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COUPLINGS AND ATTRACTIVENESS FOR GENERAL EXCLUSION
PROCESSES

THIERRY GOBRON AND ELLEN SAADA

Abstract. Attractiveness is a fundamental tool to study interacting particle systems
and the basic coupling construction is a usual route to prove this property, as for instance
in the simple exclusion process. We consider here general exclusion processes where jump
rates from an occupied site to an empty one depend not only on the location of the
jump but also possibly on the whole configuration. These processes include in particular
exclusion processes with speed change introduced by F. Spitzer in [18]. For such processes
we derive necessary and sufficient conditions for attractiveness, through the construction
of a coupled process under which, in any coupled transition, discrepancies on the involved
sites do not increase, or even decrease. We emphasize the fact that basic coupling is never
attractive for this class of processes, except in the case of simple exclusion, and that the
coupled processes presented here necessarily differ from it. We study various examples,
for which we determine the set of extremal translation invariant and invariant probability
measures.

Dedicated to Errico Presutti

1. Introduction

Exclusion processes are among the most studied interacting particle systems: despite
their very simple form, these Markov processes exhibit characteristic features that make
them ideal toy models for many physical or biological phenomena.

In an exclusion process, particles evolve on a countable set of sites S, e.g. Zd, on which
multiple occupancy is forbidden. This exclusion rule is encoded in the structure of the
state space which is thus defined as Ω = {0, 1}S. For a configuration η ∈ Ω and for x ∈ S,
η(x) is the occupation number at site x, that is η(x) = 1 whenever a particle is present
on site x, while η(x) = 0 when site x is empty. Particles jump from one site to another,
empty, site according to a probability transition p(., .) on S (for S = Zd, we consider only
translation invariant cases).

The most widely studied exclusion model is the simple exclusion process (SEP), in
which particles have all the same speed one, that is the transition rate for a particle in a
configuration η to jump from its position at site x to an empty site y does not depend on
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the location of other particles and thus simply reads η(x)(1 − η(y))p(x, y). Endowing Ω
with the coordinatewise (partial) order, that is, for η, ξ ∈ Ω,

(1.1) η ≤ ξ ⇔ ∀x ∈ S, η(x) ≤ ξ(x),

we can define the monotonicity property as follows. There exists a coupling such that this
partial order is maintained through the (coupled) evolution whenever it holds at initial
time; as mentioned in [15, Chapter II, Definition 2.3] this property is called attractiveness
for particle systems, so that we will generally say attractive rather than monotone.

Attractiveness is a fundamental property of SEP and a key tool to determine the set (I∩
S)e of extremal translation invariant and invariant probability measures for the dynamics
(see e.g. Chapter VIII of [15]). This set consists in a one parameter family {νρ, ρ ∈ [0, 1]} of
Bernoulli product measures, where ρ represents the average particle density per site. It is
also crucial in establishing hydrodynamics for asymmetric transition probability p(., .), see
e.g. [17, 12]. In such a problem, attractiveness is embodied through the “basic coupling”
construction of two copies (ηt)t≥0 and (ξt)t≥0 of simple exclusion processes, under which
particles move together as much as possible. In other words, if at some time s particles
of both copies attempt to jump, they will try to go from the same departure site x to
the same arrival site y according to p(x, y), as long as those jumps are permitted (that is
if ηs(x) = ξs(x) = 1 and ηs(y) = ξs(y) = 0), otherwise only the possible jump will take
place. Thanks to basic coupling, when the initial distribution is translation invariant, it is
possible to control the evolution of the density of discrepancies between (ηt)t≥0 and (ξt)t≥0,
that is, the sites on which the configurations differ. Therefore, for SEP, the basic coupling
is a coupling whose marginals will eventually become ordered with probability 1, even if it
was not the case initially. Combined with some irreducibility property for the probability
transition p(., .), the control of discrepancies is the essential step to derive (I ∩ S)e (see
[13, 15]).

However, ever since the seminal paper [18] by Frank Spitzer in which simple exclusion
process was first defined, other exclusion processes have been considered, named exclusion
processes with speed change, in which jump rates may depend on the configuration around
the particle departure site. Though such a dependence can be treated within a basic
coupling construction for (non conservative) spin flip models, it appeared to be not so
simple for conservative ones. In order to determine the set (I ∩ S)e for such models, more
involved attractiveness conditions and related coupling constructions were to be found.
Sufficient conditions for attractiveness have been obtained by Tom Liggett in his Saint-
Flour lecture notes [14] for the models introduced in [18], as well as a related coupling
leading to (I ∩ S)e whenever these conditions are fulfilled.

Totally asymmetric versions of exclusion processes with speed change are also natural
models of traffic (see e.g. [9]). Recently, there has been a renewed interest in exclusion
processes, in particular those related to integrable models, such as the facilitated exclusion
processes (see e.g. [4, 6, 2]), or the q-Hahn exclusion process (see [5]). These models have
been analyzed through other existing techniques such as duality, or through an ad-hoc
correspondence with attractive dynamics, such as (generalized) zero-range processes. In
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the present paper we give various examples of exclusion processes with speed change, and
among them traffic models for which the constructed coupling that yields attractiveness
has very different features than basic coupling: for instance it requires jumps between the
two coupled processes with either different departure sites or different arrival sites.

In this work, we consider a general exclusion process on Zd and state necessary and
sufficient conditions under which attractiveness holds. Here jump rates depend not only
on the position and occupation numbers of the sites at which a jump occurs, but also
possibly on the whole configuration, so that the basic coupling construction does not hold
beyond SEP (see our examples in Section 4). We proceed in the spirit of our previous papers
on particle systems of misanthrope type [8, 7], in which the richer structure of the local
state space already imposes non trivial monotonicity conditions even when rates depend
on the configuration only through the sites at which a jump occurs. Our monotonicity
conditions are inspired by the work of William Massey ([16]). In the present paper, we
first give necessary and sufficient conditions for monotonicity of our dynamics, through the
construction of a coupling that we call increasing. We then refine this coupling construction
to derive what we call a quasi attractive coupling, under which the discrepancies involved
in a coupled transition do not increase. Finally, assuming some irreducibility and an
additional assumption on the dynamics, thanks to another coupling that we call attractive,
we describe, as in Chapter VIII of [15], the set of extremal translation invariant and
invariant probability measures of generalized exclusion processes.

The paper is organized as follows. In Section 2 we define the generalized exclusion
model, and state our main results: necessary and sufficient conditions for monotonicity
(Theorem 2.9), the existence, for a monotone process, of an increasing coupling that is quasi
attractive (Theorem 2.14), and the determination of the set (I ∩ S)e (Theorem 2.16). In
Section 3, we prove Theorem 2.9 and give in a series of propositions the construction of the
successive generators leading to the proofs of Theorems 2.14 and 2.16. These propositions
are proved in Section 5. In Section 4, we illustrate our results with examples, showing
first that our construction reduces to basic coupling in the case of simple exclusion and
only there. We then consider exclusion processes with speed change, extending the results
of [18, 14]. Finally, we turn to traffic models, considering first a generalization of the
totally asymmetric 2-step exclusion process studied in [10], and a symmetrized version of
the totally asymmetric traffic model from [9]. In all cases, we compute explicitely the
attractive coupling rates and give the set of invariant measures (I ∩ S)e.

2. Model and Main Results

In this section, we define the class of exclusion models we consider and state our two
main results: Theorem 2.9 gives necessary and sufficient conditions for monotonicity, and
Theorem 2.14 links monotonicity and attractiveness for this model, through a coupling
construction.

We first introduce a general exclusion process (ηt)t≥0 on S = Zd, together with some
notation and general properties. Let Ω = {0, 1}S be its state space and L its formal
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generator, acting on any cylinder function f and for any configuration η ∈ Ω,

Lf(η) =
∑
x,y∈S

η(x)(1− η(y))Γη(x, y)
[
f(ηx,y)− f(η)

]
,(2.1)

where Γη(x, y) is independent of η(x) and η(y), and where for any (x, y) ∈ S2, ηx,y is the
configuration obtained from η by exchanging the occupation numbers in configuration η
at sites x and y

(2.2) ηx,y(z) =


η(y) if z = x,

η(x) if z = y,

η(z) otherwise.

The process is thus conservative, and the quantity η(x) + η(y) is conserved in a jump from
site x to site y. We denote by (T (t), t ≥ 0) the semi-group of this process.

Remark 2.3. When the jump rates Γη(x, y) are independent of the configuration η, and
reduce to a probability transition (p(x, y), x, y ∈ S) on S,

(2.4) Γη(x, y) = p(x, y),

one recovers the simple exclusion process.

We assume the following conditions on the jump rates, so that (2.1) is the infinitesimal
generator of a well defined Markov process (see [15, Chapter I]):

(2.5) sup
v∈S

∑
u∈S

sup
η∈Ω

Γη(u, v) < +∞ and sup
u∈S

∑
v∈S

sup
η∈Ω

Γη(u, v) < +∞.

Of course, these generic conditions can be alleviated, depending on the example at hand.

Let us recall the monotonicity property for particle systems, quoting [15, Chapter II].
We denote byM the set of all bounded, non-decreasing, continuous functions f on Ω. The
partial order (1.1) induces a stochastic order on the set P of probability measures on Ω
endowed with the weak topology:

(2.6) ∀ν, ν ′ ∈ P , ν ≤ ν ′ ⇔
(
∀f ∈M, ν(f) ≤ ν ′(f)

)
.

Theorem 2.7. [15, Chapter II, Theorem 2.2]. For the particle system (ηt)t≥0 the following
two statements are equivalent.

(a) f ∈M implies T (t)f ∈M for all t ≥ 0.

(b) For ν, ν ′ ∈ P, ν ≤ ν ′ implies νT (t) ≤ ν ′T (t) for all t ≥ 0.

Definition 2.8. [15, Chapter II, Definition 2.3]. The particle system (ηt)t≥0 is monotone
if the equivalent statements of Theorem 2.7 are satisfied.

Our first main result is the following set of necessary and sufficient conditions for mono-
tonicity.
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Theorem 2.9. The exclusion process defined by (2.1) is monotone if and only if for any
couple of configurations (ξ, ζ) ∈ Ω2 such that ξ ≤ ζ, the following inequalities hold:
1) For all y ∈ S such that ζ(y) = 0,

(2.10)
∑
x∈S

ξ(x)
[
Γξ(x, y)− Γζ(x, y)

]+ ≤∑
x∈S

ζ(x)(1− ξ(x))Γζ(x, y),

2) for all x ∈ S such that ξ(x) = 1,

(2.11)
∑
y∈S

(1− ζ(y))
[
Γζ(x, y)− Γξ(x, y)

]+ ≤∑
y∈S

ζ(y)(1− ξ(y))Γξ(x, y).

Remark 2.12. Equations (2.10)–(2.11) can be interpreted in the following way. First,
by conditions (2.5), the sums appearing in (2.10)–(2.11) are always finite. The left hand
side of (2.10) measures the excess rate at which an empty site y is filled in the smaller
configuration ξ, so that coupling jumps in both configurations from the same initial sites x
to y will be clearly not sufficient to preserve partial order if this sum is different from zero.
Equation (2.10) suggests that partial order could be preserved by coupling such “excess rate”
jumps with jumps involved in the right hand side, that is jumps to y from sites occupied in
configuration ζ, but empty in ξ. Equation (2.10) just states that such rates are sufficient
to do so.

Equation (2.11) can be interpreted in a similar way: Now the left hand side measures the
excess rate at which a filled site x is depleted in the larger configuration ζ, so that again
partial order could not be preserved by coupling jumps in both configurations from site x
to the same site y whenever this sum differs from zero. Again equation (2.11) suggests
that partial order could be preserved by coupling this second set of “excess rate jumps”
with jumps in the smaller configuration ξ from the same site x to any site y, empty in
configuration ξ but already filled in ζ. Again equation (2.11) states that the jump rates are
just sufficient to do so.

In Section 3, we prove that these conditions (2.10)–(2.11) are necessary and rely on them
to build in Propositions 3.10 and 3.26 a coupling between two copies of the process. A
coupling is called increasing if it preserves the stochastic order between marginal config-
urations. In Section 5, we achieve the proof of Proposition 3.26, that is, this coupling is
proven to be increasing under the hypothesis that inequalities (2.10)–(2.11) hold, showing
in turn that these conditions are also sufficient.

Beyond monotonicity, a coupling construction turns out to be essential to characterize
the set (I ∩ S)e of extremal invariant and translation invariant probability measures of
(ηt)t≥0. In our setting, the marginals of the coupled process built in Propositions 3.10 and
3.26 are not necessarily ordered, and the evolution of the discrepancies between them is
the main object to control:

Definition 2.13. In a coupled process (ξt, ζt)t≥0, there is a discrepancy at site z ∈ S at
time t if ξt(z) 6= ζt(z).
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As recalled in the introduction, for the simple exclusion process (SEP) endowed with
basic coupling, in any coupled transition the number of discrepancies on the involved
sites remains constant whenever the values of the two marginal configurations are ordered,
but decreases otherwise. Beyond this case, an increasing coupling does not necessarily
impose constraints on the coupled evolution of unordered pairs of configurations, so that the
number of involved discrepancies in a transition is not necessarily non-increasing. However
here we have the following:

Theorem 2.14. Suppose that the process defined by (2.1) is monotone on Ω = {0, 1}S.
Then there exists an increasing coupled process on Ω×Ω such that in any coupled transition,
the number of discrepancies does not increase. Such a couplng is called a quasi attractive
coupling.

The proof of Theorem 2.14 relies on the explicit construction of such a quasi attractive
coupling, which refines the previous increasing one. It is described in Proposition 3.37,
while proofs of existence and attractiveness are postponed to Section 5.

To conclude with the characterization of the set (I ∩ S)e, we need not only that in the
coupling process the number of discrepancies involved in a coupled transition does not
increase with time, but also that this number decreases. For this, we need to construct
again another coupling process, But it requires an additional assumption of the dynamics.

Definition 2.15. For an exclusion process with generator (2.1), an open edge (x, y) (for
x, y ∈ S) is an edge such that Γξ(x, y) > 0 for any configuration ξ ∈ Ω. The set S is then
fully connected if for all (x, y) ∈ S2, x 6= y, there exists a finite open path in S between
x and y, that is a sequence {x0, · · · , xn} for some n > 0 such that (xi−1, xi) is open for
i ∈ {1, · · · , n} with either x0 = x and xn = y, or x0 = y and xn = x.

In Subsection 3.3, we will explain how, whenever for the dynamics S is fully connected,
it is possible to construct a coupling such that any pair of discrepancies of opposite sign
have a positive probability to disappear in finite time. We call this coupling an attractive
coupling. When the jump rates are translation invariant, this reduces the derivation of
the set (I ∩ S)e essentially to the classical proof, originally applied to the simple exclusion
process (going back to [13]), which leads to the following theorem.

Theorem 2.16. Let (ηt)t≥0 be an exclusion process with generator (2.1) and translation
invariant jump rates, such that S is fully connected in the sense of Definition 2.15. If
(ηt)t≥0 is attractive then

1) The set of translation invariant, extremal invariant measures (I ∩ S)e is a one pa-
rameter family {µρ, ρ ∈ R}, where R is a closed subset of [0, 1] containing {0, 1}, and for
every ρ ∈ R, µρ is a translation invariant probability measure on Ω with µρ[η(0)] = ρ;
furthermore, the measures µρ are stochastically ordered, that is, µρ ≤ µρ′ if ρ ≤ ρ′;

2) if (ηt)t≥0 possesses a one parameter family {µρ}ρ of product invariant and translation
invariant probability measures, we have (I ∩ S)e = {µρ}ρ.
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Our results can be extended in various ways, to more general conservative models, as
well as to some mixed non conservative models with both exchanges and configuration
independent birth-death events, but this is beyond the scope of the present paper.

3. Proofs of main theorems and coupling constructions.

This section is devoted to the construction of the coupling necessary to the proof of
Theorem 2.9 (in Subsection 3.1), in three steps. We first prove that inequalities (2.10)–
(2.11) are necessary conditions. In order to prove that these conditions are also sufficient,
we introduce in Proposition 3.10 the general form L of a Markovian coupling generator
associated to L, depending on a set of coupled transition rates Gξ,ζ(.). Those rates are
defined in Proposition 3.26 and we prove in turn that with such a choice, and whenever
inequalities (2.10)–(2.11) are fulfilled, the generator L defines an increasing coupling. We
continue this section (in Subsection 3.2) with the proof of Theorem 2.14, introducing in

Proposition 3.37 the generator LD of a quasi attractive coupling. Finally we explain in
Subsection 3.3 how to prove Theorem 2.16 by refining the construction of an attractive
coupling (in Propositions 3.43 and 3.44). Proofs of the above Propositions are given in
Section 5.

3.1. Proof of Theorem 2.9. Inequalities (2.10)–(2.11) are particular instances (and in
turn the worst cases) of a larger set of inequalities (first derived by A.W. Massey [16]) that
the coefficients of the infinitesimal generator of a monotone Markov process need to fulfill.
We sketch their derivation hereafter and we refer to [16] for a thorough derivation (see also
[8] for details). The idea is to derive sensible necessary conditions on the jump rates for
a Markov process to be monotone, using the fact that the characteristic function of any
increasing (or decreasing) cylinder set V ⊂ Ω, is a monotone cylinder function on Ω. Let
(ξt)t≥0 and (ζt)t≥0 two instances of a monotone process with initial conditions ξ0 and ζ0

such that ξ0 ≤ ζ0, then 1V (ξt) ≤ 1V (ζt) (and reverse inequality for a decreasing set). In
addition if initial conditions are chosen so that ξ0 6∈ V and ζ0 6∈ V , the same inequality
holds for the ratios

1

t
(1V (ξt)− 1V (ξ0)) ≤ 1

t
(1V (ζt)− 1V (ζ0))

for all t > 0. Taking properly the limit t→ 0 gives then inequalities involving the rates of
the Markov generator, hereafter named “Massey conditions” and stated below in our case:

Proposition 3.1. [Massey conditions]. If the particle system defined in (2.1) is monotone,
then for all configurations (ξ, ζ) ∈ Ω× Ω such that ξ ≤ ζ,

1) For all increasing cylinder sets V ⊂ Ω such that ζ /∈ V ,

(3.2)
∑
x,y

ξ(x)(1− ξ(y))Γξ(x, y)1V (ξx,y) ≤
∑
x,y

ζ(x)(1− ζ(y))Γζ(x, y)1V (ζx,y).

2) For all decreasing cylinder sets V ⊂ Ω such that ξ /∈ V ,

(3.3)
∑
x,y

ζ(x)(1− ζ(y))Γζ(x, y)1V (ζx,y) ≤
∑
x,y

ξ(x)(1− ξ(y))Γξ(x, y)1V (ξx,y).
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3.1.1. Proof of necessary conditions. Equations (2.10) follow from (3.2) by taking a partic-
ular sequence of cylinder increasing sets and passing to the limit. Equations (2.11) follow
in the same way from (3.3). Let ξ, ζ be two configurations such that ξ ≤ ζ and take y
such that ζ(y) = 0. For n > 0, we construct a configuration ηn as follows.

ηn(x) =


1 if x = y,

1 if ‖x− y‖ ≤ n , ξ(x) = 1 and Γξ(x, y) < Γζ(x, y),

0 otherwise.

(3.4)

We define the increasing cylinder set Vn = {ρ ∈ Ω, ρ ≥ ηn}. Since ζ(y) = 0, configuration
ζ (and hence ξ) does not belong to Vn. Equation (3.2) applied to Vn now selects single
jumps which allow to enter Vn, hence moving a particle from any site x with ηn(x) = 0 to
site y. We thus get:∑

x∈S

ξ(x)(1− ηn(x))Γξ(x, y) ≤
∑
x∈S

ζ(x)(1− ηn(x))Γζ(x, y).(3.5)

Note that by conditions (2.5), both sums are finite. For all x 6= y, we have

ζ(x)(1− ηn(x)) = ζ(x)(1− ηn(x))(1− ξ(x)) + ζ(x)(1− ηn(x))ξ(x)

= ζ(x)(1− ξ(x)) + ξ(x)(1− ηn(x)).

where the second line comes from the fact that ηn(x) ≤ ξ(x) ≤ ζ(x). Inserting this
expression in the right hand side of (3.5), we get∑

x∈S

ξ(x)(1− ηn(x))
(
Γξ(x, y)− Γζ(x, y)

)
≤
∑
x∈S

ζ(x)(1− ξ(x))Γζ(x, y),

which gives, using definition (3.4) of ηn∑
x∈S:‖x−y‖≤n

ξ(x)
[
Γξ(x, y)− Γζ(x, y)

]+
+

∑
x∈S:‖x−y‖>n

ξ(x)
(
Γξ(x, y)− Γζ(x, y)

)
≤
∑
x∈S

ζ(x)(1− ξ(x))Γζ(x, y)(3.6)

Conditions (2.5) now imply that the second term in the left hand side of (3.6) goes to zero
as n→∞. Taking the limit n→∞ in (3.6) thus gives∑

x∈S

ξ(x)
[
Γξ(x, y)− Γζ(x, y)

]+ ≤∑
x∈S

ζ(x)(1− ξ(x))Γζ(x, y)

which is Equation (2.10).

Equation (2.11) can be derived in a similar way from (3.3). Let again ξ, ζ be two
configurations such that ξ ≤ ζ and take now x ∈ S such that ξ(x) = 1. Let n > 0 and
consider the configuration ηn such that:

ηn(x) =


0 if y = x,

0 if ‖x− y‖ ≤ n , ζ(y) = 0 and Γξ(x, y) > Γζ(x, y),

1 otherwise.

(3.7)
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We construct the decreasing cylinder set Vn = {ρ ∈ Ω, ρ ≤ ηn}. Since ξ(x) = 1, the
configuration ξ (and thus ζ) does not belong to Vn. Equation (3.3) now selects single
jumps which allow to enter the decreasing set, thus removing a particle at x and moving
it to any possible site y where ηn(y) = 1. We thus get

(3.8)
∑
y∈S

ηn(y)(1− ζ(y))Γζ(x, y) ≤
∑
y∈S

ηn(y)(1− ξ(y))Γξ(x, y).

For all y 6= x, we now have

ηn(y)(1− ξ(y)) = ηn(y)(1− ξ(y))(1− ζ(y)) + ηn(y)(1− ξ(y))ζ(y)

= ηn(y)(1− ζ(y)) + ζ(y)(1− ξ(y)),

where we have used that ηn(y) ≥ ζ(y) ≥ ξ(y). Inserting this expression in the right hand
side of (3.8) gives∑

y∈S

ηn(y)(1− ζ(y))
(
Γζ(x, y))− Γξ(x, y)

)
≤
∑
y∈S

ζ(y)(1− ξ(y))Γξ(x, y).

Using the definition (3.7) of ηn, we get∑
y∈S:‖y−x‖≤n

(1− ζ(y))
[
Γζ(x, y)− Γξ(x, y)

]+
+

∑
y∈S:‖y−x‖>n

(1− ζ(y))
(
Γζ(x, y)− Γξ(x, y)

)
≤
∑
y∈S

ζ(y)(1− ξ(y))Γξ(x, y).(3.9)

In the limit n → ∞, the second term in the left hand side of (3.9) goes to zero and one
gets ∑

y∈S

(1− ζ(y))
[
Γζ(x, y)− Γξ(x, y)

]+ ≤∑
y∈S

ζ(y)(1− ξ(y))Γξ(x, y),

which is Equation (2.11).

3.1.2. Coupling construction. We now use these ideas to construct a coupling process then
prove that it is increasing, that is, we proceed with the second and third steps of the proof
of Theorem 2.9.

We first define the general form an increasing coupling process should take.
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Proposition 3.10. The operator L defined, for any cylinder function f on Ω×Ω and any
pair of configurations (ξ, ζ) ∈ Ω× Ω, by

Lf(ξ, ζ) =
∑

x1,y1∈S

ξ(x1)(1− ξ(y1))

(
Γξ(x1, y1)−

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))Gξ,ζ(x1, y1;x2, y2)

)
×
(
f(ξx1,y1 , ζ)− f(ξ, ζ)

)
+

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))

(
Γζ(x2, y2)−

∑
x1,y1∈S

ξ(x1)(1− ξ(y1))Gξ,ζ(x1, y1;x2, y2)

)
× (f(ξ, ζx2,y2)− f(ξ, ζ))

+
∑

x1,y1∈S

∑
x2,y2∈S

ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2))Gξ,ζ(x1, y1;x2, y2)

×
(
f(ξx1,y1 , ζx2,y2)− f(ξ, ζ)

)
(3.11)

is the generator of a Markovian coupling between two copies of the Markov process defined
by (2.1), provided that for all pairs of configurations (ξ, ζ) ∈ Ω2 the coupling rates Gξ,ζ are
non-negative and the following inequalities hold

∀(x1, y1) ∈ S2,
∑

x2,y2∈S

ζ(x2)(1− ζ(y2))Gξ,ζ(x1, y1;x2, y2) ≤ Γξ(x1, y1),(3.12)

∀(x2, y2) ∈ S2,
∑

x1,y1∈S

ξ(x1)(1− ξ(y1))Gξ,ζ(x1, y1;x2, y2) ≤ Γζ(x2, y2).(3.13)

Proof of Proposition 3.10 is postponed to Section 5. As a shorthand notations for the
sums appearing in the left hand side of equations (3.12)–(3.13), we define for all couples
of configurations (ξ, ζ) ∈ Ω× Ω and all (x, y) ∈ S2, the quantities

ϕξ,ζ(x, y) :=
∑
x′,y′∈S

ζ(x′)(1− ζ(y′))Gξ,ζ(x, y;x′, y′),(3.14)

ϕξ,ζ(x, y) :=
∑
x′,y′∈S

ξ(x′)(1− ξ(y′))Gξ,ζ(x
′, y′;x, y).(3.15)

3.1.3. Definition of coupling rates and proof of increasingness. We now give the set of
coupling rates Gξ,ζ(x, y;x′, y′) which defines an increasing coupling.

We first introduce some notations. Let ξ and ζ be two configurations in Ω. For all x ∈ S
such that ξ(x) = ζ(x) = 1, we define the two sets

Y x
ξ,ζ = {y ∈ S : ξ(y) = 0, ζ(y) = 1,Γξ(x, y) > 0},(3.16)

Y
x

ξ,ζ = {y ∈ S : ξ(y) = ζ(y) = 0,Γζ(x, y) > Γξ(x, y)}.(3.17)

Whenever they are non empty, we define an arbitrary order on these two sets, possibly
depending on ξ, ζ and x, and denote by yx,kξ,ζ (respectively yx,kξ,ζ ) the kth element in Y x

ξ,ζ

(respectively Y
x

ξ,ζ).
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Similarly, for all y ∈ S such that ξ(y) = ζ(y) = 0, we define

Xy
ξ,ζ = {x ∈ S : ξ(x) = ζ(x) = 1,Γξ(x, y) > Γζ(x, y)},(3.18)

X
y

ξ,ζ = {x ∈ S : ξ(x) = 0, ζ(x) = 1,Γζ(x, y) > 0}.(3.19)

We define an arbitrary order on these two sets as well, possibly depending on ξ, ζ and y,
and denote by xy,kξ,ζ (respectively xy,kξ,ζ ) the kth element in Xy

ξ,ζ (respectively X
y

ξ,ζ).

For definiteness, when one of the above sets is finite or empty, say |Y x
ξ,ζ | = CY <∞, we

may extend the ordered sequence of its elements to an infinite one, (yx,nξ,ζ )n>0, by setting

arbitrarily yx,nξ,ζ = 0 for all n > CY .

For all x ∈ S such that ξ(x) = ζ(x) = 1, we define the two series
(
Sx,nξ,ζ

)
n≥0

and
(
T
x,n

ξ,ζ

)
n≥0

such that Sx,0ξ,ζ = 0, T
x,0

ξ,ζ = 0, and

Sx,nξ,ζ =

n∧|Y xξ,ζ |∑
k=1

Γξ(x, y
x,k
ξ,ζ ) ∀n > 0,(3.20)

T
x,n

ξ,ζ =

n∧|Y xξ,ζ |∑
k=1

[
Γζ(x, y

x,k
ξ,ζ )− Γξ(x, y

x,k
ξ,ζ )
]+

∀n > 0.(3.21)

Similarly, for all y ∈ S such that ξ(y) = ζ(y) = 0, we define the two series
(
T y,nξ,ζ

)
n≥0

and(
S
y,n

ξ,ζ

)
n≥0

such that T y,0ξ,ζ = S
y,0

ξ,ζ = 0 and

T y,nξ,ζ =

n∧|Xy
ξ,ζ |∑

k=1

[
Γξ(x

y,k
ξ,ζ , y)− Γζ(x

y,k
ξ,ζ , y)

]+

∀n > 0,(3.22)

S
y,n

ξ,ζ =

n∧|Xy
ξ,ζ |∑

k=1

Γζ(x
y,k
ξ,ζ , y) ∀n > 0.(3.23)

Note that by definition, the four series have nonnegative terms and are nondecreasing, and
by (2.5), they are also convergent.

Finally, for any two convergent series (Sn)n≥0 and (Tn)n≥0, we define the quantity
Hn,m(S, T ) for all n > 0 and all m > 0 as

(3.24) Hm,n(S., T.) = Sm ∧ Tn − Sm−1 ∧ Tn − Sm ∧ Tn−1 + Sm−1 ∧ Tn−1.

Note that Hm,n(S., T.) ≥ 0 whenever S. and T. are nondecreasing series. Moreover we have

(3.25) Hm,n(S., T.) = (Sm ∧ Tn − Sm−1 ∨ Tn−1)+.

Indeed to check that the right-hand sides of (3.24) and (3.25) are equal, we consider all
the possible cases, that is Sm ≤ Tn−1, Sm−1 ≤ Tn−1 ≤ Sm ≤ Tn, Sm−1 ≤ Tn−1 ≤ Tn ≤ Sm,
Tn ≤ Sm−1, Sm ≤ Tn, and Sm−1 ≤ Tn ≤ Sm.

We can now state Proposition 3.26, which ends the proof of Theorem 2.9.
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Proposition 3.26. Under conditions (2.10)–(2.11), the generator given by (3.11) with
coupling rates Gξ,ζ below, defines an increasing Markovian coupling.

Gξ,ζ(x, y;x′, y′)

=



δ(x, x′) δ(y, y′) Γξ(x, y) ∧ Γζ(x, y)

+δ(x, x′)
∑
m,n>0

δ(y, yx,mξ,ζ ) δ(y′, yx,nξ,ζ )Hm,n(Sx,.ξ,ζ , T
x,.

ξ,ζ)

+δ(y, y′)
∑
m,n>0

δ(x, xy,mξ,ζ )δ(x′, xy,nξ,ζ )Hm,n(T y,.ξ,ζ , S
x,.

ξ,ζ) if ξ ≤ ζ,

δ(x, x′) δ(y, y′) Γξ(x, y) ∧ Γζ(x, y)

+δ(x, x′)
∑
m,n>0

δ(y, yx,mζ,ξ ) δ(y′, yx,nζ,ξ )Hm,n(T
x,.

ζ,ξ, S
x,.
ζ,ξ)

+δ(y, y′)
∑
m,n>0

δ(x, xy,mζ,ξ ) δ(x′, xy,nζ,ξ )Hm,n(S
y,.

ζ,ξ, T
y,.
ζ,ξ) if ξ > ζ,

0 otherwise .

(3.27)

Remark 3.28. With the above choice, jumps are uncoupled unless ξ and ζ are ordered. In
such a case, the coupling rate Gξ,ζ(x, y;x′, y′) is possibly non zero only if the two coupled
jumps have either the same initial point, the same final point, or both.

Remark 3.29. When the two configurations are equal, ζ = ξ, both Y
x

ξ,ξ = ∅ for all x ∈ S
and Xy

ξ,ξ = ∅ for all y ∈ S. The only nonzero coupling rates are thus the diagonal terms
Gξ,ξ(x, y;x, y) = Γξ(x, y) so that marginals remain equal.

Remark 3.30. In definition (3.27), the first (resp. second) sum appearing in the right hand
side in the case ξ ≤ ζ is zero except possibly when there is a jump in the first marginal
ξ from a site x to a site y ∈ Y x

ξ,ζ coupled with a jump in the second marginal ζ from the

same site x to a site y′ ∈ Y x

ξ,ζ (respectively a jump in the first marginal from a site in Xy
ξ,ζ

coupled to a jump in the second marginal from a site in X
y

ξ,ζ to the same site y). Moreover,

by the definitions (3.16)–(3.17) of Y x
ξ,ζ and Y

x

ξ,ζ (resp. definitions (3.18)–(3.19) of Xy
ξ,ζ and

X
y

ξ,ζ) y 6= y′ in the first sum while x 6= x′ in the second sum (in both cases ξ ≤ ζ and
ξ > ζ).

Remark 3.31. The ordering in the four ensembles defined in (3.16)–(3.19) can be chosen
arbitrarily, possibly as a function of the configurations ξ and ζ and on the (initial or
final) common jump site. The best choice (in view of the desired goal) may depend on
the particular system at hand, and different choices lead to different increasing couplings.
Furthermore, one can prove that all these couplings are extremal in the sense that they
cannot be written as a convex combination of other increasing couplings, while any convex
combination of these is again an increasing coupling.

Corollary 3.32. In the particular case S = Z endowed with the usual order, the coupling
rates in Proposition 3.26 have a simpler form: Let ξ, ζ ∈ Ω be two configurations. For all



COUPLINGS AND ATTRACTIVENESS II 13

(x1, y1) ∈ S2,

(3.33) Gξ,ζ(x1, y1;x1, y1) = Γξ(x1, y1) ∧ Γζ(x1, y1).

For all (x1, y1, x2, y2) ∈ S4 such that (x1, y1) 6= (x2, y2),

Gξ,ζ(x1, y1;x2, y2) =


δx1,x2

[
H i
ξ,ζ(x1; y1, y2)

]+
+ δy1,y2

[
Hf
ξ,ζ(x1, x2; y1)

]+
if ξ ≤ ζ,

δx1,x2
[
H i
ζ,ξ(x1; y2, y1)

]+
+ δy1,y2

[
Hf
ζ,ξ(x2, x1; y1)

]+
if ξ > ζ,

0 otherwise,

(3.34)

with, for all (x, y, z) ∈ S3,

H i
ξ,ζ(x; y, z) =

(∑
y′≤y

(1− ξ(y′))ζ(y′)Γξ(x, y
′)
)
∧
(∑
z′≤z

(1− ζ(z′))
[
Γζ(x, z

′)− Γξ(x, z
′)
]+)

−
(∑
y′<y

(1− ξ(y′))ζ(y′)Γξ(x, y
′)
)
∨
(∑
z′<z

(1− ζ(z′))
[
Γζ(x, z

′)− Γξ(x, z
′)
]+)

,(3.35)

Hf
ξ,ζ(x, y; z) =

(∑
x′≤x

ξ(x′)
[
Γξ(x

′, z)− Γζ(x
′, z)
]+) ∧ (∑

y′≤y

ζ(y′)(1− ξ(y′))Γζ(y′, z)
)

−
(∑
x′<x

ξ(x′)
[
Γξ(x

′, z)− Γζ(x
′, z)
]+) ∨ (∑

y′<y

ζ(y′)(1− ξ(y′))Γζ(y′, z)
)
.(3.36)

3.2. Proof of Theorem 2.14. The above increasing Markovian coupling preserves the
ordering between marginals when they are ordered but leaves them otherwise uncoupled.
In order to deal with unordered configurations and control their discrepancies, we show in
the next proposition how to build an attractive Markov process out of an increasing one.

Proposition 3.37. Suppose that the process defined by (2.1) is monotone on Ω = {0, 1}S.
Let L be an associated increasing process defined on Ω × Ω as in Proposition 3.10, with

the coupling rates defined in Proposition 3.26. The operator LD defined on all cylinder
functions on Ω× Ω as

LDf(ξ, ζ) =
∑

x1,y1∈S

ξ(x1)(1− ξ(y1))Γξ(x1, y1)
(
f(ξx1,y1 , ζ)− f(ξ, ζ)

)
+

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))Γζ(x2, y2)
(
f(ξ, ζx2,y2)− f(ξ, ζ)

)
+

∑
x1,y1∈S

∑
x2,y2∈S

ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2))GD
ξ,ζ(x1, y1;x2, y2)

×
(
f(ξx1,y1 , ζx2,y2)− f(ξx1,y1 , ζ)− f(ξ, ζx2,y2) + f(ξ, ζ)

)
,(3.38)
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where for all (ξ, ζ) ∈ Ω× Ω, all (x1, y1) ∈ S2 and all (x2, y2) ∈ S2,

GD
ξ,ζ(x1, y1;x2, y2) =

∑
x,y∈S

(ξ ∨ ζ)(x)(1− (ξ ∨ ζ)(y))

× 1

Nξ,ζ(x, y)
Gξ,ξ∨ζ(x1, y1;x, y)Gξ∨ζ,ζ(x, y;x2, y2),(3.39)

Nξ,ζ(x, y) =

{
Γξ∨ζ(x, y) if Γξ∨ζ(x, y) > 0,

1 otherwise.
(3.40)

is a quasi attractive coupling under which, in any coupled transition, the discrepancies in
the involved sites do not increase.

Remark 3.41. When the configurations ξ, ζ are ordered, ξ ≤ ζ, for all (x1, y1, x2, y2) ∈ S4

such that ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2)) 6= 0, we have

(3.42) GD
ξ,ζ(x1, y1;x2, y2) = Gξ,ζ(x1, y1;x2, y2),

so that LDf(ξ, ζ) in (3.38) reduces to Lf(ξ, ζ) in (3.11) when marginals are ordered.

3.3. Invariant measures. In Proposition 3.37 above, in any coupled transition, the dis-
crepancies in the involved sites are proven to be non increasing, but the characterization
of the set of invariant measures, Theorem 2.16, requires a bit more, namely the proof that
there is a positive probability that any pair of discrepancies of opposite sign (that is, the
marginals have opposite occupation numbers, ξ(x) > ζ(x), ξ(y) < ζ(y) for some x, y in
S) disappears in finite time under the coupled process. As for the case of simple exclusion
process, this requires additional hypotheses on the process. One may consider processes
for which S is fully connected in the sense of Definition 2.15. We then have the following:

Proposition 3.43. Consider an exclusion process with generator (2.1) such that S is
fully connected in the sense of Definition 2.15. Whenever the jump rates are such that
all inequalities in (2.10) and (2.11) are strict, there exists an increasing coupling that is
attractive, so that for the coupled process extremal, translation invariant, invariant proba-
bility measures are supported on the set of coupled configurations {(ξ, ζ) : ξ ≤ ζ}∪{(ξ, ζ) :
ξ > ζ}.

Next proposition gives an example of such an attractive coupling.

Proposition 3.44. Consider an exclusion process with generator (2.1) such that S is fully
connected in the sense of Definition 2.15. and such that for the jump rates, all inequalities
in (2.10) and (2.11) are strict. Then the following set of coupling rates defines a new
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increasing coupling.

Gξ,ζ(x, y;x′, y′) =

δ(x, x′) δ(y, y′) Γξ(x, y) ∧ Γζ(x, y)

+δ(x, x′)1y∈Y xξ,ζ 1y′∈Y xξ,ζ
1

Nx,∗
ξ,ζ

Γξ(x, y) [Γζ(x, y
′)− Γξ(x, y

′)]+

+δ(y, y′)1x∈Xy
ξ,ζ

1x′∈Xy
ξ,ζ

1

N
y,∗
ξ,ζ

[Γξ(x, y)− Γζ(x, y)]+ Γζ(x
′, y) if ξ ≤ ζ,

δ(x, x′) δ(y, y′) Γξ(x, y) ∧ Γζ(x, y)

+δ(x, x′)1y∈Y xζ,ξ 1y′∈Y xζ,ξ
1

Nx,∗
ζ,ξ

[Γξ(x, y)− Γζ(x, y)]+ Γζ(x, y
′)

+δ(y, y′)1x∈Xy
ζ,ξ

1x′∈Xy
ζ,ξ

1

N
y,∗
ζ,ξ

Γξ(x, y) [Γζ(x
′, y)− Γξ(x

′, y)]+ if ξ > ζ,

0 otherwise,

(3.45)

where

(3.46) Nx,∗
ξ,ζ =

{
Sx,∗ξ,ζ if Sx,∗ξ,ζ > 0,

1 otherwise,

and similar definitions for the others normalization factors, where Sx,∗ξ,ζ , S
y,∗
ξ,ζ , Sx,∗ζ,ξ and S

y,∗
ζ,ξ

are the limits of the series (3.20)–(3.23), and are properly defined in Equations (5.2)–(5.5).

Using a similar construction as in Proposition 3.37, a new quasi-attractive coupling LD

can be constructed on top of the above increasing coupling (3.45). Whenever the conditions
of Proposition 3.43 hold, this new coupling is attractive.

Proposition 3.43 is the crucial step in the determination of the set (I ∩ S)e, and in
proving Theorem 2.16. This theorem is analogous to [3, Proposition 3.1] and to [8, Theorem
5.13], to which we refer for a full description of this approach. It has the same (classical
skeleton of) proof, although the transition rates in our case depend on more sites than the
departure and arrival sites of a jump. The key point of the proof is to establish that for
the coupled process, all extremal, translation invariant and invariant probability measures
are supported on the set of coupled configurations {(ξ, ζ) : ξ ≤ ζ} ∪ {(ξ, ζ) : ξ > ζ}, and
this is given by Proposition 3.43.

In the next Section, we apply our results to various simple but non trivial examples.

4. Applications

In this section we illustrate our results through various examples, and check for them
monotonicity conditions of Theorem 2.9. Whenever these conditions are fulfilled, we con-

struct the coupled generators L and LD by applying Propositions 3.10 and 3.37. In one
example we also determine the coupling rates for an attractive coupling given in Proposition
3.44.
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In Subsection 4.1, we show that in the case of simple exclusion, our construction reduces
to basic coupling. In Subsection 4.2 we consider the exclusion process with speed change
introduced by F. Spitzer in [18] and studied by T.M. Liggett in [14]. In this case, we extend
the range of previously known attractiveness conditions to necessary and sufficient ones.
Finally, in Subsections 4.3 and 4.4 we introduce and study models inspired by traffic flows.

4.1. Simple exclusion. For the simple exclusion process (see Remark 2.3), jump rates
are independent on the configuration,

(4.1) Γζ(x, y)− Γξ(x, y) = 0

for all ξ, ζ in Ω and all x, y in S.

Monotoniity conditions (2.10)–(2.11) reduce to non negativity of jump rates and are
thus always satisfied. We show below that the coupling defined in Proposition 3.37 reduces
to basic coupling in this case. In fact, using simple exclusion rates (2.4), the jump rates
defined through Formula (3.27) become, for all (x1, y1, x2, y2) ∈ S4 :

Gξ,ζ(x1, y1;x2, y2) =

{
δx1,x2 δy1,y2 p(x1, y1) if ξ ≤ ζ or ξ > ζ,

0 otherwise.
(4.2)

Therefore, the increasing Markovian coupling L defined through Proposition 3.26 coincides
with basic coupling on configurations with ordered marginals. Hence we have

ϕξ,ξ∨ζ(x, y) = ξ(x)(1− ξ(y))p(x, y),(4.3)

ϕξ∨ζ,ζ(x, y) = ζ(x)(1− ζ(y))p(x, y),(4.4)

and

Nξ,ζ(x, y) =

{
p(x, y) if p(x, y) > 0,

1 otherwise,
(4.5)

and using (4.2),

GD
ξ,ζ(x1, y1;x2, y2) =

∑
x,y

(ξ ∨ ζ)(x)(1− (ξ ∨ ζ)(y))

× 1

Nξ,ζ(x, y)
Gξ,ξ∨ζ(x1, y1;x, y)Gξ∨ζ,ζ(x, y;x2, y2)

= δx1,x2 δy1,y2 (ξ ∨ ζ)(x1)(1− (ξ ∨ ζ)(y1)) p(x1, y1).(4.6)

Finally, the generator of the coupling process defined in Proposition 3.37 reads

LDf(ξ, ζ) =
∑
x,y∈S

p(x, y)ξ(x)(1− ξ(y))ζ(x)(1− ζ(y))
(
f(ξx,y, ζx,y)− f(ξ, ζ)

)
+

∑
x,y∈S

p(x, y)ξ(x)(1− ξ(y))
(
1− ζ(x)(1− ζ(y))

)(
f(ξx,y, ζ)− f(ξ, ζ)

)
+

∑
x,y∈S

p(x, y)ζ(x)(1− ζ(y))
(
1− ξ(x)(1− ξ(y))

)(
f(ξ, ζx,y)− f(ξ, ζ)

)
.(4.7)
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Hence LD identifies to the basic coupling generator for SEP. This comes from the fact
that non zero coupling rates in (4.2) are diagonal, so that the summation in formula (3.39)
reduces here to a single, diagonal, term.

We need to emphasize here that SEP is the only exclusion process for which the basic
coupling is monotone. Let us consider some exclusion process with rates Γη(x, y), possibly
dependent on the configuration η. We now prove that monotonicity of the associated basic
coupling implies that the exclusion process is the simple exclusion, that is the rates are
independent on the conigurations. The generator of the basic coupling reads

L̃f(ξ, ζ) =
∑
x,y∈S

ξ(x)(1− ξ(y))ζ(x)(1− ζ(y))Γξ(x, y) ∧ Γζ(x, y)

×
(
f(ξx,y, ζx,y)− f(ξ, ζ)

)
+
∑
x,y∈S

ξ(x)(1− ξ(y))
(
Γξ(x, y)− ζ(x)(1− ζ(y))Γξ(x, y) ∧ Γζ(x, y)

)
×
(
f(ξx,y, ζ)− f(ξ, ζ)

)
+
∑
x,y∈S

ζ(x)(1− ζ(y))
(
Γζ(x, y)− ξ(x)(1− ξ(y))Γξ(x, y) ∧ Γζ(x, y)

)
×
(
f(ξ, ζx,y)− f(ξ, ζ)

)
.(4.8)

Now take two configurations ξ, ζ such that ξ ≤ ζ and (x, y) ∈ S2 such that ξ(x) = 1
and ζ(y) = 0. Monotonicity implies then that the rates of uncoupled jumps from x
to y are identically zero since otherwise order would be broken either in x (in case of
an uncoupled jump of the ζ-particle) or in y (in case of an uncoupled jump of the ξ-
particle). Therefore monotonicity of the basic coupling implies that the jump rates are
equal, Γξ(x, y) = Γζ(x, y). This can be extended to any pair of configurations (ξ, ζ) when-
ever ξ(x) = ζ(x) = 1 and ξ(y) = ζ(y) = 0, as follows. Let σ = ξ ∧ ζ; clearly σ(x) = 1,
σ(y) = 0 and both σ ≤ ξ and σ ≤ ζ. Thus from the above result, Γσ(x, y) = Γξ(x, y),
Γσ(x, y) = Γζ(x, y) and thus Γξ(x, y) = Γζ(x, y). Jump rates are thus independent on the
configuration, Γη(x, y) = p(x, y) and the only exclusion process for which basic coupling is
monotone is the simple exclusion process.

4.2. Exclusion processes with speed change. We consider here a family of models,
introduced by F. Spitzer in his seminal paper [18], and later studied by T.M. Liggett in
[14, Part II, Sections 1.1, 4.1]. The jump rates from a site x to a site y are defined as
the product of a configuration dependent velocity cξ(x) for the particle at site x and a
configuration independent jump intensity between sites x and y. This form is particularly
interesting in the original context of a lattice gas. The jump rates thus read

(4.9) Γη(x, y) = q(x, y)cη(x),

where q : S × S → [0,+∞) satisfies for all x ∈ S, q(x, x) = 0 and

(4.10) sup
x∈S

∑
y∈S

[q(x, y) + q(y, x)] < +∞
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and c satisfies

(4.11) sup
x∈S,η∈X

cη(x) < +∞; sup
x∈S

∑
y∈S

sup
η∈X
|cηy(x)− cη(x)| < +∞,

where

(4.12) ηy(z) =

{
1− η(y) if z = y,

η(z) otherwise.

In this context, the monotonicity conditions (2.10)–(2.11) of Theorem 2.9 read:

For all pair of configurations (ξ, ζ) ∈ Ω2 such that ξ ≤ ζ, one has

1) for all y ∈ S such that ζ(y) = 0,

(4.13)
∑
x∈S

ξ(x)q(x, y)
[
cξ(x)− cζ(x)

]+ ≤∑
x∈S

ζ(x)(1− ξ(x)) q(x, y) cζ(x),

2) and for all x ∈ S such that ξ(x) = 1,

(4.14)
(∑
y∈S

(1− ζ(y)) q(x, y)
)[
cζ(x)− cξ(x)

]+ ≤ (∑
y∈S

ζ(y)(1− ξ(y)) q(x, y)
)
cξ(x).

Note that due to the special form of the jump rates (4.9), jump velocities factorize on
both sides of the equations in (4.14), while there is no similar simplification in (4.13).

Within this class of models, T.M. Liggett [14] introduced another set of sufficient con-
ditions for monotonicity, which read in our notations as conditions (4.15)–(4.16) below:

For all pair of configurations (ξ, ζ) ∈ Ω2 such that ξ ≤ ζ,

1) for all x ∈ S,

(4.15) cξ(x) ≤ cζ(x),

2) and for all x ∈ S such that ξ(x) = 1,

(4.16)
(∑
y∈S

(1− ζ(y)) q(x, y)
)
cζ(x) ≤

(∑
y∈S

(1− ξ(y)) q(x, y)
)
cξ(x).

The purpose of this subsection is to compare both results and show that (4.15)–(4.16)
are sufficient, but not necessary, conditions.

First, we have the following

Proposition 4.17. For exclusion process with speed change and rates defined as in (4.9),
conditions (4.15)–(4.16) are sufficient condition for monotonicity.

Proof. We verify that conditions (4.15)–(4.16) imply necessary and sufficient conditions
(4.13)–(4.14).

Suppose that conditions (4.15)–(4.16) hold. On one hand, under the non-decreasing
conditions (4.15), the left hand side of inequation (4.13) is identically zero; inequations
(4.13) are therefore trivially verified since their right hand side is always non negative.
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On the other hand, for any two configurations such that ξ ≤ ζ and for all x ∈ S such
that ξ(x) = 1, using conditions (4.15)–(4.16), the left hand side of condition (4.14) can be
bounded as: ∑

y∈S

(1− ζ(y)) q(x, y)
[
cζ(x)− cξ(x)

]+
=
∑
y∈S

(1− ζ(y)) q(x, y)
(
cζ(x)− cξ(x)

)
=
∑
y∈S

(1− ζ(y)) q(x, y) cζ(x)−
∑
y∈S

(1− ζ(y)) q(x, y) cξ(x)

≤
∑
y∈S

(1− ξ(y)) q(x, y) cξ(x)−
∑
y∈S

(1− ζ(y)) q(x, y) cξ(x)

=
∑
y∈S

(ζ(y)− ξ(y)) q(x, y) cξ(x)

=
∑
y∈S

ζ(y)(1− ξ(y)) q(x, y) cξ(x).(4.18)

In the above calculation, first line follows from conditions (4.15), third line from conditions
(4.16) applied to the first sum, and last line from the identity ξ(y) = ζ(y) ξ(y), which holds
whenever ξ ≤ ζ. Last line is the right hand side of (4.14).Therefore inequalities (4.14) are
also verified under conditions (4.15)–(4.16).

Now, within conditions (4.15)–(4.16), one can define a class of attractive exclusion pro-
cesses with speed change, as follows:

Proposition 4.19. Consider jump intensities q(·, ·) as in (4.10) and velocities cη defined
as

(4.20) cη(x) = ϕ
(∑
y∈S

(1− η(y)) q(x, y)
)

for all x ∈ S and all η ∈ Ω,

where ϕ : R+ 7→ R+ is a decreasing function, differentiable with bounded derivative, such
that u 7→ uϕ(u) is increasing. Then the exclusion process with jump rates Γη(x, y) =
q(x, y)cη(x) is well defined and attractive.

Proof. We first prove that the velocities cη verify conditions (4.11).

Since ϕ is a decreasing function on R+, we have first

sup
x∈S,η∈X

cη(x) ≤ ϕ(0) < +∞.
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On the other hand, since ϕ is differentiable on R+ with bounded derivative, we get, using
definition (4.12):

sup
x∈S

∑
y∈S

sup
η∈X

∣∣cηy(x)− cη(x)
∣∣

= sup
x∈S

∑
y∈S

sup
η∈X

∣∣ϕ(∑
z∈S

(1− ηy(z)) q(x, z)
)
− ϕ

(∑
z∈S

(1− η(z)) q(x, z)
)∣∣

≤ sup
x∈S

∑
y∈S

sup
η∈X

{
‖ϕ′‖∞|

(∑
z∈S

(1− ηy(z)) q(x, z)
)
−
(∑
z∈S

(1− η(z)) q(x, z)
)
|
}

= ‖ϕ′‖∞ sup
x∈S

∑
y∈S

q(x, y)

< +∞,

where the last inequality follows from equation (4.10) and ‖ϕ′‖∞ < ∞. The exclusion
process of Proposition 4.17 is thus well defined. We now prove that it fulfills conditions
(4.15)–(4.16).

First, for all η ∈ Ω and all x ∈ S, we define uη(x) as the quantity

(4.21) uη(x) =
∑
y∈S

(1− ξ(z))q(x, y).

Thus we have

(4.22) cη(x) = ϕ
(
uη(x)

)
.

We note that for any pair of configurations (ξ, ζ) such that ξ ≤ ζ and for any x ∈ S, one
has

uξ(x) ≥ uζ(x).

Since ϕ is a decreasing function on R+, we thus get for all x ∈ S and all ξ ≤ ζ,

cξ(x) = ϕ
(
uξ(x)

)
≤ ϕ

(
uζ(x)

)
= cζ(x).

Conditions (4.15) are verified.

Now, for any pair of configurations (ξ, ζ) such that ξ ≤ ζ and for any x ∈ S, one has
uξ(x) ≥ uζ(x), and since u 7→ uϕ(u) is an increasing function, we get

uξ(x)ϕ
(
uξ(x)

)
≥ uζ(x)ϕ

(
uζ(x)

)
.

Inserting (4.22) and (4.21) in the above equation, we get

(4.23)
(∑
y∈S

(1− ζ(y)) q(x, y)
)
cζ(x) ≤

(∑
y∈S

(1− ξ(y)) q(x, y)
)
cξ(x),

which is (4.16).

Though conditions of increasing speeds (4.15) appear to be an additional requirement
beyond conditions (4.13)–(4.14), it was nevertheless unclear whether monotone exclusion
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processes with non increasing speed could exist. In what follows, we answer positively to
this question giving an explicit example of a monotone process with decreasing speeds.

In the case of decreasing speeds, the role of equations (4.13) and (4.14) are exchanged
with respect to the previous case and equations (4.14) are trivially fulfilled. However, with
the rates (4.9), equations (4.13) do not factorize as before and become in this case:

For all y ∈ S such that ζ(y) = 0,

(4.24)
∑
x∈S

ξ(x)q(x, y) cξ(x) ≤
∑
x∈S

ζ(x) q(x, y) cζ(x),

so that speed functions have to fulfill a set of coupled inequalities indexed by the possible
values of y, which are difficult to solve on a general ground. Nevertheless, we have the
following

Proposition 4.25. Let S = Z. For L ∈ N \ {0} fixed, define

∀(x, y) ∈ S2, q(x, y) = 1{1<y−x≤L},(4.26)

∀η ∈ Ω,∀x ∈ S, cη(x) = 2L− η(x)η(x+ 1).(4.27)

Then the exclusion process on {0, 1}Z with jump rates Γη(x, y) = q(x, y)cη(x) is well defined
and attractive.

Proof. Clearly, from definition (4.26), q(x, x) = 0 and

sup
x∈S

∑
y∈S

[q(x, y) + q(y, x)] ≤ 2L < +∞,

so that conditions (4.10) hold. On the other hand cη(x) is a bounded cylinder function, so

sup
x∈S,η∈X

cη(x) ≤ 2L < +∞

and
sup
x∈S

∑
y∈S

sup
η∈X
|cηy(x)− cη(x)| = sup

x∈S
sup
η∈X
|η(x) + η(x+ 1)| ≤ 2 < +∞..

Conditions (4.11) hold and the exclusion process in Proposition 4.25 is well defined.

Furthermore, for all pairs of configurations (ξ, ζ) such that ξ ≤ ζ and for all x ∈ S,

cξ(x) = 2L− ξ(x)ξ(x+ 1) ≥ 2L− ζ(x)ζ(x+ 1) = cζ(x),(4.28)

and the jump speeds are decreasing. Thus the left hand side of equations (4.14) is iden-
tically zero while the right hand side is non negative. Equations (4.14) are thus trivially
fulfilled.

Now for any configuration η ∈ Ω and any y ∈ S, we have the bound

(4.29) (2L− 1)

y−1∑
x=y−L

η(x) ≤
y−1∑

x=y−L

η(x) q(x, y) cζ(x) ≤ (2L+ 1)

y−1∑
x=y−L

η(x).
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Now for ξ ≤ ζ, either for all x ∈ [y−L, y− 1], cξ(x) = cζ(x) and equation (4.24) is fulfilled
since ξ ≤ ζ, or there is x ∈ [y − L, y − 1] such that ξ(x) = 0 and ζ(x) = 1. In that case,
using the bounds (4.29), we get

(4.30)

y−1∑
x=y−L

η(x) q(x, y) cη(x)−
y−1∑

x=y−L

η(x) q(x, y) cξ(x) ≥ −2(L− 1) + 2L ≥ 2 > 0,

and equations (4.24) are verified. Thus, since the speeds are decreasing, equations (4.13)
also hold. The exclusion process with decreasing speeds defined in Proposition 4.25 is
monotone.

4.3. k-step exclusion process and related models. The k-step exclusion process was
introduced in [10] as an auxiliary model to study the long range exclusion process (see also
[1, 11]). It generalizes the simple exclusion process, we study this model in dimension 1,
when k = 2, in Subsection 4.3.1. We then introduce in Subsection 4.3.2 a first variation
of the latter model, that we call 2∗-step exclusion process. Finally, in Subsection 4.3.3, we
combine both models to build and analyse a traffic model that we call a range 2 traffic
model.

4.3.1. The one-dimensional k-step exclusion process. The state space of the k-step exclu-
sion process is {0, 1}Zd . Its jumps follow a translation invariant probability transition on
Zd. In words, if a particle on site x tries to jump, it follows for at most k steps a random
walk (Xx

n)n≥0 with Xx
0 = x until it finds an empty site y before returning to x; if all the

sites encountered during the k steps are occupied, the particle stays on x. The generator
of the one-dimensional k-step exclusion process is given by

(4.31) Lkf(η) =
k∑
j=1

∑
x,y∈Z

η(x)(1− η(y))cj(x, y, η) [f(ηx,y)− f(η)] ,

where cj(x, y, η) = Ex
[∏j−1

i=1 η(Xi), σy = j ≤ σx

]
with σy the first (non zero) arrival time

at site y, σy = inf {n ≥ 1 : Xx
n = y}.

For the sake of simplicity, we restrict ourselves to the particular case of the totally asym-
metric nearest-neighbor 2-step exclusion on S = Z, for which we have

(4.32)
2∑
j=1

cj(x, y, η) = 1{y=x+1} + 1{y=x+2}η(x+ 1) =: Γη(x, y).

The totally asymmetric nearest-neighbor 2-step exclusion is attractive, and, as for the
simple exclusion process, the set (I ∩ S)e of extremal translation invariant and invariant
probability measures for the dynamics consists of a one parameter family {νρ, ρ ∈ [0, 1]} of
Bernoulli product measures, where ρ represents the average density per site, see [10]. This
process is a particular case of the range 2 traffic model studied in subsection 4.3.3, hence
its coupling rates are derived as a particular case of Proposition 4.43 below.
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4.3.2. The one-dimensional totally asymmetric 2∗-step exclusion process. On S = Z, we
define

(4.33) Γη(x, y) = 1{y=x+1} + 1{y=x+2}(1− η(x+ 1)).

We call totally asymmetric 2∗-step exclusion process the exclusion process with generator
(2.1) for the rate Γη(x, y) given in (4.33). The totally asymmetric nearest-neighbor 2*-step
exclusion is a particular case of the range 2 traffic model studied in Subsection 4.3.3 below,
hence its attractiveness follows from Proposition 4.38, and its coupling rates are derived
as a particular case of Proposition 4.43.
This model is also a particular case of a more general 2∗-step exclusion process of transition
rate given by

(4.34) Γη(x, y) = p(x, y) +
∑
z∈Z

p(x, z)p(z, y)(1− η(z))

for a translation invariant transition probability p(., .).

Proposition 4.35. The Bernoulli product measures {νρ, ρ ∈ [0, 1]} are invariant for the
2*-step exclusion process of transition rate Γη(x, y) given in (4.34).

Proof. We proceed as in the proof of [15, Theorem VIII.2.1], by checking that
∫
LfAdνρ = 0,

where A is a finite set of sites and fA is the cylinder function defined by

(4.36) fA(η) =
∏
x∈A

η(x).

We have, denoting by LSEP the generator of the simple exclusion process and by L2∗s the
second part of the generator of the 2*-step exclusion process,

LfA(η) = LSEPfA(η) + L2∗sfA(η)

L2∗sfA(η) =
∑

x,y∈S,x6=y

∑
z∈S,z 6=x,y

p(x, z)p(z, y)η(x)(1− η(y))(1− η(z))
[
fA(ηx,y)− fA(η)

]
.

Since∫
fA(η)η(x)(1− η(z))(1− η(y))dνρ(η) =

{
0, if y ∈ A or z ∈ A,
(1− ρ)2ρ|A∪{x}|, if y /∈ A, z /∈ A,

and∫
fA(ηx,y)η(x)(1− η(z))(1− η(y))dνρ(η) =

{
0, if x ∈ A or z ∈ A,
(1− ρ)2ρ|A∪{x}\{y}|, if x /∈ A, z /∈ A,

we have∫
L2∗sfA(η)dνρ(η) =

∑
x,y:x 6=y,x/∈A

∑
z:z 6=x,y,z /∈A

p(x, z)p(z, y)(1− ρ)2ρ|A∪{x}\{y}|

−
∑

x,y:x 6=y,y /∈A

∑
z:z 6=x,y,z /∈A

p(x, z)p(z, y)(1− ρ)2ρ|A∪{x}|.
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Taking x /∈ A, y /∈ A in the first sums of the two terms on the right hand side gives 0,
hence we are left with y ∈ A for the first term, and x ∈ A for the second term. Exchanging
the indexes x and y in the second term gives∫
L2∗sfA(η)dνρ(η) = (1− ρ)2ρ|A|

∑
x,y:x 6=y,x/∈A,y∈A

∑
z:z 6=x,y,z /∈A

[
p(x, z)p(z, y)− p(y, z)p(z, x)

]
= 0

because A is finite and p(., .) is bi-stochastic.

4.3.3. A range 2 traffic model. On S = Z, for α, β ∈ [0, 1], we define

(4.37) Γη(x, y) = 1{y=x+1} + 1{y=x+2}[αη(x+ 1) + β(1− η(x+ 1))].

We call range 2 traffic model the exclusion process with generator (2.1) for the rate
Γη(x, y) given in (4.37). This rate is a convex combination of the respective rates for
one-dimensional totally asymmetric simple exclusion, 2-step exclusion and 2∗-step exclu-
sion. The traffic interpretation is that a car can either go one step ahead, or 2 steps ahead
by overtaking another car or by accelerating.

Proposition 4.38. The range 2 traffic model is attractive if and only if |β − α| ≤ 1. The
case β = α = 0 corresponds to simple exclusion, the case β = 0, α 6= 0 to 2-step exclusion,
and the case α = 0, β 6= 0 to 2∗-step exclusion.

Proof. We have to check inequalities (2.10)–(2.11). Let (ξ, ζ) ∈ Ω2 be such that ξ ≤ ζ.

We begin with (2.10). Let y ∈ Z be such that ζ(y) = 0, hence ξ(y) = 0. Then we write∑
x∈Z ζ(x)(1− ξ(x))Γζ(x, y)

= ζ(x− 1)(1− ξ(x− 1)) + ζ(x− 2)(1− ξ(x− 2))(αζ(x− 1) + β(1− ζ(x− 1)))(4.39)∑
x∈Z ξ(x)

[
Γξ(x, y)− Γζ(x, y)

]+
= ξ(x− 2)

[
(αξ(x− 1) + β(1− ξ(x− 1)))− (αζ(x− 1) + β(1− ζ(x− 1)))

]+
.(4.40)

First, if ξ(x− 1) = 1 then ζ(x− 1) = 1, hence (4.40) is null; secondly, if ζ(x− 1) = 0 then
ξ(x− 1) = 0, hence (4.40) is null; in both cases, (2.10) is satisfied. Finally, if ξ(x− 1) = 0
and ζ(x− 1) = 1, then (4.39) is equal to 1 + αζ(x− 2)(1− ξ(x− 2)) while (4.40) is equal
to ξ(x − 2)(β − α)+: either ξ(x − 2) = 0 and (2.10) is satisfied, or ξ(x − 2) = 1 and
(β − α)+ ≤ 1 is required for (2.10) to be satisfied.

We now check (2.11). Let x ∈ Z be such that ξ(x) = 1, hence ζ(x) = 1. Then we write∑
y∈Z ζ(y)(1− ξ(y))Γξ(x, y)

= ζ(x+ 1)(1− ξ(x+ 1)) + ζ(x+ 2)(1− ξ(x+ 2))(αξ(x+ 1) + β(1− ξ(x+ 1))),(4.41)∑
y∈Z (1− ζ(y))

[
Γζ(x, y)− Γξ(x, y)

]+
= (1− ζ(x+ 2))

[
(αζ(x+ 1) + β(1− ζ(x+ 1)))− (αξ(x+ 1) + β(1− ξ(x+ 1)))

]+
.(4.42)
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First, if ξ(x+ 1) = 1 then ζ(x+ 1) = 1, hence (4.42) is null; secondly, if ζ(x+ 1) = 0 then
ξ(x+ 1) = 0, hence (4.42) is null; in both cases, (2.11) is satisfied. Finally, if ξ(x+ 1) = 0
and ζ(x+ 1) = 1, then (4.41) is equal to 1 + βζ(x+ 2)(1− ξ(x+ 2)) while (4.42) is equal
to (1− ζ(x+ 2))(α− β)+: either ζ(x+ 2) = 1 and (2.11) is satisfied, or ζ(x+ 2) = 0 and
(α− β)+ ≤ 1 is required for (2.11) to be satisfied.

Invariant measures. Because it is the case for simple exclusion, 2-step exclusion and
2*-step exclusion processes (see Proposition 4.35) the Bernoulli product measures {νρ, ρ ∈
[0, 1]} are invariant for the range 2 traffic model. In this model S is fully connected if α, β
are positive, in which case the Bernoulli product measures are the extremal translation
invariant and invariant probability measures for the dynamics, by Theorem 2.16.

Therefore, for the range 2 traffic model, applying Propositions 3.10, 3.26, and formulas
(3.33)–(3.36) from Corollary 3.32, we obtain first the following formulas for the coupling
rates Gξ,ζ(x1, y1;x2, y2), taking into account that in formula (3.11), they are multiplied
by the prefactor ξ(x1)(1 − ξ(y1))ζ(x2)(1 − ζ(y2)), so that ξ(x1) = 1 − ξ(y1) = ζ(x2) =
1− ζ(y2) = 1:

Gξ,ζ(x, x+ 1;x, x+ 1) = 1,

Gξ,ζ(x, x+ 2;x, x+ 2) = [αξ(x+ 1) + β(1− ξ(x+ 1))] ∧ [αζ(x+ 1) + β(1− ζ(x+ 1))],

Gξ,ζ(x, x+ 1;x, x+ 2) =

{
[α− β]+ζ(x+ 1) when ξ ≤ ζ,

0 when ξ > ζ,

Gξ,ζ(x, x+ 2;x+ 1, x+ 2) =

{
[β − α]+(1− ξ(x+ 1)) when ξ ≤ ζ,

0 when ξ > ζ,

Gξ,ζ(x+ 1, x+ 2;x, x+ 2) =

{
0 when ξ ≤ ζ,

[β − α]+(1− ζ(x+ 1)) when ξ > ζ,

Gξ,ζ(x, x+ 2;x, x+ 1) =

{
0 when ξ ≤ ζ,

[α− β]+ξ(x+ 1) when ξ > ζ.

Some more computations to get the formulas in Proposition 3.37 yield:

Proposition 4.43. The coupled generator of the range 2 traffic model writes

(4.44) LDf(ξ, ζ) = LD1 f(ξ, ζ) + LD2 f(ξ, ζ) + LD3,1f(ξ, ζ) + LD3,2f(ξ, ζ)

where LD1 deals with coupled jumps with the same departure and arrival sites, LD2 with

coupled jumps with a different site either for departure or for arrival, and LD3,1, LD3,2 deal
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with uncoupled jumps. They are given by

LD1 f(ξ, ζ) =
∑
x∈S

ξ(x)(1− ξ(x+ 1))ζ(x)(1− ζ(x+ 1))×
(
f(ξx,x+1, ζx,x+1)− f(ξ, ζ)

)
+

∑
x∈S

ξ(x)ζ(x)(1− (ξ ∨ ζ)(x+ 2))

×
[
αξ(x+ 1)ζ(x+ 1) + β(1− (ξ ∨ ζ)(x+ 1))

+(α ∧ β){ξ(x+ 1)(1− ζ(x+ 1)) + ζ(x+ 1)(1− ξ(x+ 1))}
]

×
(
f(ξx,x+2, ζx,x+2)− f(ξ, ζ)

)
,(4.45)

LD2 f(ξ, ζ) =
∑
x∈S

ξ(x)(1− ξ(x+ 1))ζ(x+ 1)(1− (ξ ∨ ζ)(x+ 2))(β − α)+

×
(
f(ξx,x+2, ζx+1,x+2)− f(ξ, ζ)

)
+

∑
x∈S

ξ(x+ 1)(1− ζ(x+ 1))ζ(x)(1− (ξ ∨ ζ)(x+ 2))(β − α)+

×
(
f(ξx+1,x+2, ζx,x+2)− f(ξ, ζ)

)
+

∑
x∈S

ξ(x)ζ(x)ξ(x+ 1)(1− ζ(x+ 1))(1− (ξ ∨ ζ)(x+ 2))(α− β)+

×
(
f(ξx,x+2, ζx,x+1)− f(ξ, ζ)

)
+

∑
x∈S

ξ(x)ζ(x)(1− ξ(x+ 1))ζ(x+ 1)(1− (ξ ∨ ζ)(x+ 2))(α− β)+

×
(
f(ξx,x+1, ζx,x+2)− f(ξ, ζ)

)
,(4.46)

LD3,1f(ξ, ζ) =
∑
x∈S

ξ(x)(1− ξ(x+ 1))
[
1− ζ(x)(1− ζ(x+ 1))

−(1− ζ(x))ζ(x− 1)(1− ζ(x+ 1))(β − α)+

−ζ(x)ζ(x+ 1)(1− (ξ ∨ ζ)(x+ 2))(α− β)+
]

×
(
f(ξx,x+1, ζ)− f(ξ, ζ)

)
+

∑
x∈S

ξ(x)(1− ξ(x+ 2))
[
αξ(x+ 1) + β(1− ξ(x+ 1))

−ζ(x)(1− ζ(x+ 2))
{
αξ(x+ 1)ζ(x+ 1) + β(1− (ξ ∨ ζ)(x+ 1))

+(α ∧ β){ξ(x+ 1)(1− ζ(x+ 1)) + ζ(x+ 1)(1− ξ(x+ 1))}
}

−ζ(x)ξ(x+ 1)(1− ζ(x+ 1))(1− ζ(x+ 2))(α− β)+
]

×
(
f(ξx,x+2, ζ)− f(ξ, ζ)

)
,(4.47)
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LD3,2f(ξ, ζ) =
∑
x∈S

ζ(x)(1− ζ(x+ 1))
[
1− ξ(x)(1− ξ(x+ 1))

−ξ(x)ξ(x+ 1)(1− (ξ ∨ ζ)(x+ 2))(α− β)+

−(1− ξ(x))ξ(x− 1)(1− ξ(x+ 1))(β − α)+
]

×
(
f(ξ, ζx,x+1)− f(ξ, ζ)

)
+

∑
x∈S

ζ(x)(1− ζ(x+ 2))
[
αζ(x+ 1) + β(1− ζ(x+ 1))

−ξ(x)(1− ξ(x+ 2))
{
αξ(x+ 1)ζ(x+ 1) + β(1− (ξ ∨ ζ)(x+ 1))

+(α ∧ β){ζ(x+ 1)(1− ξ(x+ 1)) + ξ(x+ 1)(1− ζ(x+ 1))}
}

−ξ(x)(1− ξ(x+ 1))ζ(x+ 1)(1− ξ(x+ 2))(α− β)+
]

×
(
f(ξ, ζx,x+2)− f(ξ, ζ)

)
.(4.48)

Remark 4.49. Taking α = β = 0 gives the basic coupling generator for TASEP, while
taking α = 0, β = 1 gives a coupled generator for 2∗-step exclusion, and taking α = 1, β = 0
gives a coupled generator for 2-step exclusion. The latter is different from the one used in
[10].

Alternative coupling rates. We now compute the rates given in Proposition 3.43.
We obtain the following formulas for the coupling rates Gξ,ζ(x1, y1;x2, y2), taking into
account that they are multiplied by the prefactor ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2)), so that
ξ(x1) = 1− ξ(y1) = ζ(x2) = 1− ζ(y2) = 1:

Gξ,ζ(x, x+ 1;x, x+ 1) = 1,

Gξ,ζ(x, x+ 2;x, x+ 2) = [αξ(x+ 1) + β(1− ξ(x+ 1))]

∧[αζ(x+ 1) + β(1− ζ(x+ 1))],

Gξ,ζ(x, x+ 1;x, x+ 2) = ζ(x+ 1)(1− ξ(x+ 2))
[α− β]+

1 + β
if ξ ≤ ζ,

Gξ,ζ(x, x+ 2;x+ 1, x+ 2) = ζ(x)(1− ξ(x+ 1))
[β − α]+

1 + α
if ξ ≤ ζ,

Gξ,ζ(x+ 1, x+ 2;x, x+ 2) = ξ(x)(1− ζ(x+ 1))
[β − α]+

1 + α
if ξ > ζ,

Gξ,ζ(x, x+ 2;x, x+ 1) = ξ(x+ 1)(1− ζ(x+ 2))
[α− β]+

1 + β
if ξ > ζ.

4.4. From a non-attractive traffic model to an attractive dynamics. We begin
with an exclusion process with the transition rates introduced in [9] in the context of a
cellular automaton dynamics. There, S = Z, and the transitions are nearest neighbor and
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totally asymmetric. For all x ∈ S, η ∈ X such that η(x) = 1 and η(x+ 1) = 0

Γη(x, x+ 1) =


α if η(x− 1) = 1, η(x+ 2) = 0, [accelerating]

β if η(x+ 2) = 1, η(x− 1) = 0, [braking]

γ if η(x− 1) = η(x+ 2) = 1, [congested]

δ if η(x− 1) = η(x+ 2) = 0, [driving] .

(4.50)

where the parameters α, β, γ, δ are positive. This model is not attractive, unless it reduces
to simple exclusion, that is α = β = γ = δ. Indeed, for any other choice, conditions
(2.10)–(2.11) from Theorem 2.9 are not satisfied. Here, it is possible to turn the dynamics
into an attractive one, just by considering a symmetrized version, in which the non zero
rates are the previous, rightwards, ones, (4.50), together with the following symmetric,
leftwards rates:

Γη(x+ 1, x) =


α if η(x+ 2) = 1, η(x− 1) = 0,

β if η(x− 1) = 1, η(x+ 2) = 0,

γ if η(x+ 2) = η(x− 1) = 1,

δ if η(x+ 2) = η(x− 1) = 0.

(4.51)

Then applying conditions in Theorem 2.9 leads to the following result.

Proposition 4.52. The symmetrized dynamics with rates (4.50)–(4.51) is attractive if and
only if α, β, γ, δ satisfy the following conditions

(4.53) β ≤ γ ∧ δ ≤ γ ∨ δ ≤ α, α ≤ β + γ ∧ δ, δ ≤ 2β.

Note that the facilitated exclusion process ([2, 4, 6]) has rates (4.50) with α = γ = 1, β =
δ = 0. Hence it is not attractive, and its symmetrized version (with the corresponding rates
in (4.51)) is not attractive either. Indeed the study of this model required other tools.

Invariant measures. For the symmetrized dynamics, S is fully connected, since the
parameters α, β, γ, δ are positive. We can thus apply Theorem 2.16.

Coupling rates. Applying Propositions 3.10, 3.26, with formulas (3.33)–(3.36), we obtain
first the following formulas for the coupling rates Gξ,ζ(x1, y1;x2, y2), taking into account
that they are multiplied by the prefactor ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2)), so that ξ(x1) =
1−ξ(y1) = ζ(x2) = 1−ζ(y2) = 1. Note that since the rates (4.50) and (4.51) are symmetric,
it is enough to compute the coupling rates in the positive direction to get the ones in the
negative direction by symmetry. To simplify the computations, we assume that γ ≤ δ.

Gξ,ζ(x, x+ 1;x, x+ 1) = Γξ(x, x+ 1) ∧ Γζ(x, x+ 1),

Gξ,ζ(x, x− 1;x, x− 1) = Γξ(x, x− 1) ∧ Γζ(x, x− 1).
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When ξ ≤ ζ, we have

Gξ,ζ(x, x+ 1;x, x− 1) = ζ(x+ 1)
[
(1− ζ(x− 2))(α− δ) + ξ(x− 2)(γ − β)

]
,

Gξ,ζ(x, x− 1;x, x+ 1) = ζ(x− 1)
[
(1− ζ(x+ 2))(α− δ) + ξ(x+ 2)(γ − β)

]
,

Gξ,ζ(x, x+ 1;x+ 2, x+ 1) = (1− ξ(x+ 2))
[
(1− ζ(x− 1))(δ − β)

+(1− ξ(x− 1))ζ(x− 1)(δ − γ) + ξ(x− 1)(α− γ)
]
,

Gξ,ζ(x, x− 1;x− 2, x− 1) = (1− ξ(x− 2))
[
(1− ζ(x+ 1))(δ − β)

+(1− ξ(x+ 1))ζ(x+ 1)(δ − γ) + ξ(x+ 1)(α− γ)
]
.

When ξ > ζ, we have

Gξ,ζ(x, x+ 1;x, x− 1) = ξ(x− 1)
[
(1− ξ(x+ 2))(α− δ) + ζ(x+ 2)(γ − β)

]
,

Gξ,ζ(x, x− 1;x, x+ 1) = ξ(x+ 1)
[
(1− ξ(x− 2))(α− δ) + ζ(x− 2)(γ − β)

]
,

Gξ,ζ(x, x+ 1;x+ 2, x+ 1) = (1− ζ(x))
[
(1− ξ(x+ 3))(δ − β)

+ζ(x+ 3)(α− γ) + ξ(x+ 3)(1− ζ(x+ 3))(δ − γ)
]
,

Gξ,ζ(x, x− 1;x− 2, x− 1) = (1− ζ(x))
[
(1− ξ(x− 3))(δ − β)

+ζ(x− 3)(α− γ) + ξ(x− 3)(1− ζ(x− 3))(δ − γ)
]
.

Finally, applying Proposition 3.37 with formulas (3.39)–(3.40), we obtain the following
formulas for the coupling rates GD

ξ,ζ(x1, y1;x2, y2), taking into account that they are multi-
plied by the prefactor ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2)), so that ξ(x1) = 1− ξ(y1) = ζ(x2) =
1 − ζ(y2) = 1. Again, since the rates (4.50) and (4.51) are symmetric, it is enough to
compute the coupling rates in the positive direction.

GD
ξ,ζ(x, x+ 1;x, x+ 1) = Γξ(x, x+ 1) ∧ Γζ(x, x+ 1),

GD
ξ,ζ(x, x− 1;x, x− 1) = Γξ(x, x− 1) ∧ Γζ(x, x− 1),

GD
ξ,ζ(x, x+ 1;x, x− 1) = (1− ζ(x+ 1))ξ(x− 1)×[

(1− (ξ ∨ ζ)(x+ 2))(α− δ) + ζ(x+ 2)(γ − β)
]

+(1− ξ(x− 1))ζ(x+ 1)

×
[
(1− (ξ ∨ ζ)(x− 1))(α− δ) + ξ(x− 2)(γ − β)

]
,

GD
ξ,ζ(x, x− 1;x, x+ 1) = (1− ζ(x− 1))ξ(x+ 1)

×
[
(1− (ξ ∨ ζ)(x− 2))(α− δ) + ζ(x− 2)(γ − β)

]
+(1− ξ(x+ 1))ζ(x− 1)

×
[
(1− (ξ ∨ ζ)(x+ 2))(α− δ) + (ξ ∨ ζ)(x+ 2)(γ − β)

]
,
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GD
ξ,ζ(x, x+ 1;x+ 2, x+ 1) = (1− ζ(x))

[
(1− (ξ ∨ ζ)(x+ 3))(δ − β)

+ζ(x+ 3)(α− γ) + (1− ζ(x+ 3))ξ(x+ 3)(δ − γ)
]

×
[
ξ(x+ 2)ζ(x− 1)(1− ξ(x− 1))

(
β

γ
− 1

)
+ 1
]

+(1− ξ(x+ 2))
[
(1− (ξ ∨ ζ)(x− 1))(δ − β)

+ξ(x− 1)(α− γ) + (1− ξ(x− 1))ζ(x− 1)(δ − γ)
]

×
[
ξ(x+ 3)ζ(x)(1− ζ(x+ 3))

(
β

γ
− 1

)
+ 1
]
,

GD
ξ,ζ(x, x− 1;x− 2, x− 1) = (1− ζ(x))

[
(1− (ξ ∨ ζ)(x− 3))(δ − β)

+(1− ζ(x− 3))ξ(x− 3)(δ − γ) + ζ(x− 3)(α− γ)
]

×
[
ξ(x− 2)ζ(x+ 1)(1− ξ(x+ 1))

(
β

γ
− 1

)
+ 1
]

+(1− ξ(x− 2))
[
(1− (ξ ∨ ζ)(x+ 1))(δ − β)

+ξ(x+ 1)(α− γ) + (1− ξ(x+ 1))ζ(x+ 1)(δ − γ)
]

×
[
ξ(x− 3)ζ(x)(1− ζ(x− 3))

(
β

γ
− 1

)
+ 1
]
,

GD
ξ,ζ(x, x+ 1;x+ 2, x+ 3) = (1− ζ(x+ 1))(1− ξ(x+ 2))ξ(x+ 3)ζ(x)

(γ − β)

γ

×
[
(1− (ξ ∨ ζ)(x− 1))(δ − β)

+(1− ξ(x− 1))ζ(x− 1)(δ − γ) + ξ(x− 1)(α− γ)
]
,

GD
ξ,ζ(x, x− 1;x− 2, x− 3) = (1− ζ(x− 1))(1− ξ(x− 2))ξ(x− 3)ζ(x)

(γ − β)

γ

×
[
(1− (ξ ∨ ζ)(x+ 1))(δ − β)

+(1− ξ(x+ 1))ζ(x+ 1)(δ − γ) + ξ(x+ 1)(α− γ)
]
.

5. Technical proofs

Proof. [Proposition 3.10] Taking into account notations (3.15)–(3.14), we rewrite the gen-
erator L (Equation (3.11)) as

Lf(ξ, ζ) =
∑

x1,y1∈S

ξ(x1)(1− ξ(y1))
(
Γξ(x1, y1)− ϕξ,ζ(x1, y1)

)(
f(ξx1,y1 , ζ)− f(ξ, ζ)

)
+

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))
(
Γζ(x2, y2)− ϕξ,ζ(x2, y2)

)(
f(ξ, ζx2,y2)− f(ξ, ζ)

)
+

∑
x1,y1∈S

∑
x2,y2∈S

ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2))Gξ,ζ(x1, y1;x2, y2)

×
(
f(ξx1,y1 , ζx2,y2)− f(ξ, ζ)

)
(5.1)
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In the above expression, the first two terms on the r.h.s. refer to uncoupled transitions,
respectively (ξ, ζ)→ (ξx1,y1 , ζ) and (ξ, ζ)→ (ξ, ζx2,y2), while the third line refers to coupled
transitions (ξ, ζ)→ (ξx1,y1 , ζx2,y2).

Inequalities (3.13)–(3.12) and non-negativity of Gξ,ζ insure that the rates of all uncoupled
and coupled transitions above are non-negative.

Moreover, if f(ξ, ζ) = g(ξ) depends only on ξ (resp. f(ξ, ζ) = h(ζ) depends only on ζ),
we have Lg(ξ) = Lg(ξ) (resp. Lh(ζ) = Lh(ζ)). Therefore L defines indeed a coupling of
two copies of a generalized exclusion process.

Proof. [Proposition 3.26]

• We first consider the limits of the series defined in (3.20)–(3.23). By construction, these
series are nonnegative, nondecreasing and by (2.5) they are also bounded from above. They
are thus (absolutely) convergent and we denote their limits as

Sx,∗ξ,ζ = lim
n→∞

Sx,nξ,ζ ,(5.2)

T
x,∗
ξ,ζ = lim

n→∞
T
x,n

ξ,ζ ,(5.3)

T y,∗ξ,ζ = lim
n→∞

T y,nξ,ζ ,(5.4)

S
y,∗
ξ,ζ = lim

n→∞
S
y,n

ξ,ζ .(5.5)

In these notations, equations (2.11) and (2.10) read respectively:

For any configurations ξ,ζ in Ω such that ξ ≤ ζ,

For all x ∈ S such that ξ(x) = 1, T
x,∗
ξ,ζ ≤ Sx,∗ξ,ζ ,(5.6)

For all y ∈ S such that ζ(y) = 0, T y,∗ξ,ζ ≤ S
y,∗
ξ,ζ .(5.7)

• We now prove that for any two nondecreasing, convergent series (Sn)n≥0 and (Tn)n≥0,
the quantity defined in (3.24) Hm,n(S., T.) is nonnegative for all m,n > 0. We have

Hm,n(S., T.) = Sm ∧ Tn − Sm−1 ∧ Tn − Sm ∧ Tn−1 + Sm−1 ∧ Tn−1

= (Sm ∧ Tn − Sm−1 ∧ (Sm ∧ Tn))− (Sm ∧ Tn−1 − Sm−1 ∧ (Sm ∧ Tn−1))

= [Sm ∧ Tn − Sm−1]+ − [Sm ∧ Tn−1 − Sm−1]+

≥ 0.(5.8)

In the equations above, we used Sm ≥ Sm−1 to get the second line, the third line is an
identity and, finally, positivity comes from the fact that Tn ≥ Tm−1 and the function
t→ [Sm ∧ t− Sm−1]+ is non decreasing.

In addition, we get that the sums
∑
m>0

Hm,n(S., T.) and
∑
m>0

Hn,m(S., T.) are absolutely

convergent for all n > 0 whenever the two series converge. In particular, setting S∗ =
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lim
m→∞

Sm and T∗ = lim
n→∞

Tn, one gets∑
m>0

Hm,n(S., T.) = S∗ ∧ Tn − S∗ ∧ Tn−1 for all n > 0,(5.9) ∑
n>0

Hm,n(S., T.) = Sm ∧ T∗ − Sm−1 ∧ T∗ for all m > 0.(5.10)

We are now ready to turn to the proof of Proposition 3.26.

•We first prove that the coupling rates (3.27) satisfy conditions (3.12)–(3.13) of Proposition
3.10.

First, for all non ordered pairs of configurations (ξ, ζ) ∈ Ω × Ω, all coupling rates
Gξ,ζ defined by (3.27) are zero, so that the left hand sides of equations (3.12)–(3.13) are
identically zero and both equations (3.12)–(3.13) trivially hold.

We now consider the case (ξ, ζ) ∈ Ω × Ω with ξ ≤ ζ. For all (x, y) ∈ S2, the left hand
side of equation (3.12) reads:

ϕξ,ζ(x, y) =
∑
x′,y′∈S

ζ(x′) (1− ζ(y′))Gξ,ζ(x, y;x′, y′)

= ζ(x) (1− ζ(y)) Γξ(x, y) ∧ Γζ(x, y)

+ζ(x)
∑
m,n>0

δ(y, yx,mξ,ζ )
∑
y′∈S

δ(y′, yx,nξ,ζ )Hm,n(Sx,.ξ,ζ , T
x,.

ξ,ζ)

+ (1− ζ(y))
∑
m,n>0

δ(x, xy,mξ,ζ )
∑
x′∈S

δ(x′, xy,nξ,ζ )Hm,n(T y,.ξ,ζ , S
x,.

ξ,ζ)

= ζ(x) (1− ζ(y)) Γξ(x, y) ∧ Γζ(x, y)

+ζ(x)ζ(y)
∑
m>0

δ(y, yx,mξ,ζ )
(
Sx,mξ,ζ ∧ T

x,∗
ξ,ζ − S

x,m−1
ξ,ζ ∧ T x,∗ξ,ζ

)
+ζ(x) (1− ζ(y))

∑
m>0

δ(x, xy,mξ,ζ )
(
T y,mξ,ζ ∧ S

y,∗
ξ,ζ − T

y,m−1
ξ,ζ ∧ Sy,∗ξ,ζ

)
= ζ(x) (1− ζ(y)) Γξ(x, y) ∧ Γζ(x, y)

+ζ(x)ζ(y)
∑
m>0

δ(y, yx,mξ,ζ )
(
Sx,mξ,ζ ∧ T

x,∗
ξ,ζ − S

x,m−1
ξ,ζ ∧ T x,∗ξ,ζ

)
+ζ(x) (1− ζ(y))

∑
m>0

δ(x, xy,mξ,ζ ) [Γξ(x, y)− Γζ(x, y)]+

= ζ(x) (1− ζ(y)) Γξ(x, y)

+ζ(x)ζ(y)
∑
m>0

δ(y, yx,mξ,ζ )
(
Sx,mξ,ζ ∧ T

x,∗
ξ,ζ − S

x,m−1
ξ,ζ ∧ T x,∗ξ,ζ

)
.(5.11)

In the second expression, the summation over y′ in the second term and the summation
over x′ in the third term just give 1 and we use the expression (5.10) to compute the
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summation over n > 0. The fourth equality is a consequence of relation (5.7), which gives

(5.12) T y,mξ,ζ ∧ S
y,∗
ξ,ζ − T

y,m−1
ξ,ζ ∧ Sy,∗ξ,ζ = T y,mξ,ζ − T

y,m−1
ξ,ζ =

[
Γξ(x

y,m
ξ,ζ , y)− Γζ(x

y,m
ξ,ζ , y)

]+
.

Now using the estimate

Sx,mξ,ζ ∧ T
x,∗
ξ,ζ − S

x,m−1
ξ,ζ ∧ T x,∗ξ,ζ ≤ Sx,mξ,ζ − S

x,m−1
ξ,ζ = Γξ(x, y

x,m
ξ,ζ )

we get the inequality

(5.13) ϕξ,ζ(x, y) ≤ ζ(x) (1− ζ(y)) Γξ(x, y) + ζ(x)ζ(y)Γξ(x, y) ≤ Γξ(x, y).

Thus inequality (3.12) holds for ξ ≤ ζ.

We prove (3.13) for ξ ≤ ζ in a similar way, as follows. For all (x, y) ∈ S2, the left hand
side of equation (3.13) reads:

ϕξ,ζ(x, y) =
∑
x′,y′∈S

ξ(x′) (1− ξ(y′))Gξ,ζ(x
′, y′;x, y)

= ξ(x) (1− ξ(y)) Γξ(x, y) ∧ Γζ(x, y)

+ξ(x)
∑
m,n>0

∑
y′∈S

δ(y′, yx,mξ,ζ ) δ(y, yx,nξ,ζ )Hm,n(Sx,.ξ,ζ , T
x,.

ξ,ζ)

+ (1− ξ(y))
∑
m,n>0

∑
x′∈S

δ(x′, xy,mξ,ζ )δ(x, xy,nξ,ζ )Hm,n(T y,.ξ,ζ , S
x,.

ξ,ζ)

= ξ(x) (1− ξ(y)) Γξ(x, y) ∧ Γζ(x, y)

+ξ(x) (1− ξ(y))
∑
n>0

δ(y, yx,nξ,ζ )
(
Sx,∗ξ,ζ ∧ T

x,n

ξ,ζ − S
x,∗
ξ,ζ ∧ T

x,n−1

ξ,ζ

)
+ (1− ξ(x)) (1− ξ(y))

∑
n>0

δ(x, xy,nξ,ζ )
(
T y,∗ξ,ζ ∧ S

y,n

ξ,ζ − T
y,∗
ξ,ζ ∧ S

y,n−1

ξ,ζ

)
= ξ(x) (1− ξ(y)) Γξ(x, y) ∧ Γζ(x, y)

+ξ(x) (1− ξ(y))
∑
n>0

δ(y, yx,nξ,ζ ) [Γζ(x, y) ∧ Γξ(x, y)]+

+ (1− ξ(x)) (1− ξ(y))
∑
n>0

δ(x, xy,nξ,ζ )
(
T y,∗ξ,ζ ∧ S

y,n

ξ,ζ − T
y,∗
ξ,ζ ∧ S

y,n−1

ξ,ζ

)
= ξ(x) (1− ξ(y)) Γζ(x, y)

+ (1− ξ(x)) (1− ξ(y))
∑
n>0

δ(x, xy,nξ,ζ )
(
T y,∗ξ,ζ ∧ S

y,n

ξ,ζ − T
y,∗
ξ,ζ ∧ S

y,n−1

ξ,ζ

)
.(5.14)

In the second expression, the summation over y′ in the second term and the summation
over x′ in the third term just give 1 and we use the expression (5.9) to compute the
summation over n > 0. To get the fourth expression, we used the relation (5.7) to obtain

Sx,∗ξ,ζ ∧ T
x,n

ξ,ζ − S
x,∗
ξ,ζ ∧ T

x,n−1

ξ,ζ = T
x,n

ξ,ζ − T
x,n−1

ξ,ζ =
[
Γζ(x, y

x,n
ξ,ζ )− Γξ(x, y

x,n
ξ,ζ )
]+
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Now we have the estimate

T y,∗ξ,ζ ∧ S
y,n

ξ,ζ − T
y,∗
ξ,ζ ∧ S

y,n−1

ξ,ζ ≤ S
y,n

ξ,ζ − S
y,n−1

ξ,ζ = Γζ(x
y,n
ξ,ζ , y).

which gives

(5.15) ϕξ,ζ(x, y) ≤ ξ(x) (1− ξ(y)) Γζ(x, y) + (1− ξ(x)) (1− ξ(y)) Γζ(x, y) ≤ Γζ(x, y).

Equation (3.13) is proven for ξ ≤ ζ.

A similar derivation holds in the case ζ < ξ. Thus the coupling rates defined in Propo-
sition 3.26 satisfy the conditions (3.12)–(3.13) of Proposition 3.10.

• We now prove that this coupling is increasing.

We suppose that ξ ≤ ζ. We first consider coupled transitions. From equation (3.27), we
find that a coupled transition (ξ, ζ) → (ξx,y, ζx

′,y′) has possibly a non zero coupling rate
Gξ,ζ(x, y;x′, y′) in three possible cases:

• x = x′ and y = y′:
thus

ξx,y(x) = ζx
′,y′(x) = 0,

ξx,y(y) = ζx
′,y′(y) = 1,

ξx,y(z) = ξ(z) ≤ ζ(z) = ζx
′,y′(z) for all z 6= x, y,

• x = x′, y ∈ Y x
ξ,ζ and y′ ∈ Y x

ξ,ζ

thus y 6= y′, ζ(y) = 1 and

ξx,y(x) = ζx
′,y′(x) = 0,

ξx,y(y) ≤ 1 = ζ(y) = ζx
′,y′(y),

ξx,y(y′) ≤ 1 = ζx
′,y′(y′),

ξx,y(z) = ξ(z) ≤ ζ(z) = ζx
′,y′(z) for all z 6= x, y, y′,

• y = y′, x ∈ Xy
ξ,ζ and x′ ∈ Xy

ξ,ζ

thus x 6= x′, ξ(x′) = 0 and

ξx,y(x) = 0 ≤ ζx
′,y′(x),

ξx,y(x′) = ξ(x′) = 0 ≤ ζx
′,y′(x′),

ξx,y(y) = ζx
′,y′(y′) = 1,

ξx,y(z) = ξ(z) ≤ ζ(z) = ζx
′,y′(z) for all z 6= x, x′, y.

In all three cases, we find that ξx,y ≤ ζx
′,y′ . Hence partial order is preserved in coupled

transitions for all ξ ≤ ζ.

We now turn to uncoupled transitions, (ξ, ζ)→ (ξx,y, ζ) and (ξ, ζ)→ (ξ, ζx,y), with rates
(Γξ(x, y)− ϕξ,ζ(x, y)) and

(
Γζ(x, y)− ϕξ,ζ(x, y)

)
respectively. In both cases, partial order
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could be broken if and only if ξ(y) = ζ(y) = 1, ξ(x) = ζ(x) = 0 respectively and the
associated transition rate is nonzero. In the first case, ζ(y) = 1 implies that y 6∈ Y x

ξ,ζ ,
which allows us to precise the estimate (5.13) and get the value of ϕξ,ζ(x, y), as follows.
Note that in the expression (3.27) for Gξ,ζ(x, y;x′, y′) when ξ ≤ ζ, since y 6∈ Y x

ξ,ζ , we are in
the case y = y′ so that Gξ,ζ(x, y;x′, y′) is given by the third line in (3.27) (recall (5.12)):

ϕξ,ζ(x, y) = Γξ(x, y) ∧ Γζ(x, y) +
∑
m,n>0

δ(x, xy,mξ,ζ )
∑
x′∈S

δ(x′, xy,nξ,ζ )Hm,n(T y,.ξ,ζ , S
x,.

ξ,ζ)

= Γξ(x, y) ∧ Γζ(x, y) +
∑
m>0

δ(x, xy,mξ,ζ )
(
T y,mξ,ζ ∧ S

y,∗
ξ,ζ − T

y,m−1
ξ,ζ ∧ Sy,∗ξ,ζ

)
= Γξ(x, y) ∧ Γζ(x, y) +

∑
m>0

δ(x, xy,mξ,ζ ) [Γξ(x, y)− Γζ(x, y)]+

= Γξ(x, y) ∧ Γζ(x, y) + 1x∈Xy
ξ,ζ

[Γξ(x, y)− Γζ(x, y)]+

= Γξ(x, y) ∧ Γζ(x, y) + [Γξ(x, y)− Γζ(x, y)]+

= Γξ(x, y).(5.16)

Thus uncoupled transitions in the first marginal that do not preserve partial order in the
case ξ ≤ ζ have zero transition rates.

In uncoupled transitions for the second marginal, (ξ, ζ)→ (ξ, ζx,y) in which partial order
could be broken, ξ(x) = 1 implies x 6∈ Xy

ξ,ζ and, following the same line as in (5.15), one
gets now the value of ϕξ,ζ(x, y). Again, in the expression (3.27) for Gξ,ζ(x, y;x′, y′) when

ξ ≤ ζ, since x 6∈ X
y

ξ,ζ , we are in the case x = x′ so that Gξ,ζ(x, y;x′, y′) is given by the
second line in (3.27) (cf. (5.6) and the reasoning above to go from (5.7) to (5.12)):

ϕξ,ζ(x, y) =
∑
x′,y′∈S

ξ(x′) (1− ξ(y′))Gξ,ζ(x
′, y′;x, y)

= Γξ(x, y) ∧ Γζ(x, y) +
∑
m,n>0

∑
y′∈S

δ(y′, yx,mξ,ζ ) δ(y, yx,nξ,ζ )Hm,n(Sx,.ξ,ζ , T
x,.

ξ,ζ)

= Γξ(x, y) ∧ Γζ(x, y) +
∑
n>0

δ(y, yx,nξ,ζ )
(
Sx,∗ξ,ζ ∧ T

x,n

ξ,ζ − S
x,∗
ξ,ζ ∧ T

x,n−1

ξ,ζ

)
= Γξ(x, y) ∧ Γζ(x, y) +

∑
n>0

δ(y, yx,nξ,ζ ) [Γζ(x, y)− Γξ(x, y)]+

= Γξ(x, y) ∧ Γζ(x, y) + 1y∈Y xξ,ζ [Γζ(x, y)− Γξ(x, y)]+

= Γξ(x, y) ∧ Γζ(x, y) + [Γζ(x, y)− Γξ(x, y)]+

= Γζ(x, y).(5.17)

Uncoupled transitions in the second marginal that do not preserve partial order in the case
ξ ≤ ζ have thus also zero transition rates.

In conclusion, in the generator of the coupling process (3.11) with rates (3.27), for all
pairs of configurations (ξ, ζ) ∈ Ω × Ω such that ξ ≤ ζ, all possible transitions, coupled or
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uncoupled which have a non zero transition rate do preserve the partial order. In the case
ξ > ζ, the same result can be obtained along similar lines, and we thus omit its proof. The
coupling defined in Proposition 3.26 is thus increasing.

Proof. [Corollary 3.32] Let ξ, ζ ∈ Ω be two configurations, and let (x1, y1, x2, y2) ∈ S4. If
(x1, y1) = (x2, y2), the rate (3.33) is identical to the one given in the first line in (3.27). We
now assume that (x1, y1) 6= (x2, y2), and we want to recover the formulas in (3.27) from
the ones in (3.34). For ξ ≤ ζ and x1 = x2, we first compute using (3.35), (3.16)–(3.23) and
(3.25)

[
H i
ξ,ζ(x1; y1, y2)

]+
=

[( ∑
y′≤y1
y′∈Y x1

ξ,ζ

Γξ(x1, y
′)
)
∧
( ∑

z′≤y2
z′∈Y x1

ξ,ζ

[
Γζ(x1, z

′)− Γξ(x1, z
′)
]+)

−
( ∑
y′<y1
y′∈Y x1

ξ,ζ

Γξ(x1, y
′)
)
∨
( ∑

z′<y2
z′∈Y x1

ξ,ζ

[
Γζ(x1, z

′)− Γξ(x1, z
′)
]+)]+

=
∑
m,n>0

δ(y1, y
x1,m
ξ,ζ ) δ(y2, y

x1,n
ξ,ζ )Hm,n(Sx1,.ξ,ζ , T

x1,.

ξ,ζ ).(5.18)

Then, for ξ ≤ ζ and y1 = y2, we now compute using (3.36), (3.16)–(3.23) and (3.25)

[
Hf
ξ,ζ(x1, x2; y1)

]+
=

[( ∑
x′≤x1
x′∈Xy1

ξ,ζ

[
Γξ(x

′, y1)− Γζ(x
′, y1)

]+) ∧ ( ∑
y′≤x2
y′∈Xy1

ξ,ζ

Γζ(y
′, y1)

)

−
( ∑

x′<x1
x′∈Xy1

ξ,ζ

[
Γξ(x

′, y1)− Γζ(x
′, y1)

]+) ∨ ( ∑
y′<x2
y′∈Xy1

ξ,ζ

Γζ(y
′, y1)

)]+

=
∑
m,n>0

δ(x1, x
y1,m
ξ,ζ ) δ(x2, x

y1,n
ξ,ζ )Hm,n(T y1,.ξ,ζ , S

y1,.

ξ,ζ ).(5.19)

We proceed similarly for the other terms.

Proof. [Proposition 3.37]
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•We first prove that the operator defined by (3.38) is a valid coupling, that is the coefficient

associated to each transition is nonnegative. We rewrite the generator LD as,

LDf(ξ, ζ) =
∑

x1,y1∈S

ξ(x1)(1− ξ(y1))
(
Γξ(x1, y1)−

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))GD
ξ,ζ(x1, y1;x2, y2)

)
×
(
f(ξx1,y1 , ζ)− f(ξ, ζ)

)
+

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))
(
Γζ(x2, y2)−

∑
x1,y1∈S

ξ(x1)(1− ξ(y1))GD
ξ,ζ(x1, y1;x2, y2)

)
×
(
f(ξ, ζx2,y2)− f(ξ, ζ)

)
(5.20)

+
∑

x1,y1∈S

∑
x2,y2∈S

ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2))GD
ξ,ζ(x1, y1;x2, y2)

×
(
f(ξx1,y1 , ζx2,y2)− f(ξ, ζ)

)
.

In the above expression, the first (respectively second) line refers to uncoupled transitions
(ξ, ζ) → (ξx1,y1 , ζ) (respectively (ξ, ζ) → (ξ, ζx2,y2)), while the third line refers to coupled
transitions (ξ, ζ)→ (ξx1,y1 , ζx2,y2).

We first prove that the coefficient associated to an uncoupled transition (ξ, ζ)→ (ξx1,y1 , ζ)
is non-negative. It reads

ξ(x1)(1− ξ(y1))
(
Γξ(x1, y1)−

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))GD
ξ,ζ(x1, y1;x2, y2)

)
= ξ(x1)(1− ξ(y1))

(
Γξ(x1, y1)−

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))

×
∑
x,y∈S

(ξ ∨ ζ)(x)(1− (ξ ∨ ζ)(y))
1

Nξ,ζ(x, y)
Gξ,ξ∨ζ(x1, y1;x, y)Gξ∨ζ,ζ(x, y;x2, y2)

)
(5.21)

= ξ(x1)(1− ξ(y1))
(
Γξ(x1, y1)

−
∑
x,y∈S

(ξ ∨ ζ)(x)(1− (ξ ∨ ζ)(y))
1

Nξ,ζ(x, y)
ϕξ∨ζ,ζ(x, y) Gξ,ξ∨ζ(x1, y1;x, y)

)
≥ ξ(x1)(1− ξ(y1))

(
Γξ(x1, y1)−

∑
x,y∈S

(ξ ∨ ζ)(x)(1− (ξ ∨ ζ)(y))Gξ,ξ∨ζ(x1, y1;x, y)
)

≥ 0.

In this derivation, we used (3.39) to get the first equality, then exchanged the summations

and used (3.14) to get the second one; first inequality comes from
1

Nξ,ζ(x, y)
ϕξ∨ζ,ζ(x, y) ≤ 1

and nonnegativity of the coupling rates Gξ,ξ∨ζ ; the last one follows from inequality (3.12).
Non negativity of the coefficients associated to uncoupled transitions (ξ, ζ) → (ξ, ζx2,y2)
follows along similar lines and inequality (3.13). Non-negativity of Gξ,ζ insures that the
rates GD

ξ,ζ of coupled transitions (ξ, ζ)→ (ξx1,y1 , ζx2,y2) are also non negative.

• We now prove that the new coupling is increasing.
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Suppose that ξ ≤ ζ. We have ξ ∨ ζ = ζ; equations (3.15)–(3.14) and Remark 3.29 give

ϕξ,ξ∨ζ(x, y) = ϕξ,ζ(x, y) =
∑
x′,y′

ξ(x′)(1− ξ(y′))Gξ,ζ(x
′, y′;x, y),

ϕξ∨ζ,ζ(x, y) = ϕζ,ζ(x, y) =
∑
x′,y′

ζ(x′)(1− ζ(y′))Gζ,ζ(x, y;x′, y′) = ζ(x)(1− ζ(y))Γζ(x, y).

Inequality (3.13) implies here that ϕξ,ζ(x, y) ≤ Γζ(x, y), and we get from equation (3.40)

ζ(x)(1− ζ(y))
1

Nξ,ζ(x, y)
Γζ(x, y) =

{
1 if ζ(x)(1− ζ(y))Γζ(x, y) 6= 0,

0 otherwise.
(5.22)

This enables us to prove Remark 3.41. For all (x1, y1, x2, y2) ∈ S4 such that ξ(x1)(1 −
ξ(y1))ζ(x2)(1− ζ(y2)) 6= 0, the coupling rates GD

ξ,ζ(x1, y1;x2, y2) thus read

GD
ξ,ζ(x1, y1;x2, y2) =

∑
x,y∈S

ζ(x)(1− ζ(y))
1

Nξ,ζ(x, y)
Gξ,ζ(x1, y1;x, y)Gζ,ζ(x, y;x2, y2)

= ζ(x2)(1− ζ(y2))
1

Nξ,ζ(x2, y2)
Γζ(x2, y2)Gξ,ζ(x1, y1;x2, y2)

= Gξ,ζ(x1, y1;x2, y2).(5.23)

First equality is Equation (3.39) in the present case; second equality follows from Remark
3.29; the last one follows from (5.22), Gξ,ζ(x1, y1;x2, y2) ≥ 0 and Gξ,ζ(x1, y1;x2, y2) ≤
Γζ(x2, y2) (this last inequality comes from the fact that in L, the increasing coupling
generator defined in Proposition 3.26, the rates of uncoupled transitions are non-negative,
cf. (5.15) and the fact that ξ(x1)(1− ξ(y1)) 6= 0).

Inserting Equation (5.23) in (3.38), we get

LDf(ξ, ζ) =
∑

x1,y1∈S

ξ(x1)(1− ξ(y1))Γξ(x1, y1)
(
f(ξx1,y1 , ζ)− f(ξ, ζ)

)
+
∑

x2,y2∈S

ζ(x2)(1− ζ(y2))Γζ(x2, y2)
(
f(ξ, ζx2,y2)− f(ξ, ζ)

)
+
∑

x1,y1∈S

∑
x2,y2∈S

ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2))Gξ,ζ(x1, y1;x2, y2)

×
(
f(ξx1,y1 , ζx2,y2)− f(ξx1,y1 , ζ)− f(ξ, ζx2,y2) + f(ξ, ζ)

)
= Lf(ξ, ζ).

A similar identity holds for ξ > ζ. Since both generators identify on {ξ ≤ ζ} ∪ {ξ > ζ},
the coupling with generator LD is also increasing.

• We now prove that discrepancies cannot increase under LD.
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For any finite domain D ⊂ S, the number of discrepancies in D between two configura-
tions ξ, ζ in Ω is defined as ∑

x∈D

|ξ(x)− ζ(x)|

Each transition in (3.38) with positive transition rate involves a change on a finite number
of sites. For any such transition, say (ξ, ζ) −→ (ξ′, ζ ′), and for any finite domain D which
contains all sites involved in the transition

D ⊃
{
x ∈ S, ξ′(x) 6= ξ(x) or ζ ′(x) 6= ζ(x)

}
(5.24)

the variation of discrepancies is

∆D(ξ, ζ; ξ′, ζ ′) =
∑
x∈D

|ξ′(x)− ζ ′(x)| −
∑
x∈D

|ξ(x)− ζ(x)|

=
∑
x∈D

(
2ξ′(x) ∨ ζ ′(x)− ξ′(x)− ζ ′(x)

)
−
∑
x∈D

(
2ξ(x) ∨ ζ(x)− ξ(x)− ζ(x)

)
= 2

∑
x∈D

(
ξ′(x) ∨ ζ ′(x)− ξ(x) ∨ ζ(x)

)
.(5.25)

The last equality holds since the process is conservative.

• We consider first a coupled transition (ξ, ζ) −→ (ξx1,y1 , ζx2,y2) for some (x1, y1), (x2, y2)

in S2 with positive transition rate in LD,

ξ(x1)(1− ξ(y1))ζ(x2)(1− ζ(y2))GD
ξ,ζ(x1, y1;x2, y2) > 0.(5.26)

Turning to the definition (3.39), GD
ξ,ζ(x1, y1;x2, y2) > 0 implies that there exists (x0, y0) ∈

S2 such that both Gξ,ξ∨ζ(x1, y1;x0, y0) > 0 and Gξ∨ζ,ζ(x0, y0;x2, y2) > 0. Thus the transi-
tions (ξ, ξ ∨ ζ) −→ (ξx1,y1 , (ξ ∨ ζ)x0,y0) and (ξ ∨ ζ, ζ) −→ ((ξ ∨ ζ)x0,y0 , ζx2,y2) have positive
transition rate in L. Since it is the generator of an increasing coupling, ξ ≤ (ξ ∨ ζ) and
ζ ≤ (ξ ∨ ζ) implies that ξx1,y1 ≤ (ξ ∨ ζ)x0,y0 and ζx2,y2 ≤ (ξ ∨ ζ)x0,y0 and thus

ξx1,y1 ∨ ζx2,y2 ≤ (ξ ∨ ζ)x0,y0 .

Now, for any domain D as in (5.24),

∆D(ξ, ζ; ξx1,y1 , ζx2,y2) = ∆D∪{x0,y0}(ξ, ζ; ξx1,y1 , ζx2,y2)

= 2
∑

x∈D∪{x0,y0}

(
ξx1,y1(x) ∨ ζx2,y2(x)− ξ(x) ∨ ζ(x)

)
≤ 2

∑
x∈D∪{x0,y0}

(
(ξ ∨ ζ)x0,y0(x)− (ξ ∨ ζ)(x)

)
= 0,

where the last equality follows from particle conservation. Thus the number of discrepancies

does not increase in any coupled transition in LD.
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• We now turn to uncoupled transitions in LD. Let us consider a transition in the first
marginal, say (ξ, ζ) −→ (ξx1,y1 , ζ) for some (x1, y1) in S2. For any finite domain D such
that {x1, y1} ⊂ D, the variation in the number of discrepancies reads

∆D(ξ, ζ; ξx1,y1 , ζ) = 2
(
ξx1,y1(x1) ∨ ζ(x1)− ξ(x1) ∨ ζ(x1)

)
+2
(
ξx1,y1(y1) ∨ ζ(y1)− ξ(y1) ∨ ζ(y1)

)
= 2

(
ζ(x1)− ζ(y1)

)
.(5.27)

Thus the variation of discrepancies is non positive except in the case where both ζ(x1) = 1

and ζ(y1) = 0. We now prove that such a transition has rate 0 in LD:

First, since (ξ∨ζ)(y1) = 0, y1 /∈ Y x1
ξ,ξ∨ζ and by (3.27), for any (x, y) ∈ S2 such that y 6= y1,

Gξ,ξ∨ζ(x1, y1;x, y) = 0. Furthermore, ϕξ∨ζ,ζ(x, y1) = ϕζ,ξ∨ζ(x, y1) and since ζ(y1) = 0,
equation (5.17) holds and one has

ϕξ∨ζ,ζ(x, y1) = Γξ∨ζ(x, y1).(5.28)

Now the rate for the transition (ξ, ζ) −→ (ξx1,y1 , ζ) in LD reads

ξ(x1)(1− ξ(y1))
(
Γξ(x1, y1)−

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))GD
ξ,ζ(x1, y1;x2, y2)

)
= ξ(x1)(1− ξ(y1))

(
Γξ(x1, y1)−

∑
x2,y2∈S

ζ(x2)(1− ζ(y2))

×
∑
x,y∈S

(ξ ∨ ζ)(x)(1− (ξ ∨ ζ)(y))
1

Nξ,ζ(x, y)
Gξ,ξ∨ζ(x1, y1;x, y)Gξ∨ζ,ζ(x, y;x2, y2)

)
= ξ(x1)(1− ξ(y1))

(
Γξ(x1, y1)

−
∑
x,y∈S

(ξ ∨ ζ)(x)(1− (ξ ∨ ζ)(y))
1

Nξ,ζ(x, y)
ϕξ∨ζ,ζ(x, y) Gξ,ξ∨ζ(x1, y1;x, y)

)
= ξ(x1)(1− ξ(y1))

(
Γξ(x1, y1)−

∑
x,y∈S

(ξ ∨ ζ)(x)(1− (ξ ∨ ζ)(y))Gξ,ξ∨ζ(x1, y1;x, y)
)

= ξ(x1)(1− ξ(y1))
(
Γξ(x1, y1)− ϕξ,ξ∨ζ(x1, y1)

)
= 0.

The third equality comes from the fact that
1

Nξ,ζ(x, y)
ϕξ∨ζ,ζ(x, y) = 1 if y = y1 and

Γξ∨ζ(x, y1) > 0, and Gξ,ξ∨ζ(x1, y1;x, y) = 0 otherwise; the last equality comes from (ξ ∨
ζ)(x1) = 1, ξ ≤ ξ ∨ ζ and equation (5.16).

Thus the number of discrepancies does not increase in any uncoupled, first marginal

transition in LD.

• Finally, we consider an uncoupled, second marginal transition (ξ, ζ) −→ (ξ, ζx2,y2) for
some (x2, y2) in S2. Again, one proves that either the number of discrepancies does not
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increase, or has zero transition rate. The derivation is essentially identical to the previous
one so we skip it.

Collecting all cases, we have shown that in any transition in LD with nonzero transition
rate, the number of discrepancies does not increase. The result is proven.

Proof. [Proposition 3.43 and Proposition 3.44]
We consider the coupling with rates given in Proposition 3.44, and we show that it satisfies
the requirements for Proposition 3.43. For two configurations ξ and ζ such that ξ ≤ ζ,
one can compute easily the sum of correlated jump rates associated to a jump in a given
marginal. One finds, respectively

ϕξ,ζ(x, y) =
∑
x′,y′∈S

ζ(x′) (1− ζ(y′))Gξ,ζ(x, y;x′, y′)

= ζ(x) (1− ζ(y)) Γξ(x, y) + ζ(x) ζ(y)
T
x,∗
ξ,ζ

Sx,∗ξ,ζ
Γξ(x, y)(5.29)

and

ϕξ,ζ(x, y) =
∑
x′,y′∈S

ξ(x′) (1− ξ(y′))Gξ,ζ(x
′, y′;x, y)

= ξ(x) (1− ξ(y)) Γζ(x, y) + (1− ξ(x)) (1− ξ(y))
T y,∗ξ,ζ

S
y,∗
ξ,ζ

Γζ(x, y).(5.30)

Clearly coupled jump rates Gξ,ζ(x, y;x′, y′) and uncoupled jump rates Γξ(x, y)−ϕξ,ζ(x, y),
Γζ(x, y) − ϕξ,ζ(x, y) are all nonnegative for ξ ≤ ζ, and similarly for ξ > ζ. Following
the same lines as in the proof of Proposition 3.26, one finds that the above rates define an
increasing Markovian coupling. Using these new rates, one can define as in Proposition 3.37

a new coupling LD such that the discrepancies on the involved sites do not increase. Now
suppose that for a given pair of non ordered configurations ξ and ζ, there is a discrepancy
at site x, say ξ(x) = 1 and ζ(x) = 0. Now the discrepancy can move alongside with
the particle in the first marginal to any empty site y such that the edge (x, y) is open
at rate Γξ(x, y) > 0, or to any fully occupied site y such that the edge (y, x) is open,
alongside with a particle from the second marginal in the opposite direction with rate(

1−
T
x,∗
ξ,ζ

Sx,∗ξ,ζ

)
Γζ(y, x) > 0. In this case, pairs of discrepancies of opposite sign connected

through an open path have positive probability to disappear.
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