve a very good regret bound [24, 25] and generally
has better empirical performance than other MAB algorithms such as UCB
[26]. We assume that, for any configuration ci, the reward is distributed
according to a Gaussian distribution of unknown parameters (µi, σ

2
i ). We

use a Normal-gamma conjugate prior with parameters
(
µ̂i, λ̂i, α̂i, β̂i

)
to de-

scribe the uncertainty on the pair (µi, σ
2
i ). Thompson sampling [23] is used

to quickly identify the best configuration c∗ out of the current reservoir that
verifies c∗ = argmaxc E [R|c], where R : C → [0, 1] is a random variable rep-
resenting the reward.

To cope with the complex interplay between the mechanism of selecting the
values of TX PWR and OBSS/PD and that of the dynamic MCS selection, we
proceed as follows. Whenever a new configuration ci is tested by the opti-
mizer, the agent performs a series of n tests before considering a new sample
Xi : Cn → [0, 1]n. Then it updates its belief on ci using Equation 3, which is
a classical result of Bayesian inference [27]. Here, x̄i represents the empirical
mean of the sample and si its empirical variance.


µ̂k+1
i

λ̂k+1
i

α̂k+1
i

β̂k+1
i

 =


λ̂ki µ̂

k
i +nx̄i

λ̂ki +n

λ̂ki + n
α̂ki + n

2

β̂ki + 1
2

(
nsi +

λ̂ki n(x̄i−µ̂ki )
2

λ̂ki +n

)
 (3)

Algorithm 1 details the behavior of our optimizer agent, parametrized by the
desired sample size n ∈ [2,+∞[ and an exploration rate ε ∈

[
0, 1

n

]
. With

probability nε, the optimizer will ask for a new promising WLAN config-
uration to the sampler. Otherwise, it will try to find the best arm in the
current reservoir using Thompson sampling. This leads the agent to sample
a Gamma and a Gaussian distributions for each configuration in the reser-
voir whose cardinality is proportional to the number of optimization steps
k. Therefore, at step k, its computational complexity is O (k). In order
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to execute properly, the agent needs to store all the configurations (of size
2NA) in the reservoir as well as four parameters by configuration (µ̂, λ̂, α̂, β̂).
Therefore, its memory cost is O (kNA) at step k.

Algorithm 1 Optimizer algorithm

Input: sample size n, exploration rate ε

1: Init reservoir E with ∅
2: Init step counter k with 0
3: loop
4: if E = ∅ or rand() < nε then
5: Get a new configuration ci using the sampler
6: Test ci n times on the environment and collect rewards in Xi

7: k ← k + n

8:
(
µki , λ

k
i , α

k
i , β

k
i

)
←
(
X̄i, n,

n
2
, nV ar(Xi)

2

)
9: Xi ← ∅

10: Add ci to reservoir E
11: else
12: for ci in E do
13: Sample gi from Γ

(
αki , β

k
i

)
14: Sample µi from N

(
µki ,
(
λki gi

)−1
)

15: end for
16: j ← argmaxi µi
17: Test cj n times on the environment and collect rewards in Xj

18: k ← k + n
19: Update prior parameters

(
µkj , λ

k
j , α

k
j , β

k
j

)
according to Equation 3

20: Xj ← ∅
21: end if
22: Send tests and rewards to the sampler agent
23: end loop

4.2. Sampler

The goal of the sampler is to discover promising candidates in the configu-
ration space to build up the optimizer’s reservoir. To outperform a simple
uniform sampling of the configuration space, we take advantage of the as-
sumed similarity in the score obtained by similar configurations. For two
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given configurations, and based on Equation 2, we can cap the distance be-
tween their rewards with an upper bound, which is proportional to the L1

norm of the difference between the two configurations. Equation 4 details
this upper bound.

∃δ ∈ [0, 1],∀ci, cj ∈ C, |f(ci)− f(cj)| ≤ δ||ci − cj||1 (4)

Proof. Assume two arbitrary configurations u, v ∈ C and suppose that ||u−
v||1 = p+ 1. Then, we can find a set of p configurations {z1, · · · , zp} so that
||u− z1||1 = ||z1− z2||1 = · · · = ||zp−1− zp||1 = ||zp− v||1 = 1. By triangle in-
equality, |f(u)−f(v)| ≤ |f(u)−f(z1)|+|f(zp)−f(v)|+

∑p−1
i=1 |f(zi)−f(zi+1)|.

Applying Property 2, we have |f(u)− f(z1)|+ |f(zp)− f(v)|+
∑p−1

i=1 |f(zi)−
f(zi+1)| ≤ δ(p + 1). Therefore, we have |f(u)− f(v)| ≤ δ||u− v||1, which is
Property 4. Note that this property would translate into a Lipschitz property
if our configuration space C was continuous.

We can use Equation 4 to obtain a lower bound for the distance between two
configurations based on the distance between their rewards:

∃δ ∈ [0, 1],∀ci, cj ∈ C, |f(ci)− f(cj)| ≥ lδ =⇒ ||ci − cj||1 ≥ l (5)

Proof. Let δ ∈ [0, 1] for which Property 4 holds. Combining the assumption
on the left of Equation 5 and Property 4, we get lδ ≤ |f(ci) − f(cj)| ≤
δ||ci − cj||1 which in turn leads to ||ci − cj||1 ≥ l.
We can now determine how far the sampler should search from the current
configuration to get a significant gain in the reward function for the next
configuration. Let ci be the current configuration and ri its associated reward.
We compute the distance between ci and the next configuration to be sampled
as follows:

di =
r∗ − ri
δ

(6)

where r∗ denotes the best reward observed so far and δ ∈ [0, 1]. Throughout
this work, and based on our empirical study, we use δ = 1

NS+1
. Note that

this choice can also be supported by the fact that our reward function (see
Equation 1) exhibits threshold effects that can be of magnitude 1

NS+1
.

Unlike [17] that leverages Equation 6 using a multivariate Gaussian distribu-
tion, we opt for the use of a multivariate hypersphere distribution to explore
the configuration space. The use of multivariate Gaussian distributions is
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hampered by their relative sensitivity to the number of dimensions. When
the number of dimensions is small, most of their density is centered around
the mean value (i.e., within the standard deviation-ellipsoid) and, in our
case, this will translate to exploring configurations that are very akin to the
configuration ci. On the contrary, in high dimensions (which can quickly
occur given the exponential growth of our configuration space), a large part
of the probability density is shifted to areas that are far away from the
mean value [28]. To overcome these inconveniences, we let our sampler draw
new samples from the surface of a hypersphere of radius di and centered
on ci. Equation 7 shows how to sample a random variable Zci,di uniformly
distributed on the surface of a hypersphere centered on ci and of radius di.

Zci,di = ci +
v

||v||2
di (7)

where v is a standard normal random vector (∀i ∈ [1, 2NA] , vi ∼ N (0, 1)).

In order to concurrently explore multiple promising areas within the configu-
rations space, we consider a mixture of K hypersphere distributions, wherein
each hypersphere is centered on one of the K best configurations explored so
far by the sampler. At first, the mixture is initialized with two hyperspheres,
each of them representing a starting point for our algorithm. The first hy-
persphere is initially centered on the default configuration of 802.11, namely
(TX PWR, OBSS/PD) = (20, -82) dBm for all APs. For the second starting
point, its location is based on the conflict graph between APs. Note that
two APs are said to be in conflict when they cannot transmit at the same
time (see [29]). Then, we simply decrease the TX PWR of APs in a round-robin
fashion until the conflict graph of APs reaches an average degree of 0.5. By
doing so, we ensure spatial diversity between the two starting points with the
aim of speeding up the search when adequate parameter settings are mostly
far from the default configuration. Figure 2 illustrates a possible execution
of the sampler in a two-dimensional space with two starting points and three
hyperspheres.

Algorithm 2 summarizes the behavior of the sampler agent, with P starting
points as parameters. As discussed before, we recommend P = 2 starting
points: the default configuration of 802.11 and one that minimizes the aver-
age degree of the WLAN’s conflicts graph. To sample a new configuration,
Algorithm 2 needs to chose one of the K hyperspheres, sample a configuration
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Figure 2: Four snapshots taken from a plausible execution of our sampling algorithm in a
two-dimensional space with P=2 starting points and K=3 hyperspheres. The distribution
density is shown in colors and the dashed line draws the frontier between authorized and
unauthorized configurations according to 802.11ax (see Equation 8). From left to right,
top to bottom: (i) The mixture is initialized with two starting points and the exploration
begins; (ii) The mixture is updated with the three best distributions so far. The higher the
reward, the more concentrated the distribution is; (iii) Another update of the mixture after
a few iterations; (iv) Eventually, the three hyperspheres gather around the configuration
(5,-75) dBm, which is relatively far from from the default configuration (20,-82) dBm.

of size 2NA, and update the K hyperspheres. Therefore, its computational
complexity and its memory cost are O (KNA).

Note that the 802.11ax standard [2] rules that the values of TX PWR and
OBSS/PD for each node must satisfy the following constraint:

OBSS/PD ≤ max(−82,min(−62,−82 + (20− TX PWR))). (8)

Including this constraint in our sampler is straightforward as it simply re-
duces the size of the configuration space by a factor of 2NA .
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Algorithm 2 Sampler algorithm

Input: number of hyperspheres K, target parameter δ, starting points P

1: if first call then
2: Init mixture M with {(Pi, 1) |Pi ∈ P}
3: Init weights W with {1}
4: Init history H with ∅
5: Init tests counter k with 0
6: else
7: Retrieve previously built M , W , H and k
8: Add pairs (conf, rew) transmitted by the optimizer
9: end if

10: Sample a new configuration c from mixture (M , W ) that verifies Equation
8

11: Transmit c to the optimizer
12: k ← k + 1
13: if k =

∑
(ci,di)∈G di dim ci then

14: Reset M and W
15: Find K (ci, ri) pairs in H with largest rewards
16: target← δ + maxj rj
17: for i← 0 to K do
18: Add

{(
ci,

target−ri
δ

)}
to M

19: Add ri to W
20: end for
21: end if
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Finally, Figure 3 illustrates a possible example of a dense WLAN in its de-
fault configuration with multiple conflicts among its APs; the interactions
between the sampler agent, the optimizer agent and the experiments in the
optimization process; and finally the WLAN after optimization in which
many conflicts have been removed thanks to the configuration of TX PWR and
OBSS/PD at each AP.

Figure 3: Schematic representation of our solution: (left) the initial set of conflicts be-
tween the APs of a WLAN in its default configuration (APs are represented by the white
triangles, STAs by the black dots, and conflicts by the black arrows) ; (middle) the inter-
actions between the sampler agent, the optimizer agent and the experiments, (right) the
set of conflicts left in the WLAN after the application of our solution

5. Numerical Results

5.1. Experimental settings

To evaluate the performance of our solution, we consider three examples of
WLAN that we denote by T1, T2 and T3, respectively. Figure 4 illustrates
the location of APs and STAs for each of them. T1 is a simple example
composed of six APs and a dozen of STAs. T2 mimics the topology of the
highly-dense WLAN deployed by Cisco in its offices in San Francisco [30]. To
account for APs from lower and upper floors, we replicate the Cisco deploy-
ment on three floors and we run a simple channel allocation algorithm before
selecting the most crowded channel to obtain T2. The resulting WLAN has
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a total of 10 APs with an average of 5 STAs per AP, which are uniformly
distributed within its vicinity (i.e. the intersection between its radio range
at 20 dBm and its Voronöı cell in the WLAN). T3 is very similar to T2 as it
only differs by the locations of STAs. On average, STAs from T3 are much
further away from their AP than in T2 (the mean distance between an AP
and its associated STAs is 12.93 meters in T3 instead of 4.03 meters for T2).
It follows that, on average, STAs in T3 are about 3 times closer to their AP
than to the closest competing AP. In the case of T2, this ratio is exceeding 9.
Said differently, the relative distance between an AP and its associated STA
is much larger in T3 than in T2, and this significantly compounds the com-
plexity of T3. In a sense, T3 can be seen as a case in which the association
between APs and STAs is far from optimal, or alternately, a case in which
the number of available radio channels is too limited. In practice, this may
turn to be the case thus making T3 an interesting example but harder than
T2 to study.

We set the rate of data streams between every AP and each of their STA at
50 Mbps downstream and 3.33 Mbps upstream. This asymmetry reflects that
STAs are typically much more downloading than uploading. Additionally,
with this level of workload, T1, T2, and T3 are all guaranteed to be in sat-
uration: their APs are unable to properly serve all the needs of their STAs.
Hence, we resort to the configuration of APs through the setting of their
TX PWR and OBSS/PD parameters to increase the QoS (Quality of Service) of
the WLANs. Eventually, saturation can be seen as the worst-case scenario
for each example. If our solution is effective in discovering an adequate tun-
ing of the TX PWR and OBSS/PD parameters under these circumstances, it can
only do better in less saturated cases.

We compare the performance of our solution with those attained by five other
strategies: (i) DEFAULT: the default configuration (namely (TX PWR, OBSS/PD)
= (20, -82) dBm for all APs), (ii) WCNC’15: a dynamic sensitivity threshold
solution described in [12] applied to APs only, (iii) ε-GREEDY: the classical
solution for MAB problems that, at each iteration and with probability 1−ε,
uses the best configuration observed so far, and otherwise, uniformly draws
a new configuration from the whole search space, (iv) JNCA’19: a central-
ized version of a MAB solution described in [16], and (v) MSWiM’21: another
solution based on a MAB version described in [17] but with different opti-
mizer and sampler agents. Note that all these strategies were amended to use
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the reward function defined in Equation 1 and to apply their optimization
only for the settings of the APs. Table 3 reports the numerical values of the
parameters for each strategy. The starvation threshold γ is involved in the
computation of the reward function and thus required by all strategies. The
exploration rate, denoted by ε, is common to all the strategies but DEFAULT

and WCMC’04 and set to 0.1, a classical value for the exploration parameter.
Finally, n, K and δ are specific parameters for [17] and our proposed solution,
for which the values recommended in Table 3 provided very good empirical
results. Let us recall that the choice for δ is discussed in Appendix A.

Table 3: Principal numerical values for the parameters of the strategies evaluated in the
simulations.

Parameter Value Description
γ 0.1 Starvation threshold
ε 0.1 Exploration rate for strategies
n 3 Sample size in Algorithm 2
K 6 Number of distributions in Algorithm 2
δ 1

1+Ns
Hypothesis parameter in Algorithm 2

We implemented all the aforementioned strategies in the open-source net-
work simulator ns-3 [8]. ns-3 is one of the few simulators that implements all
the network protocols, mechanisms, and aspects from the Physical layer up
to the Application layer and therefore is often regarded as among the most
realistic simulators for WLANs. Table 4 reports the settings we used for
ns-3. All our simulations last 120 seconds. To account for the potential high
variance of the studied performance parameters, we replicate each simula-
tion 22 times and we represent in the corresponding figures the first, second,
and third quartiles. If a metric is subject to large variations, we extract
and represent its trend using an exponential moving average in place of the
raw data. Finally, to enable the reproducibility of all our results, we made
available (in open-source) all the code we used for this section (including the
three WLANs topologies and the implementations of the different strategies)
[31].

In the ns-3 simulator, we instrument, collect and compute multiple perfor-
mance parameters. On one hand, there are performance parameters that
provide information on the goodness of the current state of the WLAN such
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Table 4: ns-3 parameters.

Parameter Value
ns-3 version 3.31
Number of repetitions 22
Simulation duration 120 s
Duration of an iteration 75 ms
Packet size 1,464 Bytes
Downlink traffic 50.0 Mbps
Uplink traffic 3.33 Mbps
Channel size 20 MHz
Frequency band 5 GHz
A-MDPU Aggregation 4
Path loss LogDistancePropagationLossModel

Wi-Fi Manager IdealWifiManager

as (i) the number of STAs in starvation, (ii) the Jain’s fairness index [19] mea-
suring how evenly STAs are being served by the APs, and (iii) the aggregate
throughput that simply corresponds to the sum of all STAs’ throughputs. On
the other hand, we have performance parameters relating to the quality of
the optimization such as (iv) the reward, computed using Equation 1, (v) the
(instantaneous) regret which is obtained by subtracting the current reward
to 1 (the upper bound of our reward function), and (vi) the cumulative regret
which is computed as the sum of the regrets obtained at each optimization
step. The latter is often viewed as the reference metric for machine learning
problems as it reflects the overall good behavior of a solution over the whole
simulation. This is why we will focus the most on it in our numerical results.

We now detail how the WLAN controller behaves in our simulation and
applies the selected strategy to configure the APs. Every 75 ms, the perfor-
mance parameters relating to the current state of the WLAN are collected
by the WLAN controller that, in return, computes the value of the reward
function associated with the current WLAN configuration. Afterward, the
controller resorts to its strategy to determine the next configuration to be
applied during the upcoming period of 75 ms. Note that with APs trans-
mitting a single packet that reports the throughput of their associated STAs
towards the controller on the wired network every 75 ms, the traffic overhead
of our solution is small.
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Figure 4: From left to right: topologies T1, T2 and T3. APs are shown as red dots,
conflicts between APs as double-headed arrows, and STAs as colored dots. Their color
shows how frequently a given STA has a reasonable throughput (i.e. is not in starvation)
with the 802.11ax default configuration (OBSS/PD = -82 dBm and TX POWER = 20 dBm).
A cool color means that the STA is often in starvation, while a warm color denotes a STA
that is never in such a situation. All the scales are expressed in meters.

5.2. Simulation results

We start the analysis of the simulation results with T1. Figure 5a represents
the cumulative regret for each strategy. First, we observe that our solution is
able to reduce this metric by more than 80% compared to the DEFAULT strat-
egy (which simply keeps the default 802.11 configuration) and outperforms
all the other strategies. It is also worth noting that JNCA’19, and to a lesser
extent our previous solution MSWiM’21, both struggle to do better than the
DEFAULT strategy. These relatively poor performances can be explained by
the presence in the simulator of the dynamic selection of MCS. Upon each
new configuration of the WLAN, APs and STAs may change their MCS and
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this selection process may take several dozens of milliseconds. During this
period (i.e., before the selection of MCS has converged), the collected perfor-
mance parameters can be unstable. Therefore, the most aggressive strategies
(e.g., JNCA’19 and MSWiM’21 that change the WLAN configuration more of-
ten than the others) are more prone to suffer from these instabilities than
ε-GREEDY and our new solution, which was designed to circumvent this bias
by only allowing series of n consecutive tests for the same configuration before
switching to another one. Figure 5c depicts the evolution of the (instanta-
neous) regret. We notice that, by the end of the 120 seconds of simulation,
our solution is able to reduce its value by a factor of 80% as compared to
its initial value. Looking at Figure 5b, we observe that only our solution
is able to find a WLAN configuration in which no STAs experience levels
of throughput corresponding to throughput starvation. At the same time,
the WLAN configuration found by our solution leads to an increase of 40%
for the fairness among STAs (see Figure 5d) while the aggregate throughput
at the end of the 120-second simulation undergoes an increase of 66% (see
Figure 5e). At the end of the simulation, the recommended configuration for
the APs in T1 is (in dBm): (-80,16), (-77,15), (-78,16), (-78,15), (-79,16),
(-79,15).

We now consider a more realistic example corresponding to the dense topol-
ogy T2 illustrated in Figure 6. By the end of the simulation, the use of our
strategy has led to a significant decrease of 87% of the cumulative regret
as compared to DEFAULT configuration (see Figure 6a). This improvement
mainly results from the ability of our solution to nearly remove all situations
of starvation whereas the DEFAULT configuration keeps as much as half of its
STAs in starvation (25 out of 50 STAs) as shown by Figure 6b. Looking
at Figures 6d and 6e, we see that our solution also manages to find a fairer
sharing of resources, improving the fairness by 125%, while still increasing
the aggregate throughput by 133%. This demonstrates the ability of our so-
lution to find an efficient trade-off between fairly shared resources and high
system throughput in real-life dense WLAN deployments. The efficiency of
our proposed strategy is particularly eloquent in this example where we can
notice a significant gap between our solution and the second best strategy.
At the end of the simulation, the recommended configuration for the APs in
T2 is (in dBm): (-76,12), (-78,12), (-76,9), (-72,9), (-75,10), (-79,14), (-77,8),
(-75,11), (-76,9), (-75,13).
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(a) Cumulative Regret (b) Number of STAs in starvation

(c) Regret (d) Fairness

(e) Aggregate Throughput

Figure 5: Performance parameters on T1 for each strategy.

We end this section with the example illustrated by the topology T3. Recall
that this topology shares the same APs’ locations as T2 but represents a
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(a) Cumulative Regret (b) Starvations

(c) Regret (d) Fairness

(e) Aggregate Throughput

Figure 6: Performance parameters on T2 for each strategy.

willingly difficult scenario due to the STAs’ locations that tend to be more in
between their AP and the closest competing AP. Figure 7 shows the simula-
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tion results obtained for this example. As expected, looking at the different
performance parameters, we observe that, despite the help of our solution,
the WLAN performance on T3 remain relatively poor as compared to those
attained by its counterpart T2. Indeed, by the end of the simulations, in
the case of T3, the number of starving STAs is 22 (Figure 7b), the fair-
ness is 0.45 (Figure 7d) and the aggregate throughput is 325 Mbps (Figure
7e) whereas for T2, our solution managed to prevent all starvations (Figure
6b), reach a fairness of 90% (Figure 6d), and raise the aggregate through-
put above 1.2 Gbps (Figure 6e). Nonetheless, it is worth pointing out that,
even in this example, our solution consistently reaches the best value for
each considered performance parameter outperforming all the other tested
strategies. Furthermore, our strategy brings significant gains as compared to
the DEFAULT configuration, with an improvement of 48% on the cumulative
regret, a 37% prevention of starvations, a fairness increased by 48%, and a
60% improved aggregate throughput. At the end of the simulation, the rec-
ommended configuration for the APs in T3 is (in dBm): (-78,15), (-79,16),
(-78,14), (-78,16), (-79,14), (-78,13), (-78,14), (-79,17), (-79,15), (-78,15).

5.3. Discussion

Overall, in all the examples we explored, including the three topologies pre-
sented in this paper, our solution never failed to quickly discover a configu-
ration of TX PWR and OBSS/PD that significantly reduces the number of STAs
suffering from poor performance, improves the fairness among STAs and in-
creases the cumulated throughput. Interestingly, the configuration found by
our solution consists, in general, in decreasing TX PWR and increasing OBSS/PD

at each AP. To put it simply, at the end of the optimization, most APs tend
to emit at a lower level but allow themselves to emit in more noised condi-
tions (owing to the interferences of concurrent APs). This dual change favors
spatial reuse of the radio channel with more simultaneous transmissions from
nearby APs.

6. Conclusions

In this study, we have proposed a solution that improves the spatial reuse
problem in radio channels of WLANs by taking advantage of elements intro-
duced by the latest Wi-Fi protocol amendments. More precisely, our solution
is able to configure two key parameters of APs so that the sharing of the ra-
dio channel among WLAN APs is significantly improved. The configuration
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(a) Cumulative Regret (b) Starvations

(c) Regret (d) Fairness

(e) Aggregate Throughput

Figure 7: Performance parameters on T3 for each strategy.

of these parameters is complex because of the high dimensionality of the
state space and the interplay between multiple factors related to internal
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Wi-Fi mechanisms and radio propagation aspects. To address this, we have
framed our problem as a MAB problem to which we have proposed: (i) an
objective (reward) function specially tailored to account for the principal
performance parameters of interest in a WLAN, (ii) a Bayesian optimizer
based on Thompson sampling, and (iii) an original sampler taking advantage
of the peculiarities of our problem.

Using the ns-3 simulator that implements the full network stack with all
its layers as well as advanced Wi-Fi mechanisms such as MCS automatic
selection, we ran simulations on several realistic examples of WLANs (with
regards to their topology and traffic) to evaluate the effectiveness of our solu-
tion. We then compared the performance of our solution with those delivered
by other existing on examples inspired by real-life WLANs’ deployments. Our
solution significantly outperforms these approaches and, for a dense WLAN,
its application can drastically reduce the number of STAs suffering from poor
performance.

A natural follow-up would be to design a distributed version of our work. But
this may prove to be extremely difficult because the definition of a relevant
objective function in the sense of WLAN performance tends to push for
a centralized computation. We plan to overcome this difficulty by using
consensus algorithms. As part of our future works, we also plan to extend
our solution to handle the case of mobile STAs.
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[16] F. Wilhelmi, S. Barrachina-Muñoz, B. Bellalta, C. Cano, A. Jonsson,
G. Neu, Potential and pitfalls of multi-armed bandits for decentralized
spatial reuse in wlans, Journal of Network and Computer Applications
127 (2019) 26–42. doi:10.1016/j.jnca.2018.11.006.
URL https://doi.org/10.1016/j.jnca.2018.11.006

[17] A. Bardou, T. Begin, A. Busson, Improving the spatial reuse in ieee
802.11ax wlans: A multi-armed bandit approach, in: ACM Interna-
tional Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM’21), 2021.

30
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Appendix A. Setting the hyperparameter δ

In this work, we choose a value of 1/(NS +1) for the hyperparameter δ. This
choice is supported by the following reasoning. In general, incrementing or
decrementing TX PWR or OBSS/PD at a single AP in a dense network has a
limited effect on the SINR, which causes little change to the reward value.
However, due to the specific definition of our reward function, it may oc-
cur that an increment or decrement of TX PWR or OBSS/PD at a single AP
causes the throughput of a given STA to move above or below the starvation
threshold. If that is the case, then the reward is changed by approximately
1/(NS + 1). This explains why we selected δ = 1/(NS + 1).
To further support our choice of having δ = 1/(NS + 1), we conducted an
empirical study. Figure A.8 shows the empirical distribution of the distance
in terms of their reward between two neighboring configurations in the con-
figuration space. For the topology T1 in which NS = 12 STAs, we randomly
sample 270 pairs of neighboring configurations for which we compute the
distance between their reward. Then, we use Figure A.8 to show how many
of these random pairs (c, c′) verify the inequality |r(c) − r(c′)| ≤ 1

NS+1
. It

appears that a large majority (more than 93 %) of neighboring configuration
pairs are meeting this criterion. Therefore, by selecting δ = 1

NS+1
, we can

reasonably ensure that Equation 2 will be verified in most cases.
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Figure A.8: Empirical cumulative distribution function of the absolute difference |r(c) −
r(c′)| between the rewards of two neighboring configurations c and c′ = c+h, with h being
a one-hot vector. 270 pairs of configurations uniformly distributed in the configuration
space of topology T1 were collected to generate this empirical distribution. Recall that
T1 has NS = 12 STAs so that δ = 1

NS+1 = 1
13 ≈ 0.077 in this experiment.
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