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Abstract. Numerical simulations and parametric studies of notched rectangular specimens subjected to dy-
namic tensile loads were performed. The simulations were based on two-dimensional finite element analysis
to predict the brittle fracture path using the phase-field approach. The parametric studies investigated the
influence of geometric parameters and the loading speed on crack path propagation. An empirical model
based on the sparse proper generalized decomposition learning technique was created to predict the crack
path. This model provides a quick prediction of the global behavior of the crack path circumventing the CPU
cost of the full finite element method simulation.

Keywords. Dynamic fracture propagation, Finite element, Brittle fracture, Phase-field approach, s-PGD tech-
nique.
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1. Introduction

Fracture is the primary cause of catastrophic structural failure. As no analytical solutions for crack
propagation exist, except in a few special cases, accurate numerical modeling of the fracture is
essential. In general, the numerical modeling of fracture can be performed using three classes of
methods: (1) discrete modeling (cohesive zone modeling, extended finite element methods, and
element deletion methods), (2) continuum damage description, and (3) phase-field methods.

Cohesive zone modeling requires either prior knowledge of the crack path (see Bhattacharjee
et al. [1], Bhattacharjee [2], Barlingay [3]) or the insertion of a cohesive zone between all edges of
the element as in Xu and Needleman [4], which increases the computational cost. Moreover, as
the crack can propagate only along the finite element boundaries, different shapes of triangular
elements can lead to different crack trajectories for the same boundary conditions as seen in Xu
and Needleman [4]. The extended finite element method requires that the actual and predicted
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trajectories are verified at each step (see Moes and Belytschko [5]). In addition, since discontinu-
ities have been injected based on a failure criterion, the use of level sets tends to favor the prop-
agation of a single crack, which limits its use in cases of crack branching (Song et al. [6]). The ele-
ment deletion method cannot predict the crack branching in the simulations performed by Song
et al. [6]. In continuous damage models, a change in the character of governing partial differential
equations occurs locally above a certain level of accumulated damage or plastic strains (Borst [7]).
Thus, many existing methods are poorly suited for modeling the dynamic behavior of cracks.

Phase-field models can capture the complex behavior of cracks without any ad hoc criteria for
crack evolution (Borden [8]) and are therefore effective in capturing the interactions between dy-
namically propagating cracks. In these approaches, the fracture surface is generated by a phase
field (Borden et al. [9]). A continuous scalar-valued phase fieldα is introduced into the domain to
indicate whether the material is in the damaged phase (α= 1) or in the undamaged phase (α= 0).
The phase field is allowed to take intermediate values (0 ≤ α ≤ 1) denoting a smearing of the
crack over a small region characterized by a length-scale parameter η. It determines the stiffness
of the material, that is, it reduces the strength of the material in areas where α > 0. An equation
for the evolution of this phase field is derived using Euler–Lagrange equations for a Lagrangian
approximation to the fracture problem, which depends on the history of the strain energy of
the domain and couples the equations for the evolution of the moment and the phase field.
Besides, the equilibrium at a given moment is determined by solving this system of coupled equa-
tions. The phase-field method overcomes the many complexities of discrete fracture patterns. It
does not require the numerical tracking of discontinuities or remeshing of the domain as the
crack propagates. This allows the efficient modeling of crack branching (with a reduced compu-
tational time). This approach can also efficiently model fracture in three-dimensional problems
(Borden et al. [9] and Wheeler et al. [10]) and can represent complex fracture surfaces simply by
the phase-field variable.

The present research work follows that of Bourdin et al. [11], which implements the varia-
tional formulation for the growth of quasi-static cracks proposed by Francfort and Marigo [12].
The method uses a functional with two fields, the first of which is displacement and the sec-
ond is a scalar phase field. Bourdin et al. [13] modify this formulation to model dynamic crack
propagation. Miehe et al. [14] proposes a thermodynamically coherent phase-field formulation
in which the fracture induced by the release of energy occurs only in tension. Other modifica-
tions include the introduction of a local history field that directs the evolution of the crack tra-
jectory, making the formulation more robust; see Miehe et al. [15]. However, this formulation
has a high computational cost since the balance of momentum equations becomes non-linear
due to the split. This formulation has also limitations for modeling crack propagation prob-
lems under combined loading (Jeong et al. [16]). To overcome these problems, Ambati et al. [17]
proposed a new formulation, which is a hybrid formulation. Borden [8] extends the phase-field
formulation to ductile fracture and derives an approximation of the higher-order phase field
for better accuracy. Recent notable extensions and improvements to the phase-field method
include fracture modeling in rubbery polymers (Miehe and Schanzel [18]), thermo-elastic–
plastic solids (Miehe et al. [19]) at large deformations, crack evolution in piezoelectric ceramics
(Wilson et al. [20]), and pressure fractures (Wheeler et al. [10]).

In the remainder of this paper, we present a developed simulation from the phase-field model.
Although this simulation is robust and gives precisely the complete crack path, it requires a
refined mesh and has a rather high computational cost. However, the requirement is sometimes
simpler. In fact, it is useful in some prediction cases to classify the cracks into two or three types
of topologies and to determine the topology type resulting from the simulation according to
the model parameters. Such an approach must then be based on learning techniques and must
produce a meta-model based on data (data-driven).
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Figure 1. Body with an internal crack: (a) sharp crack; (b) diffusive crack.

In recent years, there has been growing interest in the integration of data-driven techniques in
the mechanics field. In fact, in many scientific fields such as economy, sociology, and so on, big
data are almost classical. However, in the field of computational mechanics, they have arrived
significantly late. It should be noted that in this field, since the amount of data utilized is not very
large, data-driven techniques rather than big-data techniques are applied more often. Among the
first to integrate data-driven technologies into the field of computational mechanics are Kirchdo-
erfer and Ortiz [21,22] and Brunton et al. [23–25]. More recently, the question of compliance with
general laws such as those of thermodynamics has also been raised, which is a distinct feature
of data-driven mechanics (Gonzalez et al. [26]). Other applications include the identification of
biological systems (Mangan et al. [27]), financial trading (Mann and Kutz [28]), and so on.

In what follows, we use a method based on the concept of separate representations to over-
come the curse of dimensionality. This separate representation has already been used by previ-
ous authors to construct a priori reduced-order modeling techniques called proper generalized
decomposition (PGD) (Chinesta et al. [29–35]). Ibáñez et al. [36] have proposed a sparse proper
generalized decomposition (s-PGD) approach to the problem and have shown the performance
of this method in ten dimensions. This technique, which is based on the construction of a re-
sponse surface in a parametric domain, whose dimension is relative to the number of parame-
ters, is adopted in this research work. For the sum of tensor products, this method uses functions
in spaces of dimension 1 relative to each parameter. The functions are estimated by a residual
minimization procedure on training points in the parametric space.

We then show the ability of this meta-model to generate the topological prediction results on
the test cases presented in Section 3.

2. Brittle fracture phase-field modeling

Consider a linear elastic body Ω. Let ∂Ω be the external boundary and Γ be the internal discon-
tinuity or crack in the domain. Figure 1a shows a bodyΩ with discrete discontinuity Γ. Figure 1b
shows the corresponding phase-field approximation, where the parameter η controls the width
of the transition zone. The phase field α is a scalar field defined over the entire domain Ω such
that α= 1 denotes the fractured phase and α= 0 denotes the unfractured phase.

According to Griffith’s theory of brittle fracture, the energy required to create a unit surface
area of fracture surface is equal to the critical fracture energy density Gc , which is also known as
the fracture energy. The total potential energy Etot, which is the sum of the elastic energy and the
fracture energy, is given by Francfort and Marigo [12] as follows:

Etot =
∫
Ω
ψ0(ε)dΩ+

∫
Γ

Gc dΓ, (1)

whereΨ0, the elastic energy density, is a function of the strain field ε.

C. R. Mécanique — 2020, 348, no 8-9, 729-744
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The kinetic energy of the bodyΩ is given as

Ψkin(u̇) = 1

2

∫
Ω
ρu̇ · u̇dΩ. (2)

The regularized form of the potential energy was proposed by Francfort and Marigo [12] and
Bourdin et al. [37] by introducing the phase-field variable α.

The entire process of crack initiation and propagation is governed by a minimization problem
of the regularized energy functional. It is parameterized by η and defined by the following
equation:

Etot =
∫
Ω

[
1

2
ρu̇ · u̇+ ((1−α)2 +k(η))ψ0(ε(u))

]
dΩ+

∫
Ω

Gc

[
α2

4η
+η∇α ·∇α

]
dΩ, (3)

where u is the displacement field and k(η) ≪ 1 is a parameter that prevents numerical singularity
in the case of partly or fully broken systems. The length parameter η controls the width of the
crack’s smooth approximation.

To model the loss of stiffness in a fractured domain, the elastic potential energyΨ0 is split into
two parts, Ψ+

0 and Ψ−
0 , representing the elastic energy from tensile and compressive principal

strains, respectively. To take into account the stiffness degradation under tensile stresses, Miehe
et al. [38] definedΨ0 as follows:

ψ0(ε,α) = (1−α)2ψ+
0 (ε)+ψ−

0 (ε), (4)

where

ψ±
0 (ε) = 1

2λ〈tr(ε)〉2
±+µ tr(ε2

±). (5)

Herein, ε± = ∑3
I=1〈εI 〉±nI ⊗nI with {εI }3

I=1 and {nI }3
I=1 being the principal strains and principal

strain directions, respectively, and 〈a〉± = (1/2)(a ±|a|).
To take into account the loading and unloading histories, Miehe et al. [38] introduced the

strain history functional
H+ = max

τ∈[0,t ]
ψ+

0 (ε(x,τ)). (6)

The anisotropic formulation is defined as
σ(u,α) = (1−α)2

∂ψ+
0 (ε)

∂ε
+ ∂ψ−

0 (ε)

∂ε

−4η2∆α+α= 4η

Gc
(1−α)H+.

(7)

To reduce the computational cost and overcome the limitation of the anisotropic formulation
when the samples are subjected to combined tension and shear loading (Jeong et al. [16]), Ambati
et al. [17] proposed the use of a hybrid formulation as follows:

σ(u,α) = (1−α)2 ∂ψ0(ε)

∂ε

−4η2∆α+α= 4η

Gc
(1−α)H+

∀x : ψ+
0 <ψ−

0 →α= 0.

(8)

As in the anisotropic formulation, the crack evolution is driven only by the strain energy tensile
part; it is therefore blocked under compression. Yet, contrary to the anisotropic formulation case,
stiffness degradation occurs in all the directions of the material in the hybrid case.

Consequently, the completely broken part of the material cannot bear the load in any direc-
tion. The last constraint in (8) is adopted to prevent crack face interpenetration under compres-
sion (Ambati et al. [17]) resulting from complete stiffness degradation. Hence, the hybrid formu-
lation is proposed in the present research work.
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We used the staggered scheme, where the displacement and damage fields are updated alter-
natively. This scheme is chosen to ensure the robustness of the numerical solutions. Therefore,
the Newmark algorithm to solve the displacement field problem u is adopted and then the dam-
age field problem is solved as a linear system.

Thus, the dynamic problem consists in estimating the displacement and damage fields verify-
ing the following equations, respectively:∫

Ω
ρü ·δu dΩ+

∫
Ω

[
((1−α)2 +k(η))

∂ψ0

∂ε
(ε(u))

]
: δεdΩ= 0 (9)

2
∫
Ω
αβψ0

+(ε(u))dΩ+
∫
Ω

Gc

2η
αδαdΩ+

∫
Ω

2Gcη∇α∇δαdΩ= 2
∫
Ω
δαψ0

+(ε(u))dΩ. (10)

The Newmark algorithm below is used to solve (9):

1. Data: mesh, (E , υ, ρ), initial conditions: {U0} and {U̇0}
2. Assembly of the stiffness and the mass matrix: [K ] and [M ]
3. Initialization: calculation of {Ü0} with: [M ]{Ü0} = {F0}− [K ]{U0}
4. Matrix construction and factorization: [S] = [M ]+β∆t 2[K ]
5. For n = 0 to N −1 do

6. Prediction:

{
{U pred

n+1 } = {Un}+∆t {U̇n}+ 1
2∆t 2(1−2β){Ün}

{U̇ pred
n+1 } = {U̇n}+∆t (1−γ){Ün}

7. Calculation of the acceleration by: [S]{Ün+1} = {Fn+1}− [Kd ]{U pred
n+1 }

8. Correction and update:

{
{Un+1} = {U pred

n+1 }+∆t 2β{Ün+1}

{U̇n+1} = {U̇ pred
n+1 }+∆tγ{Ün+1}

9. End for

After discretization, Equation (10) becomes

2GcηR

 α1
...

αNs

+
(
2ψ0(ε(u))+ Gc

2η

)
M

 α1
...

αNs

= 2ψ0(ε(u))N , (11)

where

R =
Nt∑

k=1
rk ; rk =



∫
Tk

∇ϕ2
i dTk

∫
Tk

∇ϕi∇ϕ j dTk

∫
Tk

∇ϕi∇ϕl dTk∫
Tk

∇ϕ j∇ϕi dTk

∫
Tk

∇ϕ2
j dTk

∫
Tk

∇ϕ j∇ϕl dTk∫
Tk

∇ϕl∇ϕi dTk

∫
Tk

∇ϕl∇ϕ j dTk

∫
Tk

∇ϕ2
l dTk

 ,

M =
Nt∑

k=1
mk ; mk =



∫
Tk

ϕ2
i dTk

∫
Tk

ϕiϕ j dTk

∫
Tk

ϕiϕl dTk∫
Tk

ϕ jϕi dTk

∫
Tk

ϕ2
j dTk

∫
Tk

ϕ jϕl dTk∫
Tk

ϕlϕi dTk

∫
Tk

ϕlϕ j dTk

∫
Tk

ϕ2
l dTk

 , and

N =
Nt∑

k=1
nk ; nk =



∫
Tk

ϕi dTk∫
Tk

ϕ j dTk∫
Tk

ϕl dTk

 . (12)
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Therefore, it is a linear problem like the quasi-static problem:

K +
α (U )α= F+

α (13)

with K +
α (U ) = 2GcηR +

(
2ψ+

0 (ε(u))+ Gc

2η

)
M

F+
α = 2ψ+

0 (ε(u))N .

(14)

3. The s-PGD technique

The s-PGD technique is applied in the proposed case in a three-dimensional space (we are
using a three-dimensional parametric space). We denote by xi , yi , zi the coordinates of training
simulation parameters in the parametric space. The parameter fi is a global observable that
we can extract from the simulation (it could be for example a topology type of the crack path).
The parameter f (x, y, z) is then a function defined only on some P points used for training. The
purpose of the s-PGD technique is to look for the best continuous function u(x, y, z) such that the
error defined in (15) is minimum:

P∑
i=1

(u(xi , yi , zi )− fi )2. (15)

This technique detailed in Ibáñez et al. [36] allows writing the solution as an interpolation with
separate one-dimensional functions:

u(x, y, z) =
M∑

j=1
F j (x)G j (y)H j (z). (16)

Many choices are possible for the basis on which the functions F j ,G j , H j are expressed. In the
proposed case, the Chebyshev polynomials are adopted. Thus, if we denote by Lk ,k = 1. . .K
the first K Chebyshev polynomial functions, then the expressions of the functions F j ,G j , H j are
given by

F j =α j
1L1 +·· ·+α j

K LK ,

G j =β j
1L1 +·· ·+β j

K LK ,

H j = γ j
1L1 +·· ·+γ j

K LK .

(17)

Consequently, the s-PGD technique consists in finding the set of coefficients α j
k ,β j

k ,γ j
k for each

mode j .

4. The data-driven model

In this section, the performance of the s-PGD in predicting the type of fracture path, related to
geometric specimen parameters and the load velocity, is compared to that of the phase-field
direct numerical simulation.

Two specimen geometries subject to dynamic tensile tests were studied, namely the double-
notched specimen and the pre-notched rectangular plate with a central hole.

4.1. Tensile test of double-notched specimens

In this subsection, we describe the test of double-notched rectangular specimens under tensile
stress. We investigate the influence on the crack trajectory of the radius of two circular notches
(v1), the axial distance between them (v2), and the loading speed (v3). The geometry, boundary

C. R. Mécanique — 2020, 348, no 8-9, 729-744
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Figure 2. Tensile test: geometry and boundary conditions.

conditions, and loading are illustrated in Figure 2. The loading is given by applying normal
displacements, at fixed velocity v3, on the upper border of the plate u = v3×t , and the lower edge
is assumed to be fixed. The other boundaries are free. The specimen is discretized by triangular
plane stress elements and an effective element size of h = 0.2 mm in the fracture propagation
zone. The material parameters are densityρ = 7800 kg/m3, Young’s modulus E = 210 GPa, Poisson
ratio υ = 0.3, and critical fracture energy density Gc = 0.05 kN/mm. The selected length-scale
parameter is η= 2h = 0.4 mm. The time step is set as ∆t = 10−4 ms.

Two types of crack paths, namely a crack propagation from notch to notch and a propagation
from notch to edge, can be distinguished. Figure 3a shows an example of a crack propagating
horizontally from the left notch and deviating to the vicinity of the right notch and at the same
time another crack spreading from the right notch to the left notch. Figure 3b shows an example
of a crack propagating horizontally from the left notch to the right edge and another crack
spreading from the right notch to the left edge.

The crack pattern depends notably on the chosen three parameters. Table 1 lists the 15 sets of
input parameters used for training, which are chosen by the lhsdesign Matlab function, and their
associated results from direct numerical simulation.

At this stage, it is important to define the output. Indeed, if the crack propagates between
the two circular notches, we fix the output at the value 1; if not, the output is fixed at 0.
Once the training stage is performed, we choose seven other validation tests included in the
same parametric space to which the training parameters belong. This set of parameters is
presented in Table 2. The crack trajectory for all the training and validation tests is summarized
in Supplementary Appendix 1.

The training is illustrated in Figure 4. The circle and cross symbols are used to express the
output values 1 and 0, respectively, in the parametric space. As the s-PGD prediction technique
does not generate a binary value, we decided to reduce the output values greater than 0.5 to 1, and
those lower than 0.5 to 0. The dot and plus symbols are used to represent these two situations,
respectively. Figure 4 reveals that the built function matches the expected output at least for the
training points.

C. R. Mécanique — 2020, 348, no 8-9, 729-744



736 Yosra Kriaa et al.

Figure 3. Crack paths on the plate with two circular notches: (a) crack propagates from the
left notch to the right notch; (b) crack propagates horizontally from the left notch to the
right edge.

Table 1. Results for 15 simulations with the phase-field method of double-notched rectan-
gular specimens

Training
simulation

number

Radius of two
circular

notches (v1)

Axial distance
between two

circular notches (v2)

Load velocity
(v3)

Output of the
phase-field

model
1 6.9236 8.6796 5.346 1
2 4.6531 6.3371 6.7498 1
3 3.2944 3.2928 3.4169 1
4 4.4407 9.2565 2.2072 0
5 5.9643 7.7261 4.6815 1
6 6.215 3.9644 4.3667 1
7 4.9869 5.4881 8.5272 1
8 5.2058 9.9035 8.052 0
9 6.5795 6.8949 7.1293 1

10 3.7931 8.5664 1.6703 0
11 4.2143 4.6769 1.0518 1
12 3.0943 5.0221 6.065 1
13 3.9277 5.8309 3.0407 1
14 5.5674 3.5549 9.3107 1
15 5.6834 7.4405 9.4602 1

Figure 5 shows the points used for validation (controlled prediction) in the parametric space.
It proves that the data-driven model is able to correctly predict the crack path behavior in points

C. R. Mécanique — 2020, 348, no 8-9, 729-744
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Figure 4. Results for 15 tests with the s-PGD technique.

Table 2. Results for seven simulations used for validation of double-notched rectangular
specimens

Validation
simulation

number

Radius of two
circular

notches (v1)

Axial distance
between two

circular notches (v2)

Load velocity
(v3)

Results of the
phase-field

model
1 4.237 4.1573 5.6813 1
2 6.6541 9.4527 1.8516 1
3 3.6541 9.4527 3.8516 0
4 3.1397 7.4361 9.2498 0
5 5.3332 6.0753 3.4177 1
6 6.0935 5.7153 7.0696 1
7 3.2 8.5 8 0

that are not used for training (the circle symbol matches the dot symbol and the symbols “×” and
“+” match as well).

Finally, to make a non-controlled prediction, Figure 6 shows the expected output (between 0
and 1) for 2000 points randomly distributed on the parametric space. Such a figure could be very
useful for predicting the crack path topology quickly for a given set of parameters. It is also useful
for localizing the region in the parametric space where there is uncertainty about the crack path
topology (output approximately 0.5).

4.2. Tensile test of pre-notched specimens with a central hole

In this subsection, we describe the test of notched rectangular specimens under tensile stress. We
investigate the influence of the hole radius (v1), the distance between the pre-notch and the hole
(v2), and the loading speed (v3) on the crack trajectory. The geometry, boundary conditions, and
loading are illustrated in Figure 7. In fact, a normal displacement is applied on the upper border of
the plate u = v3 × t , the lower edge is assumed to be fixed, and the other boundaries are free. The
specimen is discretized with triangular plane stress elements and an effective size of h = 0.2 mm

C. R. Mécanique — 2020, 348, no 8-9, 729-744
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Figure 5. Results for seven tests of validation with the s-PGD technique.

Figure 6. Results for the s-PGD technique.

in the fracture propagation zone. The material parameters are ρ = 7800 kg/m3, E = 210 GPa,
υ= 0.3, and Gc = 0.05 kN/mm. The selected length-scale parameter is η= 2h = 0.4 mm. The time
step is set as ∆t = 10−4 ms.

It is worth noting that two types of crack paths are distinguishable in this case. Regarding the
first, it is a propagation from the pre-crack toward the hole and then from the hole to the right
edge (Figure 8a). As regards the second, it is a horizontal propagation from the pre-crack to the
right edge without deviation to the hole (Figure 8b).

The crack pattern depends notably on the set of parameters. Table 3 shows the training
simulation parameters and their associated results obtained using the phase-field method.

At this juncture, it is important to define the output. If the crack runs through the hole, we fix
the output at the value 1; if not, the output is fixed at 0. Once the training stage is performed,

C. R. Mécanique — 2020, 348, no 8-9, 729-744
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Figure 7. Tensile test: geometry and boundary conditions.

Figure 8. Crack paths on the plate with notch and hole: (a) crack deviates through the hole;
(b) crack propagates horizontally.

we choose five other validation tests included in the same parametric space to which the training
parameters belong (Table 4). The crack trajectory for all the training and validation tests is
summarized in Supplementary Appendix 2.

C. R. Mécanique — 2020, 348, no 8-9, 729-744
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Table 3. Results for 15 simulations with the phase-field method for pre-notched specimens
with a central hole

Training
simulation

number

Radius of the
hole (v1)

Distance between
the pre-crack and

the hole (v2)

Load velocity
(v3)

Output of the
phase-field

model
1 2.886 2.8921 1.8595 1
2 1.9156 4.6428 1.1035 0
3 1.617 6.3816 6.1651 0
4 1.728 6.5986 7.8274 0
5 3.4916 3.4409 3.421 1
6 2.8142 7.062 2.3032 0
7 1.891 5.1391 8.3116 0
8 3.2086 8.2394 9.4267 0
9 2.9976 8.378 5.0905 0

10 2.3136 4.6043 4.1977 1
11 3.2976 9.4882 5.3587 0
12 2.5874 5.6011 2.908 1
13 2.1362 9.2054 8.9911 0
14 2.2428 7.685 6.8023 0
15 2.5176 3.9974 7.579 1

Table 4. Results for five simulations used for validation of pre-notched specimens with a
central hole

Validation
simulation

number

Radius of the
hole (v1)

Distance between
the pre-crack and

the hole (v2)

Load velocity
(v3)

Output of the
phase-field

model
1 2.533 6.5224 2.8075 0
2 1.7828 8.1331 9.2141 0
3 2.0191 3.3723 7.652 1
4 3.4041 4.4432 2.3563 1
5 2.7162 9.1286 4.6705 0

Figure 9 shows the results of the 15 training tests. The circle and cross symbols are used
to express the output values 1 and 0, respectively, in the parameter space. Since the s-PGD
prediction technique does not generate a binary value, we decided to reduce the output values
greater than 0.5 to 1 and those lower than 0.5 to 0. The dot and plus symbols are used to represent
these two situations, respectively. Figure 9 shows that the constructed function corresponds to
the expected output at least for the training points with the exception of one test. As illustrated
in Figure 10, for this set of parameters, the crack propagates horizontally from the notch and
deviates to the vicinity of the hole on the right side and then propagates from the hole to the right
edge. As a result, this test creates a singularity and the two methods do not give the same results.

Figure 11 shows the points in the parametric space used for validation (controlled prediction).
This figure reveals that the data-driven model is able to correctly predict the behavior of the crack
path in points that are not used for training (the circle symbol matches the dot symbol and the
symbols “×” and “+” match likewise).

Finally, to make a non-controlled prediction, Figure 12 shows the expected output (between
0 and 1) for 2000 points randomly distributed on the parametric space. This figure could be very
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Figure 9. Results for 15 tests with the s-PGD technique.

Figure 10. Crack paths on the plate with notch and hole: critical case.

useful when it comes to locating the parameters to obtain the type of topology. It is also useful
for locating the region of the parametric space where we have some uncertainty about the crack
path topology (output approximately 0.5).
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Figure 11. Results for five tests of validation with the s-PGD technique.

Figure 12. Results for the s-PGD technique.

5. Conclusion

The phase-field modeling of brittle fracture is a promising computational tool for tackling frac-
ture problems with complex topologies for crack paths. The direct numerical simulation method
is often expensive in terms of CPU cost. This research work presents an application using the s-
PGD technique for the construction of a meta-model based on data. This study is performed on
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only three parameters (two geometrical parameters and load velocity). At this level, the results
are satisfactory. A possible extension could include the variability effects of material parameters
or phase-field parameters. However, when the parametric space dimension increases, the num-
ber of training simulations must be sufficiently significant. Otherwise, some constraints must be
applied on the s-PGD technique to avoid high-order solutions. It is noteworthy that this point
constitutes a work in progress.

Supplementary data

Supporting information for this article is available on the journal’s website under https://doi.org/
10.5802/crmeca.52 or from the author.
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