
HAL Id: hal-03967576
https://hal.science/hal-03967576

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Path Planning and Optimization Strategies: Toward
Embedded Road Applications

Taha Houda, Jinan Charafeddine, Hani Hamdan, Sylvain Chevallier

To cite this version:
Taha Houda, Jinan Charafeddine, Hani Hamdan, Sylvain Chevallier. On Path Planning and
Optimization Strategies: Toward Embedded Road Applications. IEEE International Confer-
ence on Smart Systems and Power Management 2022, Nov 2022, Beirut, Lebanon. pp.197-202,
�10.1109/IC2SPM56638.2022.9988830�. �hal-03967576�

https://hal.science/hal-03967576
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


On Path Planning and Optimization Strategies:
Toward Embedded Road Applications

Taha HOUDA
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Abstract—In recent years, the role of robots in science,
technology, and research, has become very important. Mobile
robots are used in many fields on land, in the air, and
underwater, and are integrated into numerous applications such
as maintenance, security, detection, exploration of anomalies,
decision making, and carrying out operations. These robots
have thus taken their place in the terrain where there is an
electric field and where they are involved in the maintenance of
power lines, even at high voltage. This article deals with one of
the principles used to improve the performance of this type of
robot, namely path planning. This point is very important to
save time and consequently avoid economic losses. Nowadays,
many difficulties and challenges have to be overcome in order
to navigate autonomously, efficiently, and reliably. This article
reviews path planning methods for mobile robots, examines their
modeling, algorithms, and optimization criteria, and proposes
to open the horizon for embedded road applications (ERA).

Keywords: Autonomous navigation; Path planning; Mobile
robot; Power distribution grid; Embedded road applications (ERA).

I. INTRODUCTION

Worldwide, electric utilities are generally responsible for
the generation and transmission of electric power to support
people’s quality of life, the economy, and the industrial sector.
The mission of transmission line maintenance is to main-
tain a safe and continuous transmission system. Continuous
maintenance of high voltage transmission systems is one of
the most important goals of electric utilities. There is a long
history of innovation in the use of robotic technologies for
operations and maintenance in the electric utility industry [1].
One of the most important functions that robots perform is
their ability to operate in harsh environments that require
a high level of safety. An example of this is the power
distribution grid, where recent research has been conducted on
robots that replace humans in hazardous work on high-voltage
power lines. These robots are characterized by their ability to
effectively perform ”minimally invasive interventions” on the
power grid to solve complex and dangerous manual repair
problems [2]. This type of robot has optical recognition,
motion control, and electromagnetic interference, which gives
them the functions of precise positioning and autonomous
path planning according to engineering standards [3]. Work is
underway to further develop robotic functions to improve the

integration of IoT and robotic technology with smart grid and
power grid maintenance services, especially to avoid obstacles
and shorten the time for quick repairs with the best path
planning strategy. Thus, the main requirements are:

• Safe maintenance: by using robots to maintain high-
voltage power grids.

• Fast maintenance: to avoid damage and economic losses
caused by delayed maintenance of power transmission
networks.

• Reliance on autonomous co-robots: many robotic systems
can communicate with each other effectively to detect and
fix problems in the high-voltage grid.

The main purpose of this paper is to provide an overview
of robotic path planning (Figure I) and to highlight some
strategies that can provide optimization criteria for path
planning. Section II presents trajectory planning. Section III
discusses optimization criteria for trajectory planning. Section
IV presents a comparison of path planning algorithms. Finally,
Section V concludes.

Fig. 1. Classification of mobile robot path planning.

II. PATH PLANNING

Path planning can be divided into global path planning or
classical methods and local path planning or heuristic methods
(Figure 2). In global path planning, the robot has complete
knowledge of the environment and the start and goal points
and is used to maximize the effectiveness and efficiency of
the search. in local trajectory planning, the robot has limited
domain knowledge, and this method is suitable for real-time
navigation due to the short calculation time.



Fig. 2. Classification of mobile robot path planning.

A. Classic Approach: Global Path Planning (GPP)

1) Probabilistic RoadMap (PRM): The probabilistic
roadmap approach was proposed by [4] in 1994. This
approach can be defined as a graph search algorithm in which
the mobile robot’s reachable motion space (configuration
space) is reduced to a network of one-dimensional lines.
In this method, a safe, collision-free network of paths is
constructed from the robot’s starting position to the target
position. The road map must characterize all topologically
feasible pathways in the configuration space [5]. The search
for the optimal path can be done in different ways, and various
methods have been realized and specified by other forms
of defining the nodes and the path series. The best-known
road maps are the Voronoi diagram [6], the visibility graph
[7], and the cell decomposition [8]. The authors of [9] have
successfully analyzed the ability of a crewless aerial vehicle
to navigate in a 3D environment. The path is generated based
on the RoadMap technique with a probabilistic formulation.
The authors of [10] present the elastic roadmap framework
for a novel feedback motion planning approach that can
account for kinematic and dynamic constraints, unpredictable
moving obstacles, and global connectivity of the workspace.

2) Artificial Potential Field (APF): The APF approach was
first proposed in 1985 by [11] in 1985 to solve the task of
obstacle avoidance by a mobile robot. The APF approach is
based on the concept of a potential field in physics and defines
the target point as attracting fields and the obstacles as repul-
sive fields. The resulting fields pull the mobile robot toward the
target point while avoiding collisions with obstacles, as shown
in Figure ??. The large-scale application of APF has shown
promising results for many mobile robot applications, even
in a complex and challenging environment, as shown in [12].
The main advantages of APF are the ease of implementation,
the low computational cost, and the ability to create a smooth
trajectory. However, they also have some disadvantages, in
particular, the robot may switch to a local solution or fail
to reach the target point if the obstacle is close to the target
point. To improve the performance of APF, many combinations

with other optimization methods have been performed. We can
mention GA [13], and PSO [14].

B. Heuristic Approach: Local path planning (LPP)

1) Fuzzy Logic (FL): The concept FL was introduced
by [15] in 1965 and has become widely used in almost all
areas of research and development. It is used in situations
with high uncertainty, complexity, and nonlinearity, such as
decision-making, pattern recognition, and automatic control.
Linguistic rules characterize fuzzy logic control to manipulate
and implement human knowledge into the control system.
This approach is commonly used for various robot path
planning applications by providing the robot with heuristic
knowledge about its environment. FL is commonly used in
unstructured static and dynamic environments and avoids
navigation problems such as infinite loops, dead ends (U-
shaped, maze, snails) [16]. Curved trajectories [17] proposes
a data-driven fuzzy approach to solve the dynamic motion
problems of a robot. The main result of this research is that
the robot can navigate safely in the presence of dynamic
obstacles. In [18], a new real-time FLC is developed to enable
autonomous parking and parallel parking for a car-like robot.
Moreover, a hybrid path planning algorithm for a mobile
robot is proposed using a FL and many algorithms such as
ACO by [19], PSO by [20]. Many others are proposed to
achieve the optimal perception of the environment and enable
the robot to overcome a dead-end situation.

2) Artificial Neural Network (ANN): ANN is inspired by
the functioning of the human brain, is composed of neurons
like the human brain, and is able to learn at high speed
based on experience and observation. The performance of
ANN depends on how the neuron is defined and how the
neurons are interconnected (Figure 3.a). ANN is widely
used in robotics for modeling dynamics and kinematics, path
planning, and motion control. It provides simple and optimal
solutions even in complex situations. [21]. The authors in
[22] developed a hybrid approach combining ANN and
Q-learning to solve the robot path planning problem. The
results show that the hybrid strategy outperforms the other
two methods. In [23], a hybrid approach (ANN and FL)
was proposed for navigating multiple mobile robots under
disordered conditions. It is analyzed in the presence of a static
obstacle architecture. In [24], a hybrid approach combining
a ANN with a PSO algorithm is proposed, where the PSO
performs the trajectory smoothing task.

3) Artificial Immune Systems (AIS): The immune system
has a memory for previous interactions, is capable of
constantly learning new encounters, is highly adaptable,
and can be represented as shown in Figure 3.b. Recently,
computational problems have become increasingly complex,
and new approaches are being sought to solve these problems
AIS, inspired by the immune system, provides a good way
to solve these complex problems. AIS is a computer system
that solves problems based on theoretical immunology and
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observed immune functions, principles, and patterns [25].
AIS represents a good candidate for solving the mobile robot
navigation problem [26], [27]. The most challenging part in
applying an artificial immune algorithm is often the definition
of the antigen and the antibody. Usually, the antigen can be
described as the robot’s environment at any given time, and
the antibody can be defined as the current environment of the
mobile robot, including the distance between the robot and
obstacles. To approximate the system to a biological process,
[28] developed a method based on the random generation
of antibodies. According to [28], the AIS-based algorithm
explores unknown environments while learning from previous
behavior and searching for the target.
In [29], an artificial immunity algorithm (AIA) is proposed to
enable the robot to reach the target object along an optimal
path safely. The authors claim that simulation results show
that the mobile robot can avoid obstacles and effectively and
efficiently achieve the goal using AIA instead of GA.

4) Genetic Algorithm (GA): GA is a non-conventional
meta-heuristic technique for generating highly accurate
optimized solutions to large search problems. A GA was
first introduced by [30] in 1975. GA is inspired by natural
selection and uses evolutionary operators such as mutation,
crossover, and selection to search for the best answer [31].
The prerequisites for applying GA to a path planning
problem include: i- modeling the path by an appropriate
”chromosome”, ii- developing a strategy for path guidance,
iii- developing a method for avoiding obstacles, iv- choosing
an appropriate approach for defining constraints to reduce
the path [32]. By applying the operators to the parents based
on the first generation heuristic knowledge, [33] proposes a
knowledge-based GA for path planning. In [34], a dynamic
path planning method based on a genetic algorithm is
proposed for a mobile robot in an unknown environment.
Finally, in [35], a GA-based path planning method with
variable length chromosomes is proposed. The flowchart and
pseudo code for a robot navigation using the GA, PSO and
FA are presented in Figure 3.e.

5) Particle Swarm Optimization (PSO): PSO is a biologi-
cally inspired computational search and optimization method
introduced by Kennedy and Eberhart in 1995 [36]. It is based
on two main methods. First, it is generally associated with
collective intelligence, such as the theory of flocks of birds,
herds of animals, and schools of fish. Second, it is also
associated with evolutionary and genetic theories. PSO is the
most commonly used meta-heuristic optimization method. It is
suitable for solving optimization problems with multidimen-
sional search spaces [37]. In PSO, an initial swarm population
of random solutions is formed. Then, the swarm particles
move through the multidimensional search space to find the
best solution. Finally, PSO iteratively improves a solution to
an optimization problem, collects the extensive data collected
from each swarm particle, and shares the information with all
swarm members. The motion of the particles is determined

by their velocity. The particle velocity is calculated using the
following equations:

vk(t) = ωvk(t− 1) + c1Rand()
(
p(t)− xk(t− 1)

)
+c2Rand()

(
g(t)− xk(t− 1)

)
(1)

xk(t) = xk(t− 1) + vk(t) (2)
where vk is the particle, ω is the inertial weight, c1 and c2 are
constants, p(t) is the specific best position, g(t) is the global
best position, xk is the current particle position, and rand()
is a random value generation function. Many variations of the
PSO algorithm have been introduced to increase the accuracy
of the PSO algorithm, solve the time-dependent and dynamic
problems of mobile robot planning, and improve obstacle
avoidance when multiple mobile robots are navigating. For
example, the PSO algorithm using MADS (Mesh Adaptive
Direct Search) [38], and Darwinian PSO [39]. In several
research studies, PSO performs better than GA [40].

6) Firefly Algorithm (FA): The FA algorithm was presented
by Yang in 2008 [43]. It was inspired by the blinking behavior
of fireflies. It is based on random states and general iden-
tification as a firefly experiment. Through bio-luminescence,
fireflies emit flashing lights with varying cadences to com-
municate and attract other fireflies or scare away predators.
In recent years, FA has been used as an optimization tool in
many engineering fields, such as mobile robot navigation. The
algorithms of FA are used to solve path planning problems of
mobile robots in static environments such as in [44] and in
dynamic environments [45] where the target and obstacle are
moving. It can also be used for all environments such as land,
underwater, and airborne (UCAV). The candidate position can
be expressed as follows:

rij = ||xi − xj || =

√√√√ d∑
k−1

(xk
i − xk

j )
2 (3)

B(r) = B0e
−γrmij ;m ≥ 1 (4)

xk
i (t+ 1) = xk

i (t) +B(r)(xk
j − xk

i ) + α(rij − 1/2) (5)

where, B is the fireflies attractiveness, B0 is the fireflies
attractiveness at (r = 0), γ is the light absorption coefficient,
xi and xj are the positions of the first and second fireflies,
r is the distance between xi and xj , k is the dimension, t
is the iteration, and α is the randomization parameter. Many
researchers improve the FA algorithm for robot path planning,
such as the FA Q-learning approach [46], the FAABC hybrid
approach [47], and others. The results of the FA algorithm
show that the three primary navigation goals of a mobile
robot - path length, path uniformity, and path safety - can be
achieved.

7) Ant Colony Optimization (ACO): The ACO is a swarm
intelligence algorithm introduced by Marco Dorigo in 1992
[48]. The ACO algorithm originates in ant foraging, where
ants find the shortest path from their nest to a food source
while avoiding obstacles. The basic principle of ACO is that
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Fig. 3. Local path planning approaches ( b- [27], c- [41] , d- [42] ).

each ant emits a pheromone (a chemical essence) for reference
along the path it travels. It also senses the pheromones
released by other ants in search of food. Depending on
the concentration of pheromones between iterations, the ant
colony can communicate with each other and choose the
shortest and optimal path, as shown in Figure 3.c. ACO is
used by [49] to study global path planning. In addition, [50]
discusses various improvements and modifications of ACO to
solve path planning of mobile robots. Finally, hybridization of
ACO and PSO is also addressed to solve the path planning
problem for mobile robots [51]. The simulation results show
that the improved algorithms improve the convergence of the
algorithm and the global search capabilities even in a complex
environment.

8) Grey Wolf Optimization (GWO): The GWO algorithm
is inspired by the social-collaborative behavior observed in
gray wolves during hunting. To optimize the hunting process,
the wolf population divides into subgroups, which are usually
guided by α, β, δ, and ω grades [52]. Each degree of the
gray wolf represents a function in the optimization process.
The optimization process yields the best solution, α, β, δ,
and ω represent the second, third, and fourth best solutions,
respectively (Figure 3.d). The GWO was recently used to
solve path planning problems in mobile robot navigation and
provides an exciting result even in an uncertain environment
[53]. The improvement of such an algorithm has been a
subject of intense research. We can cite the modified Gray-
Wolf optimization in [54] for path planning of an autonomous
robot, and we can note the hybridization of GWO and PSO
in [55] to optimize the trajectory of a borehole. In [55], the
two criteria of distance and smooth path of robot trajectory
planning are transformed into a minimization function for the
fitness function. As a result, the robot can achieve the global

best agent position in each iteration in sequence permutation.

III. OPTIMIZATION CRITERIA FOR PATH PLANNING

The optimization criteria for path planning of mobile robots
have been widely studied. The most commonly used in the
literature are the multi-objective path planning functions such
as path length, smoothness, degree of safety, execution time,
and energy consumption.

1) Path length: path length is the set of route points for the
robot from the starting point to the destination point. The
shortest path length (SPL) is the sum of all the distances
between the center points generated by the path planning
algorithm between the start and destination points.

2) Smoothness: the smoothness of the path minimizes the
angular difference between the current target position
and the proposed current position.

3) Degree of safety: the degree of protection (SD) refers to
the sum of the degrees of deviation between each path
segment and the nearest obstacle.

4) Execution time: the execution time refers to the time
required for a mobile robot to travel the entire distance
from the starting point to the destination point. The
shortest execution times are the most productive.

5) Energy consumption: Energy consumption refers to the
minimum amount of energy consumed or the least effort
required by the actuators.

IV. DISCUSSION

Given the need for good knowledge of the environment,
good precision of goals, independence in decision-making,
and speed in maintenance, although GPPs are based on good
knowledge of the goals, we are looking for a feature that is
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TABLE I
COMPARISON OF PATH PLANNING ALGORITHMS, STRENGTHS AND CHALLENGES

(S: STATIC, D: DYNAMIC, NS : SUBGROUP OF A SWARM NUMBER, NT : POPULATION NUMBER).

Algorithms Ref. Year Workspace Obstacle Time Complexity Strengths Challenges

PRM [4] 1994 S S/D O(n logn) Complete modeling Expensive computation
Probabilistically completeness Dynamic obstacles are challenging

AFP [11] 1985 S S O(logn) ease of implementation May fall into local minima
low computational cost

FL [15] 1965 S S/D O(n2) Dealing with great uncertainty Low accurarcy
Real-time application Difficult to create membership functions

ANN [22] 1996 S/D S/D O(n2) Simple structure Increasing Layers Increases Complexity
High efficiency to avoid S/D obstacles Time-consuming

AIS [25] 2000 S/D S O(n2) Better convergence than GA Complexity of parameters definition
Dealing with unknown environments

GA [30] 1975 S/D S/D O(n2) Global search capability High computation time
Multi-objective optimization Poor stability

PSO [36] 1995 S S/D O(NT ) Easy to implement Premature convergence
Global and local search May fall into local minima

FA [43] 2008 S/D S/D O(2NS) Fast convergence speed Low accuracy
Local searchability May fall into local minima

ACO [48] 1992 S/D S/D O(NS) Global optimization Poor in large search space
Avoid premature convergence Slow convergence speed

GWO [52] 2015 S/D S/D O(NS) Optimal search Poor local search
Derivation free Complex scenarios are challenging

better suited for use in a dynamic environment where there are
many goals, this is what we can find in LPPs, which require
much less time and computation than GPPs and are therefore
best suited for real-time navigation. In most applications of
LPP, however, one suffers from the complexity of parameter
definition and the possibility of falling into local minima.
For this reason, we propose to open the horizon toward
hybrid embedded road applications (LPP and GPP). Table I
provides a detailed analysis of the path planning algorithms
used for mobile robots. The performance of each algorithm
is evaluated based on parameters such as navigation in static
and dynamic environments or obstacles. The strengths and
limitations of each algorithm are also presented. Among the
classical approaches, it is found that the APF approach has
been successfully used to navigate a robot around static and
dynamic obstacles. Nowadays, reactive approaches are more
popular because they can deal with an uncertain environment
quickly and with less computational effort. Table I shows
that most reactive approaches have been used to navigate in
a dynamic environment with moving obstacles and moving
targets. Embedded road applications (ERA) that use hybrid
algorithms can be used to solve many problems mentioned
previously. These types of algorithms are recently developed
for navigation in the presence of moving obstacles and targets.
Hybrid algorithms also exhibit good smoothing behavior and
can be applied in real-time.

V. CONCLUSION

In this paper, in order to improve the performance of
autonomous mobile robot working on power line maintenance,

we have provided a detailed overview of the different path
planning methods applicable to this type of robot. We also
classified the different methods into global and local ap-
proaches and discussed the strategy and effectiveness of each
method from each class. The local approach is better than the
global approach. The approach that uses hybrid algorithms
(local and global) is more optimal. In the perspective of this
work, embedded road applications based on hybrid algorithms
will be adopted.
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