Blanka Balogh
email: blanka.balogh@meteo.fr

D Saint-Martin

A Ribes

How to Calibrate a Dynamical System With Neural Network Based Physics?

. Recently, interest has grown in using machine learning (ML) to develop parameterizations, noted 𝐴𝐴 f𝑓 , promising more precise yet affordable parameterizations for climate models (e.g.,

Introduction

The ordinary differential equations describing a climate model, can be written ẋ𝐱 = (𝐱𝐱) + 𝜙𝜙(𝐱𝐱), (1) BALOGH ET AL.

10.1029/2022GL097872

2 of 9 evaluates the error between the estimate function (i.e., f ϕ or 𝐴𝐴 f𝑓) and a target function f, the best accurate approximation of ϕ-as even high-resolution model data is only an approximation of the ground truth subgrid-scale processes. This approach allows us to fit the models on a point by point basis. However, a climate model's performance lies in accurate predictions of long-term statistics, measured by online metrics. Physical parameterizations typically require an additional calibration step, once it has been plugged-in to the dynamical model. In contrast, there is usually no tunable parameter included in ML parameterizations. Nevertheless, tuning is very important for the development of climate models, to ensure model stability, to calibrate the value of long-term statistics and to reduce error due to potentially missed interactions between the dynamics and the physics. This online calibration can be achieved regarding an online metric, m. Without online calibration, even though a parameterization is efficient regarding the offline metric ℓ, there is no guarantee that the climate model will be accurate regarding the online evaluation metric [START_REF] Brenowitz | Machine learning climate model dynamics: Offline versus online performance[END_REF].

The development of current ML parameterizations is still hampered by issues addressed by online calibration in the case of physical parameterizations, such as numerical instabilities (e.g., [START_REF] Brenowitz | Interpreting and stabilizing machine-learning parametrizations of convection[END_REF][START_REF] Rasp | Coupled online learning as a way to tackle instabilities and biases in neural network parameterizations: General algorithms and Lorenz 96 case study (v1.0)[END_REF]. These issues are currently handled by enforcing physical conservation laws [START_REF] Beucler | Enforcing analytic constraints in neural networks emulating physical systems[END_REF] or using ML to replace part of a physical parameterization [START_REF] Yuval | Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision[END_REF]. Additionally, the target function f can also be imperfect. In this case, even though the fit of the ML model is excellent, errors in the imperfect training data set will also be learned and result in a high online error m, also called long-term biases. This is a well known issue with physical parameterizations. The "art of tuning" model parameters consists in finding a compromise between offline and online metrics, going back and forth in optimizing the parameters with respect to ℓ and m [START_REF] Couvreux | Process-based climate model development harnessing machine learning: I. A calibration tool for parameterization improvement[END_REF][START_REF] Hourdin | The art and science of climate model tuning[END_REF][START_REF] Schmidt | Practice and philosophy of climate model tuning across six US modeling centers[END_REF].

To resolve these issues, we propose to include some tunable parameters into the ML parameterization inputs. This allows the calibration of new ML-based parameterization with respect to an online metric in an efficient way. Our approach to find the best value of tunable parameters is less empirical than the methods used to tune physical parameterizations. It relies on the minimization of the online metric m on long-term statistics, akin to the methodology described in [START_REF] Schneider | Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations: Earth system modeling 2.0[END_REF] and in [START_REF] Cleary | Calibrate, emulate, sample[END_REF]. The method will be demonstrated using Lorenz'63 and Lorenz'96 toy models [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF][START_REF] Lorenz | Predictability: A problem partly solved[END_REF]. These toy models offer a simple framework to perform proof-of-concept atmospheric modeling experiments using ML tools (e.g., [START_REF] Chattopadhyay | Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: Reservoir computing, artificial neural network, and long short-term memory network[END_REF][START_REF] Scher | Generalization properties of feed-forward neural networks trained on Lorenz systems[END_REF]. Lorenz'96 model has also the advantage of implementing a "parameterization." The large scale variable is indeed interacting with the non-linear subgrid-scale variable.

The paper is organized as follows. Methodology is described in Section 2. Section 3 demonstrates our calibration method on two basic examples using Lorenz'63 and Lorenz'96 models. Conclusions are drawn in Section 4, discussing more broadly the results we have obtained.

Methodology

Step 1: Building a Tunable Neural Network Parameterization

The first step toward designing and optimizing tunable neural network (NN) parameterizations is to take into consideration some uncertain but tunable parameters, when fitting the NN. The target function f is often fitted to outputs from high-resolution simulations. This target function depends on uncertain parameters, noted 𝐴𝐴 𝜽𝜽 ∈ ℝ 𝑝𝑝 , used to generate the high-resolution simulations: f ≡ f(x; θ). In traditional approaches, the value of model parameters are fixed to the "best estimate" value of these parameters, θ 0 . Thus, f ≡ f(x; θ 0) does not depend on any parameter and θ is not included in the NN model input (e.g., [START_REF] Gentine | Could machine learning break the convection parameterization deadlock[END_REF]Yuval & O'Gorman, 2020). The novelty of our approach is to keep part of the uncertain parameters θ among the input variables of the NN, and thus to retain not only the dependency of f from x but also from some model parameters θ.

The NN learning sample, of size N, is 𝐴𝐴 {(𝐱𝐱, 𝜽𝜽)𝑖𝑖, 𝑓𝑓 (𝐱𝐱𝑖𝑖; 𝜽𝜽𝑖𝑖)} 1≤𝑖𝑖≤𝑁𝑁 . The NN is fitted by optimizing an offline metric ℓ, also called "loss function." Typically, this loss function is Mean Squared Error (MSE), computed for each predicted time step individually:

(;), ̂ (;) = 1 ∑ =1 ‖ ‖ ‖ ‖ (;) -̂ (;) ‖ ‖ ‖ ‖ 2 . (2
)
BALOGH ET AL.

10.1029/2022GL097872

3 of 9

The parameterization obtained after training the NN is noted, 𝐴𝐴 f𝑓 (𝐱𝐱; 𝜽𝜽) . It can be incorporated into the dynamical model so as to replace ϕ in Equation 1. The resulting dynamical system can be used to generate a validation time series of the dynamical model, noted 𝐴𝐴 [𝐱𝐱] f𝑓 .

Step 2: Optimizing the Tunable Neural Network Parameterization

The goal of this second step is to tune the optimal value of the parameters θ. Whereas the NN model was trained offline on a learning sample, calibration relies on an online validation metric, m, given by: Theoretically, the statistics 𝐴𝐴  are computed over a time series of infinite length. In reality, we only compute an estimate of the long-term metric over a finite length simulation. The length of these simulation is chosen so that the online metric m no longer depends on the x initial condition. To simplify notations, the estimate of the longterm statistics over validation time series 𝐴𝐴 [𝐱𝐱] is noted, 𝐴𝐴  . Even though this time series is sufficiently long, the

𝑚𝑚(𝜽𝜽) = 1 𝑀𝑀 𝑀𝑀 ∑ 𝑘𝑘=1 ‖ ref 𝑘𝑘 -𝑘𝑘(𝜽𝜽)‖ 2 , (3
)
resulting metric ̂ () = 1 ∑ =1 ‖ ‖ ‖  ref - () ‖ ‖ ‖ 2
will be noised, which can lead the optimizer to a local minimum of 𝐴𝐴 𝐴 𝐴𝐴 , instead of the global minimum. To address this issue, minimization will be performed over a smoothed version of 𝐴𝐴 𝐴 𝐴𝐴 , obtained by kriging (or Gaussian Process Regression, [START_REF] Cressie | Statistics for spatial data[END_REF]. The kriging metamodel will be fitted to a sample of

𝐴𝐴 { 𝜽𝜽𝑖𝑖, m𝑚 (𝜽𝜽𝑖𝑖) } .
The obtained kriging metamodel is noted 𝐴𝐴 𝐴 𝐴𝐴 . The optimal value of model parameters, θ*, is obtained when 𝐴𝐴 𝐴 𝐴𝐴 reaches its (absolute) minimum value.

In summary, we train a NN parameterization depending on some tunable parameters θ, using an offline metric, ℓ. Since the main purpose is to reduce long-term prediction errors of the dynamical model, the value of θ is subsequently optimized regarding an online metric, m. In practice, optimization is done over a kriging metamodel emulating m as a function of θ. In the following, our method will be demonstrated using the Lorenz'63 (hereafter L63, Lorenz, 1963) and the Lorenz'96 (hereafter L96, Lorenz, 1996) models.

The Lorenz'63 Model

The L63 system consists of a set of ordinary differential equations that can be expressed:

̇ 1 = (2 -1) , ̇ 2 = 1 (-3) -2, ̇ 3 = 1 2 -3. (4)
Temporal evolution of the L63 state variable, x = (x 1 , x 2 , x 3), is governed by Equation 4, which involves a set of three model parameters, (σ, ρ, β). Equation 4 admits a chaotic solution in the vicinity of (σ 0 , ρ 0 , β 0) = (10, 28, 8/3).

The online minimization metric m (Equation 3) depends strongly on the identification of variables quantifying the long-term statistical behavior of the L63 system. The first candidate of such a long-term variable is the mean value for each one of the three L63 state variables. However, the average value of x 1 and x 2 is independent of L63 parameters (see also Figure S1 in Supporting Information S1). Thus, only the average value of x 3 , noted μ (3) , can be tuned. This quantity is useful to retrieve the optimal value of at most one L63 parameter. In addition to μ (3) , standard deviations over the time series can also be computed. Standard deviations will be noted σ (i) for each one of the L63 parameters, with i ∈ {1, 2, 3}. However, as highlighted by Figure S1 in Supporting Information S1, a strong correlation appears between the three standard deviations. Hence, it is possible to retrieve the optimal value of at most two L63 parameters by optimization. Thus, the following L63 idealized case study will use 𝐴𝐴  = (𝜇𝜇 (3) , 𝜎𝜎 (1) , 𝜎𝜎 (2) , 𝜎𝜎 (3)) .

BALOGH ET AL.

10.1029/2022GL097872 4 of 9

The Lorenz'96 Model

The 2-level L96 dynamical system depending on parameters (h, c, F, b) is given by:

d𝑥𝑥𝑘𝑘 d𝑡𝑡 = -𝑥𝑥𝑘𝑘-1 (𝑥𝑥𝑘𝑘-2 -𝑥𝑥𝑘𝑘+1) -𝑥𝑥𝑘𝑘 + 𝐹𝐹 - ℎ𝑐𝑐 𝑏𝑏 𝐽𝐽 ∑ 𝑗𝑗=1 𝑦𝑦𝑘𝑘𝑘𝑗𝑗𝑘 (5) 1 𝑐𝑐 d𝑦𝑦𝑘𝑘𝑘𝑘𝑘 d𝑡𝑡 = -𝑏𝑏𝑦𝑦𝑘𝑘𝑘𝑘𝑘+1 (𝑦𝑦𝑘𝑘𝑘𝑘𝑘+2 -𝑦𝑦𝑘𝑘𝑘𝑘𝑘-1) -𝑦𝑦𝑘𝑘𝑘𝑘𝑘 + ℎ𝑐𝑐 𝑏𝑏 𝑥𝑥𝑘𝑘𝑘 (6)
where

𝐴𝐴 {𝑥𝑥𝑘𝑘} 1≤𝑘𝑘≤𝐾𝐾 are K large-scale variables coupled to J small-scale variables 𝐴𝐴 { 𝑦𝑦𝑘𝑘 0 ,𝑗𝑗 } 1≤𝑗𝑗≤𝐽𝐽 for each 1 ≤ k 0 ≤ K. The coupling term 𝐴𝐴 𝐴𝐴𝑘𝑘 = -ℎ𝑐𝑐 𝑏𝑏 ∑ 𝐾𝐾 𝑘𝑘=1
𝑦𝑦𝑘𝑘𝑘𝑘𝑘 can be seen as a "subgrid-scale parameterization." Thus, Equation 5 can be analogous to a (very) simple climate model, as described by Equation 1. In this comparison, 𝐴𝐴  (𝑥𝑥𝑘𝑘) = -𝑥𝑥𝑘𝑘-1 (𝑥𝑥𝑘𝑘-2 -𝑥𝑥𝑘𝑘+1) -𝑥𝑥𝑘𝑘 + 𝐹𝐹 and ϕ(x k) = B k . B k can be approximated as a function of the large-scale state variables, x k , and is often modeled with polynoms (e.g., [START_REF] Arnold | Stochastic parametrizations and model uncertainty in the Lorenz '96 system[END_REF]. This subgrid-scale parameterization will be the target variable of the NN model. Given the symmetry of the L96 model, it is common to fit the NN to predict B k as a function of data from only one spatial variable (e.g., [START_REF] Gagne | Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz '96 model[END_REF][START_REF] Rasp | Coupled online learning as a way to tackle instabilities and biases in neural network parameterizations: General algorithms and Lorenz 96 case study (v1.0)[END_REF][START_REF] Watson | Applying machine learning to improve simulations of a chaotic dynamical system using empirical error correction[END_REF]. In our case, the NN learns to predict a single B k as a function of (x k , c). This implies that the NN input is of size 2 and the output of size 1. To simplify notations, in the following, the NN will be noted, 𝐴𝐴 B𝐵(𝑥𝑥𝑥 𝑥𝑥) .

As in the L63 case, the mean value of the state variables does not depend on input parameters (h, c, F, b), and is therefore not used in the online metric m. Thus, the metric is based on standard deviations only, estimated on time series obtained with the NN parameterization.

Case Studies

Perfect Model Calibration

The Lorenz'63 Model

The objective is to fit an NN model, noted 𝐴𝐴 f𝑓 , to approximate the L63 time derivative as a function of the state variable x and parameters θ = (ρ, β):

x𝐱 = f𝑓 (𝐱𝐱, 𝜽𝜽). (7
)
The learning sample is generated by an optimal sampling method, used to select relevant 𝐴𝐴 (𝐱𝐱, 𝜽𝜽) ∈ ℝ 3 × ℝ 2 values to build the NN learning sample. Latin Hypercube Sampling (hereafter LHS, [START_REF] Mckay | Latin Hypercube Sampling as a tool in uncertainty analysis of computer models[END_REF]) is such a sampling method. The interest of using a specific sampling method to train stable and accurate NN based parameterization has been shown in [START_REF] Balogh | A toy model to investigate stability of Ai-based dynamical systems[END_REF]. The boundaries of the LHS are set around plausible values for both x and θ. The resulting learning sample of size

N LHS is 𝐴𝐴 [(𝐱𝐱, 𝜽𝜽)] LHS = {(𝐱𝐱, 𝛽𝛽)𝑖𝑖, 𝑓𝑓 (𝐱𝐱𝑖𝑖; 𝜽𝜽𝑖𝑖)} 1≤𝑖𝑖≤𝑁𝑁 LHS .
The target variable 𝐴𝐴 ẋ𝐱 is computed with L63 model equations, parameterized with σ = σ 0 . The learning sample is of size N LHS = 10 7 . Values for θ = (ρ, β) are sampled in 𝐴𝐴 [26.5, 32] × [1.5, 3.2] . The NN model consists of n l = 7 hidden layers of type "Dense." More specific details about the NN architecture are available in the Table S1 in Supporting Information S1. R 2 score over an independent subset of 20% of the learning sample is monitored during training. The best weights regarding the R 2 score are loaded after 30 epochs. The final model has R 2 = 1.00, which is not surprising given the low complexity of L63 model, and is consistent with case studies focusing on emulating L63 dynamics with NNs [START_REF] Rasp | Coupled online learning as a way to tackle instabilities and biases in neural network parameterizations: General algorithms and Lorenz 96 case study (v1.0)[END_REF].

The fitted NN model is then used to generate time derivatives, which are integrated with a Runge-Kutta 4 time stepping scheme with a temporal increment Δt = 0.05. The resulting validation time series or "orbit" 𝐴𝐴

[𝐱𝐱] f𝑓 is of length 1000 Model Time Units (hereafter, MTU, where 1 MTU = 20Δt) not including a spin-up of 200 MTU.

The validation orbits are used to compute long-term metrics and thus to assess the online performance of the model, measured by 𝐴𝐴 𝐴 𝐴𝐴 :

m𝑚(𝜽𝜽) = (μ𝜇 (3) (𝜽𝜽) -𝜇𝜇 (3) ref) 2 + 3 ∑ 𝑛𝑛=1 (σ𝜎 (𝑛𝑛) (𝜽𝜽) -𝜎𝜎 (𝑛𝑛) ref) 2 , (8
)
where f𝑓). In this example, the "reference" data set consist in a long time-series of length 3000 MTU (considered as "infinite" lenght), generated by integrating L63 equations (Equation 4) with parameters (σ 0 , ρ 0 , β 0).

A kriging metamodel learns to approximate 𝐴𝐴 𝐴 𝐴𝐴 as a function of θ, over a learning sample of size N k = 750. To build the kriging learning data set, θ values are sampled in the interval 𝐴𝐴 [26.5, 32] × [1.5, 3] . The sampling interval for θ has been slightly reduced compared with those used to generate the NN learning sample to avoid potential out-of-sample issues. In practice, we use a LHS to generate a sample of (x 0 , θ) to compute the validation orbits of length 1000 MTU on which the long-term metrics are estimated. Including the initial state variable x 0 in the LHS sample reduces the noise related to the (finite) length of the validation orbits from the kriging learning sample. For the reasons explained in the Methodology section, dependency of

𝐴𝐴 𝐴 𝐴𝐴 on x 0 is ignored. The kriging model 𝐴𝐴 𝐴 𝐴𝐴 is fitted to 𝐴𝐴 { 𝜽𝜽𝑖𝑖, m𝑚 (𝜽𝜽𝑖𝑖) } 1≤𝑖𝑖≤𝑁𝑁 𝑘𝑘
. The minimum of 𝐴𝐴 𝐴 𝐴𝐴 is retrieved with BFGS optimizer [START_REF] Fletcher | Practical methods of optimization[END_REF]. The optimal value found for the tunable parameters is θ* = (27.9, 2.64) (Figure 1). The reference orbit was generated using (ρ 0 , β 0) = (28, 8/3): θ* is close to the values of the parameters used to generate the reference orbit.

The Lorenz'96 Model

The NN model is trained to predict 𝐴𝐴 𝐴𝐴= -ℎ𝑐𝑐 𝑏𝑏 ∑ 𝐽𝐽 𝑗𝑗=1 𝑦𝑦𝑗𝑗 as a function of x and θ = c. The learning sample is built by sequentially integrating the L96 equations (see Equations 5 and 6, with K = 8 and J = 32), using a fourth order Runge-Kutta time stepping scheme with an increment Δt = 0.005. The length of training integrations is 3,5 MTU (where 1 MTU = 200 Δt), not including 1,5 MTU of model spin-up. We perform N i = 500 integrations, the initial conditions and θ values (x, y, c) of which are sampled using LHS, where x = (x 1 , x 2 , …, x K) and y = (y 1,1 , y 1,2 , …, y K,J). The sampling interval for c values is 𝐴𝐴 [6,14] . The NN is two layers deep, and has 32 nodes on each. More specific details about the NN architecture are available in Table S2 in Supporting Information S1. The model is trained over 30 epochs using the MSE loss function (Equation 2). The validation data set is made of 15% randomly chosen samples from the learning data set. R 2 score is monitored over this data set during fitting. Best weights regarding the validation R 2 score are saved and loaded after 30 epochs. The final model has R 2 = 0.89 and is noted, 𝐴𝐴 B𝐵(𝑥𝑥𝑥 𝑥𝑥) .

The fitted NN is then used to generate validation time series 𝐴𝐴 [𝐱𝐱] B𝐵 of length 15 MTU, using 𝐴𝐴 B𝐵 instead of B in the L96 equations (Equation 5). Long-term metric 𝐴𝐴 𝐴 𝐴𝐴 is computed over 𝐴𝐴 [𝐱𝐱] B𝐵 , using standard deviation values only:

m𝑚(𝑐𝑐) = (σ𝜎 (𝑐𝑐) -𝜎𝜎ref) 2 , (9
)
with σ ref (resp. 𝐴𝐴 𝐴 𝐴𝐴 (𝑐𝑐)) the standard deviation computed over the reference time series (resp. the validation time series). A time series of length 15 MTU, generated by integrating L96 equations (Equations 5 and 6) with (h 0 , F 0 , b 0 , c 0) = (1,10,10,10), is considered as the "reference" data set. [7., 13.] (Figure 2). The value of c minimizing the online metric is retrieved on 𝐴𝐴 𝐴 𝐴𝐴 , by using BFGS minimization from SciPy python package. The optimal value of c is c* = 9.922. This value is very close to the value used to generate the reference data set, that is, c 0 = 10.

Imperfect Model Calibration: The Lorenz'96 Model

We now investigate the case where one of the L96 model parameters is carrying biases. To reproduce this situation, the L96 NN parameterization has been trained on output from the L96 model using the reference value of the model parameters, that is, (h, F, b) = (h 0 , F 0 , b 0). However, the NN model will be implemented in an L96 system where one of the model parameters is set to a value different from its reference value. We will show that optimizing the value of the tunable parameter included in the NN still allows us to obtain the wished long-term statistics.

Namely, we set the value of F to a range of biased values, F b ≠ F 0 . For each F b , we generate validation time serie using the NN parameterization, 𝐴𝐴 B𝐵(𝑥𝑥; 𝑐𝑐) , and compute the corresponding long-term statistics. To underline the dependence of the long-term statistics on F b , the online metric will be noted:

m𝑚𝐹𝐹 𝑏𝑏 (𝑐𝑐) = (σ𝜎𝐹𝐹 𝑏𝑏 (𝑐𝑐) -𝜎𝜎ref) 2 , (10
)
where 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 is the standard deviation computed on a validation time series where F = F b .

To predict the estimated metric, 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 (𝑐𝑐) , again, a kriging metamodel is trained over a data set , for each value of F b . Whereas the loss values remain high for c = c 0 when F is strongly biased, the use of c*(F b) significantly reduces the online loss value (Figure 3). As soon as F b ≠ F 0 , c*(F b) ≠ c 0 . This means that the choice of c = c 0 is not optimal. It also means that at least part of the bias induced by the wrong parameter F b can be actually compensated by tuning another parameter of the model, c. This result suggest that, at least to some extent, even an imperfect model can be tuned to adjust long-term statistics.

Figure 3 clearly shows that, as soon as F b ≠ F 0 , the proposed method is a statistically significant improvement to the baseline (linear regression) physical parameterizations and the NN parameterization with c = c 0 . Confidence intervals associated with our estimates of the metric have been constructed by bootstrap through the sampling of two main sources of uncertainty. First, we build 9 different NN parameterizations, each of which has been fitted to a learning sample generated with different initial conditions. Second, each one of the 9 parameterizations are used to generate 3 validation orbits of length 10, 15 and 25 MTUs. Thus, a sample of n = 27 validation orbits is obtained and used to compute 95% confidence intervals for both the "standard" (c = c 0) and the "optimal" (c = c*) cases, and for each value of F b .

Conclusion -Discussion

To improve current ML based physics in climate models, the effort is usually only focused on improving both the learning sample and the offline fit of the ML model. But these ML models can and need to be further improved by using an online metric to their calibration [START_REF] Schneider | Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations: Earth system modeling 2.0[END_REF]. Thus, we propose a method to apply online calibration to ML parameterizations.

The key novelty of our approach is to include some of the physical parameters θ among the input variables of the NN. The NN model is fitted offline to a learning sample of outputs from an high-resolution climate model. In this way, the NN parameterization is able to emulate the physics not only for one single θ 0 , but for a range of values of θ. When the fitted NN model is plugged-in to replace the physical parameterization, the value of parameters θ is calibrated online, as to reduce errors on long-term statistics of the climate model. As a proof-of-concept experiment, our methodology is demonstrated using L63 and L96 models. We show that our method can be used to optimize the value of some parameters to compensate long-term errors due to biases carried by another parameter which cannot be calibrated.

In addition to the reduction of long-term model errors, including some physical parameters among the ML model inputs can also increase the confidence we have in ML parameterizations, the interpretability of which is often questioned. Supplementary parameters can also be used to estimate uncertainties related to some processes. However, although satisfying results were obtained using toy models, further research is needed to test our methodology into real climate models. The generation of a learning sample for subgrid scale parameterizations is already a challenging issue; this task is even more difficult in our new method as a sampling of θ is needed in addition to the sampling of x. The numerical cost of the generation of the learning sample is thus increased. If our approach was to be applied to a climate model, the methodology described for the L96 model could be applied. This would require a set of short high-resolution integrations for several values of θ, for example, taken from a LHS on θ only. In this way the number of model integrations would be kept small, while preserving a large learning sample on (x, θ) (as each integration provides a large sample of x values). In the L96 example, we did not discuss which minimum value of the number of integrations N i is sufficient to efficiently emulate the system. Finding such a minimum value will require careful examination in the case of a climate model. Once a satisfying learning sample is built, the next hurdle to overcome is the fit of the NN model. For more complex models, a simple feed-forward NN may be insufficient and the choice of MSE as the offline metric may not be relevant. Finally, finding the optimal online metric can also be a strenuous issue. (𝑐𝑐0) , are plotted in the top panel (dotted solid black line). The 95% confidence intervals are represented in gray shading. This method can be compared with output using a linear regression approach, fitted to approximate B (red, top panel). (blue) For each F b , we also compute the optimal value c* of c to minimize the online metric

Figure 1 .

 1 Figure 1. (left) The online metric m is computed over orbits of length 1000 Model Time Units (MTUs) generated with real L63 equations (Equation 4) for σ = σ 0 and for different regularly-spaced values of θ = (ρ, β). (middle) Values of 𝐴𝐴 𝐴 𝐴𝐴 in the kriging learning sample, that is, 𝐴𝐴 { 𝜽𝜽𝑖𝑖, m𝑚 (𝜽𝜽𝑖𝑖) } 1≤𝑖𝑖≤𝑁𝑁

Figure 2 .

 2 Figure 2. A Latin Hypercube Sampling (LHS) sample of (x, b) values, 𝐴𝐴 {𝐱𝐱𝑖𝑖, 𝑐𝑐𝑖𝑖} 1≤𝑖𝑖≤𝑁𝑁 𝑖𝑖 , is generated using LHS with c sampled in 𝐴𝐴 [7, 13] . The corresponding values of the long-term metrics, 𝐴𝐴 𝐴 𝐴𝐴 (𝑐𝑐𝑖𝑖) , 1 ≤ 𝑐𝑐𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖 , are computed on 𝐴𝐴 [𝐱𝐱] B𝐵 (length: 3,5 Model Time Units (MTU)) from the LHS initial conditions. The resulting sample 𝐴𝐴 { 𝑐𝑐𝑖𝑖, m𝑚 (𝑐𝑐𝑖𝑖) } 1≤𝑖𝑖≤𝑁𝑁 𝑘𝑘 (light blue scatter points) is used to train the kriging model (solid blue line). For comparison, red dots represent the metric m computed over time series (length: 15 MTU) obtained by applying L96 equations (Equation 5), for discrete values of c. The fitted kriging metamodel, 𝐴𝐴 𝐴 𝐴𝐴 (solid blue line), is a smoothed version of the metric computed on time series generated with the neural network parameterization. The optimal value of c, c*, is computed by minimizing 𝐴𝐴 𝐴 𝐴𝐴 . c* = 9.922 (dashed blue line) can be compared with c 0 = 10 (dashed black line), which was used to generate the reference orbit.

Figure 3 .

 3 Figure 3. (black) Orbits computed with neural network parameterization 𝐴𝐴 B𝐵(𝑥𝑥; 𝑐𝑐) with c = c 0 for each F b in the interval 𝐴𝐴[9, 11] (black bars, bottom panel). The logarithm of kriged values of the metric corresponding to these time series, 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏(𝑐𝑐0) , are plotted in the top panel (dotted solid black line). The 95% confidence intervals are represented in gray shading. This method can be compared with output using a linear regression approach, fitted to approximate B (red, top panel). (blue) For each F b , we also compute the optimal value c* of c to minimize the online metric 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 (blue bars, bottom panel). The 95% confidence intervals are represented in blue shading. The minimal value of each F b , 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 (𝑐𝑐 *) , associated with orbits obtained with machine learning parameterization 𝐴𝐴 B𝐵 (𝑥𝑥; 𝑐𝑐 *) remains close to zero (dotted solid blue line,

 Figure 3. (black) Orbits computed with neural network parameterization 𝐴𝐴 B𝐵(𝑥𝑥; 𝑐𝑐) with c = c 0 for each F b in the interval 𝐴𝐴[9, 11] (black bars, bottom panel). The logarithm of kriged values of the metric corresponding to these time series, 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏(𝑐𝑐0) , are plotted in the top panel (dotted solid black line). The 95% confidence intervals are represented in gray shading. This method can be compared with output using a linear regression approach, fitted to approximate B (red, top panel). (blue) For each F b , we also compute the optimal value c* of c to minimize the online metric 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 (blue bars, bottom panel). The 95% confidence intervals are represented in blue shading. The minimal value of each F b , 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 (𝑐𝑐 *) , associated with orbits obtained with machine learning parameterization 𝐴𝐴 B𝐵 (𝑥𝑥; 𝑐𝑐 *) remains close to zero (dotted solid blue line, top panel).

, noted θ*.

 in the computation of m are typically the average and standard deviation values estimated over time series. The minimal value of m is reached at the optimal value of θ

	where 𝐴𝐴	 are a set of M long-term statistics computed over 𝐴𝐴	[𝐱𝐱] f𝑓 , and 𝐴𝐴	 ref a set of reference statistics. The long-
	term statistics involved		

 We now optimize the value of c with respect to the online metric 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 . For each F b , we find the optimal value of c, noted c*(F b), by minimizing the corresponding kriging metamodel, 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 (Figure3, bottom panel). Bias compensation can be evaluated by comparing the value of

			𝐴𝐴	{ 𝑐𝑐𝑖𝑖, m𝑚𝐹𝐹 𝑏𝑏 (𝑐𝑐𝑖𝑖)	} 1≤𝑖𝑖≤𝑁𝑁 𝑘𝑘
		where c i are N k = 200 values sampled in the interval 𝐴𝐴	[7, 13] . Hence, a kriging metamodel is obtained for each F b
	𝐴𝐴	and the corresponding functions are noted 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 (𝑐𝑐) . 𝐴 𝐴𝐴𝐹𝐹 𝑏𝑏 computed on validation time series generated with 𝐴𝐴 B𝐵 (𝑥𝑥; 𝑐𝑐	B𝐵 (𝑥𝑥; 𝑐𝑐0)

*)

Acknowledgments

We are grateful for the insightful comments and suggestions made by Olivier Geoffroy.

Data Availability Statement

Code is made available at: https://zenodo.org/record/6141165.