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1.  Introduction
The ordinary differential equations describing a climate model, can be written

𝐱̇𝐱 = (𝐱𝐱) + 𝜙𝜙(𝐱𝐱),� (1)

where 𝐴𝐴 𝐱𝐱 ∈ ℝ
𝑑𝑑 is the state variable of the climate model. 𝐴𝐴  corresponds to the discretization of the primitive 

equations on the model grid, whereas ϕ accounts for the subgrid scale atmospheric processes (e.g., turbulence, 
convection). Currently, the best compromise for representing subgrid scale processes are the “physical param-
eterizations,” emulating a numerically affordable version of ϕ. These parameterizations are parametric func-
tions fϕ. They are built heuristically on theoretical knowledge and outputs from high-resolution simulations (e.g., 
Jakob, 2010). In practice, fϕ is the sum of individually modeled processes, the parameters of which are separately 
estimated. The numerical efficiency of fϕ comes at the price of approximations. Hence, parameterizations of the 
atmosphere are the main source of uncertainties in climate models (e.g., Medeiros & Stevens, 2011; Medeiros 
et al., 2008; Stevens & Bony, 2013). Recently, interest has grown in using machine learning (ML) to develop 
parameterizations, noted 𝐴𝐴 𝑓𝑓  , promising more precise yet affordable parameterizations for climate models (e.g., 
Gentine et al., 2018; Rasp et al., 2018; Yuval & O’Gorman, 2020).

The development of both physical and ML-based parameterizations first involves defining a set of possible 
functions for the estimate of ϕ (this set is typically much larger in the ML case). Then, model parameters are 
optimized with respect to an offline metric ℓ (also called “loss function” in the ML case). This offline metric 

Abstract  Unlike the traditional subgrid scale parameterizations used in climate models, current machine 
learning (ML) parameterizations are only tuned offline, by minimizing a loss function on outputs from 
high-resolution models. This approach often leads to numerical instabilities and long-term biases. Here, we 
propose a method to design tunable ML parameterizations and calibrate them online. The calibration of the 
ML parameterization is achieved in two steps. First, some model parameters are included within the ML model 
input. This ML model is fitted at once for a range of values of the parameters, using an offline metric. Second, 
once the ML parameterization has been plugged into the climate model, the parameters included among the ML 
inputs are optimized with respect to an online metric quantifying errors on long-term statistics. We illustrate 
our method with two simple dynamical systems. Our approach significantly reduces long-term biases of the ML 
model.

Plain Language Summary  In numerical climate models, processes occurring at scales smaller 
than the model resolution (e.g., convection, turbulence) need to be represented by “parameterizations.” 
Parameterizations provide a simplified yet numerically affordable version of the modeled processes. Recently, 
parameterizations are also developed using machine learning (ML) by fitting to outputs from high resolution 
climate models. This method can lead to long-term biases when incorporating the ML parameterizations into 
the climate model. And, there is no possibility in the current approach to calibrate the ML parameterization to 
alleviate these biases. We propose here an innovative approach to calibrate ML parameterizations once they 
have been fitted to a learning sample. Our approach has been successfully tested on two toy models. A first 
set of experiments focus on the retrieval of the value of parameters used to generate a reference data set. In the 
second experiment, the value of some parameters not included in the neural network (NN) has been biased, 
resulting in errors in long-term statistics. Finding the optimal value of the NN input parameter has significantly 
improved the accuracy of the resulting model. Our method could be applied to improve the prediction of long-
term variables in climate models.
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evaluates the error between the estimate function (i.e., fϕ or 𝐴𝐴 𝑓𝑓  ) and a target function f, the best accurate approx-
imation of ϕ—as even high-resolution model data is only an approximation of the ground truth subgrid-scale 
processes. This approach allows us to fit the models on a point by point basis. However, a climate model's perfor-
mance lies in accurate predictions of long-term statistics, measured by online metrics. Physical parameterizations 
typically require an additional calibration step, once it has been plugged-in to the dynamical model. In contrast, 
there is usually no tunable parameter included in ML parameterizations. Nevertheless, tuning is very important 
for the development of climate models, to ensure model stability, to calibrate the value of long-term statistics and 
to reduce error due to potentially missed interactions between the dynamics and the physics. This online calibra-
tion can be achieved regarding an online metric, m. Without online calibration, even though a parameterization 
is efficient regarding the offline metric ℓ, there is no guarantee that the climate model will be accurate regarding 
the online evaluation metric (Brenowitz, Henn, et al., 2020).

The development of current ML parameterizations is still hampered by issues addressed by online calibration 
in the case of physical parameterizations, such as numerical instabilities (e.g., Brenowitz, Beucler, et al., 2020; 
Rasp, 2020). These issues are currently handled by enforcing physical conservation laws (Beucler et al., 2021) or 
using ML to replace part of a physical parameterization (Yuval et al., 2021). Additionally, the target function f can 
also be imperfect. In this case, even though the fit of the ML model is excellent, errors in the imperfect training 
data set will also be learned and result in a high online error m, also called long-term biases. This is a well known 
issue with physical parameterizations. The “art of tuning” model parameters consists in finding a compromise 
between offline and online metrics, going back and forth in optimizing the parameters with respect to ℓ and m 
(Couvreux et al., 2021; Hourdin et al., 2017; Schmidt et al., 2017).

To resolve these issues, we propose to include some tunable parameters into the ML parameterization inputs. 
This allows the calibration of new ML-based parameterization with respect to an online metric in an efficient 
way. Our approach to find the best value of tunable parameters is less empirical than the methods used to tune 
physical parameterizations. It relies on the minimization of the online metric m on long-term statistics, akin to the 
methodology described in Schneider et al. (2017) and in Cleary et al. (2021). The method will be demonstrated 
using Lorenz'63 and Lorenz'96 toy models (Lorenz, 1963, 1996). These toy models offer a simple framework to 
perform proof-of-concept atmospheric modeling experiments using ML tools (e.g., Chattopadhyay et al., 2020; 
Scher & Messori, 2019). Lorenz'96 model has also the advantage of implementing a “parameterization.” The 
large scale variable is indeed interacting with the non-linear subgrid-scale variable.

The paper is organized as follows. Methodology is described in Section 2. Section 3 demonstrates our calibra-
tion method on two basic examples using Lorenz'63 and Lorenz'96 models. Conclusions are drawn in Section 4, 
discussing more broadly the results we have obtained.

2.  Methodology
2.1.  Step 1: Building a Tunable Neural Network Parameterization

The first step toward designing and optimizing tunable neural network (NN) parameterizations is to take into 
consideration some uncertain but tunable parameters, when fitting the NN. The target function f is often fitted to 
outputs from high-resolution simulations. This target function depends on uncertain parameters, noted 𝐴𝐴 𝜽𝜽 ∈ ℝ

𝑝𝑝 , 
used to generate the high-resolution simulations: f ≡ f(x; θ). In traditional approaches, the value of model param-
eters are fixed to the “best estimate” value of these parameters, θ0. Thus, f ≡ f(x; θ0) does not depend on any 
parameter and θ is not included in the NN model input (e.g., Gentine et al., 2018; Yuval & O’Gorman, 2020). The 
novelty of our approach is to keep part of the uncertain parameters θ among the input variables of the NN, and 
thus to retain not only the dependency of f from x but also from some model parameters θ.

The NN learning sample, of size N, is 𝐴𝐴 {(𝐱𝐱,𝜽𝜽)𝑖𝑖, 𝑓𝑓 (𝐱𝐱𝑖𝑖;𝜽𝜽𝑖𝑖)}1≤𝑖𝑖≤𝑁𝑁 . The NN is fitted by optimizing an offline metric 
ℓ, also called “loss function.” Typically, this loss function is Mean Squared Error (MSE), computed for each 
predicted time step individually:

�
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The parameterization obtained after training the NN is noted, 𝐴𝐴 𝑓𝑓 (𝐱𝐱;𝜽𝜽) . It can be incorporated into the dynamical 
model so as to replace ϕ in Equation 1. The resulting dynamical system can be used to generate a validation time 
series of the dynamical model, noted 𝐴𝐴 [𝐱𝐱]𝑓𝑓  .

2.2.  Step 2: Optimizing the Tunable Neural Network Parameterization

The goal of this second step is to tune the optimal value of the parameters θ. Whereas the NN model was trained 
offline on a learning sample, calibration relies on an online validation metric, m, given by:

𝑚𝑚(𝜽𝜽) =
1

𝑀𝑀

𝑀𝑀
∑

𝑘𝑘=1

‖
ref

𝑘𝑘
−𝑘𝑘(𝜽𝜽)‖

2

,� (3)

where 𝐴𝐴  are a set of M long-term statistics computed over 𝐴𝐴 [𝐱𝐱]𝑓𝑓  , and 𝐴𝐴 
ref a set of reference statistics. The long-

term statistics involved in the computation of m are typically the average and standard deviation values estimated 
over time series. The minimal value of m is reached at the optimal value of θ, noted θ*.

Theoretically, the statistics 𝐴𝐴  are computed over a time series of infinite length. In reality, we only compute an 
estimate of the long-term metric over a finite length simulation. The length of these simulation is chosen so that 
the online metric m no longer depends on the x initial condition. To simplify notations, the estimate of the long-
term statistics over validation time series 𝐴𝐴 [𝐱𝐱] is noted, 𝐴𝐴 ̂ . Even though this time series is sufficiently long, the 
resulting metric �̂(�) = 1
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 will be noised, which can lead the optimizer to a local mini-

mum of 𝐴𝐴 𝐴𝐴𝐴 , instead of the global minimum. To address this issue, minimization will be performed over a smoothed 
version of 𝐴𝐴 𝐴𝐴𝐴 , obtained by kriging (or Gaussian Process Regression, Cressie, 1992). The kriging metamodel will 
be fitted to a sample of 𝐴𝐴

{

𝜽𝜽𝑖𝑖, 𝑚̂𝑚 (𝜽𝜽𝑖𝑖)
}

 . The obtained kriging metamodel is noted 𝐴𝐴 𝐴𝐴𝐴 . The optimal value of model 
parameters, θ*, is obtained when 𝐴𝐴 𝐴𝐴𝐴 reaches its (absolute) minimum value.

In summary, we train a NN parameterization depending on some tunable parameters θ, using an offline metric, 
ℓ. Since the main purpose is to reduce long-term prediction errors of the dynamical model, the value of θ is 
subsequently optimized regarding an online metric, m. In practice, optimization is done over a kriging metamodel 
emulating m as a function of θ. In the following, our method will be demonstrated using the Lorenz'63 (hereafter 
L63, Lorenz, 1963) and the Lorenz'96 (hereafter L96, Lorenz, 1996) models.

2.3.  The Lorenz'63 Model

The L63 system consists of a set of ordinary differential equations that can be expressed:

�̇1 = � (�2 − �1) ,

�̇2 = �1 (� − �3) − �2,

�̇3 = �1�2 − ��3.

� (4)

Temporal evolution of the L63 state variable, x = (x1, x2, x3), is governed by Equation 4, which involves a set of 
three model parameters, (σ, ρ, β). Equation 4 admits a chaotic solution in the vicinity of (σ0, ρ0, β0) = (10, 28, 8/3).

The online minimization metric m (Equation 3) depends strongly on the identification of variables quantifying 
the long-term statistical behavior of the L63 system. The first candidate of such a long-term variable is the mean 
value for each one of the three L63 state variables. However, the average value of x1 and x2 is independent of L63 
parameters (see also Figure S1 in Supporting Information S1). Thus, only the average value of x3, noted μ (3), can 
be tuned. This quantity is useful to retrieve the optimal value of at most one L63 parameter. In addition to μ (3), 
standard deviations over the time series can also be computed. Standard deviations will be noted σ (i) for each one 
of the L63 parameters, with i ∈ {1, 2, 3}. However, as highlighted by Figure S1 in Supporting Information S1, 
a strong correlation appears between the three standard deviations. Hence, it is possible to retrieve the optimal 
value of at most two L63 parameters by optimization. Thus, the following L63 idealized case study will use 

𝐴𝐴  =
(

𝜇𝜇(3), 𝜎𝜎(1), 𝜎𝜎(2), 𝜎𝜎(3)
)

 .
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2.4.  The Lorenz'96 Model

The 2-level L96 dynamical system depending on parameters (h, c, F, b) is given by:

d𝑥𝑥𝑘𝑘

d𝑡𝑡
= −𝑥𝑥𝑘𝑘−1 (𝑥𝑥𝑘𝑘−2 − 𝑥𝑥𝑘𝑘+1) − 𝑥𝑥𝑘𝑘 + 𝐹𝐹 −

ℎ𝑐𝑐

𝑏𝑏

𝐽𝐽
∑

𝑗𝑗=1

𝑦𝑦𝑘𝑘𝑘𝑘𝑘 ,� (5)

1

𝑐𝑐

d𝑦𝑦𝑘𝑘𝑘𝑘𝑘

d𝑡𝑡
= −𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘+1 (𝑦𝑦𝑘𝑘𝑘𝑘𝑘+2 − 𝑦𝑦𝑘𝑘𝑘𝑘𝑘−1) − 𝑦𝑦𝑘𝑘𝑘𝑘𝑘 +

ℎ𝑐𝑐

𝑏𝑏
𝑥𝑥𝑘𝑘,� (6)

where 𝐴𝐴 {𝑥𝑥𝑘𝑘}1≤𝑘𝑘≤𝐾𝐾 are K large-scale variables coupled to J small-scale variables 𝐴𝐴
{

𝑦𝑦𝑘𝑘0 ,𝑗𝑗
}

1≤𝑗𝑗≤𝐽𝐽
 for each 1 ≤ k0 ≤ K. 

The coupling term 𝐴𝐴 𝐴𝐴𝑘𝑘 = −
ℎ𝑐𝑐

𝑏𝑏

∑𝐾𝐾

𝑘𝑘=1
𝑦𝑦𝑘𝑘𝑘𝑘𝑘 can be seen as a “subgrid-scale parameterization.” Thus, Equa-

tion  5 can be analogous to a (very) simple climate model, as described by Equation  1. In this comparison, 
𝐴𝐴  (𝑥𝑥𝑘𝑘) = −𝑥𝑥𝑘𝑘−1 (𝑥𝑥𝑘𝑘−2 − 𝑥𝑥𝑘𝑘+1) − 𝑥𝑥𝑘𝑘 + 𝐹𝐹  and ϕ(xk) = Bk. Bk can be approximated as a function of the large-scale 

state variables, xk, and is often modeled with polynoms (e.g., Arnold et al., 2013). This subgrid-scale parameter-
ization will be the target variable of the NN model. Given the symmetry of the L96 model, it is common to fit 
the NN to predict Bk as a function of data from only one spatial variable (e.g., Gagne et al., 2020; Rasp, 2020; 
Watson, 2019). In our case, the NN learns to predict a single Bk as a function of (xk, c). This implies that the NN 
input is of size 2 and the output of size 1. To simplify notations, in the following, the NN will be noted, 𝐴𝐴 𝐵𝐵(𝑥𝑥𝑥 𝑥𝑥) .

As in the L63 case, the mean value of the state variables does not depend on input parameters (h, c, F, b), and is 
therefore not used in the online metric m. Thus, the metric is based on standard deviations only, estimated on time 
series obtained with the NN parameterization.

3.  Case Studies
3.1.  Perfect Model Calibration

3.1.1.  The Lorenz'63 Model

The objective is to fit an NN model, noted 𝐴𝐴 𝑓𝑓  , to approximate the L63 time derivative as a function of the state 
variable x and parameters θ = (ρ, β):

̂̇𝐱𝐱 = 𝑓𝑓 (𝐱𝐱,𝜽𝜽).� (7)

The learning sample is generated by an optimal sampling method, used to select relevant 𝐴𝐴 (𝐱𝐱,𝜽𝜽) ∈ ℝ
3
×ℝ

2 values 
to build the NN learning sample. Latin Hypercube Sampling (hereafter LHS, McKay, 1992) is such a sampling 
method. The interest of using a specific sampling method to train stable and accurate NN based parameterization 
has been shown in Balogh et al. (2021). The boundaries of the LHS are set around plausible values for both x and 
θ. The resulting learning sample of size NLHS is 𝐴𝐴 [(𝐱𝐱,𝜽𝜽)]

LHS
= {(𝐱𝐱, 𝛽𝛽)𝑖𝑖, 𝑓𝑓 (𝐱𝐱𝑖𝑖;𝜽𝜽𝑖𝑖)}1≤𝑖𝑖≤𝑁𝑁LHS

 .

The target variable 𝐴𝐴 𝐱̇𝐱 is computed with L63 model equations, parameterized with σ = σ0. The learning sample 
is of size NLHS = 10 7. Values for θ =  (ρ, β) are sampled in 𝐴𝐴 [26.5, 32] × [1.5, 3.2] . The NN model consists of 
nl = 7 hidden layers of type “Dense.” More specific details about the NN architecture are available in the Table 
S1 in Supporting Information S1. R 2 score over an independent subset of 20% of the learning sample is moni-
tored during training. The best weights regarding the R 2 score are loaded after 30 epochs. The final model has 
R 2 = 1.00, which is not surprising given the low complexity of L63 model, and is consistent with case studies 
focusing on emulating L63 dynamics with NNs (Rasp, 2020).

The fitted NN model is then used to generate time derivatives, which are integrated with a Runge-Kutta 4 time 
stepping scheme with a temporal increment Δt = 0.05. The resulting validation time series or “orbit” 𝐴𝐴 [𝐱𝐱]𝑓𝑓  is of 
length 1000 Model Time Units (hereafter, MTU, where 1 MTU = 20Δt) not including a spin-up of 200 MTU. 
The validation orbits are used to compute long-term metrics and thus to assess the online performance of the 
model, measured by 𝐴𝐴 𝐴𝐴𝐴 :

𝑚̂𝑚(𝜽𝜽) =
(

𝜇𝜇(3)
(𝜽𝜽) − 𝜇𝜇

(3)

ref

)2

+

3
∑

𝑛𝑛=1

(

𝜎𝜎(𝑛𝑛)
(𝜽𝜽) − 𝜎𝜎

(𝑛𝑛)

ref

)2

,� (8)
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where 𝐴𝐴 𝐴𝐴
(3)

ref
 and σref (resp. 𝐴𝐴 𝐴𝐴𝐴(3)(𝛽𝛽) and 𝐴𝐴 𝝈𝝈(𝛽𝛽) ) are parameters computed over the reference orbit (resp. validation orbit 

𝐴𝐴 [𝐱𝐱]𝑓𝑓  ). In this example, the “reference” data set consist in a long time-series of length 3000 MTU (considered as 
“infinite” lenght), generated by integrating L63 equations (Equation 4) with parameters (σ0, ρ0, β0).

A kriging metamodel learns to approximate 𝐴𝐴 𝐴𝐴𝐴 as a function of θ, over a learning sample of size Nk = 750. To 
build the kriging learning data set, θ values are sampled in the interval 𝐴𝐴 [26.5, 32] × [1.5, 3] . The sampling interval 
for θ has been slightly reduced compared with those used to generate the NN learning sample to avoid potential 
out-of-sample issues. In practice, we use a LHS to generate a sample of (x0, θ) to compute the validation orbits of 
length 1000 MTU on which the long-term metrics are estimated. Including the initial state variable x0 in the LHS 
sample reduces the noise related to the (finite) length of the validation orbits from the kriging learning sample. 
For the reasons explained in the Methodology section, dependency of 𝐴𝐴 𝐴𝐴𝐴 on x0 is ignored.

The kriging model 𝐴𝐴 𝐴𝐴𝐴 is fitted to 𝐴𝐴
{

𝜽𝜽𝑖𝑖, 𝑚̂𝑚 (𝜽𝜽𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝑘𝑘
 . The minimum of 𝐴𝐴 𝐴𝐴𝐴 is retrieved with BFGS optimizer 

(Fletcher, 2013). The optimal value found for the tunable parameters is θ* = (27.9, 2.64) (Figure 1). The refer-
ence orbit was generated using (ρ0, β0) = (28, 8/3): θ* is close to the values of the parameters used to generate 
the reference orbit.

3.1.2.  The Lorenz'96 Model

The NN model is trained to predict 𝐴𝐴 𝐴𝐴 = −
ℎ𝑐𝑐

𝑏𝑏

∑𝐽𝐽

𝑗𝑗=1
𝑦𝑦𝑗𝑗 as a function of x and θ = c. The learning sample is built by 

sequentially integrating the L96 equations (see Equations 5 and 6, with K = 8 and J = 32), using a fourth order 
Runge-Kutta time stepping scheme with an increment Δt = 0.005. The length of training integrations is 3,5 MTU 
(where 1 MTU = 200 Δt), not including 1,5 MTU of model spin-up. We perform Ni = 500 integrations, the initial 
conditions and θ values (x, y, c) of which are sampled using LHS, where x = (x1, x2, …, xK) and y = (y1,1, y1,2, …, 
yK,J). The sampling interval for c values is 𝐴𝐴 [6, 14] .

Figure 1.  (left) The online metric m is computed over orbits of length 1000 Model Time Units (MTUs) generated with real L63 equations (Equation 4) for σ = σ0 and 
for different regularly-spaced values of θ = (ρ, β). (middle) Values of 𝐴𝐴 𝐴𝐴𝐴 in the kriging learning sample, that is, 𝐴𝐴

{

𝜽𝜽𝑖𝑖, 𝑚̂𝑚 (𝜽𝜽𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝑘𝑘
 . The long-term statistics, 𝐴𝐴 𝐴𝐴𝐴 (𝜽𝜽𝑖𝑖) are 

computed on validation orbits 𝐴𝐴 [𝐱𝐱]𝑓𝑓  of length 1000 MTUs. (right) The fitted kriging metamodel 𝐴𝐴 𝐴𝐴𝐴 used to find the optimal value of the tunable parameters, θ* (yellow 
cross). The optimal value of parameters is θ* = (27.9, 2.64), which is close to the values used to generate the reference data set: (ρ, σ) = (σ0, ρ0). Color shades represent 
the logarithm of the online evaluation metric m (Equation 8) or its estimates.
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The NN is two layers deep, and has 32 nodes on each. More specific details about the NN architecture are avail-
able in Table S2 in Supporting Information S1. The model is trained over 30 epochs using the MSE loss function 
(Equation 2). The validation data set is made of 15% randomly chosen samples from the learning data set. R 2 
score is monitored over this data set during fitting. Best weights regarding the validation R 2 score are saved and 
loaded after 30 epochs. The final model has R 2 = 0.89 and is noted, 𝐴𝐴 𝐵𝐵(𝑥𝑥𝑥 𝑥𝑥) .

The fitted NN is then used to generate validation time series 𝐴𝐴 [𝐱𝐱]𝐵𝐵 of length 15 MTU, using 𝐴𝐴 𝐵𝐵 instead of B in the 
L96 equations (Equation 5). Long-term metric 𝐴𝐴 𝐴𝐴𝐴 is computed over 𝐴𝐴 [𝐱𝐱]𝐵𝐵 , using standard deviation values only:

𝑚̂𝑚(𝑐𝑐) =
(

𝜎𝜎(𝑐𝑐) − 𝜎𝜎ref

)2

,� (9)

with σref (resp. 𝐴𝐴 𝐴𝐴𝐴(𝑐𝑐) ) the standard deviation computed over the reference time series (resp. the validation time 
series). A time series of length 15 MTU, generated by integrating L96 equations (Equations 5 and 6) with (h0, F0, 
b0, c0) = (1, 10, 10, 10), is considered as the “reference” data set.

As described in Section 2.3, a kriging metamodel, 𝐴𝐴 𝐴𝐴𝐴 , is fitted to approximate 𝐴𝐴 𝐴𝐴𝐴 on a sample of 𝐴𝐴
{

𝑐𝑐𝑖𝑖, 𝑚̂𝑚 (𝑐𝑐𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝐾𝐾
 , 

of size Nk = 200. The initial conditions for the orbits used to compute 𝐴𝐴 𝐴𝐴𝐴 in the kriging learning sample are gener-
ated by LHS, with 𝐴𝐴 𝐴𝐴 ∈ [7., 13.] (Figure 2). The value of c minimizing the online metric is retrieved on 𝐴𝐴 𝐴𝐴𝐴 , by using 
BFGS minimization from SciPy python package. The optimal value of c is c* = 9.922. This value is very close 
to the value used to generate the reference data set, that is, c0 = 10.

3.2.  Imperfect Model Calibration: The Lorenz'96 Model

We now investigate the case where one of the L96 model parameters is carrying biases. To reproduce this situa-
tion, the L96 NN parameterization has been trained on output from the L96 model using the reference value of the 
model parameters, that is, (h, F, b) = (h0, F0, b0). However, the NN model will be implemented in an L96 system 

Figure 2.  A Latin Hypercube Sampling (LHS) sample of (x, b) values, 𝐴𝐴 {𝐱𝐱𝑖𝑖, 𝑐𝑐𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁𝑖𝑖
 , is generated using LHS with c sampled 

in 𝐴𝐴 [7, 13] . The corresponding values of the long-term metrics, 𝐴𝐴 𝐴𝐴𝐴 (𝑐𝑐𝑖𝑖) , 1 ≤ 𝑐𝑐𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖 , are computed on 𝐴𝐴 [𝐱𝐱]𝐵𝐵 (length: 3,5 Model 
Time Units (MTU)) from the LHS initial conditions. The resulting sample 𝐴𝐴

{

𝑐𝑐𝑖𝑖, 𝑚̂𝑚 (𝑐𝑐𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝑘𝑘
 (light blue scatter points) is 

used to train the kriging model (solid blue line). For comparison, red dots represent the metric m computed over time series 
(length: 15 MTU) obtained by applying L96 equations (Equation 5), for discrete values of c. The fitted kriging metamodel, 

𝐴𝐴 𝐴𝐴𝐴 (solid blue line), is a smoothed version of the metric computed on time series generated with the neural network 
parameterization. The optimal value of c, c*, is computed by minimizing 𝐴𝐴 𝐴𝐴𝐴 . c* = 9.922 (dashed blue line) can be compared 
with c0 = 10 (dashed black line), which was used to generate the reference orbit.



Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

7 of 9

where one of the model parameters is set to a value different from its reference value. We will show that optimiz-
ing the value of the tunable parameter included in the NN still allows us to obtain the wished long-term statistics.

Namely, we set the value of F to a range of biased values, Fb ≠ F0. For each Fb, we generate validation time serie 
using the NN parameterization, 𝐴𝐴 𝐵𝐵(𝑥𝑥; 𝑐𝑐) , and compute the corresponding long-term statistics. To underline the 
dependence of the long-term statistics on Fb, the online metric will be noted:

𝑚̂𝑚𝐹𝐹𝑏𝑏 (𝑐𝑐) =
(

𝜎𝜎𝐹𝐹𝑏𝑏 (𝑐𝑐) − 𝜎𝜎ref

)2

,� (10)

where 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 is the standard deviation computed on a validation time series where F = Fb.

To predict the estimated metric, 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 (𝑐𝑐) , again, a kriging metamodel is trained over a data set 𝐴𝐴
{

𝑐𝑐𝑖𝑖, 𝑚̂𝑚𝐹𝐹𝑏𝑏 (𝑐𝑐𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝑘𝑘
 

where ci are Nk = 200 values sampled in the interval 𝐴𝐴 [7, 13] . Hence, a kriging metamodel is obtained for each Fb 
and the corresponding functions are noted 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 (𝑐𝑐) .

We now optimize the value of c with respect to the online metric 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 . For each Fb, we find the optimal value of c, 
noted c*(Fb), by minimizing the corresponding kriging metamodel, 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 (Figure 3, bottom panel). Bias compensa-
tion can be evaluated by comparing the value of 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 computed on validation time series generated with 𝐴𝐴 𝐵𝐵 (𝑥𝑥; 𝑐𝑐0) 
and 𝐴𝐴 𝐵𝐵 (𝑥𝑥; 𝑐𝑐∗) , for each value of Fb. Whereas the loss values remain high for c = c0 when F is strongly biased, the 
use of c*(Fb) significantly reduces the online loss value (Figure 3). As soon as Fb ≠ F0, c*(Fb) ≠ c0. This means 
that the choice of c = c0 is not optimal. It also means that at least part of the bias induced by the wrong parameter 
Fb can be actually compensated by tuning another parameter of the model, c. This result suggest that, at least to 
some extent, even an imperfect model can be tuned to adjust long-term statistics.

Figure 3 clearly shows that, as soon as Fb ≠ F0, the proposed method is a statistically significant improvement to 
the baseline (linear regression) physical parameterizations and the NN parameterization with c = c0. Confidence 
intervals associated with our estimates of the metric have been constructed by bootstrap through the sampling of 
two main sources of uncertainty. First, we build 9 different NN parameterizations, each of which has been fitted 
to a learning sample generated with different initial conditions. Second, each one of the 9 parameterizations are 
used to generate 3 validation orbits of length 10, 15 and 25 MTUs. Thus, a sample of n = 27 validation orbits 
is obtained and used to compute 95% confidence intervals for both the “standard” (c = c0) and the “optimal” 
(c = c*) cases, and for each value of Fb.

4.  Conclusion - Discussion
To improve current ML based physics in climate models, the effort is usually only focused on improving both the 
learning sample and the offline fit of the ML model. But these ML models can and need to be further improved 
by using an online metric to their calibration (Schneider et al., 2017). Thus, we propose a method to apply online 
calibration to ML parameterizations.

The key novelty of our approach is to include some of the physical parameters θ among the input variables of the 
NN. The NN model is fitted offline to a learning sample of outputs from an high-resolution climate model. In this 
way, the NN parameterization is able to emulate the physics not only for one single θ0, but for a range of values 
of θ. When the fitted NN model is plugged-in to replace the physical parameterization, the value of parameters θ 
is calibrated online, as to reduce errors on long-term statistics of the climate model. As a proof-of-concept exper-
iment, our methodology is demonstrated using L63 and L96 models. We show that our method can be used to 
optimize the value of some parameters to compensate long-term errors due to biases carried by another parameter 
which cannot be calibrated.

In addition to the reduction of long-term model errors, including some physical parameters among the ML model 
inputs can also increase the confidence we have in ML parameterizations, the interpretability of which is often 
questioned. Supplementary parameters can also be used to estimate uncertainties related to some processes. 
However, although satisfying results were obtained using toy models, further research is needed to test our meth-
odology into real climate models. The generation of a learning sample for subgrid scale parameterizations is 
already a challenging issue; this task is even more difficult in our new method as a sampling of θ is needed in 
addition to the sampling of x. The numerical cost of the generation of the learning sample is thus increased. If our 
approach was to be applied to a climate model, the methodology described for the L96 model could be applied. 
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This would require a set of short high-resolution integrations for several values of θ, for example, taken from 
a LHS on θ only. In this way the number of model integrations would be kept small, while preserving a large 
learning sample on (x, θ) (as each integration provides a large sample of x values). In the L96 example, we did 
not discuss which minimum value of the number of integrations Ni is sufficient to efficiently emulate the system. 
Finding such a minimum value will require careful examination in the case of a climate model. Once a satisfying 
learning sample is built, the next hurdle to overcome is the fit of the NN model. For more complex models, a 
simple feed-forward NN may be insufficient and the choice of MSE as the offline metric may not be relevant. 
Finally, finding the optimal online metric can also be a strenuous issue.

Data Availability Statement
Code is made available at: https://zenodo.org/record/6141165.

Figure 3.  (black) Orbits computed with neural network parameterization 𝐴𝐴 𝐵𝐵(𝑥𝑥; 𝑐𝑐) with c = c0 for each Fb in the interval 𝐴𝐴 [9, 11] (black bars, bottom panel). The logarithm 
of kriged values of the metric corresponding to these time series, 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏

(𝑐𝑐0) , are plotted in the top panel (dotted solid black line). The 95% confidence intervals are 
represented in gray shading. This method can be compared with output using a linear regression approach, fitted to approximate B (red, top panel). (blue) For each Fb, 
we also compute the optimal value c* of c to minimize the online metric 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏

 (blue bars, bottom panel). The 95% confidence intervals are represented in blue shading. 
The minimal value of each Fb, 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏

(𝑐𝑐∗) , associated with orbits obtained with machine learning parameterization 𝐴𝐴 𝐵𝐵 (𝑥𝑥; 𝑐𝑐∗) remains close to zero (dotted solid blue line, 
top panel).

https://zenodo.org/record/6141165
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