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ARTICLE

Structure induced laminar vortices control
anomalous dispersion in porous media
Ankur Deep Bordoloi 1✉, David Scheidweiler1, Marco Dentz 2, Mohammed Bouabdellaoui3,

Marco Abbarchi 3 & Pietro de Anna 1✉

Natural porous systems, such as soil, membranes, and biological tissues comprise disordered

structures characterized by dead-end pores connected to a network of percolating channels.

The release and dispersion of particles, solutes, and microorganisms from such features is

key for a broad range of environmental and medical applications including soil remediation,

filtration and drug delivery. Yet, owing to the stagnant and opaque nature of these disordered

systems, the role of microscopic structure and flow on the dispersion of particles and solutes

remains poorly understood. Here, we use a microfluidic model system that features a pore

structure characterized by distributed dead-ends to determine how particles are transported,

retained and dispersed. We observe strong tailing of arrival time distributions at the outlet of

the medium characterized by power-law decay with an exponent of 2/3. Using numerical

simulations and an analytical model, we link this behavior to particles initially located within

dead-end pores, and explain the tailing exponent with a hopping across and rolling along the

streamlines of vortices within dead-end pores. We quantify such anomalous dispersal by a

stochastic model that predicts the full evolution of arrival times. Our results demonstrate how

microscopic flow structures can impact macroscopic particle transport.
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Most geological and biological systems are characterized
by a porous structure where fluids can move through a
network of small confined spaces, also known as pores1.

The interest of particle transport through porous media is
manifold, and it spans across various natural systems and tech-
nological applications2. On the one hand, the broad range of
variability in pore-size induces velocity heterogeneity leading to
anomalous transport3–5, mixing6,7, filtration8,9, and microbial
dispersal10,11. On the other hand, morphological diversity intro-
duced by disordered pore structures12–14 induces a rich flow
organization with spatial and temporal complexities that can play
critical roles in groundwater contamination and remediation15,
enhanced hydrocarbon recovery16, transport through river sedi-
ments that create a closely packed pore network17, water filtration
systems18 and extra-cellular transport in brain tissue19. The
complex morphology of a permeable system typically exhibits
dead-end pores, the portion of the system that cannot host a net
fluid transfer resulting in stagnant flow20–22. Such structures
characterize soil22, gut tissue23, and polymeric filters24. Because of
the stagnant nature of the fluid, it is common to assume that the
transported quantities remain trapped within these dead-end-
pores for long times until molecular diffusion allows them to
escape25,26. Hence, a complete quantitative understanding of the
role played by the local flow structures on the anomalous trans-
port associated to dead-end-pores has remained overlooked
to date.

To unravel the link between microscopic motion within dead-
end-pores and porous media transport, we consider a medium
composed of a network of transmitting-pores (TP) of similar size
and randomly distributed dead-end-pores (DEP). As an archetype
of such structural heterogeneity, we exploit spinodal-like mor-
phology, that emerge from first-order phase transitions27 in binary
systems featuring a miscibility gap and undergoing phase separa-
tion, as described by Cahn-Hilliard dynamics originally developed
for metallic alloys28–30. Such morphology of connected structures
are the common ground for a plethora of natural and artificial
systems undergoing spontaneous pattern formation, including
volcanic rocks31,32, semiconductors33–35, metallic thin films36,
metal hydrides37–41, liquid-gas42, polymers43–46, proteins47 and
tumor cells48,49.

We build a model porous structure of such complexity by
exploiting the method of solid-state dewetting35: it is based on
annealing of mono-crystalline semiconductor thin films that
results in surface morphology exhibiting spinodal topology and a
disordered hyperuniform character, see Fig. 1b. The dewetted
islands of this geometry constitute the impermeable matrix of a
relatively homogeneous porous medium composed of TP (about
91% of the total volume) and DEP (about 9% of the total volume)
with structural disorder that is statistically isotropic, similar to
crystals or jammed disordered spheres packing50. Despite its
overall homogeneity in terms of TP-size λ (i.e., the distribution of
λ-values is very narrow; see Fig. 1c), we show that this porous
structure has widely distributed heterogeneous DEP-size and
displays complex flow and transport properties that directly link
to the underlying porous structure. Using microfluidic experi-
ments and rigorous simulations we find a quantitative link
between the anomalous macroscopic transport and the complex
microscopic flow structures in the dead-end pores.

Results
Structure characterisation. We use soft lithography51 to print the
spinodal porous structure (small sections shown in Fig. 1a, c, d)
into a silicon wafer that acts as a mold for a PDMS microfluidic
chip (see Supplementary Information I). The irregular grain fea-
tures of the structure represent the solid matrix of the porous

micro-channel, characterized by a porosity ϕ= 0.39. Between the
inlet and outlet zones, the microfluidic channel has length
L= 50mm, width w= 7 mm and thickness a= 0.083mm (cor-
responding to 1850 by 260 average pore sizes λm= 0.027 mm),
schematically shown in Fig. 2b. The thickness a is designed to be
of the same order of magnitude as the average pore size, λm=
0.027 mm, yielding velocity profiles similar to a channel flow in
the TP, as verified by PIV (see Supplementary Fig. 1). The local
pore size λ is computed using the method of maximum inscribed
circle (MIC, see Methods a) across the whole domain. The
medium is quite homogeneous in pore-size, such that the statis-
tical distribution of λ is narrow and has a strong peak close to the
mean pore-size λm (Fig. 1b), typically found in many geological
structures1. We characterize the porous structure in terms of the
segregation index ζ (see Methods a and Fig. 1c, d) to distinguish
between TP and DEP, respectively shown as green and magenta
regions in Fig. 1d. Since ζ refers to the number of individual grains
surrounding each pore, it captures the dual feature of the matrix
(TP: ζ > 1 and DEP: ζ= 1). The DEPs are elongated pores caving
inside a singular grain in contrast to the TPs that are surrounded
by multiple grains. We quantify the aspect ratio Λ of each DEP as
the ratio between their area A and λ2m: it results that Λ ¼ A=λ2m
spans within the range 1−30 and follows a power-law distribution
with an exponential cut-off (i.e., a Gamma-distribution) (Fig. 1e).

Macroscopic transport experiment. We investigate the impact of
this dual feature of the medium (TP and DEP) on the dispersion
of a neutrally buoyant suspension of colloidal particles initially
distributed within the porous matrix. To this end, we first pro-
duce a nearly-homogeneous distribution of suspended colloids
across the medium by continuously injecting a density matched
suspension (Solution A: polystyrene micro-spheres of diameter
0.5 μm and density ρ= 1.05 g/mL Thermofischer Fluoromax
B500 in 1:1 milliQ water and D2O mixture) through the micro-
fluidic channel at constant flow rate Q= 0.2 μL/min for 24 h
(~165 pore volumes). This allows a fraction of particles to escape
the main stream flow and occupy the dead-end pores, mostly by
diffusion. We quantify the fractional particle number density in
DEP (α= nDEP/ntotal) by analyzing the fluorescence signal in the
microscopic image of the medium after 24 h and identifying
particles trapped inside the DEPs (see Supplementary Informa-
tion V and Fig. 9). The measured α= 0.22 is approximately twice
the volume fraction of total DEPs inside the system. This dif-
ference is attributed to the fact that, towards the end of the 24 h,
some particles in the middle of the injection syringe have settled
under gravity causing dilution to the initial concentration of the
particle.

Next, we withdraw a clean solution with the same density
(Solution B: 1:1 milliQ water and D2O mixture) but without the
colloidal suspension through the inlet via a cleaning circuit (see 2a
B-2-1-4): the medium outlet stays closed while we withdraw liquid
from a hole next to the inlet, as discussed in11. This generates a
particle-free sharp front at the inlet without perturbing the particles
within the porous matrix. The solution B is, then, withdrawn at a
constant flow rate Q= 0.5 μL/min through the breakthrough
circuit (see 2a B-2-3-4) eluting one pore volume (i.e., the volume of
the entire porous channel) every tPV= 21.8min, for about 60tPV.
The relative importance of advection to diffusion process is
quantified by the corresponding Péclet number, Pe= λmum/D
based on the mean fluid velocity (um= 0.038mm/s: the flow
regime is laminar since Re= um λm/ν ~ 0.001, where ν= 1mm2/s)
and the suspension diffusion coefficient, D= 1.4 × 10−7 mm2/s,
such that Pe= 7329.We independently measure the diffusivity of
0.5 μm polystyrene colloids in the studied medium and find D to be
smaller than the theoretical prediction for suspension in the bulk

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31552-5

2 NATURE COMMUNICATIONS |         (2022) 13:3820 | https://doi.org/10.1038/s41467-022-31552-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


from the Stokes-Einstein equation due to the confined structure of
the system (see Supplementary Information II).

Time-lapse composite imaging coupled with fluorescence
microscopy (see Methods b) allows us to count the number of
effluent colloids near the outlet and measure the breakthrough
curve (BTC) over three orders of magnitude. The latter, displayed in
Fig. 2c, shows two distinct transport regimes. The first regime,
limited to the elution of about two pore-volumes, is well captured
by the classical advection-dispersion framework2 (see Methods d).
The dispersion coefficient has been fitted and results to be
D*= 0.03mm2/s (green dashed line in 2c) using a least-squares
method (see Methods d). At later times (t/tPV > 2), a second regime
emerges, where the BTC shows a power-law-like heavy tail,
reminiscent of the so-called anomalous transport behavior (e.g.,2).
The power-law exponent is steeper than what would be expected of
a solely diffusion based transport, wherein the BTC should obey a
1/2 power-law decay.

We also monitor the spatial distribution of suspended colloids
within the porous system (see Fig. 2e) by periodically collecting two
composite images of the entire microfluidic channel (composing
38 × 9 individual pictures) 7 times (0, 1, 6, 10, 16, 22 and 44 h after
injection), each temporally separated by Δt= 6min. By comparing
each couple of consecutive images, we distinguish the suspended
particles from those retained by the host solid structure (see
Methods e). Figure 2d shows that all suspended particles (in red) in
TP have already disappeared from the field of view after 6 h (~18
pore volumes). On the other hand, those in the DEP stayed
retained, suggesting that the heavy tail in the BTC is contributed by
the particles in DEP. Figure 2e shows that the spatial profiles of the
deposited particles (top) at three different times (t= 0,1 h, 6 h)
remain constant (thus, no deposition takes place during the flow
experiment), while those of suspended particles (bottom) decay
with time homogeneously across the porous channel.

Pore-scale simulations. Because the fluid velocities within the
DEPs are significantly smaller than the ones within the TPs, a
detailed understanding of such velocity field requires a multi-
scale description. Although Eulerian velocity measurement tech-
niques such as Particle Image Velocimetry (PIV) has been used to
quantify the fluid velocity inside cavities52, unfortunately it is
challenging to simultaneously resolve all the scales of such flow-
fields in high-resolution using such methods (see Supplementary
Fig. 1). Herein, we use COMSOL Multiphysics to numerically
solve the two-dimensional steady state incomprehensible Stokes
flow equations in a subsection of the microfluidics geometry (see
Methods f and Supplementary Fig. 4). The domain of this
numerical computation is approximately one-fifth in length
(11 mm) and the same in width (7 mm), as that in the experi-
ment. The computed velocity magnitude is resolved upto several
orders of magnitude and it is shown in Fig. 3a in logarithmic scale
(increasing velocity from light to dark). Further, we simulate the
Lagrangian trajectories of N= 105 particles initially distributed
across the entire medium with the same fractional number den-
sity in DEPs (α= 0.21) as that in the experiment. The particles
are transported by a combination of the computed velocity field
and molecular diffusion (see Methods f), via the Langevin equa-
tion:

x!ðt þ ΔtÞ ¼ x!ðtÞ þ v!½ x!ðtÞ�Δt þ
ffiffiffiffiffiffiffiffiffiffiffi
2DΔt

p
ξðtÞ; ð1Þ

where x!ðtÞ is the particle position at time t, v!ð x!Þ is the local
flow velocity (obtained by interpolating the computed velocity
values to the particle location3), and ξ(t) is a Gaussian random
number with zero mean and unit variance. We consider three
Péclet numbers (Pe= 68, 680, 6800) in these simulations by
changing the diffusion coefficient by three orders of magni-
tude. We compute the BTC of the simulated particles resolved
to four orders of magnitude (see Fig. 3b) that shows the same
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Fig. 1 Characterization of the model porous structure reveals dual feature of the complex medium. a Binary image of the disordered hyperuniform
porous structure: it exhibits a complex pore network (white) interspersed among disordered grains (black) within the system. b The narrow Probability
Density Function (PDF) of the pore size, exhibiting a strong peak about the average value λm= 27 μm. c A portion of the pore size map (λ, [μm])
highlighting the inscribed circles (cyan) along the porous network that estimate the local pore-size (see Methods a). d The dual feature of the medium
characterized by the transmitting-pores (TP: green) surrounded by multiple grains and the dead-end pores (DEP: magenta) surrounded by a single grain.
e Red dots represent the measured PDF of width to depth aspect ratio for DEPs, defined as the ratios between each DEP area (A) and the mean pore-space
area (λ2m); the solid black line is its best fit with a Gamma distribution fΛ.
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two distinct regimes observed in our experiment. The late-time
tail of the BTC depends on the global Péclet number (Pe), such
that a decreasing Pe results in a shorter tail. We investigate
further into the two regimes for Pe= 680 (shown in green and
magenta shades in Fig. 3b) by finding the initial positions of
the particles with the same colors in the inset of Fig. 3a. It is
clear that the late time scaling in the BTC is due to the particles
initially trapped within the DEPs, whereas the particles not in
the DEPs are washed-out from the medium before the transi-
tion time, about t/tPV= 2, as observed experimentally. In
addition, we consider the possibility of a particle re-entering
into a DEP, by counting such instances (see Fig. 3c). The re-
entry event is significantly small (<0.1%) due to: a) only a small
fraction of particles get close to the DEP entrance and b) the
total volume fraction of DEP covers less than 10% of the total
porous matrix.

Structure induced vortices and pore-scale transport. Due to the
low fluid velocity inside a DEP, it is common to assume that the
DEPs delay the macroscopic transport by diffusive trapping and
release. As a consequence, porous systems comprising of DEPs
are generally modeled as dual media with separate advection-
dominated and diffusion-dominated regions (e.g.,53). These
models predict that particles move fast through the advection-
dominated region, or they spend long times trapped in a
diffusion-dominated region, and their transition across the two
regions is characterized by a given transfer rate. Contrary to this
simplified view about such systems, we show the existence of
complex vortex flow structures characterized by flow recirculation
within the DEPs that, coupled with molecular diffusion, control
the macroscopic BTC. To qualitatively examine the nature of
these flow structures, Fig. 3d displays a time-stacking image of
transported colloidal particles for Pe ~ 105 inside a representative
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Fig. 2 Dual geometric feature of the medium leads to two distinct regimes in the breakthrough curve of colloidal particles. a Schematic of the
experimental setup and (b) three-dimensional representation of the colloidal suspension within the porous structure. c Experimental breakthrough curve
(BTC, blue dots) computed as the c(t)/c0, where c0 is the injected colloidal numerical density, and c(t) is the measured density eluted at time t. The dashed
line represents the analytical solution of advection-dispersion equation (Eq. 26 in Supplementary Information III). The dotted line represents the prediction
from diffusion based scaling (without advection). d Two snapshots of suspended (red) and deposited (green) colloids just before and 6 h after injection,
respectively; TPs are represented as green areas while DEPs as magenta. e Profile of deposited (above) and suspended particles (below) along the channel
length acquired at three different times (0, 1, and 6 h) after the start of the experiment.
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DEP. At the entrance of the DEP, where the velocity is smaller
than in the adjacent TP, a laminar vortex is identified by a col-
lection of closed trajectories. Far inside the DEP, the individual
tracks of random walkers are visible as short and tortuous seg-
ments suggesting the dominance of molecular diffusion.

We use the velocity fields from the simulations explore such
structure of flow inside a DEP. It is similar to the one of the
classical cavity flows, characterized by a cascade of vortices with
decaying velocity magnitude that spans a very broad range of
scales54. A close-up view of the velocity field magnitude inside a
DEP (see Fig. 3e) superposed with a few characteristic streamlines
(in cyan) shows the underlying flow structure organized in a
cascade of laminar vortices. In this scenario, a particle can escape
a vortex of closed streamlines only by hopping across them via
molecular diffusion. This mechanism is demonstrated in Fig. 3f
by plotting the trajectory of a particle initiated deep inside a DEP

for three Péclet numbers (Pe= 6800, 680, 68). The trajectory is
color-coded with a local Péclet number (increasing in values from
dark to light) defined as Pe*= λmvp/D, where vp is the local
velocity of the tracked particle. The effect of the vortex roll on the
trajectory in this specific DEP is most prominent for Pe= 6800.
Initially being in the low velocity zone (vp ~ 10−7 mm/s), the
particle is transported randomly across streamlines by molecular
diffusion (Pe* ~ 10−4), and as it approaches the outer vortex, it
hops across streamlines but also rolls along the vortex (Pe* ~ 1),
before being advected away by the TP flow (Pe* ~ 102). When the
Péclet number is small (Pe= 68), the diffusion of the particle
across streamlines becomes more pronounced with lesser
advective rolling along the vortex. These comparisons suggest
that the increasingly heavier anomalous tail in the BTC for the
larger Pe (see Fig. 3b) is due to a combination of rolling and
hopping across streamlines in the vortex near the DEP entrance.

Fig. 3 Computation of velocity field and the role of structure induced vortices on particle dispersal. a Modulus of the Stokes flow solutions (mm/s in
log-scale) in a subsection (1/5th in length) of the porous medium used in the experiment is superposed to particles that initially occupy the TP (green) and
DEP (magenta) (enlarged view in the inset). b Probability density function (PDF) of particle escape time (equivalent to the BTC) versus normalized time
(t/tPV) obtained from particle tracking in the simulated velocity field with α= 0.22 for three Péclet numbers (Pe= 68, 680, 6800). The magenta and green
shades distinguish the regions of the BTC for Pe= 680 contributed by the particles shown in corresponding colors in the inset of (a). The long tail of the
PDF is contributed by particles originating in the DEPs. c Fraction of particle number density re-entering a dead-end pore for the three Péclet numbers.
d Qualitative identification of vortex structure inside a DEP captured by time-stacking experimental images taken at Pe∼ 105. e Close view of the vortex
structures inside a DEP from the simulated velocity field. f An individual trajectory of a particle originated at the magenta dot and leaving the DEP for
Pe= 6800, 680, and 68. The trajectories are color-coded with a local Péclet number Pe*= λmvp/Dm in log-scale.
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Bridging from pore-scale features to macroscopic transport. To
understand how this mechanism of rolling along and hopping
across closed streamlines controls the late time behavior of the
BTC, we first model transport in a single DEP generalizing its
geometry to a cavity connected to a free channel. The widths
(w) of cavity and free channel are set to be equal to λm, and the
cavity-size (ld) is varied based on four aspect ratios Λ= ld/
w= 1, 2, 4, 8. We perform this simulation for both two- and
three-dimensional geometries, adding a uniform thickness of
λm to the latter. Using the same numerical scheme adopted to
solve the transport in Fig. 3, we compute 104 particle-
trajectories initiated homogeneously inside each cavity
volume. Figure 4a shows the result for a 3-dimensional repre-
sentative case with Λ= 4: the flow structure is highlighted by
multiple streamlines (initiated at three y-plane locations shown
in different colors) associated with the vortices of decaying
intensity along the depth54. The trajectory of a particle initiated
at the cavity bottom is shown with the same color-scheme as in
Fig. 3d. The trajectories for both 3D and 2D cavities (see also
Supplementary Fig. 6) show behavior similar to the ones in the
DEP of the porous medium: the particle initially diffuses iso-
tropically (Pe*≪ 1) until it reaches the upper part of the cavity,
where its motion is a result of the competition between
advection along the vortex streamlines and diffusion that pro-
motes streamline exchange (Pe* ~ 1). Finally, the particle exits
the cavity and follows the channel (TP) flow with Pe*≫ 1.

Next, we compute the BTC for the four tracking simulations,
Λ= 1, 2, 4, 8, as the PDF of particle arrival time to the channel
outlet. Figure 4b shows that, for all cases the distribution decays
as the power law t−2/3 with an exponential cut-off: a Gamma
distribution. This power-law exponent is different from the
scaling expected for diffusion alone, t−1/255. The cut-off time
for each Λ is given by the characteristic diffusion time over the
DEP depth, such that τD ¼ ðλmΛÞ2=D. Hence, when time is
rescaled by τD, the BTCs for all aspect ratios Λ collapse into the
master-curve

gðtÞ ¼ ðt=τDÞ�2=3 expð�t=τDÞ
Γð1=3Þ : ð2Þ

The BTCs obtained for 2D cavities also exhibit an identical
collapse (see Supplementary Fig. 6). This suggests that the
thickness of the cavity does not affect the transport of particles
from a dead-end pore. Additionally, we examine the effect of
the DEP shape by considering a tortuous cavity. We find that

the tortuousity of a DEP does not affect the BTC (see
Supplementary Fig. 7). The shape-independent characteristic
is attributed to the fact that the power-law scaling in the BTC is
primarily controlled by the fastest vortex near the entrance.

The characteristic scaling of t−2/3 is controlled by the trapping of
particles in closed streamlines. The combined action of advection-
controlled transport in the shear flow along the solid boundaries
within a vortex, and diffusion at the open boundaries of the vortex
itself leads to a scaling of residence times as ψ(t) ~ t−1−γ with
γ= 2/3, as discussed in a different context by56. This residence
time distribution corresponds to a trapping time distribution
scaling as t−γ. A detailed derivation of this scaling exponent is
provided in the Supplementary Information III.

Based on the above scaling, we formulate a 1D statistical model
(illustrated in Fig. 5a) by considering the porous system as a
combination of several DEPs with a distribution of aspect ratio Λ.
The details of this model are described in the Supplementary
Information IV. The distribution of Λ is obtained from the
characterization of the medium as in Fig. 1e, results in a similar
distribution in the time scale τD. The global BTC can be
constructed as the weighted average between the BTC of particles
originated within TPs (solution of advection-disperion equation:
FTP) and the BTC of particles originated within DEPs (FDEP). The
latter is obtained from the above Gamma distribution (Eq. (2))
weighted by the probability density function fD(t) of the
corresponding characteristic diffusion time τD,

FðtÞ ¼ ð1� αÞ 1
L

Z L

0
dxf 0ðt; xÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

FTP

þ α

Z 1

0
dτgðt=τÞτ�1f DðτÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

FDEP

:
ð3Þ

Here, α is the fraction of observed colloids initially located in
DEP and 1− α the fraction of those initially located in TPs. The
function fD(t) can be expressed in terms of the measured PDF

fΛ(a) of aspect ratios Λ as f DðtÞ ¼ f Λ

ffiffiffiffiffiffiffiffiffiffiffiffi
tD=λ2

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðλ2tÞ

q
=2,

and f0 is the solution of the advection-dispersion equation
representing particle originating in TPs (see Methods and
Supplementary Information III). The model, which is completely
based on the medium geometry, initial volume fraction of colloids
in DEP, and the flow characteristics, show excellent agreement
with the experiment (Fig. 5b) and simulation results (see
Supplementary Fig. 5) .
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Fig. 4 Conceptual model for DEP flow capturing the local particle escape time. a A single numerically simulated trajectory (color-coded with local Péclet
number Pe*= λmvp/Dm in log-scale) originating at the bottom of a 3D rectangular cavity representing a DEP (aspect ratio, Λ= 4) connected to a square
channel representing a TP. A series of streamlines highlights the vortex flow structure inside the cavity. b Particles escape time probability density function
(PDF, equivalent to their BTC) of a single cavity for Λ= 1, 2, 4, 8. c The same as (b) with time rescaled by diffusion time-scale τD ¼ ðλmΛÞ2=D.
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Discussion
In addition to molecular diffusion of the transported particles and
the average flow (i.e., the Péclet number), the observed anomalous
dispersion depends on: the volume fraction of DEP in the med-
ium, concentration of particles in DEP (i.e., α), and the dis-
tribution of DEP-size (i.e., the Λ distribution). Under a
homogeneous particle distribution, the volume fraction of DEP in
the medium is equivalent to the parameter α. The results from
our simulation (also captured by the model) with four different α
values show that an increasing α results in an increasingly heavier
tail in the BTC, but without any effect on its shape (see Fig. 6a).
The distribution of DEP-size relates to the structural hetero-
geneity of the medium. We examine the effect of Λ by considering
a Gamma distribution f ðΛÞ ¼ Λκe�Λ=Λm and varying the expo-
nent κ∈ [−1, 0, 1]. Compared to κ= 0 (a homogeneous system),
a positive exponent (frequent larger DEPs) widens and a negative
exponent (frequent smaller DEPs) shrinks the anomalous tail of
the the BTC (see Fig. 6b). Further, this model is extendable to a
porous medium with pore-size heterogeneity (a wide λ distribu-
tion) by incorporating it in the distribution of Λ ¼ λ2=A2.

In these scenarios, we further examine the emergence of
anomalous dispersion due to particles escaping from the DEPs via
a parameter R ¼ FDEPðtÞ=FðtÞ (Eq. (3)). The effects of Pe, α, and
Λ on the evolution ofR are shown in Fig. 6c–e, respectively. In all
cases, the anomalous dispersion emerges (R�!1) after the
removal of the first pore-volume primarily comprising of particles
originating in the TPs. When the Péclet number is large, particles
remain trapped in the dead-end vortices for relatively longer
times. Hence, besides the longer anomalous tail in the BTC (as
observed for Pe= 6800 in Fig. 3c), this results in a delay in the
onset of anomalous dispersion compared to a smaller Pe (see
Fig. 6a). With other parameters fixed, the anomalous transport

emerges earlier for a larger value of α (see Fig. 6c), and nearly at
the same time for all three distributions in Λ (see Fig. 6d).

A natural porous system may exhibit additional complexities
including the presence of ions, O2, salinity gradients in the carrier
fluid, the shape and motility of suspended particles (e.g., bacteria
and other micro-swimmers). Although such conditions are
beyond the scope of this study, the fundamental mechanism
presented here will provide a general benchmark for future
investigations in the relevant disciplines involving dead-end pores
in porous media. For instance, the prolonged vortex-induced
trapping of substances in the dead-end pores could create
nutrient or salinity rich micro-spots, leading to preferential
motion in bacteria via chemotaxis11 and in colloidal suspensions
via diffusiophoresis57. Furthermore, the quantified control para-
meters will help biomedical industries to design new strategies to
sustain resident drugs and other desired substances in tissue
cavities58.

In summary, our findings shed new light on a fundamental
mechanism governing particle dispersion in disordered porous
systems characterized by dead-end pores of fluid stagnation.
Classical descriptions overlook dead-end flow structures assum-
ing that fluid stagnation does not play a significant role on
macroscopic transport25,59. Such diffusion based models cannot
quantitatively predict the observed 2/3 power-law decay of the
macroscopic BTC. The anomalous arrival time distribution is
caused by the observed pore-scale vortical and laminar flow
structures within the dead-end pores. Here, in the case of col-
loidal transport, we have shown a quantitative link connecting the
characteristic decay of macroscopic BTC to the delay associated
with a hopping and rolling of particles along the streamlines
inside the dead-end pores. The particle-diffusivity, initial particle
distribution and the size distribution of dead-end pores control
the BTC long tail cutoff, but they do not change the observed
power-law scaling. Since the model described here is not
dependent on the system dimensionality, it can be readily
applicable to disordered porous systems encountered in natural
soil, and other biological and environmental systems.

Methods
Medium characterization. To obtain maps of the pore-size (λ) distribution and
the segregation index (ζ) of the model porous matrix, we analyzed the image
representing the medium geometry (Fig. 1a). This image is a binary two-
dimensional array of pixels that distinguishes the pore space (pixel value = 1,
white) from the grains (pixel value= 0, black). First, we labeled each grain and
identified its boundary. The binary image was then skeletonized to obtain the
1-pixel width representation of the pore space (see Supplementary Fig. 2). For a
specific skeleton location, we employed a maximum inscribed circle (MIC) algo-
rithm (see Supplementary Fig. 2) that fits the largest circle on its neighboring grain
boundaries based on the Euclidean distance map. By iteratively scanning all ske-
leton locations with this algorithm, we generated the series of the locally largest
circles touching the grain boundaries at three points and spanning across the entire
pore space domain. The pore size (λ) at a specific location was assigned as the
average diameter of the overlapping circles around that location. The segregation
index (ζ) was assigned at each location as the number of individual, different,
grains touched by the inscribed circle at that location. A pixel with ζ= 1 belongs to
a dead-end pore and that with ζ > 1 belongs to a transmitting pore (TP). For
locations outside the fitted circles the segregation index was obtained via linear 2D
interpolation of the neighboring ζ values.

Time-lapse video-microscopy. Time-lapse imaging was performed with an
automated inverted microscope (Eclipse Ti2, Nikon) equipped with a CMOS
camera (Hamamatsu ORCA flash 4.0, 16-bit). All individual pictures (2048 × 2048
pixels) were recorded at 10X magnification (corresponding to 0.65 μm/pixel)
focusing the microscope optics on the middle horizontal plane of the microfluidic
channel. Colloids were imaged by fluorescence microscopy (using a Nikon DAPI
fitler cube) with an exposure time of 50 ms. Pictures of the flowing colloids were
recorded every 5 min close to the outlet by a composite image of 9 individual
pictures along the transverse flow direction to cover the entire cross section of the
channel outlet.

Fig. 5 Upscale from pore-scale features to macroscopic transport.
a Schematic representation of a one-dimensional analytical model
described by a straight TP connected to a collection of DEPs via Eq. (3); the
distribution of DEP-size is parameterized by the PDF of aspect ratio (Λ),
and their number density by the parameter α. b Comparison of the
analytical prediction (solid line) from Eq. (3) of the BTC with the
experimental data (dots).
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Measuring BTC. In order to compute the number n of effluent colloids at the time
tk, we first accounted for the deposited particles detected in the field of view by
removing the image at time tk+1 from the image at time tk, we, then, applied a
bandpass filter with a characteristic noise length of 1 pixels to every recorded image
in order to smooth the electronic noise associated with camera acquisition. We
identified the colloids as individual peaks with a minimum brightness of 5% the
pixel depth (16 bit) and minimum diameter of 3 pixels. The BTCs of effluent
colloids were obtained as c= n(tk)/n0, normalizing the measured number of col-
loids eluted at time tk by the count n0 at the beginning of the experiment (t0). The
physical time t, defined as time elapsed since the injection begins, was rescaled by
the residence time of one pore volume, defined as TPV= L w a ϕ/Q= 21.8 min,
where L= 51 mm is the longitudinal size of the porous system, w= 7 mm is
channel width, a= 0.083 mm is its thickness, ϕ= 0.39 is the medium porosity and
Q= 0.5 mm3/min is the imposed flow rate, corresponding to an average (Darcy)
velocity of q= 0.038 mm/s.

Classical transport model through homogeneous porous media. The classical
model to describe transport through a relatively homogeneous porous medium is the
so-called advection-dispersion framework that expressed mass conservation as1,2:

∂c
∂t

¼ �q
∂c
∂x

þ D� ∂
2c

∂x2
ð4Þ

where D* is the macroscopic dispersion coefficient, in mm2/s. Our experimentally
measured BTC are well matched by the analytical solution c(x, t) of the above
equation (ADE) evaluated at the medium outlet x= 50mm11 (Fig. 2 2a green dashed
line) for times shorter than about 2 TPV. For larger times the TP are basically empty
and only DEP mass release contribute to the BTC that deviates from exponentially
decaying behavior to scale as a heavy-tailed power law.

Spatial organization of the suspended and deposited colloids. Profiles of
deposited and suspended colloids were computed from the composite images of the
entire microfluidic channel at 0, 1, 6, 10, 16, 22, and 44 h. Clusters of connected
pixels larger than 3 × 3 pixels were considered as colloids after removing back-
ground via an adaptive-thresholding algorithm which chooses a threshold value
based on the local mean intensity over an area of 1001 × 1001 pixels (using the
Matlab embedded function adaptthresh). Colloids detected in consecutive images
with overlapping positions have been considered as deposited (Fig. 2d, e green

dots), while the non-overlapping colloids were categorized as suspended (Fig. 2d, e
red dots). The local surface occupied by these two classes of colloids has been
integrated along transversal slices of 10 μm and normalized by the accounted
porous area to measure the suspended and deposited profiles, shown in Fig. 2f.
During the experiment, deposited colloids profile are not changing, meaning that
the deposition that took place during the saturation process does not affect the
transport experiment.

Numerical simulation to predict colloid transport. The Stokes flow solution used
to model the colloids transport is computed over a domain discretized using a
physics based unstructured mesh with approximately 5 × 106 elements and the
element size adapting to the geometry with a minimum of 0.2 μm (see Supple-
mentary Fig. 4). We imposed no-slip boundary conditions at all grain and domain
boundaries, a zero reference pressure at the outlet and an uniform flow rate
Q= 0.5 μL/min at the inlet. The computational resolution is high enough to ensure
a divergence free velocity field.

Data availability
The collected experimental data, simulation results, and the plots data used and discussed
in this study are available in the Zenodo database under the https://doi.org/10.5281/
zenodo.6617923(https://zenodo.org/record/6617923).
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