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Abstract—Machine learning and artificial intelligence models
are increasingly common in predictive maintenance due to their
ability to automatically extract high-level features with less
human intervention. These models have been shown to give good
results in machinery or rotatory fault diagnosis. However, due
to the complexity of vibration and audio signals used in fault
diagnosis, some pre-processing is required before feeding the
machine learning algorithm. Fast Fourier Transform (FFT) and
the Hilbert transform (HT) envelope spectrum are mostly used
in the literature. However, these frequency domain transforms
are not very effective when applied to rotating systems (bearings)
fault detection. Indeed, in these applications, fault signal patterns
are usually very weak relative to background noise and other
interference in the early damage stage. In this paper we propose
to use signature to extract new features from sensor data and use
these new feature to train machine learning models. The main
idea is to use the extracted signature coefficients to create 2d
images that are then fed to a deep neural network for classifica-
tion. Our experimental results show that this method outperforms
most state-of-the-art methods on eight (8) bearing fault diagnosis
data sets and three (3) other time series classification data sets.
For example, on the Case Western Reserve University (CWRU)
data set, the proposed method accuracy ranges from 96.59 %
to 100% accuracy. Moreover, the results show that this method
is particularly well suited for high dimensional time series. The
results also show that compared to Fast Fourier Transform (FFT),
the signature method requires fewer data points to detect failure.
This means that in a situation where the two methods have similar
performances, the signature method detects failure faster than
FFT. This is very important in fault detection and predictive
maintenance, in particular where it is crucial to detect faults
before they occur or get worse.

Index Terms—Fault diagnosis, Anomaly detection, Predictive
maintenance, Concept drift detection, Data streams, Signature,
Machine learning

I. INTRODUCTION

In automatic life monitoring system, we use signal pro-
cessing techniques to analyze the raw signal collected from
sensors installed on the machine or system under consider-
ation. Vibration and audio signals are mostly used in fault
diagnosis. Due to the complexity of these signals in fault
diagnosis, mathematical transformations and signal processing
techniques are widely used to process the raw signal. Signal
processing refers to an ensemble of techniques and methods
that transform original signals into useful features to accom-
plish fault diagnosis. These features should be independent of
the normal machine operating conditions (variations of load

and speed) and extraneous noise and be sensitive only to
machinery faults [1].

Over the years, numerous signal analysis methods have
been proposed to process sensor data such as bearing fault
vibration signals [2]–[9]. In general, these methods are based
on frequency domain analysis. The frequency domain refers
to the analysis of signals with respect to frequency, rather
than time. The most commonly used methods the Fast Fourier
Transform (FFT) and the Hilbert transform (HT) envelope
spectrum. The Fourier transform converts a time dependent
signal into a complex valued sum or integral of sine waves
of different frequencies, with amplitudes and phases, each of
which represents a frequency component. The ”spectrum” of
frequency components is the frequency-domain representation
of the signal. The main limitation of frequency domain anal-
ysis techniques in rotatory systems (bearings) fault detection
is that fault feature signals are usually very weak relative to
background noise and other interference in the early damage
stage [10]. Thus, for rolling bearings fault diagnosis, the
frequency domain analysis techniques lose efficacy.

In this paper we propose to use signature to extract new
features from sensor data and use these new feature to train
machine learning models. Signatures method is an operation
that maps multi-dimensional paths to the sequence of their
iterated integrals, where the sequence is equipped with some
algebraic operations [11]. The main idea is to use the extracted
signature coefficients to create 2d images that are then fed to
a deep neural network for classification. Our results show that
this method outperforms most of state-of-the-art methods on
eight (8) bearing fault diagnosis data sets (bearing and gear
box data sets) and three (3) other time series classification
data sets. Our results also show that compared to Fast Fourier
Transform (FFT) that is the most commonly used method,
signature method requires fewer data points to detect failure.
This means that in a situation where the two method have sim-
ilar performances, signature method detects failure faster than
FFT. This is very important in fault detection and predictive
maintenance in particular where it is crucial to detect the fault
before they occur or get worse.

Note that the focus of this paper is not to look for the
best deep learning architecture but to compare signature based
feature extraction method again other techniques such as
Fast Fourier Transform (FFT). Therefore, this method can



be combined with any other machine learning model. The
rest of the paper is outlined as follows. The Related Works
section discusses the main techniques and studies (or articles)
related to predictive maintenance and bearing fault detection.
The third section is dedicated to the theoretical definition
of signature and the description of our method. In section
Experimental Data sets, we describe the data sets used for
our experiments. The hyperparameters optimization section
describes in detail the model’s architecture, the performance
metrics and the choice of signature order. The results are
presented and discussed in section Results and discussions.

II. RELATED WORKS

In this section we discuss the state of the art and some of the
most common machinery fault detection techniques. Vibration-
based methods are the most popular and includes a wide
range of techniques which have rapidly evolved during the last
decades [2]–[9]. In the case of vibration-based methods, most
references are related to bearing faults, followed by rotor/stator
faults and gears [1].

A. Frequency domain analysis

Wang et al. [8] used short-time Fourier transform (STFT) to
extract features from the vibrations signal and then converted
these new features into two-dimensional (2D) images. The 2D
images are then used to train VGG (Visual Geometry Group)
neural network models for bearing fault classification. They
applied their method to a subset of the Case Western Reserve
University (CWRU) [12] and The society For machinery
failure prevention technology (MFPT) data sets [13]. Before
the feature extraction step, the raw vibration signals were
segmented into segment of length of 900. Zhijian et al. [14]
also used the MFPT Fault data sets in their paper. The authors
proposed to convert the time-domain vibration signal into RGB
image based on erosion operation (EOSTI) and then apply
AlexNet Convolutional neural network on the obtained images
to detect faults. The raw vibration signals were segmented
into segment of length of 681 before applying the EOSTI
transformation. The proposed method was tested on Coal
washing machine dataset and the MFPT dataset.The raw vi-
bration signals were segmented into segment of length of 681
before applying the EOSTI transformation. Their experimental
results show that their method has good performance compared
to other methods such as FCNN,Lenet-5, RBF-SVM, KELM,
KNN, NB, RF, PNN. On the MFPT dataset, their model has
a mean accuracy of 98.64%.

Saucedo et al. [9] used fast Fourier transform (FFT) and
Power Spectral Density (PSD) to analyse the vibration and
current for the diagnosis of different levels of uniform wear
in a gearbox. The vibration analysis is done by means of a
spectral analysis and the use of a theoretical model to extract
some frequency components. Thus, the acquired vibration data
are analysed with the FFT and the acquired motor current data
are analysed with the PSD. The method consists of analyzing
the increase in amplitude and the spectral modulation in order

to quantify the uniform wear level in the gearbox and the bear-
ing defect presence. By using these two signals (vibration and
current), the author expect to have a more reliable diagnosis
and detection of multiple faults. Sachan et al. [6] proposed a
two level de-noising algorithm based on zero frequency filter
and wavelet transform for early detection of bearing faults.
They then detected the bearing fault using wavelet transform
and zero frequency filter. They worked on two data sets:
Intelligent maintenance System (IMS) bearing dataset [15]
is considered for testing the algorithm with naturally grown
faults and parts of the CWRU bearing dataset is considered
for testing the algorithm with seeded faults.

B. Multidimensional feature extraction

Li et al. [2] combined support vector machine (SVM)
single feature evaluation, correlation analysis and principal
component analysis-weighted load evaluation (PCA-WLE) to
select relevant features for bearing fault detection. They used
parts of the CWRU bearing fault data set. The proposed
method provides very good results but the feature extraction
and the feature selection process is long and can be difficult to
apply in real word application specially in embedded use case.
Their model has 10 classes: Normal0 and 9 faults states. Chen
et al. [3] proposed to use stacked denoising autoencoder (SDA)
models for health state identifications for signals containing
ambient noise and working condition fluctuations. They com-
pared the performance of SDA models with that of state of
the art unsupervised methods like SVM, random forest and
deep autoencoder. The authors used the 48k drive end bearing
data from the CWRU bearing data center as test data. Their
results show that SDA based models outperform and are more
stable than other models for all noise levels. Chen et al. [5] also
used parts of the CWRU bearing data sets for imbalanced class
classification tasks. The authors proposed a new version of the
SMOTE algorithm to deal with the class imbalance problem.
They are datasets consisting of normal data and abnormal data
at rpm of 1797, 1772, and 1750, respectively.

David et al. [7] proposed to use a two step state detection
method based on feature extracted using envelope analysis
and time domain. At the first step, they used Chebyshev’s
inequality upper bound to classify samples as outer fault or
not based on the envelope features. If the sample has not been
classified as fault, they use the time domain features and KNN
to classify it into another categories (inner fault, cage fault, ball
fault or healthy). Piltan et al. [16] proposed a method based
on a fuzzy orthonormal-ARX adaptive fuzzy logic-structure
feedback observer. They used the CWRU dataset to test their
method. The average fault diagnosis accuracy for the proposed
method is about 97.5% on this dataset in the presence of load
variation.

C. Sound based fault diagnosis

sound-based fault diagnosis using microphones is an emerg-
ing field with a great potential in fault diagnosis since micro-
phones are noninvasive sensors [1], [17]–[19]. Most references
in audio-based fault diagnosis are related to combustion engine



faults and the faults occur in motors, pumps, fans, helicopters,
in bearing, gear and rotor test-rigs. Purohit et al. [17] used
auto encoders to detect industrial machine malfunction using
sounds. They presented a new dataset of industrial machine
sounds for malfunctioning industrial machine investigation
and inspection called MIMII dataset. The authors recorded
normal sounds for different types of industrial machines (i.e.,
valves, pumps, fans, and slide rails), and to resemble a real-life
scenario, various anomalous sounds were also recorded (e.g.,
contamination, leakage, rotating unbalance, and rail damage).
They trained the auto encoders models on the normal classes.
So for each machine type and model ID, they trained an auto
encoder on the normal sounds and tested it on the abnormal
sounds. Liu et al [18] used a spectral-temporal fusion based
self-supervised method to model the feature of the normal
sound. They combined the features extracted from short-
time Fourier transform (STFT) with a CNN-based network
(TgramNet) to extract the temporal feature from the raw sound
signal. By combining the temporal high level features from a
CNN network and spectral features from the log-Mel spectro-
gram, the proposed method exploits complementary spectral-
temporal information from the normal sound via the fused
features, and results in more stable detection performance of
amongst different machines [18].

This review shows that the most commonly used methods
for feature extraction in fault detection are frequency domain
analysis such as the Fast Fourier Transform (FFT) and the
Hilbert transform (HT) envelope spectrum. The Fourier trans-
form converts a time dependant signal into a complex valued
sum or integral of sine waves of different frequencies, with
amplitudes and phases, each of which represents a frequency
component. The ”spectrum” of frequency components is the
frequency-domain representation of the signal. The main lim-
itation of frequency domain analysis techniques in rotatory
systems (bearings) fault detection is that fault feature signals
are usually very weak relative to background noise and other
interference in the early damage stage [10]. Thus, for rolling
bearings fault diagnosis, the frequency domain analysis tech-
niques lose efficacy. To overcome some of the limitation of fre-
quency domain analysis, time–frequency domain approaches
such as short-time Fourier transform, wavelet transform, and
Hilbert Huang transform have been used by some authors, but
these techniques also suffer from background noise.

III. THE PROPOSED APPROACH

A. Signature feature extraction

In this paper we propose to use signature feature extraction
to transform the raw signals before applying machine learning
methods. The signature of a path was first studied by K.T Chen
in his studies on path integrals [20]. Signatures method is an
operation that maps multi-dimensional paths to the sequence of
their iterated integrals, where the sequence is equipped with
some algebraic operations [11]. The idea of using signature
to describe data streams comes from some properties of
differentiable functions. A function is said to be differentiable
precisely when the chord is a good local summary of the

function over some small subset of its domain [11]. The effect
of smooth path can then be well approximated by its piece-
wise chordal approximation. Since then signature has been
used in many machine learning tasks such as time series
analysis and images processing [11], [21]–[25]. Signatures
have been proven to be an effective way of describing a
data stream as they provide a non-parametric way to fully
describe the measure on the stream space [21]. Yang et al.
[25] used signature feature mapping combined with a recur-
rent neural network for handwriting recognition. Their results
show that signature features are very useful and effective in
handwriting recognition tasks. Gyurk0 et al. [11] proposed
to use signature features to classify financial time series.
They used a LASSO-based regression method combined with
a Kolmogorov-Smirnov distance of the distributions. Their
results suggest that signature method has great potential in ex-
tracting information from noisy market data and classify them
with a degree of high accuracy. Fermanian et al. [26] in his
paper discussed some interesting properties of signature and its
feature mapping. The authors reviewed potential embeddings
of signature and their predictive performance and come to
the conclusion that the lead-lag embedding outperforms other
embeddings, over different datasets and algorithms. They also
showed that with a good embedding, the signature combined
with a simple algorithm, such as a random forest classifier,
obtains results comparable to state-of-the-art approaches in
different application areas, while remaining a generic approach
and computationally simple [26].

1) Paths in Euclidean space: We define a path X in Rd as a
continuous function mapping from some interval [a, b] −→ Rd

written as:

X : [a, b] −→ Rd

t −→ X(t) = Xt

The d-dimensions path can be written as:

X : [a, b] −→ Rd, Xt = {X1
t , X

2
t , . . . X

d
t }

2) Signature of paths: Let X : T −→ Rd be a d-
dimensional path where T is a compact interval. The signature
S(X) of X over the time interval T is defined by [21]:

XT = (1, X1, . . . , Xm, . . . )

where m ∈ N+ an integer such that,

Xm =

∫
u1<...<um
u1,...,um∈T

. . .

∫
u1

⊗ . . .⊗ dXum ∈ E⊗m (1)

The truncated signature of X of order q is denoted by Sq(X)
where

Sq(X) = (1, X1, . . . , Xq)

For a d-dimensions path X : [a, b] −→ Rd where each
Xi : [a, b] −→ R, i ∈ {1, . . . , d} is a real-valued path. For the



i-th coordinate of the path at time t ∈ [a, b] let us define the
quantity

S(X)ia,t =

∫
a<s<t

dXi
s = Xi

t −Xi
0 (2)

Now for any pair i, j ∈ {1, . . . , d}, let us define the double-
iterated integral

S(X)i,ja,t =

∫
a<s<t

S(X)ia,sdX
j
s =

∫
a<r<s<t

dXi
rdX

j
s (3)

Where S(X)ia,s is given by (2). Notice that S(X)ia,. :
[a, b] −→ R is itself a real valued path.
Likewise for any triple i, j, k ∈ {1, . . . , d} we define the triple-
iterated integral

S(X)i,j,ka,t =

∫
a<s<t

S(X)i,ja,sdX
k
s =

∫
a<q<r<s<t

dXi
qdX

j
rdX

k
s

(4)
We can continue recursively, and for any integer k ≥ 1 and
collection of indexes i1, . . . , ik ∈ {1, . . . , d}, we define

S(X)i1,...,ika,t =

∫
a<s<t

S(X)i1,...,ik−1
a,s dXik

s (5)

As S(X)
i1,...,ik−1
a,s and Xik

s are real-valued paths,
S(X)i1,...,ika,t : [a, b] −→ R is also a real-valued path
[22] . The equation (5) can be rewritten as follows

S(X)i1,...,ika,t =

∫
a<tk<t

. . .

∫
a<t1<t2

dXi1
t1 . . . dX

ik
tk

(6)

The real number S(X)i1,...,ika,b is called the k-fold iterated
integral of X along the indexes i1, . . . , ik.

The truncated signature of order q of a d-dimensions path
X : [a, b] −→ Rd denoted by S(X)a,b is the sequence of real
numbers:

S(X) =
(
1,S(X)1a,b, . . . ,S(X)qa,b

)
(7)

where the first term is by convention equal to 1, and the
superscripts run along the set of all multi-indexes

W = {(i1, . . . , ik)|k ≥ 1, i1, . . . , ik ∈ {1, . . . , d}}

Signature has some interesting mathematical properties such
as the Invariance under time reparametrisations It can be
proven that for a given paths, their path integrals are invariant
under a time reparametrization of both paths. As the signature
of a d-dimensions path S(X) is a collection of iterated path
integral of X, it follows from the above that the signature
S(X)a,b is also invariant under time reparametrizations of X.
Shuffle product Ree et al. [27] proved that the product of two
terms S(X)i1,...,ika,t and S(X)j1,...,jma,t can always be expressed
as a sum of another collection of terms of S(X)a,bwhich only
depends on the multi-indexes (i1, . . . , ik) and (j1, . . . , jm).

For more interesting properties of signatures, the reader can
refer to [22], [26].

B. The proposed approach

As discussed in the preview subsection, signature transfor-
mation can be a powerful tool for machine learning problems
due to its ability to extract characteristic features from data.
The advantages of feature extraction with the signature method
is that the signature is sensitive to the geometric shape of a
path [22]. In this paper we propose to use signature to extract
new features from sequential data and use these new feature
to learn deep learning models. Like Yan et. [25] and Graham
[28], we extracted signature features from the raw data and
create images of these signature coefficients. These images
are then fed to a deep neural network for classification. Our
workflow is simple and is summarised in the following steps
(see figure 1): (1) collect raw data from sensors and split the
raw sequential data into sub times series according to a given
window; (2)Transform each time series into continuous path
using lead lag and compute the signature of order d of all the
sub series. In this way, the time-dependent input is mapped
into a time-independent finite set of coefficients. (3) reshape
the signature coefficients into 2-dimension array or 2-d images,
so they can be used as input for deep convolutional networks;
(4) Use the obtained 2-d images as input for deep learning
models.

IV. EXPERIMENTAL DATA SETS

The proposed method was tested on 11 publicly available
datasets and the results have been compared to other works that
use these datasets II. These data sets include 8 bearing fault
data sets and 3 multi-dimensional time series classification
data sets. Figure 2 shows the types of bearing faults inside a
rotatory system.

A. Bearing fault data sets

First, the Bearing Data Center Seeded Fault Test Datasets
are provided by Case Western Reserve University (CWRU)
of Cleveland in the USA [12]. The data sets are collected
from Motor bearings with seeded faults using electro-discharge
machining (EDM). The experiments were conducted using
a 2 hp Reliance Electric motor, and acceleration data was
measured at locations near to and remote from the motor
bearings. Vibration data was collected using accelerometers,
which were attached to the housing with magnetic bases. The
seeded faults were introduced ranging from 0.007 inches in
diameter to 0.028 inches in diameter separately at the inner
raceway, rolling element (i.e. ball) and outer raceway. The
damaged bearings were then reinstalled into the test motor
and vibration data was recorded for motor loads of 0 to 3
horsepower (motor speeds of 1797 to 1720 RPM). The data
sets contain two types of fault : drive end bearing fault and
fan end bearing fault. In addition to these faulty data, the
normal condition of the motor has been recorded. In this
paper we used the drive end bearing at the sampling rate
of 12,000 samples/second for fault diameters ranging from
0.007 inches to 0.021 inches separately at the inner raceway,
rolling element (i.e. ball) and outer raceway. The data sets have
been separated into 4 different datasets according to the fault
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Fig. 1: Architecture and dataflow of the proposed approach. 1 Compute signatures. 2 Reshape signatures into 2d arrays. 3

Train a predictive model with 2 d data sets.

diameter and motor speed. In the first three dasets, we train the
models to detect the bearing condition ((healthy, inner, ball,
outer)) according to the fault diameter as shown in Table I.
In the last dataset (dataset 4), the models are constructed to
detect for a given motor speed the type of bearing fault (inner
raceway, rolling element and outer raceway) and the diameter
of damage. For this set up we have teen states or classes to pre-
dict:’normal’,’IF 0.007’,’BF 0.007’,’OF 0.007’,’IF 0.014’,’BF
0.014’,’OF 0.014’,’IF 0.021’,’BO 0.021’,’OF 0.021’.

The second dataset is the Gearbox Fault Diagnosis data
[29]. This publicly available data set include the vibration data
recorded by using SpectraQuest’s Gearbox fault diagnostics
simulator. Data set has been recorded using 4 vibration sensors
placed in four different direction, and under variation of load
from 0 to 90 percent. Two different scenario are included:
Healthy condition and Broken Tooth Condition. There are 20
files in total, 10 for healthy gearbox and 10 from broken one.
Each file corresponds to a given load from 0% to 90% in
steps of 10% [29]. The merged data set contains 2.021.119
recordings and four features (a1, a2, a3, a4) corresponding to
the value of the four vibration sensors. The broken condition
represents 49.74% of the whole dataset, the dataset is then
balanced.

The third data set called MFPT Fault Data Sets have been
collected by the Society For Machinery Failure Prevention
Technology (MFPT) [13]. The data set comprises data from a
bearing test rig (nominal bearing data, an outer race fault at
various loads, and inner race fault and various loads), and three
real-world faults. The data set comprises 3 baseline conditions,
3 outer race fault conditions, 7 outer race fault conditions,
7 inner race fault conditions. In this paper we use normal
signals (NO) with a load of 270 lbs, outer ring faults (OF
50) with a load of 50 lbs, outer ring faults (OF 100) with
a load of 100 lbs, outer ring faults (OF 150) with a load
of 150 lbs, outer ring faults (OF 200) with a load of 200
lbs, outer ring faults (OF 250) with a load of 250 lbs, inner
ring faults (IF 50) with a load of 50 lbs, inner ring faults (IF
100) with a load of 100 lbs, inner ring faults (IF 150) with
a load of 150 lbs, inner ring faults (IF 200) with a load of
200 lbs and inner ring faults (IF 250) with a load of 250 lbs
as in [8], [14]. The input shaft rate is 25 Hz and sample rate
of 97,656 sps for 6 seconds. Thus, there is about 3906 data
points collected at each rotation of the shaft. The final training
dataset contains 1.171.872 recordings divided into 13 classes.
In training dataset, the labels are divided into five categories:
NO, OF 50, OF 100, OF 150, OF 200, OF 250, IF 50, IF 100,



IF 150, IF 200 and IF 250.
Finally the Triaxial Bearing Vibration Dataset has been

provied by Kumar et al. [30] for bearing fault detection
usage. The dataset is collected using a MEMS based triaxial
accelerometer and the National Instruments myRIO board.
The data set includes triaxial vibration data of bearing of
induction motor operated under different load conditions along
the axes x, y, and z. The faulty conditions of bearings include
inner race and outer race faults with differents diameters: (i)
0.7mm, (i) 0.9mm, (i) 1.1mm, (i) 1.3mm, (i) 1.5m, and (i)
1.7mm. The bearings with these fault severity levels were
operated under three load conditions:100W,200W, 300W. Each
set contains four columns: Time Stamp, X-axis, Y-axis, and
Z-axis. The free axis columns contain vibration data of the
motor along the x, y, and z axes. In this paper, we used
only the files from the healthy bearing condition and three
faults diameters: 0.7mm, 0.9mm, 1.1mm. The merged dataset
contains 2.499.951 recordings. This dataset has been divide
into 7 classes: Healthy, 0.7mm inner race fault, 0.9mm inner
race fault, 1.1mm inner race fault, 0.7mm outer race fault,
0.9mm outer race fault, 1.1mm outer race fault.

Fig. 2: Types of bearing faults [4]

B. Time series classification data sets

The NSW data set contains data from the Australian New
South Wales electricity market [31]. In this market, prices are
flexible and are affected by demand and supply of the market.
The data set contains 45.312 instances and nine features dated
from 7 May 1996 to 5 December 1998. The goal is to predict
if the electricity price goes up or down each 30 minutes
[32]. Concept drift is present due to seasonal weather changes
which affects the electricity demand and its price. The Insect
stream data was built by Souza et al. [33] for drift detection
and classification task. The data set cointains 52848 samples
and 34 features. The learning task is to correctly classify the
insect by species. There are 6 type (class) of insects. The
Sensor Stream data set contains information (temperature,
humidity, light, and sensor voltage) collected from 54 sensors
[34]. The data contains consecutive samples recorded over a
2 months period. The data sets contains 2.219.803 samples
and 5 features. The learning task is to correctly identify the
sensor ID (1 out of 54 sensors) based on the sensor data and
the corresponding recording time. In this work we only used

a subset of the whole data set. We selected the data from 5
sensors: b’1’,b’2’,b’3’,b’4’,b’6’. So in our case we only have
180.388 samples divided into 5 classes. The earthquake data
set is taken from Northern California Earthquake Data Center
[35]. The learning task is predicting whether a major event
is about to occur based on the most recent readings in the
surrounding area. The data set contains 8666 samples and each
sample is an averaged reading for one hour. The original time
series signal was split into 461 sub samples of length 512 for
classification task.

TABLE I: Bearing Fault Data for varying fault diameter, motor
load and motor speed

Dataset type of fault fault diameter motor load motor speed

Dataset 1

healthy 0.007

0,1,2,3 1797, 1772, 1750, 1730inner 0.007
ball 0.007

outer 0.007

Dataset 2

healthy 0.014

0,1,2,3 1797, 1772, 1750, 1730inner 0.014
ball 0.014

outer 0.014

Dataset 3

healthy 0.021

0,1,2,3 1797, 1772, 1750, 1730inner 0.021
ball 0.021

outer 0.021

Dataset 4

healthy

0.007,0.014,0.021

0 1797
inner 0 1797
ball 0 1797

outer 0 1797

TABLE II: Experimental data description.
Data set Samples Features number of classes
Triaxial Bearing [30] 2.499.951 3 7
MFPT Data Sets [13] 2.343.744 1 13
Gear box data [29] 2.021.119 4 2
Sensor Stream [34] 2.219.803 5 54
Data set 1 1.707.738 2 4
Data set 2 1.707.105 2 4
Data set 3 1.708.120 2 4
Data set 4 1.341.856 2 10
NSW electricity [31] 45.312 9 2
Insect stream data [33] 52.848 34 6
Earthquakes [35] 236.032 1 2

C. Data segmentation
For each data set, we trained and tested the model by vary-

ing the window size and choose the value that maximizes the
accuracy score. For the bearing data sets, the window values
are chosen according to the motor speed and the sampling
rate. For example for the CWRU data set, we set the motor
speed to 1797 rpm, this means that there is approximately
30 rotation/second. As the sensor sampling frequency is set
to 12000 samples/second, there is about 400 data points are
collected in one rotation of the bearing. Therefore, in order to
ensure that the length of a single sample can completely and
accurately reflect that data distribution of the bearing vibration
signals in this state, each 400 data points can be regarded as
a small sample.

Notice that the lower the segmentation window the faster the
model can detect faults. This is very important in predictive
maintenance where it is crucial to detect the fault before they
occur or get worse.

V. EXPERIMENTAL DESIGN

A. CNN hyper-parameters
The models are trained using a k-folds cross-validation

(k = 5 in our case). Each model is therefore trained and



validated on 5 different sub-samples. The final performance is
computed on the test set. The final value of the performance
metric(accuracy) is computed by taking the average of the five
measurements obtained during the ten iterations of the cross-
validation. We set the number of epochs to 200 for each model
and used early stopping to avoid overfitting. The rectified
linear unit (ReLU) activation function is used in neurons of
the hidden layers. We also added between the hidden layers a
Batch Normalization layer followed by a dropout layer. Our
final CNN model has 16.586 Trainable parameters and the
following architecture: 3 convolution layers with 16 filters
each, an average pooling layer and a fully connected layer
of 32 neurons.

Note the focus of this paper is not to look for the best deep
learning architecture but to compare signature based feature
extraction method again other techniques such as Fast Fourier
Transform (FFT). The reader can combine our method with
any other machine learning model if needed.

B. Choice of signature order

The order of the signature is a hyperparameter that need to
be set by the user. For given path in Rd, there are p coefficients
of order p. Therefore the truncated signature at order q is
therefore a vector of dimension:

W =

q∑
i=0

i =
q+1 − 1

d− 1
(8)

When d > 1, W the size of S(X) increases exponentially
with q. For univariate sigal, W = q + 1. In this paper we
want to convert the signature vector into a 2d images and use
the images as input for our deep learning models. To chose
the truncation order of the signature, we set the size of our 2d
images to 48×48 = 2 304. So as W = 2304, we can compute
for each data set, the value of the signature order. For a given
value of W, using equation (8), the order of the signature is
given by:

q∗ =
log(W × d+ 1)

log(d+ 1)
− 1 (9)

VI. RESULTS AND DISCUSSIONS

In order to evaluate the effectiveness of signature feature
extraction method, we compared its performance to those of
some state-of-the art approaches. We present the results of our
method and compare them to those of the literature papers on
the experimental data sets. We also compare this method to
Fourier transform as it is the most commonly used method for
predictive maintenance. In addition, we did some experiments
to see in which case each method works well or not and their
preprocessing time.

A. Performance results

In this subsection, we discuss the results of signature
feature extraction and some state-of-the-art feature extraction
techniques. The goal is not to find the machine learning model
but to compare the performance of signature feature extraction
to others feature extraction method used in the literature. The

results from Table III and IV show that signature feature
extraction method has better accuracy than other methods such
as short-time Fourier transform (STFT), principal component
analysis and fuzzy othonormal on most of the experimental
data sets. On the CWRU bearing data sets (see Table III), the
proposed signature feature extraction method combined with
convolutional neural networks (CNN) outperforms all other
methods. Signature reaches 100% of accuracy on three of four
bearing data sets. Figure 3b shows the confusion matrix of the
CNN model on the test data of the bearing data set. We can
see that almost all teen classes have been correctly classified.
FFT (98.33%) outperforms signature on the MFPT data set
(95.89%). Note that we can not directly compare our results
on the MFPT data set those of Wang et al. [8] and Zhijian et
al. [14]because these authors used only a subset of 5 classes of
the data set while we used 13 classes. The results from Table
IV show that signature feature extraction method has better
accuracy than FFT on all the other types of time series data
sets. This table shows the ranges of the accuracy for varying
window size. For the gear box data set, both FFT et signature
reach 100% of accuracy. However, with signature we only
need 100 data points as window size whereas for FFT the
window size is set to 200 data points. On the triaxial data set,
signature performance varies from 85.69 % to 99.37% when
FFT performance lies between 84.93% and 97.77%.

TABLE III: Highest accuracy on bearing data sets
Data sets Data set 1 Data set 2 Data set 3 Data set 4 MFPT

Signature + CNN (ours) 100% 99.59 % 100% 100 % 95.89 %
STFT + VGG [8] - - - 99.85% 99.8%

PCA-WLE+PSO-SVM [2] - - - 99.61% -
STFT+ DNN [36] 99.82% - - - -

SDA [3] 93.54% - - - -
EOSTI + AlexNet [14] 93.54% - - - 98.46%

Fuzzy orthonormal-ARX+SVM [16] 95.8% 97.5 % 97.8 % - -

TABLE IV: Accuracy ranges on other data sets
Data sets Metric Gear box data Triaxial Bearing Vibration Sensor Stream NSW electricity Insect Earthquakes

Signature + CNN
Max acc 100 % 99.37% 89.07 % 86.46 % 75.23% 97.32
Min acc 99.27% 85.69 % 79.67% 83.45% 75.05% 39.78%

FFT + CNN
Max acc 100% 98.77% 80.93 % 71.43 % 32.43 % 74.64%
Min acc 99.99% 84.93 % 77.27% 63.65% 31.82% 74.63%

B. Preprocessing time comparison

Figure 3a shows the execution times of fast Fourier trans-
form (FFT) and signature method according to the number of
features. To compare the execution times of the two methods,
we set the size of the signature vector to 48 × 48 = 2 304
as we want to convert it into 2d image of size 48 × 48. As
shown in equation (9) the size of the signature vector depend
on the number of features and the order of the signature. For
a given signature vector size, the order of the signature is an
exponentially decreasing function of the number of features.
Figure 3a shows that when the number of features is less
than 5, FFT is way faster than signature processing for any
window size. However, when the number of features is greater
than 5, the two methods, have almost the same processing
times. This analysis shows that for high dimensional time
series, signature is very effective tool for features extraction
for machine learning tasks.
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C. Discussions

Our results show that signature based feature extraction
is very powerful tool for machinery fault detection using
machine learning. This methods outperforms state-of-the-art
methods such as fast Fourier transform (FFT) or PCA. The
results from figure 4 show that signature method require
fewer data points to detect failure than FFT.We make the
hypothesis that the lower the segmentation window the faster
the model can detect faults. This is very important in fault
detection where it is crucial to detect the fault before they
occur or get worse. Figure 4a and 4b show the performance
of signature and FFT for varying window sizes. For each
window size, we did a 5-fold cross- validation and took the
average accuracy of the model. The signature method has
the highest accuracy for the bearing data set (100%) and
the triaxial data set (99.37%). Figure 4a shows that for the
bearing data set, signature outperforms FFT for any window
size and reaches 100% of accuracy after two rotation of the
bearing. Thus, on the bearing fault data set, signature accuracy
ranges from 96.59 % to 100%. On the Triaxial data set,
signature reaches the highest accuracy (99.37%) after only one
rotation (400 points) whereas FFT reaches its highest accuracy
(98.77%) after three rotation (1400 points). From figure 4b, we
can see that signature outperforms FFT for any window size
and detects the anomalies faster than FFT. Figure 3a shows
that signature feature extraction takes more time than FFT
when dealing with low dimensional data sets. Therefore, for
high dimensional data sets, signature can be very effective
method for machine learning feature extraction. We also did
some experiment to see each method performance for varying
sampling rate. The goal is find out which methods works better
according to the data sampling rate. Figures 5a and 5b show
the performances when we divide the sampling rate of the
corresponding data sets by 2,4,6 . . . 16. These results show
that when we reduce the sampling up to a factor of 10, FFT
method outperforms signature method. This results suggest
that if the data sampling rate is low, the FFT feature extraction
may achieve better performance than signature.
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Fig. 4: FFT and signature performance for varying window
size.

CONCLUSION

Machine learning and artificial intelligence methods are
increasingly used in predictive maintenance due to their ability
to extract automatically high-level features with less human
intervention. Machine learning models have shown to give
good results in machinery or rotatory fault diagnosis. How-
ever, due to the complexity of vibration and audio signals



2 4 6 8 10 12 14 16
Undersampling rate

0.980

0.985

0.990

0.995

1.000

ac
cu

ra
cy

FFT Accuracy
Signature Accuracy

(a) Varying sampling rate for bearing data set

2 4 6 8 10 12 14 16
Undersampling rate

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

FFT Accuracy
Signature Accuracy

(b) Varying sampling rate for gear box data set

primarily used in fault diagnosis, some pre-processing is
required before feeding the machine learning algorithm. In the
literature, most people use frequency domain transform such
as the Fast Fourier Transform (FFT) and the Hilbert transform
(HT) envelope spectrum. The main limitation of frequency
domain analysis in rotatory systems (bearings) fault detection
is that fault feature signals are usually very weak relative to
background noise and other interference in the early damage
stage. In this paper we propose to use signature to extract
new features from sensor data and use these new feature
to train machine learning models. The main idea is to use
the extracted signature coefficients to create 2d images that
are then fed to a deep neural network for classification. Our
experimental results show that this method outperforms most
of state-of-the-art methods on eight (8) bearing fault diagnosis
data sets (bearing and gear box data sets) and three (3) other
time series classification data sets. Our results also show that
compared to Fast Fourier Transform (FFT), signature method
requires fewer data points to detect failure. This means that
in a situation where the methods have similar performances,
signature method detects the failure faster than FFT. This is
very important in fault detection and predictive maintenance
in particular where it is crucial to detect the fault before they
occur or get worse.
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