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Abstract—The multiple phase screen method is widely used
for modelling the electromagnetic propagation in a turbulent
medium. In this technique, the turbulent phase screens are clas-
sically generated from a continuous Von-Karman Kolmogorov
scintillation spectrum. Recent works led to the development of
an auto-coherent split-step wavelet propagation method based
on a discrete formulation of the parabolic wave equation. In
this configuration, the use of continuous spectra is no more
suitable. In this paper, we propose an auto-coherent generation
method of the turbulent phase screens. To do so, a discrete
formulation of the classical Von-Karman Kolmogorov spectrum
is introduced. The impact of the modelled turbulence is finally
discussed through the computation of the log-amplitude variance
to validate this approach.

Index Terms—split-step, auto-coherent, propagation, turbu-
lence, wavelets

I. INTRODUCTION

The tropospheric environment is characterized by unsteady
temperature, pressure and humidity fields. Atmospheric turbu-
lence is defined by a fast fluctuation of these state variables
that locally modify the value of the refractive index n of the
medium. The small scale fluctuations of the refractive index,
called scintillation, induce additional losses during the propa-
gation. Therefore, an accurate modelling of this turbulence is
mandatory to assess quantitatively its impact and/or infer its
intensity.

The 2D split-step wavelet (SSW) method [1] is developped
at ENAC lab since 2015 to model long range electromagnetic
(EM) propagation in the 2D parabolic wave equation (PWE)
configuration [2]. This algorithm is based on the same for-
malism and principle as the auto-coherent discrete split-step
Fourier (DSSF) [3] method which consists in solving itera-
tively the discrete “wide angle” 2D-PWE. Split-step methods
solve iteratively this equation in two stages at each propagation
step. First, the EM field is propagated in the vacuum in the
spectral domain (for DSSF) or in the wavelet domain (for
SSW). Then, the contribution of the atmosphere is integrated
on all the propagation step in the form of a phase shift.
This split-step propagation is also called multiple phase screen
technique (MPS).

Classically, in the case of a turbulent atmosphere, the phase
screens are randomly generated following the Von-Karman
Kolmogorov theory [4][5]. However, the corresponding spec-
trum is expressed in a continuous domain, which does not fit
with the auto-coherent formulation of the parabolic equation.
In this article, a discrete Von-Karman Kolmogorov spectrum

is introduced to perform a full auto-coherent propagation in a
turbulent medium.

In this paper the auto-coherent formulation of the 2D-PWE
that is derived from a discretization of the Helmholtz equation
is first reminded. The resulting DSSF propagator in the spec-
tral domain is also explicited. Then, the global principle of
the split-step wavelet algorithm is presented. In a second step,
an auto-coherent formulation of the Von-Karman Kolmogorov
spectrum that is used to generate stochastic realizations of
turbulent phase screens is introduced. To validate the pro-
posed approach, the impact of the modelled turbulence on
propagation is finally discussed in Section IV with numerical
simulations.

II. AUTO-COHERENT SPLIT-STEP WAVELET PROPAGATION

In this section the derivation of the 2D auto-coherent
formulation of the PWE and the associated DSSF propagator
from the propagation equation are first introduced. The SSW
resolution method is then presented.

In the following, the propagation is computed in free space
in a 2D domain of size [0, xmax] × [0, zmax]. u indicates
the classical reduced scalar electromagnetic field that is here
discretized along the vertical axis so that ux,pz = u(x, pz∆z)
for pz in J0, NzK.

A. Auto-coherent formulation of the 2D parabolic equation

The purpose is here to develop a discrete formulation of
the parabolic equation theory well-suited to a numerical im-
plementation to avoid numerical errors. This type of procedure
is called an auto-coherent method [3].

To do so, the Helmholtz equation is first discretized along
z such as

∂2ux,pz
∂x2

− 2jk0
∂ux,pz
∂x

+ d2
zux,pz + k2

0(n2
x,pz − 1)ux,pz = 0,

(1)
where the operator d2

z corresponds to the second-order cen-
tered finite-difference approximation. Following the same rea-
soning as in the classical continuous “wide angle” parabolic
equation development [2], the discrete forward PWE is ob-
tained as
∂ux,pz
∂x

=

[
−jk0(nx,pz − 1)− j

(√
k2

0 + d2
z − k0

)]
ux,pz .

(2)
Then, the idea is to consider (2) in the vacuum (n = 1) and
to compute the propagator associated to the discrete split-step



Fig. 1. Free space propagation of an electric field on one propagation step ∆x = 200 m with SSW-2D [6].

Fourier method by diagonalizing d2
z in the spectral domain.

This DSSF propagator on a propagation step ∆x is given by
[3]

P (kd
z ) =

{
e−j(
√
k2

0−(kd
z )2−k0)∆x if |kd

z | ≤ k0 ,

e−j(
√

(kd
z )2−k2

0−k0)∆x if |kd
z | > k0,

(3)

with

kd
z =

2

∆z
sin

(
πqz
Nz

)
, qz ∈ J0, Nz − 1K. (4)

The iterative DSSF solution of (2) is finally given by

ux+∆x,pz = e−jk0

∫ x+∆x
x

(n(x′,z)−1)dx′
F−1[P (kd

z )F(ux,pz )],
(5)

where F and F−1 denote the direct and inverse fast Fourier
transform (FFT), respectively.

B. 2D split-step wavelet algorithm

The numerical simulations of the EM propagation are
performed here with the open source software “SSW-2D” [6]
which is based on the split-step wavelet algorithm (SSW)
[1]. This method relies on the same formalism as the DSSF
algorithm. The main difference is that the propagation in the
vacuum is performed in the wavelet domain instead of Fourier
through a fast wavelet transform (FWT). This decomposition
algorithm is faster than the FFT and uses wavelet bases that
have remarkable properties of invariance and compression [7].
Both these two advantages motivate the choice of the SSW
method.

Thus, similarly to DSSF, the iterative SSW solution is

ux+∆x,pz = e−jk0

∫ x+∆x
x

(n(x′,z)−1)dx′
W−1[PW(ux+∆x,pz )],

(6)

whereW denotes the FWT, and P is the free-space propagator
in the wavelet domain. The latter is a dictionnary of propaga-
tors computed and stored before the first iteration. The global
numerical scheme of the SSW method is illustrated Fig. 1. The
electric field at x is first decomposed on the chosen wavelet
basis characterized here by a decomposition level L = 3,
through a FWT [7]. It is represented in the wavelet domain
by its corresponding wavelet coefficients. The wavelets are
then individually propagated in the vacuum on a step ∆x with
the dictionnary of propagators giving new wavelet coefficients.
The field at x+ ∆x is finally retrieved in the spatial domain
thanks to an inverse FWT.

III. AUTO-COHERENT MODELLING OF THE TURBULENT
REFRACTIVE INDEX

Fig. 2. Vertical phase screen realization from the auto-coherent formulation
of the Von-Karman Kolmogorov spectrum. f = 10 GHz; Los = 100 m;
C2

n = 10−12 m−2/3.

The purpose of this paper is to extend the auto-coherent
formulation of the PWE to the generation of the turbulent



Fig. 3. Propagation of an electric field in a turbulent atmosphere with SSW-2D at f = 10 GHz, C2
n = 10−12 m−2/3 and Los = 100 m.

propagation medium. In this section some generalities on both
the modelling of the turbulent refractive index and the phase
screens generation are reminded. Then, a discrete version of
the classical Von-Karman Kolmogorov spectrum is introduced.
This spectrum is consistent with the auto-coherent formulation
of the propagation method.

The tropospheric refractive index depends on thermody-
namic fields that chaotically evolve in the presence of turbu-
lence. Therefore, the refractive index is classically modelled
by a mean term 〈n〉 and a fluctuating contribution ∆n such
that

n = 〈n〉+ ∆n. (7)

〈n〉 is deterministic and is taken equal to 1 in this paper. On
the contrary ∆n is random and requires a stochastic modelling
that relies on the K41 theory of Kolmogorov on isotropic and
homogeneous turbulent processes [8].

Turbulence is a multiscale phenomenon: multiple turbulent
structures (eddies) of various scales coexist within a turbulent
flow. In particular, in the inertial range scales delimited by the
outer scale length Los and the inner scale length Lis, the tur-
bulent energy is universally transmitted from the larger scales
to the smaller ones following a constant rate. In this inertial
range, the tropospheric scintillation ∆n can be modelled as
a stochastic process by well-chosen analytical spectra [9]. In
this paper the classical Von-Karman Kolmogorov spectrum is
used, defined in 2D as

S∆n(κx, κz) = 0.055C2
n

(
κ2
x + κ2

z +

(
2π

Los

)2
)−4/3

, (8)

where C2
n is the turbulent structure constant that varies from

10−18 m−2/3 for weak scattering to 10−12 m−2/3 for strong
scattering. κx and κz correspond to the horizontal and vertical
wavenumbers of the turbulent flow, respectively.

In SSW, as explicited in (6), the contribution of the re-
fractive index is applied at each propagation step to the
electric field through a phase shift given by e−jΦx+∆x(z) with

Φx+∆x(z) the vertical phase screen located at x + ∆x and
defined as

Φx+∆x(z) = k0

∫ x+∆x

x

∆n(x′, z)dx′ (9)

considering 〈n〉 = 1.
The widely used MPS technique [4][5] consists in consider-

ing directly the phase Φ as a stochastic process. An analytical
expression of the vertical phase spectrum SΦ is obtained from
the scintillation spectrum S∆n. Following Markov approxima-
tion, the phase screens need to be decorrelated, which requires
that ∆x > 5Los. Under this assumption, SΦ is given by

SΦ(κz) = 2πk2
0∆xS∆n(0, κz). (10)

Usually, the spectral variable κz of the Von-Karman spectrum
is discretized a posteriori as κz = 2πqz

Nz∆z , qz ∈ J0, Nz − 1K.
Here, we propose an a priori discretization that is consistent
with the auto-coherence of the SSW method. Thus, the dis-
cretized formulation of the Von-Karman Kolmogorov used in
this paper can be written as

S∆n(κx, κ
d
z) = 0.055C2

n

(
κ2
x + κd

z

2
+

(
2π

Los

)2
)−4/3

,

(11)
with

κd
z = kd

z =
2

∆z
sin

(
πqz
Nz

)
, qz ∈ J0, Nz − 1K. (12)

Finally, the turbulent phase screens realizations are randomly
generated by filtering a Gaussian white noise with

√
SΦ(κd

z).
An example of vertical turbulent phase screen generated from
the a priori discretization of the Von-Karman Kolmogorov
spectrum defined in (11) is given in Fig. 2.

IV. COMPUTATION OF THE PROPAGATION IN AN
AUTO-COHERENT TURBULENT ATMOSPHERE

The aim of this section is to simulate the propagation of
an electromagnetic wave in a turbulent atmosphere modelled



(a) (b)

Fig. 4. Numerical and analytical log-amplitude variance at f = 10 GHz (a) and f = 25 GHz (b), C2
n = 10−12 m−2/3 and Los = 100 m.

by successive phase screens randomly generated from the
discrete Von-Karman Kolmogorov spectrum defined in (11).
The impact of the scintillation is then discussed and compared
to the analycal formulation of the log-amplitude variance of
the field [10].

A. Analytical log-amplitude variance

The log-amplitude variance is classically used to estimate
the impact of the scintillation on the propagation. The idea
here is to compute its value as a function of the range. The
objective is to validate the phase screen generation method
introduced in this paper by comparing the numerical results
to the analytical model developed by Rytov in a similar
configuration as in [5].

Under the Rytov assumption, also called the method of
smooth perturbations [10], the impact of turbulence on the EM
propagation can be estimated by analysing the log-amplitude
fluctuations. It is defined as χ(x, z) = ln(|E(x, z)/E0(x, z)|).
The analytical log-amplitude variance at a distance R from the
source is obtained as

σ2
χ(R) = 2πk2

0R

∫ +∞

−∞
S∆n(0, κz)F (κz)dκz, (13)

where S∆n is the Von-Karman Kolmogorov spectrum defined
by equation (8) and F corresponds to a filtering function given
by

F (κz) = 0.5

∫ 1

0

(
1− cos

(
Ru

κ2
z(1− u)

k2
0

))
du. (14)

B. Numerical results

In the following, numerical simulations are performed with
the SSW-2D software. We study here the free-space propaga-
tion of a wave front at f = 10 GHz and f = 25 GHz on a
40 km range. The vertical size of the computational domain
is zmax = 1 km with a discretization step ∆z = λ. C2

n is

set at 10−12 m−2/3 which corresponds to a strong turbulence.
The tropospheric outer scale length (Los), that describes the
largest eddy of the turbulent flow, varies from few meters to
more than 100 m depending on the altitude in the troposphere.
Here, Los is set to 100 m. The propagation step ∆x that
indicates the distance separating each turbulent phase screen is
equal to 500 m = 5Los to satisfy the Markov approximation.
To simulate a Gaussian aperture, the source is a complex
source point of size 6λ set at 10 m from the first screen at
z = zmax/2 = 500 m. An absorbing condition is imposed to
the electric field at z = 150 m and 850 m through a Hanning
window to avoid numerical spurious reflexions at the top and
the bottom of the computational domain.

The result of a propagation at f = 10 GHz is given Fig. 3.
The complete electric field is plotted on the left of the figure
while the field computed after the last phase screen is plotted
on the right. The apodisation window is represented by two
dotted lines at z = 150 m and 850 m. As expected, the
crossing of the successive turbulent phase screens generates
interferences that induce additionnal losses.

Fig. 4 compares the simulated log-amplitude variance in
the proposed approach to the analytical formulation defined
in (13) from 7.5 km to 40 km at f = 10 GHz (Fig. 4a)
and f = 25 GHz (Fig. 4b). 500 Monte-Carlo runs are
performed to obtain these results. Fig. 4a shows excellent
agreements between the numerical and the analytical σ2

χ which
is consistent with previous works using the continuous MPS
method [5]. In Fig. 4b, the numerical model also gives results
close to the analytical model. However, the log-amplitude
variance exceeds 1 dB2 which means that this particular case
is beyond the validity domain of the first Rytov approximation
(σ2
χ < 1 dB2) [10]. This explains the gap between the

theoretical and simulated values that starts increasing from
30 km.



V. CONCLUSION

In this paper, a discrete formulation of the classical Von-
Karman Kolmogorov has been introduced. The resulting tur-
bulent phase screen generation method is consistent with the
auto-coherent 2D SSW propagation technique. The proposed
approach has been validated by computing the log-amplitude
variance in strongly turbulent atmospheres at 10 and 25 GHz.
It gives similar results as the classical continuous MPS method
used in the literature for the presented cases. It leads to
future studies of the auto-coherent propagation in a turbulent
atmosphere.
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