
HAL Id: hal-03967306
https://hal.science/hal-03967306v1

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to Calibrate a Dynamical System With Neural
Network Based Physics?

Blanka Balogh, D Saint-martin, Aurélien Ribes

To cite this version:
Blanka Balogh, D Saint-martin, Aurélien Ribes. How to Calibrate a Dynamical System With Neural
Network Based Physics?. Geophysical Research Letters, 2022, 49, pp.1-9. �10.1029/2022gl097872�.
�hal-03967306�

https://hal.science/hal-03967306v1
https://hal.archives-ouvertes.fr

1.  Introduction
The ordinary differential equations describing a climate model, can be written

𝐱̇𝐱 = (𝐱𝐱) + 𝜙𝜙(𝐱𝐱),� (1)

where 𝐴𝐴 𝐱𝐱 ∈ ℝ
𝑑𝑑 is the state variable of the climate model. 𝐴𝐴  corresponds to the discretization of the primitive

equations on the model grid, whereas ϕ accounts for the subgrid scale atmospheric processes (e.g., turbulence,
convection). Currently, the best compromise for representing subgrid scale processes are the “physical param-
eterizations,” emulating a numerically affordable version of ϕ. These parameterizations are parametric func-
tions fϕ. They are built heuristically on theoretical knowledge and outputs from high-resolution simulations (e.g.,
Jakob, 2010). In practice, fϕ is the sum of individually modeled processes, the parameters of which are separately
estimated. The numerical efficiency of fϕ comes at the price of approximations. Hence, parameterizations of the
atmosphere are the main source of uncertainties in climate models (e.g., Medeiros & Stevens, 2011; Medeiros
et al., 2008; Stevens & Bony, 2013). Recently, interest has grown in using machine learning (ML) to develop
parameterizations, noted 𝐴𝐴 𝑓𝑓  , promising more precise yet affordable parameterizations for climate models (e.g.,
Gentine et al., 2018; Rasp et al., 2018; Yuval & O’Gorman, 2020).

The development of both physical and ML-based parameterizations first involves defining a set of possible
functions for the estimate of ϕ (this set is typically much larger in the ML case). Then, model parameters are
optimized with respect to an offline metric ℓ (also called “loss function” in the ML case). This offline metric

Abstract  Unlike the traditional subgrid scale parameterizations used in climate models, current machine
learning (ML) parameterizations are only tuned offline, by minimizing a loss function on outputs from
high-resolution models. This approach often leads to numerical instabilities and long-term biases. Here, we
propose a method to design tunable ML parameterizations and calibrate them online. The calibration of the
ML parameterization is achieved in two steps. First, some model parameters are included within the ML model
input. This ML model is fitted at once for a range of values of the parameters, using an offline metric. Second,
once the ML parameterization has been plugged into the climate model, the parameters included among the ML
inputs are optimized with respect to an online metric quantifying errors on long-term statistics. We illustrate
our method with two simple dynamical systems. Our approach significantly reduces long-term biases of the ML
model.

Plain Language Summary  In numerical climate models, processes occurring at scales smaller
than the model resolution (e.g., convection, turbulence) need to be represented by “parameterizations.”
Parameterizations provide a simplified yet numerically affordable version of the modeled processes. Recently,
parameterizations are also developed using machine learning (ML) by fitting to outputs from high resolution
climate models. This method can lead to long-term biases when incorporating the ML parameterizations into
the climate model. And, there is no possibility in the current approach to calibrate the ML parameterization to
alleviate these biases. We propose here an innovative approach to calibrate ML parameterizations once they
have been fitted to a learning sample. Our approach has been successfully tested on two toy models. A first
set of experiments focus on the retrieval of the value of parameters used to generate a reference data set. In the
second experiment, the value of some parameters not included in the neural network (NN) has been biased,
resulting in errors in long-term statistics. Finding the optimal value of the NN input parameter has significantly
improved the accuracy of the resulting model. Our method could be applied to improve the prediction of long-
term variables in climate models.

BALOGH ET AL.

© 2022. American Geophysical Union.
All Rights Reserved.

How to Calibrate a Dynamical System With Neural Network
Based Physics?
B. Balogh1 , D. Saint-Martin1 , and A. Ribes1

1CNRM, Université de Toulouse Météo-France, CNRS, Toulouse, France

Key Points:
•	 �Tunable parameters are included to

the inputs of a neural network (NN)
parameterization

•	 �The tunable NN parameters are
optimized by using a kriging method

•	 �Long-term statistical properties of the
NN-based model are tuned without
any new learning procedure

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
B. Balogh,
blanka.balogh@meteo.fr

Citation:
Balogh, B., Saint-Martin, D., &
Ribes, A. (2022). How to calibrate a
dynamical system with neural network
based physics? Geophysical Research
Letters, 49, e2022GL097872. https://doi.
org/10.1029/2022GL097872

Received 14 JAN 2022
Accepted 26 MAR 2022

10.1029/2022GL097872
RESEARCH LETTER

1 of 9

https://orcid.org/0000-0002-6556-526X
https://orcid.org/0000-0002-8478-6914
https://orcid.org/0000-0001-5102-7885
https://doi.org/10.1029/2022GL097872
https://doi.org/10.1029/2022GL097872
https://doi.org/10.1029/2022GL097872
https://doi.org/10.1029/2022GL097872
https://doi.org/10.1029/2022GL097872

Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

2 of 9

evaluates the error between the estimate function (i.e., fϕ or 𝐴𝐴 𝑓𝑓  ) and a target function f, the best accurate approx-
imation of ϕ—as even high-resolution model data is only an approximation of the ground truth subgrid-scale
processes. This approach allows us to fit the models on a point by point basis. However, a climate model's perfor-
mance lies in accurate predictions of long-term statistics, measured by online metrics. Physical parameterizations
typically require an additional calibration step, once it has been plugged-in to the dynamical model. In contrast,
there is usually no tunable parameter included in ML parameterizations. Nevertheless, tuning is very important
for the development of climate models, to ensure model stability, to calibrate the value of long-term statistics and
to reduce error due to potentially missed interactions between the dynamics and the physics. This online calibra-
tion can be achieved regarding an online metric, m. Without online calibration, even though a parameterization
is efficient regarding the offline metric ℓ, there is no guarantee that the climate model will be accurate regarding
the online evaluation metric (Brenowitz, Henn, et al., 2020).

The development of current ML parameterizations is still hampered by issues addressed by online calibration
in the case of physical parameterizations, such as numerical instabilities (e.g., Brenowitz, Beucler, et al., 2020;
Rasp, 2020). These issues are currently handled by enforcing physical conservation laws (Beucler et al., 2021) or
using ML to replace part of a physical parameterization (Yuval et al., 2021). Additionally, the target function f can
also be imperfect. In this case, even though the fit of the ML model is excellent, errors in the imperfect training
data set will also be learned and result in a high online error m, also called long-term biases. This is a well known
issue with physical parameterizations. The “art of tuning” model parameters consists in finding a compromise
between offline and online metrics, going back and forth in optimizing the parameters with respect to ℓ and m
(Couvreux et al., 2021; Hourdin et al., 2017; Schmidt et al., 2017).

To resolve these issues, we propose to include some tunable parameters into the ML parameterization inputs.
This allows the calibration of new ML-based parameterization with respect to an online metric in an efficient
way. Our approach to find the best value of tunable parameters is less empirical than the methods used to tune
physical parameterizations. It relies on the minimization of the online metric m on long-term statistics, akin to the
methodology described in Schneider et al. (2017) and in Cleary et al. (2021). The method will be demonstrated
using Lorenz'63 and Lorenz'96 toy models (Lorenz, 1963, 1996). These toy models offer a simple framework to
perform proof-of-concept atmospheric modeling experiments using ML tools (e.g., Chattopadhyay et al., 2020;
Scher & Messori, 2019). Lorenz'96 model has also the advantage of implementing a “parameterization.” The
large scale variable is indeed interacting with the non-linear subgrid-scale variable.

The paper is organized as follows. Methodology is described in Section 2. Section 3 demonstrates our calibra-
tion method on two basic examples using Lorenz'63 and Lorenz'96 models. Conclusions are drawn in Section 4,
discussing more broadly the results we have obtained.

2.  Methodology
2.1.  Step 1: Building a Tunable Neural Network Parameterization

The first step toward designing and optimizing tunable neural network (NN) parameterizations is to take into
consideration some uncertain but tunable parameters, when fitting the NN. The target function f is often fitted to
outputs from high-resolution simulations. This target function depends on uncertain parameters, noted 𝐴𝐴 𝜽𝜽 ∈ ℝ

𝑝𝑝 ,
used to generate the high-resolution simulations: f ≡ f(x; θ). In traditional approaches, the value of model param-
eters are fixed to the “best estimate” value of these parameters, θ0. Thus, f ≡ f(x; θ0) does not depend on any
parameter and θ is not included in the NN model input (e.g., Gentine et al., 2018; Yuval & O’Gorman, 2020). The
novelty of our approach is to keep part of the uncertain parameters θ among the input variables of the NN, and
thus to retain not only the dependency of f from x but also from some model parameters θ.

The NN learning sample, of size N, is 𝐴𝐴 {(𝐱𝐱,𝜽𝜽)𝑖𝑖, 𝑓𝑓 (𝐱𝐱𝑖𝑖;𝜽𝜽𝑖𝑖)}1≤𝑖𝑖≤𝑁𝑁 . The NN is fitted by optimizing an offline metric
ℓ, also called “loss function.” Typically, this loss function is Mean Squared Error (MSE), computed for each
predicted time step individually:

�
(

� (�;�), �̂ (�;�)
)

= 1
�

�
∑

�=1

‖

‖

‖

‖

� (��;��) − �̂ (��;��)
‖

‖

‖

‖

2

.� (2)

Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

3 of 9

The parameterization obtained after training the NN is noted, 𝐴𝐴 𝑓𝑓 (𝐱𝐱;𝜽𝜽) . It can be incorporated into the dynamical
model so as to replace ϕ in Equation 1. The resulting dynamical system can be used to generate a validation time
series of the dynamical model, noted 𝐴𝐴 [𝐱𝐱]𝑓𝑓  .

2.2.  Step 2: Optimizing the Tunable Neural Network Parameterization

The goal of this second step is to tune the optimal value of the parameters θ. Whereas the NN model was trained
offline on a learning sample, calibration relies on an online validation metric, m, given by:

𝑚𝑚(𝜽𝜽) =
1

𝑀𝑀

𝑀𝑀
∑

𝑘𝑘=1

‖
ref

𝑘𝑘
−𝑘𝑘(𝜽𝜽)‖

2

,� (3)

where 𝐴𝐴  are a set of M long-term statistics computed over 𝐴𝐴 [𝐱𝐱]𝑓𝑓  , and 𝐴𝐴 
ref a set of reference statistics. The long-

term statistics involved in the computation of m are typically the average and standard deviation values estimated
over time series. The minimal value of m is reached at the optimal value of θ, noted θ*.

Theoretically, the statistics 𝐴𝐴  are computed over a time series of infinite length. In reality, we only compute an
estimate of the long-term metric over a finite length simulation. The length of these simulation is chosen so that
the online metric m no longer depends on the x initial condition. To simplify notations, the estimate of the long-
term statistics over validation time series 𝐴𝐴 [𝐱𝐱] is noted, 𝐴𝐴 ̂ . Even though this time series is sufficiently long, the
resulting metric �̂(�) = 1

�

∑�
�=1

‖

‖

‖

ref
� − ̂�(�)‖‖

‖

2
 will be noised, which can lead the optimizer to a local mini-

mum of 𝐴𝐴 𝐴𝐴𝐴 , instead of the global minimum. To address this issue, minimization will be performed over a smoothed
version of 𝐴𝐴 𝐴𝐴𝐴 , obtained by kriging (or Gaussian Process Regression, Cressie, 1992). The kriging metamodel will
be fitted to a sample of 𝐴𝐴

{

𝜽𝜽𝑖𝑖, 𝑚̂𝑚 (𝜽𝜽𝑖𝑖)
}

 . The obtained kriging metamodel is noted 𝐴𝐴 𝐴𝐴𝐴 . The optimal value of model
parameters, θ*, is obtained when 𝐴𝐴 𝐴𝐴𝐴 reaches its (absolute) minimum value.

In summary, we train a NN parameterization depending on some tunable parameters θ, using an offline metric,
ℓ. Since the main purpose is to reduce long-term prediction errors of the dynamical model, the value of θ is
subsequently optimized regarding an online metric, m. In practice, optimization is done over a kriging metamodel
emulating m as a function of θ. In the following, our method will be demonstrated using the Lorenz'63 (hereafter
L63, Lorenz, 1963) and the Lorenz'96 (hereafter L96, Lorenz, 1996) models.

2.3.  The Lorenz'63 Model

The L63 system consists of a set of ordinary differential equations that can be expressed:

�̇1 = � (�2 − �1) ,

�̇2 = �1 (� − �3) − �2,

�̇3 = �1�2 − ��3.

� (4)

Temporal evolution of the L63 state variable, x = (x1, x2, x3), is governed by Equation 4, which involves a set of
three model parameters, (σ, ρ, β). Equation 4 admits a chaotic solution in the vicinity of (σ0, ρ0, β0) = (10, 28, 8/3).

The online minimization metric m (Equation 3) depends strongly on the identification of variables quantifying
the long-term statistical behavior of the L63 system. The first candidate of such a long-term variable is the mean
value for each one of the three L63 state variables. However, the average value of x1 and x2 is independent of L63
parameters (see also Figure S1 in Supporting Information S1). Thus, only the average value of x3, noted μ (3), can
be tuned. This quantity is useful to retrieve the optimal value of at most one L63 parameter. In addition to μ (3),
standard deviations over the time series can also be computed. Standard deviations will be noted σ (i) for each one
of the L63 parameters, with i ∈ {1, 2, 3}. However, as highlighted by Figure S1 in Supporting Information S1,
a strong correlation appears between the three standard deviations. Hence, it is possible to retrieve the optimal
value of at most two L63 parameters by optimization. Thus, the following L63 idealized case study will use

𝐴𝐴  =
(

𝜇𝜇(3), 𝜎𝜎(1), 𝜎𝜎(2), 𝜎𝜎(3)
)

 .

Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

4 of 9

2.4.  The Lorenz'96 Model

The 2-level L96 dynamical system depending on parameters (h, c, F, b) is given by:

d𝑥𝑥𝑘𝑘

d𝑡𝑡
= −𝑥𝑥𝑘𝑘−1 (𝑥𝑥𝑘𝑘−2 − 𝑥𝑥𝑘𝑘+1) − 𝑥𝑥𝑘𝑘 + 𝐹𝐹 −

ℎ𝑐𝑐

𝑏𝑏

𝐽𝐽
∑

𝑗𝑗=1

𝑦𝑦𝑘𝑘𝑘𝑘𝑘 ,� (5)

1

𝑐𝑐

d𝑦𝑦𝑘𝑘𝑘𝑘𝑘

d𝑡𝑡
= −𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘𝑘+1 (𝑦𝑦𝑘𝑘𝑘𝑘𝑘+2 − 𝑦𝑦𝑘𝑘𝑘𝑘𝑘−1) − 𝑦𝑦𝑘𝑘𝑘𝑘𝑘 +

ℎ𝑐𝑐

𝑏𝑏
𝑥𝑥𝑘𝑘,� (6)

where 𝐴𝐴 {𝑥𝑥𝑘𝑘}1≤𝑘𝑘≤𝐾𝐾 are K large-scale variables coupled to J small-scale variables 𝐴𝐴
{

𝑦𝑦𝑘𝑘0 ,𝑗𝑗
}

1≤𝑗𝑗≤𝐽𝐽
 for each 1 ≤ k0 ≤ K.

The coupling term 𝐴𝐴 𝐴𝐴𝑘𝑘 = −
ℎ𝑐𝑐

𝑏𝑏

∑𝐾𝐾

𝑘𝑘=1
𝑦𝑦𝑘𝑘𝑘𝑘𝑘 can be seen as a “subgrid-scale parameterization.” Thus, Equa-

tion 5 can be analogous to a (very) simple climate model, as described by Equation 1. In this comparison,
𝐴𝐴  (𝑥𝑥𝑘𝑘) = −𝑥𝑥𝑘𝑘−1 (𝑥𝑥𝑘𝑘−2 − 𝑥𝑥𝑘𝑘+1) − 𝑥𝑥𝑘𝑘 + 𝐹𝐹 and ϕ(xk) = Bk. Bk can be approximated as a function of the large-scale

state variables, xk, and is often modeled with polynoms (e.g., Arnold et al., 2013). This subgrid-scale parameter-
ization will be the target variable of the NN model. Given the symmetry of the L96 model, it is common to fit
the NN to predict Bk as a function of data from only one spatial variable (e.g., Gagne et al., 2020; Rasp, 2020;
Watson, 2019). In our case, the NN learns to predict a single Bk as a function of (xk, c). This implies that the NN
input is of size 2 and the output of size 1. To simplify notations, in the following, the NN will be noted, 𝐴𝐴 𝐵𝐵(𝑥𝑥𝑥 𝑥𝑥) .

As in the L63 case, the mean value of the state variables does not depend on input parameters (h, c, F, b), and is
therefore not used in the online metric m. Thus, the metric is based on standard deviations only, estimated on time
series obtained with the NN parameterization.

3.  Case Studies
3.1.  Perfect Model Calibration

3.1.1.  The Lorenz'63 Model

The objective is to fit an NN model, noted 𝐴𝐴 𝑓𝑓  , to approximate the L63 time derivative as a function of the state
variable x and parameters θ = (ρ, β):

̂̇𝐱𝐱 = 𝑓𝑓 (𝐱𝐱,𝜽𝜽).� (7)

The learning sample is generated by an optimal sampling method, used to select relevant 𝐴𝐴 (𝐱𝐱,𝜽𝜽) ∈ ℝ
3
×ℝ

2 values
to build the NN learning sample. Latin Hypercube Sampling (hereafter LHS, McKay, 1992) is such a sampling
method. The interest of using a specific sampling method to train stable and accurate NN based parameterization
has been shown in Balogh et al. (2021). The boundaries of the LHS are set around plausible values for both x and
θ. The resulting learning sample of size NLHS is 𝐴𝐴 [(𝐱𝐱,𝜽𝜽)]

LHS
= {(𝐱𝐱, 𝛽𝛽)𝑖𝑖, 𝑓𝑓 (𝐱𝐱𝑖𝑖;𝜽𝜽𝑖𝑖)}1≤𝑖𝑖≤𝑁𝑁LHS

 .

The target variable 𝐴𝐴 𝐱̇𝐱 is computed with L63 model equations, parameterized with σ = σ0. The learning sample
is of size NLHS = 10 7. Values for θ = (ρ, β) are sampled in 𝐴𝐴 [26.5, 32] × [1.5, 3.2] . The NN model consists of
nl = 7 hidden layers of type “Dense.” More specific details about the NN architecture are available in the Table
S1 in Supporting Information S1. R 2 score over an independent subset of 20% of the learning sample is moni-
tored during training. The best weights regarding the R 2 score are loaded after 30 epochs. The final model has
R 2 = 1.00, which is not surprising given the low complexity of L63 model, and is consistent with case studies
focusing on emulating L63 dynamics with NNs (Rasp, 2020).

The fitted NN model is then used to generate time derivatives, which are integrated with a Runge-Kutta 4 time
stepping scheme with a temporal increment Δt = 0.05. The resulting validation time series or “orbit” 𝐴𝐴 [𝐱𝐱]𝑓𝑓 is of
length 1000 Model Time Units (hereafter, MTU, where 1 MTU = 20Δt) not including a spin-up of 200 MTU.
The validation orbits are used to compute long-term metrics and thus to assess the online performance of the
model, measured by 𝐴𝐴 𝐴𝐴𝐴 :

𝑚̂𝑚(𝜽𝜽) =
(

𝜇𝜇(3)
(𝜽𝜽) − 𝜇𝜇

(3)

ref

)2

+

3
∑

𝑛𝑛=1

(

𝜎𝜎(𝑛𝑛)
(𝜽𝜽) − 𝜎𝜎

(𝑛𝑛)

ref

)2

,� (8)

Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

5 of 9

where 𝐴𝐴 𝐴𝐴
(3)

ref
 and σref (resp. 𝐴𝐴 𝐴𝐴𝐴(3)(𝛽𝛽) and 𝐴𝐴 𝝈𝝈(𝛽𝛽) ) are parameters computed over the reference orbit (resp. validation orbit

𝐴𝐴 [𝐱𝐱]𝑓𝑓  ). In this example, the “reference” data set consist in a long time-series of length 3000 MTU (considered as
“infinite” lenght), generated by integrating L63 equations (Equation 4) with parameters (σ0, ρ0, β0).

A kriging metamodel learns to approximate 𝐴𝐴 𝐴𝐴𝐴 as a function of θ, over a learning sample of size Nk = 750. To
build the kriging learning data set, θ values are sampled in the interval 𝐴𝐴 [26.5, 32] × [1.5, 3] . The sampling interval
for θ has been slightly reduced compared with those used to generate the NN learning sample to avoid potential
out-of-sample issues. In practice, we use a LHS to generate a sample of (x0, θ) to compute the validation orbits of
length 1000 MTU on which the long-term metrics are estimated. Including the initial state variable x0 in the LHS
sample reduces the noise related to the (finite) length of the validation orbits from the kriging learning sample.
For the reasons explained in the Methodology section, dependency of 𝐴𝐴 𝐴𝐴𝐴 on x0 is ignored.

The kriging model 𝐴𝐴 𝐴𝐴𝐴 is fitted to 𝐴𝐴
{

𝜽𝜽𝑖𝑖, 𝑚̂𝑚 (𝜽𝜽𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝑘𝑘
 . The minimum of 𝐴𝐴 𝐴𝐴𝐴 is retrieved with BFGS optimizer

(Fletcher, 2013). The optimal value found for the tunable parameters is θ* = (27.9, 2.64) (Figure 1). The refer-
ence orbit was generated using (ρ0, β0) = (28, 8/3): θ* is close to the values of the parameters used to generate
the reference orbit.

3.1.2.  The Lorenz'96 Model

The NN model is trained to predict 𝐴𝐴 𝐴𝐴 = −
ℎ𝑐𝑐

𝑏𝑏

∑𝐽𝐽

𝑗𝑗=1
𝑦𝑦𝑗𝑗 as a function of x and θ = c. The learning sample is built by

sequentially integrating the L96 equations (see Equations 5 and 6, with K = 8 and J = 32), using a fourth order
Runge-Kutta time stepping scheme with an increment Δt = 0.005. The length of training integrations is 3,5 MTU
(where 1 MTU = 200 Δt), not including 1,5 MTU of model spin-up. We perform Ni = 500 integrations, the initial
conditions and θ values (x, y, c) of which are sampled using LHS, where x = (x1, x2, …, xK) and y = (y1,1, y1,2, …,
yK,J). The sampling interval for c values is 𝐴𝐴 [6, 14] .

Figure 1.  (left) The online metric m is computed over orbits of length 1000 Model Time Units (MTUs) generated with real L63 equations (Equation 4) for σ = σ0 and
for different regularly-spaced values of θ = (ρ, β). (middle) Values of 𝐴𝐴 𝐴𝐴𝐴 in the kriging learning sample, that is, 𝐴𝐴

{

𝜽𝜽𝑖𝑖, 𝑚̂𝑚 (𝜽𝜽𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝑘𝑘
 . The long-term statistics, 𝐴𝐴 𝐴𝐴𝐴 (𝜽𝜽𝑖𝑖) are

computed on validation orbits 𝐴𝐴 [𝐱𝐱]𝑓𝑓 of length 1000 MTUs. (right) The fitted kriging metamodel 𝐴𝐴 𝐴𝐴𝐴 used to find the optimal value of the tunable parameters, θ* (yellow
cross). The optimal value of parameters is θ* = (27.9, 2.64), which is close to the values used to generate the reference data set: (ρ, σ) = (σ0, ρ0). Color shades represent
the logarithm of the online evaluation metric m (Equation 8) or its estimates.

Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

6 of 9

The NN is two layers deep, and has 32 nodes on each. More specific details about the NN architecture are avail-
able in Table S2 in Supporting Information S1. The model is trained over 30 epochs using the MSE loss function
(Equation 2). The validation data set is made of 15% randomly chosen samples from the learning data set. R 2
score is monitored over this data set during fitting. Best weights regarding the validation R 2 score are saved and
loaded after 30 epochs. The final model has R 2 = 0.89 and is noted, 𝐴𝐴 𝐵𝐵(𝑥𝑥𝑥 𝑥𝑥) .

The fitted NN is then used to generate validation time series 𝐴𝐴 [𝐱𝐱]𝐵𝐵 of length 15 MTU, using 𝐴𝐴 𝐵𝐵 instead of B in the
L96 equations (Equation 5). Long-term metric 𝐴𝐴 𝐴𝐴𝐴 is computed over 𝐴𝐴 [𝐱𝐱]𝐵𝐵 , using standard deviation values only:

𝑚̂𝑚(𝑐𝑐) =
(

𝜎𝜎(𝑐𝑐) − 𝜎𝜎ref

)2

,� (9)

with σref (resp. 𝐴𝐴 𝐴𝐴𝐴(𝑐𝑐) ) the standard deviation computed over the reference time series (resp. the validation time
series). A time series of length 15 MTU, generated by integrating L96 equations (Equations 5 and 6) with (h0, F0,
b0, c0) = (1, 10, 10, 10), is considered as the “reference” data set.

As described in Section 2.3, a kriging metamodel, 𝐴𝐴 𝐴𝐴𝐴 , is fitted to approximate 𝐴𝐴 𝐴𝐴𝐴 on a sample of 𝐴𝐴
{

𝑐𝑐𝑖𝑖, 𝑚̂𝑚 (𝑐𝑐𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝐾𝐾
 ,

of size Nk = 200. The initial conditions for the orbits used to compute 𝐴𝐴 𝐴𝐴𝐴 in the kriging learning sample are gener-
ated by LHS, with 𝐴𝐴 𝐴𝐴 ∈ [7., 13.] (Figure 2). The value of c minimizing the online metric is retrieved on 𝐴𝐴 𝐴𝐴𝐴 , by using
BFGS minimization from SciPy python package. The optimal value of c is c* = 9.922. This value is very close
to the value used to generate the reference data set, that is, c0 = 10.

3.2.  Imperfect Model Calibration: The Lorenz'96 Model

We now investigate the case where one of the L96 model parameters is carrying biases. To reproduce this situa-
tion, the L96 NN parameterization has been trained on output from the L96 model using the reference value of the
model parameters, that is, (h, F, b) = (h0, F0, b0). However, the NN model will be implemented in an L96 system

Figure 2.  A Latin Hypercube Sampling (LHS) sample of (x, b) values, 𝐴𝐴 {𝐱𝐱𝑖𝑖, 𝑐𝑐𝑖𝑖}1≤𝑖𝑖≤𝑁𝑁𝑖𝑖
 , is generated using LHS with c sampled

in 𝐴𝐴 [7, 13] . The corresponding values of the long-term metrics, 𝐴𝐴 𝐴𝐴𝐴 (𝑐𝑐𝑖𝑖) , 1 ≤ 𝑐𝑐𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖 , are computed on 𝐴𝐴 [𝐱𝐱]𝐵𝐵 (length: 3,5 Model
Time Units (MTU)) from the LHS initial conditions. The resulting sample 𝐴𝐴

{

𝑐𝑐𝑖𝑖, 𝑚̂𝑚 (𝑐𝑐𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝑘𝑘
 (light blue scatter points) is

used to train the kriging model (solid blue line). For comparison, red dots represent the metric m computed over time series
(length: 15 MTU) obtained by applying L96 equations (Equation 5), for discrete values of c. The fitted kriging metamodel,

𝐴𝐴 𝐴𝐴𝐴 (solid blue line), is a smoothed version of the metric computed on time series generated with the neural network
parameterization. The optimal value of c, c*, is computed by minimizing 𝐴𝐴 𝐴𝐴𝐴 . c* = 9.922 (dashed blue line) can be compared
with c0 = 10 (dashed black line), which was used to generate the reference orbit.

Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

7 of 9

where one of the model parameters is set to a value different from its reference value. We will show that optimiz-
ing the value of the tunable parameter included in the NN still allows us to obtain the wished long-term statistics.

Namely, we set the value of F to a range of biased values, Fb ≠ F0. For each Fb, we generate validation time serie
using the NN parameterization, 𝐴𝐴 𝐵𝐵(𝑥𝑥; 𝑐𝑐) , and compute the corresponding long-term statistics. To underline the
dependence of the long-term statistics on Fb, the online metric will be noted:

𝑚̂𝑚𝐹𝐹𝑏𝑏 (𝑐𝑐) =
(

𝜎𝜎𝐹𝐹𝑏𝑏 (𝑐𝑐) − 𝜎𝜎ref

)2

,� (10)

where 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 is the standard deviation computed on a validation time series where F = Fb.

To predict the estimated metric, 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 (𝑐𝑐) , again, a kriging metamodel is trained over a data set 𝐴𝐴
{

𝑐𝑐𝑖𝑖, 𝑚̂𝑚𝐹𝐹𝑏𝑏 (𝑐𝑐𝑖𝑖)
}

1≤𝑖𝑖≤𝑁𝑁𝑘𝑘

where ci are Nk = 200 values sampled in the interval 𝐴𝐴 [7, 13] . Hence, a kriging metamodel is obtained for each Fb
and the corresponding functions are noted 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 (𝑐𝑐) .

We now optimize the value of c with respect to the online metric 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 . For each Fb, we find the optimal value of c,
noted c*(Fb), by minimizing the corresponding kriging metamodel, 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 (Figure 3, bottom panel). Bias compensa-
tion can be evaluated by comparing the value of 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏 computed on validation time series generated with 𝐴𝐴 𝐵𝐵 (𝑥𝑥; 𝑐𝑐0)
and 𝐴𝐴 𝐵𝐵 (𝑥𝑥; 𝑐𝑐∗) , for each value of Fb. Whereas the loss values remain high for c = c0 when F is strongly biased, the
use of c*(Fb) significantly reduces the online loss value (Figure 3). As soon as Fb ≠ F0, c*(Fb) ≠ c0. This means
that the choice of c = c0 is not optimal. It also means that at least part of the bias induced by the wrong parameter
Fb can be actually compensated by tuning another parameter of the model, c. This result suggest that, at least to
some extent, even an imperfect model can be tuned to adjust long-term statistics.

Figure 3 clearly shows that, as soon as Fb ≠ F0, the proposed method is a statistically significant improvement to
the baseline (linear regression) physical parameterizations and the NN parameterization with c = c0. Confidence
intervals associated with our estimates of the metric have been constructed by bootstrap through the sampling of
two main sources of uncertainty. First, we build 9 different NN parameterizations, each of which has been fitted
to a learning sample generated with different initial conditions. Second, each one of the 9 parameterizations are
used to generate 3 validation orbits of length 10, 15 and 25 MTUs. Thus, a sample of n = 27 validation orbits
is obtained and used to compute 95% confidence intervals for both the “standard” (c = c0) and the “optimal”
(c = c*) cases, and for each value of Fb.

4.  Conclusion - Discussion
To improve current ML based physics in climate models, the effort is usually only focused on improving both the
learning sample and the offline fit of the ML model. But these ML models can and need to be further improved
by using an online metric to their calibration (Schneider et al., 2017). Thus, we propose a method to apply online
calibration to ML parameterizations.

The key novelty of our approach is to include some of the physical parameters θ among the input variables of the
NN. The NN model is fitted offline to a learning sample of outputs from an high-resolution climate model. In this
way, the NN parameterization is able to emulate the physics not only for one single θ0, but for a range of values
of θ. When the fitted NN model is plugged-in to replace the physical parameterization, the value of parameters θ
is calibrated online, as to reduce errors on long-term statistics of the climate model. As a proof-of-concept exper-
iment, our methodology is demonstrated using L63 and L96 models. We show that our method can be used to
optimize the value of some parameters to compensate long-term errors due to biases carried by another parameter
which cannot be calibrated.

In addition to the reduction of long-term model errors, including some physical parameters among the ML model
inputs can also increase the confidence we have in ML parameterizations, the interpretability of which is often
questioned. Supplementary parameters can also be used to estimate uncertainties related to some processes.
However, although satisfying results were obtained using toy models, further research is needed to test our meth-
odology into real climate models. The generation of a learning sample for subgrid scale parameterizations is
already a challenging issue; this task is even more difficult in our new method as a sampling of θ is needed in
addition to the sampling of x. The numerical cost of the generation of the learning sample is thus increased. If our
approach was to be applied to a climate model, the methodology described for the L96 model could be applied.

Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

8 of 9

This would require a set of short high-resolution integrations for several values of θ, for example, taken from
a LHS on θ only. In this way the number of model integrations would be kept small, while preserving a large
learning sample on (x, θ) (as each integration provides a large sample of x values). In the L96 example, we did
not discuss which minimum value of the number of integrations Ni is sufficient to efficiently emulate the system.
Finding such a minimum value will require careful examination in the case of a climate model. Once a satisfying
learning sample is built, the next hurdle to overcome is the fit of the NN model. For more complex models, a
simple feed-forward NN may be insufficient and the choice of MSE as the offline metric may not be relevant.
Finally, finding the optimal online metric can also be a strenuous issue.

Data Availability Statement
Code is made available at: https://zenodo.org/record/6141165.

Figure 3.  (black) Orbits computed with neural network parameterization 𝐴𝐴 𝐵𝐵(𝑥𝑥; 𝑐𝑐) with c = c0 for each Fb in the interval 𝐴𝐴 [9, 11] (black bars, bottom panel). The logarithm
of kriged values of the metric corresponding to these time series, 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏

(𝑐𝑐0) , are plotted in the top panel (dotted solid black line). The 95% confidence intervals are
represented in gray shading. This method can be compared with output using a linear regression approach, fitted to approximate B (red, top panel). (blue) For each Fb,
we also compute the optimal value c* of c to minimize the online metric 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏

 (blue bars, bottom panel). The 95% confidence intervals are represented in blue shading.
The minimal value of each Fb, 𝐴𝐴 𝐴𝐴𝐴𝐹𝐹𝑏𝑏

(𝑐𝑐∗) , associated with orbits obtained with machine learning parameterization 𝐴𝐴 𝐵𝐵 (𝑥𝑥; 𝑐𝑐∗) remains close to zero (dotted solid blue line,
top panel).

https://zenodo.org/record/6141165

Geophysical Research Letters

BALOGH ET AL.

10.1029/2022GL097872

9 of 9

References
Arnold, H. M., Moroz, I. M., & Palmer, T. N. (2013). Stochastic parametrizations and model uncertainty in the Lorenz '96 system. Philosoph-

ical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 371(1991), 20110479. https://doi.org/10.1098/
rsta.2011.0479

Balogh, B., Saint-Martin, D., & Ribes, A. (2021). A toy model to investigate stability of Ai-based dynamical systems. Geophysical Research
Letters, 48(8), e2020GL092133. https://doi.org/10.1029/2020gl092133

Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., & Gentine, P. (2021). Enforcing analytic constraints in neural networks emulating physical
systems. Physical Review Letters, 126(9), 098302. https://doi.org/10.1103/physrevlett.126.098302

Brenowitz, N. D., Beucler, T., Pritchard, M., & Bretherton, C. S. (2020). Interpreting and stabilizing machine-learning parametrizations of
convection. Journal of the Atmospheric Sciences, 77(12), 4357–4375. https://doi.org/10.1175/jas-d-20-0082.1

Brenowitz, N. D., Henn, B., McGibbon, J., Clark, S. K., Kwa, A., Perkins, W. A., et al. (2020). Machine learning climate model dynamics: Offline
versus online performance. arXiv:2011.03081 [physics]. (arXiv: 2011.03081).

Chattopadhyay, A., Hassanzadeh, P., & Subramanian, D. (2020). Data-driven predictions of a multiscale Lorenz 96 chaotic system using
machine-learning methods: Reservoir computing, artificial neural network, and long short-term memory network. Nonlinear Processes in
Geophysics, 27(3), 373–389. https://doi.org/10.5194/npg-27-373-2020

Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T., & Stuart, A. M. (2021). Calibrate, emulate, sample. Journal of Computational Physics, 424,
109716. https://doi.org/10.1016/j.jcp.2020.109716

Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V., Villefranque, N., et al. (2021). Process-based climate model development
harnessing machine learning: I. A calibration tool for parameterization improvement. Journal of Advances in Modeling Earth Systems, 13(3),
e2020MS002217. https://doi.org/10.1029/2020ms002217

Cressie, N. (1992). Statistics for spatial data. Wiley Online Library.
Fletcher, R. (2013). Practical methods of optimization. Wiley Online Library.
Gagne, D. J., Christensen, H. M., Subramanian, A. C., & Monahan, A. H. (2020). Machine learning for stochastic parameterization: Gener-

ative adversarial networks in the Lorenz '96 model. Journal of Advances in Modeling Earth Systems, 12(3), e2019MS001896. https://doi.
org/10.1029/2019MS001896

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could machine learning break the convection parameterization deadlock?
Geophysical Research Letters, 45(11), 5742–5751. https://doi.org/10.1029/2018gl078202

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., et al. (2017). The art and science of climate model tuning. Bulletin
of the American Meteorological Society, 98(3), 589–602. https://doi.org/10.1175/bams-d-15-00135.1

Jakob, C. (2010). Accelerating progress in global atmospheric model development through improved parameterizations: Challenges, opportuni-
ties, and strategies. Bulletin of the American Meteorological Society, 91(7), 869–876. https://doi.org/10.1175/2009bams2898.1

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 202, 130–141. https://doi.
org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2

Lorenz, E. N. (1996). Predictability: A problem partly solved. In Proc. ECMWF Seminar on Predictability. (Vol. I, pp. 1–18).
McKay, M. D. (1992). Latin Hypercube Sampling as a tool in uncertainty analysis of computer models. Proceedings of the 24th Conference on

Winter Simulation, 557–564. https://doi.org/10.1145/167293.167637
Medeiros, B., & Stevens, B. (2011). Revealing differences in GCM representations of low clouds. Climate Dynamics, 36(1–2), 385–399. https://

doi.org/10.1007/s00382-009-0694-5
Medeiros, B., Stevens, B., Held, I. M., Zhao, M., Williamson, D. L., Olson, J. G., & Bretherton, C. S. (2008). Aquaplanets, climate sensitivity,

and low clouds. Journal of Climate, 21(19), 4974–4991. https://doi.org/10.1175/2008jcli1995.1
Rasp, S. (2020). Coupled online learning as a way to tackle instabilities and biases in neural network parameterizations: General algorithms and

Lorenz 96 case study (v1.0). Geoscientific Model Development, 13(5), 2185–2196. https://doi.org/10.5194/gmd-13-2185-2020
Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models. Proceedings of the National

Academy of Sciences, 115(39), 9684–9689. https://doi.org/10.1073/pnas.1810286115
Scher, S., & Messori, G. (2019). Generalization properties of feed-forward neural networks trained on Lorenz systems. Nonlinear Processes in

Geophysics, 26(4), 381–399. https://doi.org/10.5194/npg-26-381-2019
Schmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J.-C., Hannay, C., et al. (2017). Practice and philosophy of climate model tuning

across six US modeling centers. Geoscientific Model Development, 10(9), 3207–3223. https://doi.org/10.5194/gmd-10-3207-2017
Schneider, T., Lan, S., Stuart, A., & Teixeira, J. (2017). Earth system modeling 2.0: A blueprint for models that learn from observations

and targeted high-resolution simulations: Earth system modeling 2.0. Geophysical Research Letters, 44(24), 12396–12417. https://doi.
org/10.1002/2017GL076101

Stevens, B., & Bony, S. (2013). What are climate models missing? Science, 340(6136), 1053–1054. https://doi.org/10.1126/science.1237554
Watson, P. A. G. (2019). Applying machine learning to improve simulations of a chaotic dynamical system using empirical error correction.

Journal of Advances in Modeling Earth Systems, 11(5), 1402–1417. https://doi.org/10.1029/2018ms001597
Yuval, J., & O’Gorman, P. A. (2020). Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolu-

tions. Nature Communications, 11(1), 3295. https://doi.org/10.1038/s41467-020-17142-3
Yuval, J., O’Gorman, P. A., & Hill, C. N. (2021). Use of neural networks for stable, accurate and physically consistent parameterization of

subgrid atmospheric processes with good performance at reduced precision. Geophysical Research Letters, 48(6), e2020GL091363. https://
doi.org/10.1029/2020gl091363

Acknowledgments
We are grateful for the insightful
comments and suggestions made by
Olivier Geoffroy.

https://doi.org/10.1098/rsta.2011.0479
https://doi.org/10.1098/rsta.2011.0479
https://doi.org/10.1029/2020gl092133
https://doi.org/10.1103/physrevlett.126.098302
https://doi.org/10.1175/jas-d-20-0082.1
https://doi.org/10.5194/npg-27-373-2020
https://doi.org/10.1016/j.jcp.2020.109716
https://doi.org/10.1029/2020ms002217
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1029/2018gl078202
https://doi.org/10.1175/bams-d-15-00135.1
https://doi.org/10.1175/2009bams2898.1
https://doi.org/10.1175/1520-0469(1963)020%3C0130:dnf%3E2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020%3C0130:dnf%3E2.0.co;2
https://doi.org/10.1145/167293.167637
https://doi.org/10.1007/s00382-009-0694-5
https://doi.org/10.1007/s00382-009-0694-5
https://doi.org/10.1175/2008jcli1995.1
https://doi.org/10.5194/gmd-13-2185-2020
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.5194/npg-26-381-2019
https://doi.org/10.5194/gmd-10-3207-2017
https://doi.org/10.1002/2017GL076101
https://doi.org/10.1002/2017GL076101
https://doi.org/10.1126/science.1237554
https://doi.org/10.1029/2018ms001597
https://doi.org/10.1038/s41467-020-17142-3
https://doi.org/10.1029/2020gl091363
https://doi.org/10.1029/2020gl091363

	How to Calibrate a Dynamical System With Neural Network Based Physics?
	Abstract
	Plain Language Summary
	1. Introduction
	2. Methodology
	2.1. Step 1: Building a Tunable Neural Network Parameterization
	2.2. Step 2: Optimizing the Tunable Neural Network Parameterization
	2.3. The Lorenz'63 Model
	2.4. The Lorenz'96 Model

	3. Case Studies
	3.1. Perfect Model Calibration
	3.1.1. The Lorenz'63 Model
	3.1.2. The Lorenz'96 Model

	3.2. Imperfect Model Calibration: The Lorenz'96 Model

	4. Conclusion - Discussion
	Data Availability Statement
	References

