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We present a formalism that captures the process of proving quantum supe-
riority to skeptics as an interactive game between two agents, supervised by a
referee. The model captures most of the currently existing quantum advantage
verification techniques. In this formalism, Bob samples from a distribution on
a quantum device that is supposed to demonstrate a quantum advantage. The
other player, the skeptical Alice, is then allowed to propose mock distributions
supposed to reproduce Bob’s device’s statistics. Bob then needs to provide wit-
ness functions to prove that Alice’s proposed mock distributions cannot properly
approximate his device. Within this framework, we establish three results. First,
for random quantum circuits, Bob being able to efficiently distinguish his distri-
bution from Alice’s implies efficient approximate simulation of the distribution.
Secondly, finding a polynomial time function to distinguish the output of random
circuits from the uniform distribution can also spoof the heavy output generation
problem in polynomial time. This pinpoints that exponential resources may be
unavoidable for even the most basic verification tasks in the setting of random
quantum circuits. Finally, by employing strong data processing inequalities, our
framework allows us to analyse the effect of noise on classical simulability and
verification of more general near-term quantum advantage proposals.

1 Introduction
The transition from the reign of classical computers to quantum superiority is
expected not to be a singular event but rather a process of accumulation of ev-
idence. It will most probably happen through an iterative process of claims of
proofs and refutations until a consensus is reached among the scientific commu-
nity. A few years back the series of claims of the advantage of quantum annealers
followed by rebuttals and an intense debate inside the quantum computation com-
munity [51, 52, 12, 56] can be seen as an example of that. Similarly, recent claims
of quantum advantage [8, 57, 58, 59] were followed by a growing interest in its
potential simulation by a classical device [32, 47, 55].

Ideally, one would like to demonstrate the advantage of quantum computers
solving a well-established hard computational problem, such as factoring large
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numbers or simulating large-sized molecules. Such demonstration will most likely
need a fault-tolerant quantum computer, which will not be available in the near
future. Thus, a lot of attention has been focused in the last years on quantum
advantage proposals based on sampling from the outcomes of random quantum
circuits, a task considered achievable. This effort culminated in landmark exper-
iment of [8]. and its more recent followups [57, 58, 59].

The classical hardness of computing the outcome probability of random cir-
cuits has been reduced to standard complexity-theoretic assumptions in various
settings [30, 14, 39, 41, 16, 3, 17, 27]. For instance, in [14] the authors prove that
it is ]P hard to compute the exact probability of the outputs of random quantum
circuits for a fraction of 3

4 +poly(n)−1 of instances of random quantum circuits on
n qubits. This result can be extended to devices with very low noise by assuming a
couple of widely-accepted conjectures. Despite this significant progress in putting
the classical hardness of sampling from a distribution close to the outputs of the
random circuit on solid grounds, equivalent hardness statements are not known to
hold for the levels of noise that affect current quantum computing architectures.
Moreover, certifying closeness to the ideal distribution in total variation distance
requires an exponential number of samples [29]. Thus, it is both not feasible to
verify closeness in total variation, and the actual distance is unlikely to be in the
regime of current quantum advantage experiments.

These shortcomings have shifted the interest to benchmarks of advantage that
are thought to be more robust against noise and that are known to be verifiable
with a feasible number of samples, albeit not computationally efficient. Promi-
nent examples are the heavy output generation problem (XHOG) [3, 5] and the
related linear cross-entropy benchmarking (linear XEB) fidelity [45, 13, 8]. The
recent quantum advantage experiments used linear XEB as a benchmark for the
quantum state generated by 50 to 60 qubit devices. However, these approaches
have two main drawbacks. First, they require the computation of the probability
of sampled strings under the circuit’s ideal distribution, which consumes a run-
ning time growing exponentially with the system’s size. Secondly, the number of
required samples grows exponentially with the size of the system for a constant
gate error probability [8]. Thus, the linear XEB verification approach requires us
to be in the “sweet spot” where both the number of samples needed given the
noise level and the size of the circuit are not too large to render the verification
impossible. This approach is not scalable to larger system sizes with current lev-
els of noise. Besides, it is still unknown how to reduce the hardness of the heavy
output generation problem (XHOG) [3, 5, 37] to standard complexity-theoretic
assumptions.

This difficulty of finding efficient certification protocols and benchmarks for
random circuit sampling extends to other proposals of near-term quantum ad-
vantage, such as boson sampling [1]. This has sparked interest in simpler sanity
checks, such as efficiently distinguishing the output distribution from the uniform
and other “easy” distributions [2, 19, 48, 53]. As mentioned in [29], these verifica-
tion forms are manifestly weaker than certifying the total variation distance and
do not preclude the possibility of the device being classically simulable. However,
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in the setting of random circuit sampling, not even an efficient verification test
that allows us to distinguish the outputs from the uniform distribution is known.
Furthermore, although efficient verification protocols for quantum computation
exist [40, 20], they are likely to require fault-tolerance and are beyond what can
be achieved with near-term implementations.

Independent of the recent quantum advantage experiment, the development
of more efficient certification techniques of quantum advantage that can be scaled
with the increasing size of the quantum computer is an area of relevance for near-
term quantum computation [15]. In parallel, it is important to develop a better
understanding of how noise reduces the power of quantum computers and how
noise affects quantum advantage proposals or near-term applications of quantum
devices.

To these ends, in this work, we envision this certification process as an inter-
active game between two agents, Alice that uses classical computing resources,
and Bob that holds a (noisy) quantum computer and wants to convince Alice of
its computational advantage. They are both supervised by the referee Robert.
To win, Bob has to find functions that allow him to efficiently distinguish the
output of his device from every alternative distribution Alice proposes. In turn,
Alice needs to propose alternative distributions that approximate the statistics
obtained by Bob’s quantum computer; otherwise, she loses the game.

Central to our result is the connection between the mirror descent algo-
rithm [54, 18] and the proposed framework of the certification game. This al-
lows us to connect distinguishing probability distributions from a target quantum
distribution and learning an approximate classical description of the latter. Fur-
thermore, as we will see, mirror descent is particularly well-suited to learning
distributions of high entropy, which is the case for NISQ devices and current
quantum advantage proposals. Our framework is inspired by a recent result of
the authors [23]. There, we show how to use mirror descent, strong data process-
ing inequalities and related concepts to analyse the performance of noisy quantum
devices performing optimization. In contrast, this article’s main result also holds
for noiseless circuits and our overarching goal is to formally link the hardness
of verification of quantum advantage proposals and their approximate classical
simulation.

2 Summary of results
We envision a quantum advantage demonstration as a game played between Bob,
who is sampling from a (noisy) quantum circuit and claiming that it demonstrates
a quantum advantage, and Alice, who is skeptical of Bob’s claim and defends that
her classical computer can mimic Bob’s behaviour efficiently.

As Bob is the person looking to convince the others that his quantum com-
puter has an advantage over Alice’s classical device, we place the burden of the
demonstration on him. In addition, Bob publicly discloses a description of the
hardware and the quantum algorithm his device is implementing. The game con-
sists of different rounds at which Alice can propose an alternative hypothesis to
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the claim that Bob has achieved a quantum advantage. At the beginning of the
game, they both agree on a distinguishability parameter ε > 0, which captures
how close Alice needs to match Bob’s result, and confidence probability δ, which
captures the probability of the outcome of the game being correct. In what fol-
lows, we denote the probability distribution Bob is sampling from by ν.

2.1 The quantum advantage game
In what follows we present a framework that captures most of the existing quan-
tum advantage verification protocols to date as an interactive game between play-
ers.

At the beginning of the first round, Alice discloses an alternative hypothesis to
quantum advantage in the form of a randomized classical algorithm sampling from
a given distribution µ0(x), for example the uniform distribution. It is then Bob’s
role to refute Alice’s proposal and show that his distribution is at least ε away
from Alice’s in total variation distance. As we will discuss in more detail later
in Section 3.1, certifying this distance constraint is equivalent to Bob providing a
function f1 : {0, 1}n → [−1, 1] such that

|Eµ0(f1)− Eν(f1)| ≥ ε. (1)

Alice is then allowed to update her hypothesis to µ1(x) given the information
gained from the first round of the game and sample from a distribution µ1 that
could potentially satisfy

|Eµ1(f1)− Eν(f1)| ≤ ε.

If so, Bob then needs to refute this mock distribution, providing a new witness
f2. Alice’s new distribution then needs to pass both tests for the functions f1 and
f2. The game continues with Bob proposing new distinguishing functions ft+1
and Alice mock distributions µt that approximate all previous expectation values
up to ε.

The game ends if one of two players is declared defeated following a set of
previously established rules. For example, Alice could concede defeat if she takes
too much time to propose a new candidate or sample from it. Similarly, Bob could
be forced to acknowledge his defeat if he takes too long to offer a new witness that
challenges Alice. In some sense, the rules should be consistent with the process
of building community consensus on the validity of a quantum advantage result.

It is important to remark that the condition in Eq. (1) must be checked by
a referee Robert, to whom Alice and Bob provide samples at each round. That
is, they give Robert enough samples of their distributions to estimate the ex-
pectation values by computing the empirical average for the functions fi on the
samples. The required number of samples required to be confident that the con-
dition is satisfied up to a small failure probability can be estimated by e.g. an
application of Höffding’s inequality, as we show later. Note that this guarantees
that Alice cannot cheat by using Bob’s samples to find better distributions. For
instance, if Bob’s quantum computer is solving an NP problem, then knowing
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the samples themselves would give Alice an efficient classical strategy. In order
to suppress statistical anomalies, we also make the number of samples depend on
the current round. More specifically, the number of samples for round t should
be O(tε−2 log(tδ−1)). This choice ensures that the overall probability of an error
occurring remains O(δ).

In order for the verification game to be scalable, we may further request that
sampling from Alice’s distributions, evaluating Bob’s test functions fi and the
size of the messages sent to Robert to be tasks that need to be achieved efficiently
with the resources at hand. In what follows, we define efficient as a consumption
of resources that scales polynomially with the size of the problem, i.e., the number
of qubits of the quantum computer. But a more at hands definition, where we
impose constraints on their size and time of computation justified by the state of
the art of classical computing hardware, is also compatible with this framework
and most probably be the definition used in any real experimental demonstration.
Test functions that are not scalable, such as the XEB used in random quantum
circuit experiments, are also contained in our game framework after some modi-
fications. However, our no-go results do not directly apply to them as they focus
on efficient functions. Indeed, the non-scalability of benchmarks like the XEB
makes it impractical for future quantum computers of larger sizes than today’s.

The framework presented above is quite general, capturing most of the existing
quantum advantage verification proposals to date. It is natural to ask how to
phrase some current quantum advantage tests and attempts to spoof them within
our framework. In the examples below we illustrate how to use the formalism to
describe the scenario in which we benchmark against supposedly better solutions
to NP-complete optimization problems, sampling from random quantum circuits
and briefly discuss the case of boson sampling machines.

2.2 Verification of NP problems
As an example, let us consider the optimization version of an NP-complete prob-
lem, such as MAXCUT on a ∆-regular graph with ∆ ≥ 3:

Example 2.1 (MAXCUT). suppose that Bob claims his quantum computer can
achieve a better value for an NP optimization problem, say MAXCUT, than Al-
ice’s classical computer. Recall that for a graph G = (V,E) with n vertices and
maximum degree ∆, MAXCUT of the graph can be cast as finding the maximum
over {0, 1}n of the function

fG(x) = 1
n∆

∑
(i,j)∈E

(1− δ(xi, xj)). (2)

Here, the normalization n∆ ensures that 0 ≤ f(x) ≤ 1. Thus, in this case, Bob
can propose the function fG to distinguish his distribution from Alice’s classical
computer. If the average value for MAXCUT he can achieve is indeed at least
ε better than what Alice can achieve, he wins the game. On the other hand,
if classical methods can yield a better cut than Bob’s quantum computer, then
fG cannot claim to have achieved a quantum advantage. Note that our choice
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of normalization in Eq. (2) implies that an additive error ε on approximating the
expectation value of fG implies a multiplicative error of order ε for the cut’s value.

As exemplified above, for NP optimization problems, there is a clear choice for
which function Bob should propose and it can be computed in polynomial time.

At first sight, the possibility of the game always requiring an exponential
number of rounds seems a plausible outcome. However, there is an update rule
for Alice’s distribution that will lead to the game having at most O(nε−2) rounds,
where n is the number of qubits of Bob’s device, as we explain below. Note that
we do not claim that this update rule will always lead to Alice winning, only that
it will define a finite series of probability distributions that converge to the one
the quantum device. The key question is whether Alice can sample from those
explicit distributions efficiently or not. Interestingly, below we will show that this
leads to a successful strategy against random circuits under the condition Bob
provides the efficient functions ft.

This update rule uses the connection between our certification game and mirror
descent with the von Neumann entropy as potential [18], a method to learn prob-
ability distributions by approximating them by a sequence of Gibbs distributions.
In a nutshell, Alice can exploit each test function ft that Bob provides to improve

her guess of the distribution ν. The updates are of the form µt+1 ∝ elog(µt)− ε4ft .
She can use her method of choice to sample from the Gibbs distribution, such as
rejection sampling. One can then show that at every round of the game, Alice’s
gets closer to the ideal distribution by at least a finite amount, converging to µt
being ε-close to the ideal quantum distribution ν in a finite number of rounds. In
fact, regardless of the distribution Bob is sampling from, if Alice chooses to use
mirror descent to update her distribution, then it follows from standard proper-
ties of mirror descent that the game will end after at most 8nε−2 rounds. We
explain this in more detail in Section 4 and refer to Appendix A for a discussion
and proof of its basic properties. The caveat is that the knowledge from which
Gibbs distribution Alice needs to sample does not guarantee that she can do it
efficiently. Let us exemplify this again with MAXCUT:

Example 2.2 (MAXCUT continued-mirror descent and simulated annealing). In
the same setting as in Example 2.1, one can show that if Alice uses mirror descent
to update her probability distributions, her sequence of probability distributions µt
is given by:

µt(x) = e
t

4εfG(x)

Zt
, Zt =

∑
x∈{0,1}n

e
t

4εfG(x).

That is, her strategy will be akin to performing simulated annealing to try to ob-
tain a better value of MAXCUT. This is one of the most widely used methods for
combinatorial optimization [35]. If one picks t large enough, µt is guaranteed to be
sharply concentrated around the maximum of fG, but the complexity of sampling
from µt increases accordingly and at some point Alice won’t be able to sample
from it anymore. We refer to e.g. [26, Chapter 28] and references therein for a
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discussion of the application of simulated annealing to combinatorial optimiza-
tion. We can interpret the parameter t/4ε as the inverse temperature β. Thus, if
Alice picks the mirror descent strategy, she would win if a classical Monte Carlo
algorithm has a performance comparable to that of Bob’s quantum computer.

2.3 Random Quantum Circuits
Random quantum circuits use a more sophisticated benchmarking strategy based
on the linear cross-entropy.

Example 2.3 (linear cross-entropy, spoofing it and correlators). The current
approach to benchmark quantum advantage experiments based on sampling from
random quantum circuits is the linear cross-entropy [45, 8]. Given the outcome
distribution of the ideal circuit ν and another distribution µ, its value is given by:

FXEB(µ) = 2nEµ (ν)− 1. (3)

We discuss this metric thoroughly in Sec. 5, but roughly speaking the goal of this
benchmark is to sample from a distribution µ that achieves FXEB(µ) > 0. Note
that it corresponds to the expectation value of the function

f(x) = 2nν(x)− 1. (4)

In principle, the function defined in Eq. (4) does not fit our framework, as
it could in principle take values larger than 1. However, as we explain in Ap-
pendix. B, under some assumptions that are believed to hold for outputs of ran-
dom quantum circuit it is possible to show that the suitably cut-off function

fr(x) = r−1(min{2nEµ (ν) , r} − 1) (5)

for r = O(1) can be used to approximate the value Eq. (3). Furthermore, in
Prop. B.2 we show that the function in Eq. (5) can also be used to distinguish
the output of the circuit from the uniform distribution. Thus, we see that this
commonly used benchmark also fits our framework and Bob could propose the
variation of the linear cross-entropy in Eq. (5) during the first round, although it
is not efficiently computable.

Recently, tensor network contraction techniques have been proposed to spoof
this benchmark, which would correspond to Alice passing the first round of the
game if Bob proposes the function in Eq. (5). Let us now show how our framework
could be used to provide Bob with extra functions to win against the approach
championed in [46]. Roughly speaking, in that paper the authors fix the outcome
of k out of the n qubits to some fixed output, say |0〉⊗k, and then search for strings
with higher than average probability under ν in the space of strings with those
outcomes fixed. As fixing some outcomes significantly reduces the computational
cost of computing outcome probabilities, the authors are then able to generate
many samples which have an expectation value for the linear cross-entropy that
is close to the value reported in [8]. If the authors of [46] were playing Alice with
the strategy outlined in that paper, then Bob could resort to a simple strategy
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to distinguish his distribution from Alice’s: using correlators. Let i be one of
the k qubits always set to |0〉. We then let the function for the second round
be given by f2(x) = 1 if xi = 0 and 0 else. If Bob is sampling from the output
distribution ν of a random quantum circuits, it will be the case that Eν(f2) ' 1

2
up to exponentially small corrections with high probability, whereas for Alice’s
distribution µ0 we have Eµ0(f2) = 1. Thus, this way Bob can easily distinguish
his distribution from Alice’s and protect himself from spoofs based on strategies
like that of [46].

2.4 Gaussian Boson Sampling
In the context of Boson sampling, correlators have been championed as a bench-
mark of the quantum advantage certification of the devices [48]. That is, one
computes some k-point correlation function of the ideal outcome distribution and
compares it to the output of the device. Such tests easily fit into our framework.
To see this, suppose we wish to consider a 2-point correlation function on the
first two bits. In that case, we could just pick the function f(x) = δx1,x2 , which
satisfies the conditions discussed before. Applying mirror descent to the case of
the correlators then gives rise to a classical Gibbs state that reproduces the local
correlators of the ideal distribution. Interestingly, this strategy was recently used
in [55], where the authors observed that already fitting to some few-body corre-
lators seems sufficient to obtain a better approximation in total variation to the
true distribution than the noisy quantum device of [58].

2.5 Summary and discussion
Thus, we see that our framework is able to recover many of the strategies currently
used in the literature to benchmark quantum advantage proposals, besides also
giving advice as to how to refute spoofing strategies. Moreover, the mirror descent
approach can also give rise to competitive spoofing techniques, as observed in [55].

However, it is important to notice that our framework does not cover the
most general efficient procedure to distinguish probability distributions. Indeed,
our framework only includes procedures that use the empirical averages of single
samples to distinguish distributions. Such a setting is very close in spirit to that
of statistical queries [34, 50]. However, a more general efficient procedure could
apply an efficient function that depends on a polynomial number of samples to
try to distinguish the distributions. In Appendix E we discuss possible extensions
and limitations of our results in this direction.

2.6 Main results
As we anticipated, this framework of quantum advantage certification allows us
to prove three main results on the impossibility of Bob winning using efficiently
computable test functions, a connection between the HOG conjecture and the
indistingushability from uniform distribution and an analysis of the effects of
hardware errors on a quantum advantage verification protocol.
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2.6.1 Bob can not win with efficient distinguishing functions

Our first result is that for random circuits, we are only required to play a number
of rounds that scales like O(ε−2). Moreover, Bob never wins if Alice plays mir-
ror descent, ε = Ω(log(n)−1) and the distinguishing functions can be computed
efficiently.

From a high-level perspective, Theorem 2.1 below states that if Bob can al-
ways efficiently find distinguishing functions and they can be computed efficiently,
then Alice can also find and sample from a high-temperature Gibbs state that is
close to the ideal distribution. Note that in this work we do not come up with
such a strategy for Bob, but rather explore the consequences of the existence of
such a strategy to understand the limitations and connections of verification and
simulation of random quantum circuit experiments.

Theorem 2.1 (Alice approximately learns ν after ε−2 rounds for random circuits,
informal version of Thm. 4.1). Let ν be the probability distribution of the outcome
of a random quantum circuit on n qubits stemming from a 2−2n−1-approximate
two design and ε > 0 be given. Suppose that Bob succeeds in providing functions
f1, . . . , fT that can be computed in polynomial time and distinguish ν from a se-
quence µ1, . . . , µT of distributions that Alice discloses, with T the maximal number
of rounds at most O(ε−2). Then there is an algorithm that allows Alice to learn
a distribution µT+1 exploiting the revealed information on ft that can be sampled
from in time eO(ε−1). Moreover, µT is ε close in total variation distance to ν.

Note that we can efficiently sample from the output distribution as long as
ε = Ω(log(n)−1). We will prove this result in Thm. 4.1, but it is intimately
connected to the fact that the output distributions of random quantum circuits
are very ”flat”, as the probability of the outcomes is mostly of the order 2−n.
For such distributions mirror descent converges very fast and we will see that
they are well-approximated by high temperature Gibbs states. On the other
hand, for the optimization problems like MAXCUT we expect good solvers to
have outcome distributions that are highly concentrated on low energy strings.
In contrast with very flat distributions, mirror descent converges slower for such
concentrated distributions.

An important corollary of our theorem is that either the hardness conjectures
of random quantum circuits are not valid for distances ε = Ω(log(n)−1) or a
complete certification strategy for Bob, providing a discrimination function for
every guess of Alice, is impossible with polynomial resources. Given the wide
range of results that establish the hardness of sampling from random quantum
circuits requiring slightly stronger assumptions than our result, we believe that
our results indicate that efficient and scalable certification of random circuits in
terms of empirical averages of functions is not possible.

2.6.2 Distinguishing from uniform would invalidate HOG conjecture

Our second result concerns a connection between the hardness of fooling the
XHOG problem and distinguishing the output of a random circuit from the uni-
form distribution. We refer to Sec. 5 for a precise definition of the XHOG problem.
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There we also show that if the conjectures related to the hardness of fooling the
XHOG problem are true, not even distinguishing from the uniform distribution
in polynomial time should be possible. Thus, although it might be possible that
Bob can only efficiently distinguish during the first rounds, before mirror descent
converges as in Thm 2.1, this suggests that even the first round might be diffi-
cult to win if we restrict to efficient strategies. Thus, Bob will have to resort to
verification strategies that take super-polynomial time to demonstrate a quantum
advantage within our game. More precisely, in Section 5 we prove the following
result.

Theorem 2.2 (Distinguishing from uniform and HOG, informal version of Thm. 5.1).
Let f : {0, 1}n → {0, 1} be a function that for some ε > 0 satisfies: Eν(f) −
EU (f) ≥ ε, where ν is the outcome distribution of a random quantum circuit
stemming from a 2−2n−1-approximate two design in n qubits. Then there is an
algorithm that samples from a distribution that fools XHOG up to ε using O(ε−2)
evaluations of f in expectation.

One possible criticism of the above framework is that it might be in general
hard to distinguish the outcome of any circuit stemming from a random ensemble
of circuits from the uniform distribution. However, this is not true, as we show
in Appendix F that in case Bob is sampling from a randomly generated stabilizer
circuit, Alice can easily fool XHOG.

2.6.3 Effects of hardware errors

All the results above concern the outcome distribution of the ideal circuit. In
Sec. 6 we extend our results to the approximate simulability of the outcome dis-
tribution of noisy devices. We show that, under doubly-stochastic noise, the num-
ber of rounds of the verification game when Alice uses mirror descent decreases
exponentially with the depth of the circuit Bob is implementing. As we believe
these results are interesting beyond quantum advantage proposals and apply to
the broader topic of classical simulability of noisy circuits, we state them in more
general terms. Below we state a specialized version of our main result regard-
ing the complexity of approximating the statistics of outcomes of noisy circuits,
Theorem 6.1:

Theorem 2.3 (Informal version of Thm. 6.1). Let ν be the outcome distribution
of a noisy quantum circuit on n qubits of depth D affected by local depolarizing
noise with rate p after each gate, measured in the computational basis. Given
functions f1, . . . , fk : {0, 1}n → [−1, 1] and ε > 0, mirror descent will converge to
a distribution µT satisfying:

|Eν(fi)− EµT (fi)| ≤ ε

for all 1 ≤ i ≤ k in at most T = O(ε−2(1 − p)2D+2n) iterations. Moreover, we
can sample from µT by evaluating f1, . . . , fk at most

exp
(

4(1− p)2D+2n

ε

)

Accepted in Quantum 2022-01-22, click title to verify. Published under CC-BY 4.0. 10



times.

As shown in the recent [23], which we discuss in more detail shortly, this
restrains the power of noisy quantum computers to demonstrate a significant ad-
vantage versus classical methods for more structured problems. Let us exemplify
this with the noisy MAXCUT example:

Example 2.4 (MAXCUT continued- noisy circuits). Let us exemplify the conse-
quences of Theorem 2.3 to approximating MAXCUT on a noisy quantum device.
Suppose that Bob’s device suffers from local depolarizing noise with rate p and
consists of a circuit of depth D. In this scenario, Alice will be able to obtain an
expected value of MAXCUT that is ε close to Bob’s by sampling from the distri-
bution µt given by:

µt(x) = eβfG(x)

Z
, Z =

∑
x∈{0,1}n

eβfG(x)

with β = ε−1(1− p)2D+2n. That is, the noise decreases the inverse temperature β
we have to go when performing classical simulated annealing to obtain comparable
results.

As is discussed in more detail in [23], results like the one above can be used
to rigorously establish maximal depths before noisy quantum devices are not
outperformed by polynomial time classical algorithms. But the main message of
the example above in our context of verification is that if there are clear candidate
functions to distinguish the output of the noisy quantum circuit, then the noise
will make it easier for Alice to simulate the output of the device, as one would
expect. We refer to Section 6 for a derivation of this bound and a more detailed
discussion of its consequences.

3 Preliminaries
We will now introduce some basic definitions and notation together with the
concepts of mirror descent and rejection sampling, which are relevant to our work.

3.1 Notation
Probability distributions on binary strings: we define F = ({0, 1}n)[−1,1]

to be the set of functions f : {0, 1}n → [−1, 1].
Given two probability distributions µ, ν on {0, 1}n, we define their total vari-

ation distance ‖ν − µ‖TV as:

‖ν − µ‖TV = 1
2

∑
x∈{0,1}n

|µ(x)− ν(x)| .

Moreover, given a function f : {0, 1}n → R we define

‖f‖∞ = sup
x∈{0,1}n

|f(x)|.
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Distinguishability measures for quantum states and unitary designs:
we are also going to need other distinguishability measures for distributions and
quantum states. We will introduce them only for quantum states and note that the
corresponding classical definition is obtained by considering the classical probabil-
ity distribution as a diagonal quantum state. For two quantum states ρ, σ ∈M2n

we define their relative entropy to be:

S(ρ||σ) = tr (ρ (log ρ− log σ))

if kern ρ ⊂ kern σ and +∞ otherwise. Moreover, we define the α−Rényi entropies
Sα for α > 1 to be given by:

Sα(ρ) = − 1
α− 1 log (tr (ρα)) .

and the von Neumann entropy to be S1(ρ) = S(ρ) = −tr (ρ log(ρ)). Note that we
have:

n ≥ S(ρ) ≥ Sα(ρ).

Let us also set our notation and terminology for random quantum circuits.
Given a distribution τ on the unitary group on n qubits, U(2n), and t ∈ N, we

define G(t)
τ :M2tn →M2tn to be the quantum channel:

G(t)
τ (X) =

∫
U(2n)

U⊗tX
(
U †
)⊗t

dτ.

G(t)
τ is then said to be an ε-approximate t-design [7] if

‖G(t)
τ − G(t)

µG
‖� ≤ ε,

where ‖ · ‖� is the diamond norm and µG is the Haar measure on the unitary
group. Moreover, given C distributed according to τ , we will always denote by ν
the probability measure we obtain by measuring C |0〉 in the computational basis,
i.e.

ν(x) = tr
(
|x〉〈x|C|0〉〈0|⊗nC†

)
for x ∈ {0, 1}n.

3.2 Distinguishing distributions
The total variation is widely accepted as one of the most natural and operationally
relevant measures of distinguishability for two probability distributions. One of
the reasons for that is its dual formulation. One can show that:

‖ν − µ‖TV = 1
2 sup
f∈F

(Eµ(f)− Eν(f)). (6)
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Thus, it quantifies by how much the expectation values of two functions can differ
on the two distributions. Moreover, defining S = {x ∈ {0, 1}n : µ(x) ≥ ν(x)} and
letting χS be the indicator function of S, it is easy to see that:

‖ν − µ‖TV = 1
2(Eµ(χS − χSc)− Eν(χS − χSc)).

That is, we can restrict to differences of indicator functions in Eq. (6).
The total variation distance also has an operational interpretation in terms of

distinguishability of two distributions. Indeed, consider the scenario in which with
probability 1

2 we are given a sample from µ and with probability 1
2 we are given

a sample from ν. Then once can show that the optimal probability of guessing
correctly from which distribution the sample came from is given by

pguess = 1
2[1 + ‖µ− ν‖TV ].

Furthermore, the optimal strategy consists of responding µ if the sample was in S
and ν otherwise. Thus, we see that the total variation distance naturally allows
us to quantify the distinguishability of two distributions in the one-shot setting.
However, if we have access to m samples of the distribution instead of one and
have to distinguish them, then the success probability is then ‖µ⊗m − ν⊗m‖TV .

The characterization given in Eq. (6) can also be used in yet another way to
distinguish probability distributions given access to multiple samples. Suppose
we have a witness function f that the total variation distance between µ and ν is
at least ε, i.e.

|Eµ(f)− Eν(f))| ≥ ε. (7)

We can then use the empirical average w.r.t. to f to distinguish the distributions.
To see why, given samples X1, . . . , Xs from µ and Y1, . . . , Ys from ν, it follows
from Hoeffding’s inequality that:∣∣∣∣∣s−1

s∑
i=1

f(Xi)− Eµ(f)
∣∣∣∣∣ ≤ ε

2 ,
∣∣∣∣∣s−1

s∑
i=1

f(Yi)− Eν(f)
∣∣∣∣∣ ≤ ε

2 (8)

with probability of at least 1− δ as long as

s = O(ε−2 log(δ−1)). (9)

Thus, we can check if the empirical average of the samples is closer to Eµ(f) or
Eν(f) and use this as criterium to chose from which distribution we think the
samples came from. A simple application of the triangle inequality demonstrates
that this strategy will succeed with probability at least 1− δ. Thus, we conclude
from Eq. (9) and the discussion above that as long as ε−2 log(δ−1) = O(poly(n)),
polynomially many samples and evaluations of the function f are sufficient to
certify that two distributions are at least at a certain distance ε in total variation
and distinguish them. Of course, this in no sense discards the possibility that
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finding the distinguishing function f itself or evaluating it may not be possible in
polynomial time.

The discussion above allows us to estimate the number of samples we need to
provide at each round of the game to ensure that the probability of a deviation
greater than ε from the target is upper bounded by 1 − O(δ) for some δ. As
at each round t we have to estimate t expectation values up to ε, obtaining
O(ε−2 log(tδ−t)) samples for each round ensures that the probability one of them
deviates by more than ε is at most δt. By a union bound, the probability that
there was a deviation after T rounds is at most

T∑
t=1

δt ≤ δ

1− δ = O(δ)

for δ ≤ 1
3 . Thus, letting the number of samples per round grow like t log(tδ−1) is

enough to ensure that the probability of an error occurring at some point remains
of order δ.

3.2.1 Discussion on generality of the model

This set of strategies to distinguish probability distributions is closely related
to the statistical queries model [34, 50]. In this model to learn or distinguish
distributions, one is not given access to samples from a distribution ν. Rather,
one is given access to an oracle that is also specified by a precision parameter
ε > 0. When queried with a function f ∈ F , the oracle returns an estimate ef
satisfying |ef − Eν(f)| ≤ ε. Thus, in some sense we can say that in our game it
is Bob’s task to distinguish his distribution from Alice’s in the statistical query
model. However, as discussed in more detail in Appendix E, some of our results
generalize to the case where the distinguishing functions f do not act on one
sample, but rather a block of samples.

Note, however, that this is not the most general model to distinguish two
probability distributions efficiently given samples. Indeed, one could consider
more generally the scenario where we are given polynomially many samples of the
distribution and can act on all of them simultaneously with a function that can
be computed in polynomial time. Proving the impossibility of distinguishing two
distributions in such a scenario is a daunting task, as discussed in more detail in
Appendix E, and is out of reach of the results of this manuscript. Nevertheless,
we stress that our results do apply to the strategies encountered in the literature.

3.3 Mirror descent
Mirror descent with the von Neumann entropy as potential [18, 54] is an optimiza-
tion and learning algorithm to approximate probability distributions efficiently
and in a structured way through a series of Gibbs probability measures. It allows
us to formally connect the problem of distinguishing probability distributions and
learning them. That is, given some target distribution ν on {0, 1}n we wish to
learn, say the output distribution of a given random quantum circuit, mirror de-
scent is an iterative procedure that proposes a sequence of µ0, . . . , µT of guesses
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Algorithm 1 Mirror descent for learning probability distributions.
1: function Mirror descent(T, ε)
2: Set µ0 = U . initialize to the uniform distribution
3: for t = 1, . . . , T = d8S (ν‖U) ε−2e do
4: Demand function ft+1 such that Eµt(ft+1)− Eν(ft+1) ≥ ε
5: if Given ft then

6: Set µt+1(x) = exp(− ε
4
t+1∑
i=1

fi(x))/Zt+1. . Update the guess.
7: end if
8: if no such function exists then
9: Return µt

10: break loop
11: end if
12: end for
13: Return µT and exit function . Current guess is ε indistinguishable from ν
14: end function

for ν. Furthermore, the initial distribution µ0 is the uniform distribution U . The
algorithm requires us to find functions f1, . . . , fT : {0, 1}n → [−1, 1] that allow us
to distinguish µt from ν, i.e.

Eµt(ft+1)− Eν(ft+1) ≥ ε (10)

for some given distinguishability parameter ε > 0. Note that we may assume
without loss of generality that the equation in (10) holds without the absolute
value, as if the inequality holds in the reverse direction we can just pick −ft
instead. One can now appreciate the direct connection between mirror descent
and our verification game. Of course, it is a priori not clear how to find such
functions in a traditional mirror descent application. In the certification game,
this problem is overcome by having the responsibility to provide f on Bob’s side.
Also note that if no function ft exists that satisfies (10), then ‖ν − µt‖TV ≤ ε by
the dual formulation of the total variation distance in eq. (6).

As outlined in Algorithm 1, mirror descent works by updating the probability
measure as:

µt+1 = exp
(
− ε4

t+1∑
i=1

fi

)
/Zt+1, (11)

where

Zt+1 =
∑

x∈{0,1}n
exp

(
− ε4

t+1∑
i=1

fi(x)
)

is the partition function. As we update the distributions, the candidate distribu-
tions µt become closer and closer to the target distribution, as made precise by
the following lemma:
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Lemma 3.1. The distributions µt of the algorithm 1 satisfy:

S (ν‖µt) ≤ −t
ε2

8 + S (ν‖U) , (12)

where U is the uniform distribution.

Eq. (12) is a standard property of mirror descent [18]. We give a simplified
proof and discuss basic properties of this algorithm in Appendix A. Also note that
in principle we can ”recycle” distinguishing functions. That is, if Alice updates
her guess a few times, it could be the case that her distribution µt does not satisfy

Eµt(fi)− Eν(fi) ≤ ε (13)

for some previously disclosed fi. In this case, she can update in terms of fi again
until all previous expectation values also agree. This version of the algorithm is
given in Algorithm 3 of Appendix A.

Exploiting the direct connection between the verification protocol and mirror
descent, we can directly use lemma 3.1 to bound the number of rounds of the
game in terms of S (ν‖U). We then immediately obtain:

Theorem 3.1. The output of algorithm 1 satisfies:

‖µt − ν‖TV ≤ ε (14)

after at most T ≤ b8ε−2S (ν‖U)c+ 1 iterations.

Proof. If we break the algorithm at Line (9), then, by the variational formulation
of the total variation distance we have that Eq. (14) holds.

To see that this must happen after at most b8ε−2S (ν‖U)c+ 1 steps, note that
by Eq. (12) we have the relation

0 ≤ S (ν‖µt) ≤ S (ν‖U)− tε
2

8 . (15)

Thus, a total number of iterations T that is larger than b8ε−2S (ν‖U)c+ 1 would
contradict the positivity of the relative entropy.

Note that Eq. (15) ensures that we make constant progress in relative entropy
at each iteration of the algorithm. Theorem 3.1 implies that if Bob provides a
sequence of functions f1, . . . , fT+1 that allow distinguishing ν from the sequence
µ0, . . . , µT of at most O(ε−2S (ν‖U)) distributions up to an error ε, then we can
also find a distribution that is ε close to it in total variation distance. Furthermore,
as we will show later, it is possible to use this connection to the relative entropy
to quantify the effect of noise on the complexity of learning the distribution.
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3.4 Rejection sampling
Let us now show one way how to generate samples from µt and the underlying
complexity. We will use the standard technique of rejection sampling described
in Algorithm 2.

We refer to [Appendix B.5][38] for a brief review of its properties. In rejection
sampling we sample indirectly from a target distribution µt by first generating
a sample x from an easy to sample distribution γ(x) and accepting the sample
with probability µt(x)/(Mγ(x)), where M is a constant such that the ratio is
bounded by 1. It is a standard fact that rejection sampling will output a sample
from µt after M runs in expectation, as the probability of rejection follows a
geometric distribution with parameter M−1. In the case of Gibbs distributions
µt = exp(−Ht)/Zt, where

Ht(x) = ε

4

t∑
i=1

fi(x),

a common choice for γ is the uniform distribution and Mt = 2n
Zt , where Zt is once

again the partition function. Note that for this choice of Mt, we have that:

µt(x)
MtU(x) = e−Ht(x) ≤ 1,

as we may assume without loss of generality that Ht(x) ≥ 0 for all x ∈ {0, 1}n.
In particular, note that with this choice, we never have to compute the partition
function Zt to run rejection sampling, only Ht(x). Thus, we conclude that the
complexity of running one round of rejection sampling is the same as computing
Ht(x). Let us now estimate how many rounds are required in expectation before
we accept a sample:

Lemma 3.2 (Sampling from µt). Let µt be the guess at iteration t of Algorithm 1.
Running rejection sampling with the uniform distribution as γ and Mt = 2n

Zt re-
turns a sample from µt after at most e

ε
4 t trials and evaluations of Ht, in expecta-

tion.

Algorithm 2 Rejection sampling.
Require: ability to generate samples from distribution γ on {0, 1}n, distribution µt on
{0, 1}n, constant M such that µt(x)

Mγ(x) ≤ 1, ability to compute µt(x)
Mγ(x) and samples from

U([0, 1]).
1: function Rejection sampling(M)
2: Sample u distributed according to U([0, 1]) and x distributed acoording to γ.
3: if u ≤ µt(x)

Mγ(x) then
4: Output x
5: end if
6: end function
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Proof. Note that by our previous discussion the expected number of trials is
Mt = 2n

Zt . By construction, ft are functions with image [−1, 1]. Thus, it follows
from a triangle inequality that:

‖Ht‖∞ ≤
ε

4

t∑
i=1
‖fi‖∞ ≤

tε

4 .

This implies that

Zt =
∑

x∈{0,1}n
exp(−Ht(x)) ≥ 2ne−

ε
4 t.

We conclude from the last inequality that

Mt = 2n

Zt
≤ e

ε
4 t

which yields the claim.

We see that as long as εt = O(log(n)), then we can sample from µt in a
polynomial expected number of trials and evaluations of Ht.

In practice, rejection sampling is not necessarily the most efficient way of
simulating probability distributions and other techniques to sample from a Gibbs
distribution such as Glauber dynamics or simulated annealing [38] perform better.
However, rejection sampling allows for a simple analytical analysis, which is more
challenging for more refined techniques.

4 Random quantum circuits
Let us now discuss the implications to the verification of quantum advantage
proposals based on sampling the output distribution of random circuits. The key
technical assumption behind various state-of-the-art classical hardness proofs for
quantum advantage proposals is the property that the underlying ensemble is an
approximate two design [28]. Thus, we will also depart from this assumption. We
then have:

Lemma 4.1. Let ν be the probability distribution of the outcome of a random
quantum circuit on n qubits stemming from a 2−2n−1-approximate two design.
Then, with probability at least 1− δ, we have:

S(ν) ≥ n− [log(1/δ) + log(3)] .

Proof. We refer to Prop. C.1 in Appendix C for a proof.

Similar statements were shown in [29, 2]. From this, we have:

Theorem 4.1 (Distinguishing output distributions and classical simulability).
Let ν be the probability distribution of the outcome of a random quantum circuit
on n qubits stemming from a 2−2n−1-approximate two design and ε > 0 be given.
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Suppose that we can distinguish ν from a sequence µ1, . . . , µT of distributions that
can be sampled from in polynomial time. Moreover, we can distinguish them by
functions f1, . . . , fT that can be evaluated in polynomial time. That is:

∀1 ≤ t ≤ T : Eµt(ft)− Eν(ft) ≥ ε. (16)

with ft computable in polynomial time. Then, with probability at least 1 − δ, we
can find distributions µt satisfying:

‖ν − µt‖TV =
√

2
(

log(3) + log(1/δ)− tε
2

8

)
(17)

and sample from it in time O(e
c
ε poly(n)) = O(poly(n)). In particular, if T =

O(ε−2), then the output distribution µT will also be ε close in total variation
distance to the target.

Proof. As stated in Lemma 4.1, we have that with probability at least 1− δ

S(ν) ≥ n− [log(3) + log(1/δ)] .

Conditioned on the event above, it follows from Thm. 3.1 that mirror descent
outputs a distribution satisfying Eq. (17) after at most

8ε−2 (log(3) + log(1/δ))

iterations, or equivalently after that many game rounds. Now, at each iteration t
of mirror descent, we need a function satisfying Eq. (16). Moreover, we have that
µt ∝ exp

(
−ε/4

∑
i
fi

)
. Thus, if all the fi can be computed in polynomial time,

then it follows from Lemma 3.2 that we can also sample from µt using rejection
sampling in polynomial time. This is because Lemma 3.2 implies that we need at
most

exp
(2(log(3) + log(1/δ))

ε
+ ε

4

)
rejection sampling rounds, in expectation. As each round of rejection sampling
requires us to evaluate the functions fi once and we suppose that they can be
evaluated in polynomial time, this gives the claim.

Therefore, if Bob provides for every proposed distribution µt of Alice a poly-
time computable function ft that distinguishes it from ν, after at most a con-
stant number of rounds Alice will be sampling efficiently from an approximate
distribution. It is interesting to point out that the certification game and the
sampling of Alice remains efficient, even if we relax the condition of Lemma 4.1
to S(ν) ≥ n−O(log(n)) or request ε to decrease with the size n of the quantum
device with scaling ε = O(log(n)−1).

A direct consequence of our result is that if the hardness conjecture of random
quantum circuits is true, then Bob must fail to provide a certification function
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that is efficiently computable at some stage of the certification game. A natural
question would then be to ask at which stage Bob will fail to provide such a
function. In the following section, we will prove that if the XHOG conjecture [5]
is correct, Bob must fail at the first round of the game, i.e., even distinguishing the
output distributions from the uniform distribution cannot be done in polynomial
time.

We note that these results have important differences from the results in [2,
Appendix 11]. There the authors show the existence of a high min-entropy dis-
tribution that can be sampled from classically and is indistinguishable from the
random quantum circuit by classical circuits of polynomial size. This is because
in our case we have the guarantee of a good approximation in total variation
distance, i.e. the distributions are indistinguishable under any function after a
couple of iterations. Another difference is that, given the distinguishing functions,
our framework allows for finding the probability distribution that approximates
the random circuit. Moreover, if the distinguishing functions are given and can be
computed efficiently, then the outcome distribution can also be sampled from effi-
ciently. However, to the best of our knowledge, the aforementioned result does not
give an algorithm to find such an approximate distribution. Finally, our frame-
work allows us to work with the Shannon entropy instead of the min-entropy. The
min-entropy is notoriously more difficult to bound and always smaller than the
Shannon entropy.

5 Distinguishing from the uniform distribution
To the best of our knowledge, the state-of-the-art approach for the verification
of quantum advantage proposals based on random circuit sampling is the linear
cross-entropy heavy output generation problem (XHOG) [5], which is closely re-
lated to the linear cross-entropy benchmarking (linear XEB) fidelity FXEB [45,
13, 8]. The XHOG refers to the problem of, given some circuit C, generating
distinct samples z1, . . . , zk such that:

Ei
[
|〈zi|C|0n〉|2

]
≥ b/2n (18)

for some b > 1 with probability at least s = 1
2 + 1

2b and k satisfying:

k ≥ 1
((2s− 1)b− 1)(b− 1) . (19)

Note that, given the samples z1, . . . , zk, verifying that they indeed satisfy eq. (18)
requires us to compute the probability of the outcomes under the ideal circuit.
In turn, the linear cross-entropy fidelity for a distribution µ, FXEB(µ), as defined
in [45, 13, 8], is given by:

FXEB(µ) = 2nEµ (ν)− 1, (20)

where we interpreted the probability distribution ν as a function on {0, 1}n that
outputs the corresponding probability ν(x). The linear cross-entropy can also be

Accepted in Quantum 2022-01-22, click title to verify. Published under CC-BY 4.0. 20



formulated as

FXEB(µ) = 2nEµ (fν)− 1,

where fν is given by fν(x) = 2nν(x). Although such a function does not imme-
diately fit our framework, as it may take values higher than 1, in Appendix B we
show how to approximate it by a bounded function. The underlying intuition is
that as ν is very flat for random quantum circuits, for very few inputs the function
f will take values that are not of constant order. Thus, as long as the measure
µ is not too concentrated on strings of high value, it is possible to cut-off the
function f without significantly changing the expectation value.

A simple manipulation then shows that samples zi from µ satisfy

Ei
[
|〈zi|C|0n〉|2

]
≥ 1 + FXEB(µ)

2n .

In [5], the authors relate the complexity of computing outcome probabilities of
random quantum circuits to the XHOG problem. More precisely, the authors
start by assuming that there is no polynomial-time classical algorithm that takes
as input a (random) quantum circuit C and produces an estimate p of p0 =
P[C outputs 0] such that

E
[(
p0 − 2−n

)2] = E
[
(p0 − p)2

]
+ Ω

(
2−3n

)
.

where the expectations are taken over circuits C as well as the algorithm’s in-
ternal randomness. They then show that this conjecture implies that there is no
polynomial time algorithm that solves the XHOG problem. As the verification
of XHOG requires us to estimate the outcome probabilities, this path to proving
and verifying the hardness of the sampling task also implies that XHOG is not
verifiable in polynomial time.

But the hardness of XHOG imposes barriers to even more basic verification
tasks. As we will see now, the hardness of XHOG would imply that it is impossible
to efficiently distinguish the output from the circuit from the uniform distribu-
tions. In turn, efficient distinguishability implies a polynomial time algorithm to
spoof XHOG. Therefore, Bob will have to resort to verification strategies that
take superpolynomial time to demonstrate a quantum advantage in our game.
It should not be surprising that fooling XHOG is related to distinguishing from
the uniform distribution, as both tasks require us to identify higher-than-average
probability strings. What is particular to the case of random circuits is the
fact that distinguishing implies we can also sample from a distribution that fools
XHOG. The proof of the statement will once again rely on the fact that the out-
put distribution is essentially flat. We will start by showing that any distribution
with large 2−Rényi entropy cannot have small sets of large mass in the following
sense:

Lemma 5.1. Let ν be a probability distribution on {0, 1}n such that S2(ν) ≥
n − log(c) for some constant c > 0. Then, for any ε > 0 and subset L ⊂ {0, 1}n
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we have that

ν(L) =
∑
x∈L

ν(x) ≥ ε

implies that

|L| ≥ ε2c−12n.

Proof. Note that the condition S2(ν) ≥ n− log(c) is equivalent to∑
x∈{0,1}n

ν(x)2 ≤ c2−n. (21)

Moreover, we have

∑
x∈{0,1}n

ν(x)2 ≥
∑
x∈L

ν(x)2 ≥ ε2

|L|
. (22)

To see the last inequality, note that, by the concavity of the function x 7→ x2,

1
|L|

∑
x∈L

ν(x)2 ≥
(

1
|L|

∑
x∈L

ν(x)
)2

≥ ε2

|L|2
.

Combining (22) with (21) we conclude that:

ε2

|L|
≤ c2−n,

which yields the claim after rearranging the terms.

It then immediately follows that:

Lemma 5.2. Let f : {0, 1}n → {0, 1} be a function that for some ε > 0 satisfies:

Eν(f)− EU (f) ≥ ε, (23)

where ν is the outcome distribution of a random quantum circuit stemming from
a 2−2n−1-approximate two design on n qubits. Let

L = {x ∈ {0, 1}n : f(x) = 1}.

Then, with probability at least 1− δ,

|L| = Ω
(
ε2δ2n

)
. (24)

and

1
|L|

ν(L) ≥ 1
2n + ε

|L|
≥ 1 + ε

2n . (25)
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Proof. First note that Eq. (23) is equivalent to

ν(L) ≥ |L|2n + ε

and, in particular, ν(L) ≥ ε. Moreover, Eq. (25) readily follows by dividing the
equation above by |L|. As we show in Prop. C.1 in Eq. (47) that with probability
at least 1− δ

S2(ν) ≥ n− log(3) + log(δ). (26)

Conditioned on Eq. (26), it follows from Lemma 5.1 that

|L| ≥ cε2δ2n (27)

for some constant c > 0, which yields Eq. (24).

We restricted the result above to functions with binary outputs to simplify
the arguments, but we show in Appendix D that this can be done without loss
of generality. That is, given a function f that distinguished the distributions for
ε and range [−1, 1], there always exists some f ′ that is binary and has the same

properties and distinguishes the distribution up to ε2

17 .
If the function f in Lemma 5.2 can computed in polynomial time, then we can

use it to fool XHOG in polynomial time:

Theorem 5.1 (From distinguishing to fooling XHOG). Let f as in Lemma 5.2
for some ε > 0. Moreover, let U(L) be the uniform distribution on L. Then we can
sample from U(L) by evaluating f a total of O(ε−2) many times, in expectation.
Moreover, samples from U(L) violate HOG up to ε.

Proof. Let us start with the statement that samples from U(L) violate XHOG up
to at least ε. To see this, note that:

Eν (U(L)) =
∑
x∈L

ν(x)
|L|
≥ 1 + ε

2n

by Eq. (25), where with some abuse of notation we see U(L) as a function that
outputs the probability of x under U(L) given x. To sample from U(L), we
can once again resort to a variation of rejection sampling. We sample a point
x1 ∈ {0, 1}n from the uniform distribution and compute f(x1). If f(x1) = 1, we
output x1. If not, we rerun this procedure with a new sample x2. It is easy to see
that when we accept, xi is uniformly distributed on L. Moreover, the probability
of accepting is L

2n . By Eq. (27), it then follows that the probability of accepting
is at least Ω(ε2), from which we obtain that the expected number of rounds is
O(ε−2). As for each round we have to evaluate f once, the claim follows.

It follows that if we can efficiently distinguish the output from the uniform
distribution, then we can fool XHOG. In particular, it would follow from the
conjectures of [5] that it is not possible to distinguish the output of random
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circuits from the uniform distribution for ε at least inverse polynomial in n in
polynomial time if XHOG cannot be solved in polynomial time.

Note that the results of this section only required the property that the un-
derlying random circuit ensemble is a two design. However, it is well-known that
random Clifford unitaries also are two designs and can still be simulated efficiently
classically. It is then natural to ask if finding a function distinguishing the output
of a random Clifford from the uniform distribution can be found in polynomial
time. As we show in Appendix F, for random Cliffords, the function can be found
and be computed in polynomial time.

6 Noisy devices
Most of the current implementations of quantum circuits have high levels of noise.
In principle, highly correlated noise can make simulating the quantum device clas-
sically even more complex [36]. However, in other contexts, as demonstrated for
boson sampling [49], noise can render the simulation significantly less complex.
Here, we show that in the scenario of doubly stochastic Markovian noise, i.e.,
quantum channels that map the maximally mixed state to itself, the noise dimin-
ishes the complexity of approximating the underlying distribution being sampled
from. To see what we mean, let us go back the game described in Section 2.
There we considered Bob to have a quantum advantage and win the game if he
could find functions f1, . . . , ft whose expectation values under his distribution
Alice cannot reproduce classically. However, suppose now that Bob’s device is
affected by noise, say a global depolarizing channel with parameter 0 ≤ p ≤ 1.
One would then expect that as p → 1, it should be easier for Alice to reproduce
the statistics of Bob’s device and win the game. As we show below, if Alice once
again uses mirror descent to find her candidate distributions, then the algorithm
will converge faster to a distribution that reproduces the statistics of Bob’s dis-
tribution as the level of noise increases. For example, for MAXCUT, this will
also make it easier for her to sample from the distribution mirror descent pro-
poses, as a smaller number of iterations implies not having to go down to lower
temperatures.

6.1 Strong data processing inequalities and mirror descent
Let us first recall the following definition:

Definition 6.1 (Strong data processing inequality). A doubly stochastic quantum
channel T : Md →Md (i.e. a CPTP map satisfying T (I) = T ∗(I) = I) is said
to satisfy a strong data processing inequality with contraction α > 0 w.r.t. I

d if
for all states ρ we have:

S

(
T (ρ)‖I

d

)
≤ (1− α)S

(
ρ‖I
d

)
.

Strong data processing inequalities for doubly stochastic can be derived using
the framework of hypercontractivity and logarithmic Sobolev inequalities [33, 43,
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44, 31, 9] and are known explicitly in some cases. See also [11] for another ap-
proach. As shown by other works [6, 10, 42, 23], strong data processing can be
used to quantify how useful a noisy quantum device is and for how long it can
sustain interesting computations.

Let us illustrate the strong data processing inequality with an example. Let
Φp : M2 → M2 be the depolarizing channel on one qubit with depolarizing
parameter p, i.e.

Φp(ρ) = (1− p)ρ+ p
I

2 .

The authors of [43] show that:

S

(
Φ⊗np (ρ)‖ I2n

)
≤
(
1− 2p+ p2

)
S

(
ρ‖ I2n

)
and similar results are available for other relevant noise models. In particular,
optimal inequalities have been derived in [33, 44] for tensor products of single
qubit, doubly stochastic channels.

Suppose now that the noisy circuit of interest consists of n qubits initialized
to |0〉⊗n, D layers of unitaries U1, U2, . . . , UD and measurement in the compu-
tational basis. However, due to imperfections in the implementation, the state
initialization, the measurements and the unitaries are noisy. We will model this by
assuming that every layer of unitaries is proceeded by a layer of doubly stochastic
quantum channel Φ that satisfies a strong data processing inequality α. Moreover,
we will assume that the measurement is also affected by an extra noisy channel
Φ. We only make these assumptions to simplify the notation and argument, but
it is easy to adapt the argument to different channels at different times and dif-
ferent noise rates. Under the assumptions above, the probability distribution ν
describing the outcomes of the noisy device is given by:

ν(i) = tr
(
|i〉〈i|T (|0〉〈0|⊗n)

)
= tr

(
|i〉〈i|(M ◦ Φ ◦ UD ◦ Φ ◦ . . . ◦ U1 ◦ Φ(|0〉〈0|⊗n)

)
,

(28)

where Ui is the channel given by conjugations with Ui and M is the q.c. channel

M(ρ) =
2n−1∑
i=0

tr (ρ|i〉〈i|) |i〉〈i|

and

T (|0〉〈0|⊗n) = (M ◦ Φ ◦ UD ◦ Φ ◦ . . . ◦ U1 ◦ Φ(|0〉〈0|⊗n).

We then have that if we want to approximate the values of k functions, then
the number of iterations of mirror descent T required to achieve that decreases
exponentially with the noise level. More precisely:

Theorem 6.1. Let ν be the distribution defined in Eq. (28), ε > 0 and assume
Φ satisfies a strong data processing inequality with parameter α. Given functions
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f1, . . . , fk : {0, 1}n → [−1, 1], mirror descent will converge to a distribution µt
satisfying:

|Eν(fi)− Eµt(fi)| ≤ ε

for all 1 ≤ i ≤ k in at most T = O(ε−2(1−α)D+1n) iterations. Moreover, we can
sample from µt by evaluating f1, . . . , fk at most

exp
(

4(1− α)D+1n

ε

)

times.

Proof. Mirror descent will converge to a distribution with the desired properties
after 8ε−2S (ν‖U) iterations, see Prop. A.1 for a proof. Moreover, by Lemma 3.2,
the complexity of sampling from µ is bounded by

exp
(4S (ν‖U)

ε

)
evaluations of the functions fi. Thus, the statement follows if we can bound the
relative entropy of the outcome. Note that:

S (ν‖U) = S

(
T (|0〉〈0|⊗n)‖ I2n

)
,

as the maximally mixed state gives rise to the uniform distribution when measured
in the computational basis. By the data processing inequality:

S

(
T (|0〉〈0|⊗n)‖ I2n

)
≤ S

(
Φ ◦ UD ◦ Φ ◦ . . . ◦ U1 ◦ Φ(|0〉〈0|⊗n)‖ I2n

)
and by our assumption on Φ:

S

(
Φ ◦ UD ◦ Φ ◦ . . . ◦ U1 ◦ Φ(|0〉〈0|⊗n)‖ I2n

)
≤ (1− α)S

(
UD ◦ Φ ◦ . . . ◦ U1 ◦ Φ(|0〉〈0|⊗n)‖ I2n

)
.

The relative entropy is unitarily invariant, thus:

(1− α)S
(
UD ◦ Φ ◦ . . . ◦ U1 ◦ Φ(|0〉〈0|⊗n)‖ I2n

)
= (1− α)S

(
Φ ◦ . . . ◦ U1 ◦ Φ(|0〉〈0|⊗n)‖ I2n

)
.

Applying the chain of arguments above another D times we conclude that:

S

(
T (|0〉〈0|⊗n)‖ I2n

)
≤ (1− α)D+1S

(
|0〉〈0|⊗n‖ I2n

)
= (1− α)D+1n,

which yields the claim.

Thus, we see that the complexity of approximate sampling from the output
of noisy circuits decreases exponentially with the noise level and depth. For
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instance, for circuits with local depolarizing noise with parameter p and depth D,
the theorem above gives a complexity of:

exp
(

4(1− p)2D+2n

ε

)
. (29)

evaluations of the distinguishing functions. Thus, we see that our framework has
the desirable feature that it becomes easier for Alice to mock Bob’s device as the
noise increases. Unfortunately, the scaling with n in the bound above is unde-
sirable for high-entropy distributions. Thus, we plan to derive more specialized
bounds in upcoming work.
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A Basic properties of mirror descent with the Shannon entropy
as potential
In this section we review some basic properties of the mirror descent algorithm
with the Shannon entropy as potential. We start with a simple proof of the update
rule behind mirror descent in Lemma A.1. It shows how to obtain a Gibbs state τ1
that is closer in relative entropy to a target distribution ν departing from a Gibbs
state τ0 and a function that distinguishes the latter from the target distribution.

Accepted in Quantum 2022-01-22, click title to verify. Published under CC-BY 4.0. 32

https://doi.org/10.1103/physrevlett.127.180501
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1016/j.scib.2021.10.017


Lemma A.1. Let ν be a probability distribution on n bits and ε > 0. Fix a
function H0 : {0, 1}n → R and let τ0 = e−H0/Z0. Suppose that for some other
(bounded) function f : {0, 1}n → [−1, 1] we have:

Eτ0(f)− Eν(f) ≥ ε. (30)

Set H1 = H0 + ε
4f . Then, the Gibbs state τ1 = e−H1/Z1 obeys

S(ν‖τ1)− S(ν‖τ0) ≤ −ε
2

8
Proof. We have:

S(ν‖τ1)− S(ν‖τ0) = Eν [H1 −H0] + ln
(Z1
Z0

)
(31)

By construction, H1−H0 = ε
4f and the first term equals ε

4Eν(f). The logarithmic
ratio can be bounded using Jensen’s inequality:

ln
(Z1
Z0

)
= − ln

(
Eτ1

[
e
ε
4f
])
≤ −Eτ1

[
ε

4f
]
,

as the function − log(x) is convex. It then follows that

Eν [H1 −H0] + ln
(Z1
Z0

)
≤ ε

4 (Eν [ f ]−Eτ1 [f ]) . (32)

We will now show that the expectation values of f on the distributions τ1 and τ0
are O(ε) close. We can then replace the expectation value over τ1 by only paying
a small price and then use our hypothesis in Eq. (30).

To that end, a direct computation shows that

S (τ0‖τ1) = ε

4Eτ0(f) + ln
(Z1
Z0

)
. (33)

As in Eq. (32), we then can estimate the second term by:

S (τ0‖τ1) = ε

4Eτ0(f) + ln
(Z1
Z0

)
≤ ε

4 (Eτ0(f)− Eτ1(f)) . (34)

By Pinsker’s inequality:

(Eτ0(f)− Eτ1(f))2 ≤ 2S (τ0‖τ1) ≤ ε

2 (Eτ0(f)− Eτ1(f)) .

As (Eτ0(f)− Eτ1(f)) ≥ 0 (see Lemma A.2 below for a proof) this yields

(Eτ0(f)− Eτ1(f)) ≤ ε

2 .

We then see that:
ε

4 (Eν [ f ]−Eτ1 [f ]) ≤ ε

4

(
Eν [f ]− Eτ0 [f ] + ε

2

)
.
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Algorithm 3 Mirror descent for reproducing expectation values.
Require: Expectation value of functions f1, . . . , fk : {0, 1}n → [−1, 1] with respect to prob-

ability measure ν on n bits.
1: function Mirror descent(T, ε)
2: Set µ0 = U . initialize to the uniform distribution
3: for t = 1, . . . , T = d8S (ν‖U) ε−2e do
4: Check if |Eµt(fi)− Eν(ft)| ≤ ε for all 1 ≤ i ≤ k.
5: if Given that for a fi we have |Eµt(fi)− Eν(ft)| ≥ ε then
6: if Eµt(fi)− Eν(ft) ≥ ε then
7: Set µt+1(x) = exp(− ε

4fi(x) + log(µt))/Zt+1. . Update the guess.
8: else if Eµt(fi)− Eν(ft) ≤ −ε then
9: Set µt+1(x) = exp( ε4fi(x) + log(µt))/Zt+1. . Update the guess.

10: end if
11: else if For all |Eµt(fi)− Eν(ft)| ≤ ε then
12: Return µt
13: break loop
14: end if
15: end for
16: Return µT and exit function . Current guess is ε indistinguishable from ν
17: end function

By our assumption in Eq. (30) we may then bound the right hand side in Eq. (32)
by − ε2

8 and finally obtain:

S(ν‖τ1)− S(ν‖τ0) = Eν [H1 −H0] + ln
(Z1
Z0

)
≤ −ε

2

8 .

The claim follows.

With this Lemma at hand, we can then show that mirror descent will converge
to a probability distribution approximating the expectation values of a given set
of functions with respect to a probability measure. We will now show that mirror
descent allows for recovering the expectation values of a set of functions and also
give guarantees as to how well we approximate the distribution globally.

We then have:

Proposition A.1 (Mirror descent converges). Algorithm 3 returns a probability
measure µt that satisfies

|Eµt(fi)− Eν(ft)| ≤ ε (35)

for all 1 ≤ i ≤ k after at most t ≤ d8S (ν‖U) ε−2e iterations. Moreover, µt
satisfies

‖µt − ν‖TV ≤

√
2
(
S (ν‖U)− tε2

8

)
. (36)
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Proof. If we exit the algorithm at line 12, then the output satisfies Eq. (35)
by definition. Thus, it only remains to prove that this is indeed the case after
8dS (ν‖U) ε−2e iterations. But note that Lemma A.1 and the update rules of
Algorithm 3 ensure that we have:

S(ν‖µt+1)− S(ν‖µt) ≤ −
ε2

8

for all t. Applying a telescopic sum and our initial choice µ0 = U we see that

S (ν‖µt) ≤ S (ν‖U)− tε
2

8 (37)

and the claim on the number of iterations follows from the positivity of the relative
entropy. The claim in Eq. (36) follows from Eq. (37).

Finally, let us prove for completeness the following standard fact that we used
in the proof of Lemma A.1:

Lemma A.2. Let τ0 = e−H0
Z0

be an arbitrary Gibbs probability measure on n bits
and for a function f : {0, 1}n → [−1, 1] define for λ > 0 the Gibbs probability
measure

τλ = e−H0−λf

Zλ
.

Then g : λ 7→ Eτλ(f) is a monotone decreasing function.

Proof. The proof is quite standard and simple. It is easy to check that:

d

dλ
g(λ) = −(Eτλ(f2)− Eτλ(f)2),

which is the negative of the variance of the function f under τλ. Thus, we clearly
have that d

dλg(λ) ≤ 0 and the claim follows.

B Distinguishing function from the linear cross-entropy
At first sight, the current verification procedures for random circuits, the linear
cross-entropy benchmark or the heavy output generation problem, do not readily
fit into our framework. As we will see now, this is not defined as the expectation
value of a bounded function. Indeed, define the function

f(x) = 2nν(x)− 1

where ν(x) is the probability of string x under ν, the output of the ideal circuit.
We have that the linear cross-entropy is given by

FXEB(µ) = Eµ (f)− 1. (38)
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In principle, the function f could take values between [−1, 2n−1], whereas our
framework required the distinguishing functions to take values in [−1, 1]. However,
we will now show that by suitably discarding high values of f and restricting µ to
a suitable set of distributions, we can massage the linear cross-entropy into our
framework. That is, we will find a bounded function fr that approximates FXEB.
Once again, the main property required to show this is the fact that random
quantum circuits have very flat outcome distributions.

To prove our claims, we will first assume that the distribution of probabilities
of the outcomes is well-approximated by a Porter-Thomas distribution, as ex-
plained in detail below. We refer to [13] for a justification of this assumption and
numerical evidence of its validity. It is possible to obtain similar but weaker re-
sults departing from the assumption that the output is an approximate 3-design.
However, for the sake of conciseness, we will restrict to the Porter-Thomas distri-
bution.

The Porter-Thomas assumption is an approximation of the probability that a
given outcome string x will have for a family of quantum circuits. More specifi-
cally, it assumes that for all strings x, the random variable corresponding to the
value of ν(x) under this family of random quantum circuits follows the density κ
given by

κ(p) = 2ne−p2n . (39)

It is not difficult to see that this distribution is highly concentrated around its
mean, 2−n, and that its variance is 2−2n, as it corresponds to an exponential
distribution with parameter 2−n.

We then have:

Proposition B.1. Let ν be the output of a random quantum circuit on n qubits
and assume that the density of outcomes is given by a Porter-Thomas distribution
with parameter 2−n, as in Eq. (39). For a parameter r ≥ 1 define fr : {0, 1}n →
[−1, 1] as

fr(x) = r−1(min{2nν(x), r} − 1).

Then for another distribution µ satisfying for some constant C > 0

µ(x) ≤ Cν(x) (40)

almost surely for all x such that ν(x) ≥ r2−n we have:

E [|FXEB(µ)− rEµ(fr)|] ≤ Ce−r(2 + r). (41)

where the expectation is taken over the circuits.

Proof. By the definition of fr(x) we have that

E [|FXEB(µ)− rEµ(fr)|] = E

 ∑
x:ν(x)≥ r

2n

(2nν(x)− r)µ(x)

 .
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By our assumption on the distribution in Eq. (40) we have that

E

 ∑
x:ν(x)≥ r

2n

(2nν(x)− r)µ(x)

 ≤ CE
 ∑
x:ν(x)≥ r

2n

(2nν(x)2 − rν(x))

 .
Furthermore, by the assumption that the probability of the output strings follows
a Porter-Thomas distribution, we conclude that:

E

 ∑
x:ν(x)≥ r

2n

(2nν(x)2 − rν(x))

 =
+∞∫
r

2n

22ne−2nx(2nx2 − rx)dx = e−r(2 + r),

which yields the claim.

Thus, we see that for distributions that do not differ too much from the dis-
tribution of the outcome of the random circuit in the sense of Eq. (40), FXEB can
be approximated in our framework. By picking a cut off at log(ε−2) we ensure
that the difference between the truncated fr and FXEB only differ by O(ε).

Let us now discuss the condition in Eq. (40) in more detail. The condition
in Eq. (40) has a natural interpretation for the problem at hand. The goal of
Prop. B.1 is to identify conditions under which FXEB is well-approximated by a
bounded function. However, if a probability measure µ only satisfies Eq. (40) for
large values of C, it means it assigns high probability outcomes of ν even more
weight than ν. This in turn will yield higher values for FXEB(µ). However, for
outcome distributions that are not strongly concentrated on heavy outcomes, we
expect Eq. (40) to hold for moderate values of C. For instance, for the uniform
distribution the condition holds with C = 1.

However, it is possible to construct distributions that converge to the true
distribution in total variation and for which FXEB(µ) diverges. At the same time,
it is possible to construct distributions that are a constant distance away from
the ideal distribution in total variation, do not satisfy Eq. (40) and nevertheless
satisfy FXEB(µ) = FXEB(ν). We will give the explicit constructions of these
distributions shortly. But they showcase that in principle there is no connection
between FXEB(µ) and the total variation distance between µ and ν.

Both constructions will exploit the fact that the FXEB is unbounded, as ex-
pected. Indeed, if the benchmark we were using were bounded, then at least
we can always conclude from a convergence in total variation distance that the
expectation values also have to converge.

Thus, we believe that these examples showcase why we cannot expect that
FXEB can always be captured in our framework. Whereas our framework is in-
timately connected to the the two distributions being close in total variation
distance, this is not the case for similar linear cross entropy. This was also ob-
served in [24], where the authors give additional arguments why the linear cross
entropy is not connected with the total variation distance or fidelity in general.

Example B.1 (Distributions close in total variation distance but diverging FXEB).
To construct our examples, observe that it follows from the Porter-Thomas as-
sumption in Eq. (39) that for some given c1 < 1, we expect 2(1−c1)n strings to have

Accepted in Quantum 2022-01-22, click title to verify. Published under CC-BY 4.0. 37



probability at least c1n2−n. Indeed, the expected number of strings with probability
at least c2n2−1 is:

2n
∫ ∞
c1n2−n

2ne−p2ndp = 2(1−c1)n.

Now define

Bc1 = {x ∈ {0, 1}n : ν(x) ≥ c1n2−n}

and let UBc1
be the uniform distribution on Bc1. Further define the distribution

µc1 =
(

1− 1√
n

)
ν + 1√

n
UBc1

.

Clearly, ‖µc1−ν‖TV = O(n−
1
2 ). However, FXEB(µc1) = Ω(

√
n), as FXEB(UBc1

) =
Ω(n) by definition.

Example B.2 (Distributions far away in total variation distance but FXEB is
similar). To construct this example, we will resort to the same distribution as
above. Let a = FXEB(UBc1

). Again, by the definiition of Bc1, a ≥ c1n − 1. Now
let µ′c1 be defined as

µ′c1 = (1− 1/a)U + 1
a
UBc1

. (42)

Using the fact that FXEB(U) = 0, by the linearity of FXEB we get that FXEB(µ′c1) =
1, which is the expected value for ν. Thus the value of FXEB coincides for both
distributions. But a reverse triangle inequality together with the fact that ‖ν −
U‖TV = Ω(1) shows that

‖µ′c1 − ν‖TV = Ω(1). (43)

In spite of the limitations of the FXEB showcased above, for the uniform distri-
bution the situation is less complicated. As the uniform distribution corresponds
to the guess in the first round of the game and deserves a detailed analysis, we
will now directly compute by how much a suitably cut-off and normalized linear
cross-entropy allows for distinguishing the output of the random quantum circuit
from the uniform distribution.

Proposition B.2. Let fr and ν as in the statement of Prop. B.1 and U be the
uniform distribution on n bits. Then we have for r ≥ 1:

E [Eν(fr)− EU (fr)] = 1− e−r(1 + 2r)
r

(44)

where the first expectation value is taken over the random quantum circuits.
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Proof. The proof is similar to the last proposition. We have that:

E [Eν(fr)− EU (fr)] =∑
x:ν(x)≤ r

2n

r−1ν(x)2n
(
ν(x)− 1

2n
)

+ (1− r−1)
∑

x:ν(x)> r
2n

(
ν(x)− 1

2n
)
.

Taking the expectation, the first sum above translates to the integral

r−1

r
2n∫
0

22ne−2nx2nx
(
x− 1

2n
)
dx = r−1

(
1− e−r(1 + r2 + r)

)
, (45)

whereas the second translates to

(1− r−1)
+∞∫
r

2n

22ne−2nx
(
x− 1

2n
)
dx = (1− r−1)re−r. (46)

Summing the two expressions yields the claim.

It is not immediately obvious how to maximize the expression in Eq. (44)
analytically, but numerically solving it we see that it is around r ' 3.21, for which
we obtain a violation of ' 0.22. As the expected total variation distance is 1/e '
0.36 [13] under the Porter-Thomas assumption, we see that this function is not far
from the optimal distinguishing function. Thus, Bob could propose the function
f3.21 to distinguish the distribution of his device and the uniform distribution in
the ideal case. Of course, as evaluating f3.21 requires us to compute outcome
probabilities, this is not an efficient distinguishing function. But the results of
this section showcase that the linear cross-entropy fits into our framework by
introducing a suitable cut-off as long as the underlying distribution does not put
too much additional weight on heavy outputs.

C Bound on the Shannon entropy from design property
We will now show that the Shannon entropy of the output distributions of ap-
proximate two designs when measured in the computational basis is essentially
maximal. This result is similar in spirit to those of [2, 29].

Proposition C.1. Let U be a (2, ε2−2n−1) approximate unitary design and define
ν as before. Then, with probability at least 1− δ:

S(ν) ≥ n− log(2 + ε)− log(δ−1)

Proof. For a Haar random unitary and x ∈ {0, 1}n we have that:

E
(
|〈x|U |0〉|2

)
= 1

2n , E
(
|〈x|U |0〉|4

)
= 2

2n(2n + 1) .
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Thus, for an approximate two design as above, we have that:

E
(
|〈x|U |0〉|4

)
≤ 2

2n(2n + 1) + ε

2n(2n + 1) .

Recall that the 2-Renyi entropy S2 is defined as:

S2(ν) = − log
(∑

x

ν(x)2
)

and that S(ν) ≥ S2(ν). Moreover, the function − log is convex. Thus, it follows
from Jensen’s inequality that:

E
(
− log

(∑
x

ν(x)2
))
≥ − log

(
E
[∑
x

ν(x)2
])

.

From the computations above, we have that:

2 + ε

(2n + 1) ≥ E
[∑
x

ν(x)2
]
,

from which we readily obtain that:

E
(
− log

(∑
x

ν(x)2
))
≥ n− log(2 + ε).

It follows from Markov’s inequality that

P
(∑

x

ν(x)2 ≥ 2 + ε

δ2n

)
≤ δ, (47)

from which the claim follows.

D Auxiliary results for Section 5
In Section 5 we showed that being able to efficiently distinguish the probability
distributions arising from sampling from random circuits from the uniform distri-
bution implies the ability to fool the XHOG problem associated to the same class
of circuits to a certain level.

But we assumed that the function that distinguished the distributions has
binary outputs, although our framework for distinguishability allows for functions
with outputs in [−1, 1]. We now show that it is always possible to obtain an
efficiently computable function with binary outputs from an efficiently function
with image [−1, 1] that distinguishes the two probability distributions, at the
expense of a smaller distinguishability power.

Lemma D.1. Let f : {0, 1}n → [−1, 1] be a function that can be computed in
polynomial time such that for some probability measure ν and ε > 0 we have that:

Eν(f)− EU (f) ≥ ε.
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Then there exists a function f ′ : {0, 1}n → {0, 1} that can be computed in polyno-
mial time such that:

Eν(f ′)− EU (f ′) ≥ ε2

17 .

Proof. First, we will consider instead of f the shifted and normalized function

f̃ = f + 1
2 ,

as it then has image in [0, 1] and clearly

Eν(f̃)− EU (f̃) ≥ ε

2 .

Assume w.l.o.g. that ε = m−1 for some integer m and consider the discretization
of f1 of f given by:

f1(x) = (8m)−1d8mf̃(x)e.

Note that ‖f̃ − f1‖∞ ≤ (8m)−1 and, thus,

Eν(f1)− EU (f1) ≥ ε

4 . (48)

Recall that for every real valued random variable X we have:

E(X) =
∫

P(X ≥ x)dx, (49)

Moreover, note that f1 only takes the 8m+ 1 possible values {0, (8m)−1, . . . , 1}.
Thus. combining this observation with Eq. (48) and the identity in Eq. (49) we
see that

Eν(f1) =
8m∑
k=0

ν

(
f1(x) ≥ k

8m

)
≥ ε

4 +
8m∑
k=0

∣∣∣{f1(x) ≥ k
8m}

∣∣∣
2n . (50)

It then follows that for at least one 0 ≤ k0 ≤ 8m we have that:

ν

(
f1(x) ≥ k0

8m

) (1)
≥

∣∣∣{f1(x) ≥ k0
8m}

∣∣∣
2n + ε

2(8m+ 1) ≥

∣∣∣{f1(x) ≥ k0
8m}

∣∣∣
2n + ε2

17 , (51)

because if the opposite inequality would hold in (1) for all k0 we would obtain
a contradiction to Eq. (50) by summing over all k0. Thus, by setting f ′(x) = 1
if f1(x) ≥ k

8m and 0 else and recalling that m−1 = ε, we see that Eq. (51)
immediately implies

Eν(f ′)− EU (f ′) ≥ ε2

17 ,

which yields the claim.
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E Generalizations and limitations of our results
Let us discuss more precisely to what class of verification and distinguishability
algorithms our results apply to, how it can be generalized and how it relates to
the statistical query model well-known in statistical learning theory [34, 50].

E.1 The one-shot model
Most current verification and distinguishability proposals we are aware of in the
random circuit literature have a simple structure. They consist of defining a (not
necessarily bounded) function like the cross-entropy benchmark and evaluating
its empirical average. We call this scenario one-shot as, despite involving an
estimation over many samples, its theoretical analysis involve the distribution of
a single realization.

As explained in Sec. 3.2, the optimal probability of success for correctly dis-
tinguishing two distributions from one sample is bounded for any algorithm by
the total variation distance. Thus, if we have that the trace distance between two
distributions µ, ν is small, then we can conclude that no algorithm will be able to
perform significantly better than random guessing in the one-shot setting.

E.1.1 Comparison to statistical query model

This approach can be naturally cast in the statistical query model [34, 50]. In
that model, one is not given access to samples of a distribution µ, but one is
allowed to query Eµ(f) up to some additive error tolerance ε > 0 for arbitrary
f : {0, 1}n → [−1, 1]. We can see that it is possible to formalize our game in
this model, as it is Bob’s job to distinguish his distribution from Alice’s through
he expectaion values of such functions. And, as discussed before, this has a
natural interpretation in terms of the succes probability of one-shot distinguishing
algorithms.

E.2 A more general framework: multiple copies discrimination
However, there is no a-priori reason why we should limit ourselves to the one-shot
scenario. We could define more generally efficient distinguishing algorithms that
take as input a polynomial number of samples m from a distribution, perform a
polynomial-time postprocessing of the data and then outputs a guess.

In this general framework one considers the success probability of arbitrary
distinguishing algorithms that take as an input a polynomial number of samples,
i.e., µ⊗m instead of µ for m = poly(n). Unfortunately, our techniques cannot
discard the existence of such an efficient distinguishing procedure. Indeed, if
there is a polynomial time function f such that for some m ≥ 1 we have that:∣∣Eµ⊗m(f)− Eν⊗m(f)

∣∣ = Ω(n−m), (52)

then we can take O(n2m log(δ−1)) samples from the distribution, compute the
empirical average of f on them and distinguish the two with probability of success
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at least 1−δ. As f can be computed in polynomial time, the empirical average can
also be computed efficiently and this yields and efficient distinguishing procedure.
And our techniques do not discard the existence of an efficient f as in Eq. (52).

Although in the main text we only considered the case of m = 1 for our
results, it should be noted that our results naturally extend to the settig in which
mε−1 = O(log(n)). That is, if we are in regime ε = Ω(1), we can also consider
the case in which the distinguishing functions act on a logarithmic number of
samples. To see why, note that the proof of Thm. 4.1 relied solely on the fact
that with probability at least 1− δ we have

S(ν‖U) = O(1 + log(δ−1)) (53)

for the output distributions of approximate 2-designs.
If we consider instead m copies i.i.d. samples of the distribution ν, the joint

output distribution satisfies

S(ν⊗m‖U⊗m) = mS(ν‖U) = O(m(1 + log(δ−1)))

by the additivity of the relative entropy. Thus, as in Thm. 4.1, if we set our
error tolerance to be ε, mirror descent will converge after O(m2ε−2) iterations to
a distribution µ that approximates ν⊗m up trace distance ε. Moreover, sampling
from µ using rejection sampling takes O(emε−1) evluations of f on average. And
from this we obtain that as long as the distinguishing functions are efficient and
mε−1 = O(log(n)), the whole procedure is efficient and our results still apply.

F Distinguishing the output distribution of stabilizer states
Note that we only assumed in the proofs of Sec. 5 that the underlying circuit
ensemble is an approximate two design. It is well-known that circuits being
approximate two designs does not imply that one cannot sample from their output
distribution efficiently, as is prominently exemplified by Clifford circuits. Random
Cliffords are two designs [21, 22] and it is possible to simulate measurements in
the computational basis efficiently for them [25, 4]. We now show that in this
case, it is also possible to easily distinguish the outcome distribution from the
uniform one, if this is possible at all.

It is not difficult to see that for a Pauli string P = ⊗ni=1σi we have for a
Clifford C that

tr
(
PC|0〉〈0|⊗nC†

)
∈ {−1, 0, 1}.

This is because, as Cliffords stabilize the Pauli group, we have that P̃ = C†PC is

again, up to a global sign, a Pauli string. And for a Pauli string tr
(
P̃ |0〉〈0|⊗n

)
∈

{0, 1}. Now assume that there exists a Pauli string P consisting only of I and Z
Pauli matrices that differs from the identity and such that

tr
(
PC|0〉〈0|⊗nC†

)
6= 0.
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Then, interpreting diagonal operators as functions, we have that the function
f = P+I

2 is a binary function that satisfies:

|Eν(f)− EU (f)| = 1
2 .

Thus, in this case, we have found a function that efficiently distinguishes the
outcome from uniform. But note that in some cases such a Pauli string does not
exist, such as if the Clifford is H⊗n, as then the outcome distribution is uniform.

Let us now discuss how to efficiently find the appropriate distinguishing Pauli
string. We refer to [4] for a review of the basics of the stabilizer formalism. First,
we recall that a stabilizer state |ψ〉 on n qubits can always be described by n
generators g1, . . . , gn of its stabilizer group SG(|ψ〉). Moreover, note that for a
Pauli string

tr
(
PC|0〉〈0|⊗nC†

)
∈ {−1, 1}.

is equivalent to P ∈ SG(|ψ〉) or −P ∈ SG(|ψ〉). Thus, by our previous discussion,
the problem of finding a function to distinguish the output of the Clifford circuit
from the uniform distribution is equivalent to finding a stabilizer of the state
consisting solely of Z and I Pauli operators.

Let us now discuss how to achieve this. First, decompose each generator gi
as the product of a string of Pauli X and Pauli Z matrices plus a global ±1
phase and represent each one of these as vectors (xi, zi, si) in F2n+1

2 . In order to
simplify the presentation, we are not going to keep track of the global phase of the
elements of the stabilizer group for now. Thus, we restrict to the vectors (xi, zi)
corresponding to the first 2n entries. It is easy to see that if we do not keep track
of the global phase, then multiplying two generators is equivalent to adding the
corresponding vectors in F2n

2 . Now define the n× (2n+ 1) binary matrix A with
the vectors xi in its rows. We then have:

Proposition F.1. Let |ψ〉 be a stabilizer state with generators g1, . . . , gn and
corresponding vectors (xi, zi) ∈ Z2n. Then there exists a Z string P ∈ SG(|ψ〉) if
and only if:

span{(x1, z1), . . . , (xn, zn)} ∩ ({0} × Fn2 ) 6= {0} (54)

Proof. Note that

span{(x1, z1), . . . , (xn, zn)}

corresponds to the elements of the stabilizer group of the state, up to a global
phase. This is because, as discussed before, multiplication in the Pauli group just
corresponds to a sum of the vectors, up to the global phase. Thus, if we find a
string of Z in the stabilizer group, then it is also in the intersection in eq. (54).

Thus, we can find the distinguishing Pauli operator by a nonzero element of
the subspace

span{(x1, z1), . . . , (xn, zn)} ∩ ({0} × Fn2 ) ,

which can be done by Gaussian elimination.
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