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We consider two related tasks: (a) estimating a parameterisation of an unknown Gibbs
state and expectation values of Lipschitz observables on this state; and (b) learning the
expectation values of local observables within a thermal or quantum phase of matter. In
both cases, we wish to minimise the number of samples we use to learn these properties to
a given precision.

For the first task, we develop new techniques to learn parameterisations of classes of sys-
tems, including quantum Gibbs states of non-commuting Hamiltonians under the condition
of exponential decay of correlations and the approximate Markov property, thus improving
on work by [RF21]. We show that it is possible to infer the expectation values of all extensive
properties of the state from a number of copies that not only scales polylogarithmically with
the system size, but polynomially in the observable’s locality — an exponential improvement
— hence partially answering conjectures stated in [RF21] and [AAKS21] in the positive. This
class of properties includes expected values of quasi-local observables and entropic quantities
of the state.

For the second task, we turn our tomography tools into efficient algorithms for learning
observables in a phase of matter of a quantum system. By exploiting the locality of the
Hamiltonian, we show that M local observables can be learned with probability 1−δ and up
to precision ε with access to only N = O

(
log
(
M
δ

)
epolylog(ε

−1)
)

samples — an exponential
improvement in the precision over the best previously known bounds [HKT+22]. Our results
apply to both families of ground states of Hamiltonians displaying local topological quantum
order, and thermal phases of matter displaying exponential decay of correlations. In addition,
our sample complexity applies to the worse case setting whereas previous results only applied
to the average case setting.

To prove our results, we develop new tools of independent interest, such as robust shadow
tomography algorithms for ground and Gibbs states, Gibbs approximations of locally indis-
tinguishable ground states, and generalisations of transportation cost inequalities for Gibbs
states of non-commuting Hamiltonians.
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I. INTRODUCTION

Tomography of quantum states is among the most important tasks in quantum information
science. In quantum tomography, we have access to one or more copies of a quantum state and wish
to understand the structure of the state. However, for a general quantum state, all tomographic
methods inevitably require resources that scale exponentially in the size of the system [HHJ+17,
OW16]. This is due to the curse of dimensionality: the number of parameters needed to fully
describe a quantum system scales exponentially with the number of its constituents. Obtaining
these parameters often necessitates the preparation and destructive measurement of exponentially
many copies of the quantum system, as well as their storage in a classical memory. In particular, as
the size of quantum devices continues to increase beyond what can be easily simulated classically,
the community faces new challenges to characterise their output states in a robust and efficient
manner.

Thankfully, only a few physically relevant observables are often needed to describe the physics
of a system, e.g. its entanglement or energy. Recently, new methods of tomography have been
proposed which precisely leverage this important simplification to develop efficient state learning
algorithms. One highly relevant development in this direction is that of classical shadows [HKP20].
This new set of protocols allows for estimating physical observables of quantum spin systems that
only depend on local properties from a number of measurements that scales logarithmically with the
total number of qubits. However, the number of required measurements still faces an exponential
growth with respect to the size of the observables that we want to estimate. Thus, using such
protocols to learn the expectation values of physical observables that depend on more than a few
qubits quickly becomes unfeasible.

Gibbs State Tomography. Some simplification can be achieved from the fact that physically
relevant quantum states, such as ground and Gibbs states of a locally interacting spin system, are
themselves often described by a number of parameters which scales only polynomially with the
number of qubits. From this observation, another direction in the characterisation of large quantum
systems that has received considerable attention is that of Hamiltonian learning and many-body
tomography, where it was recently shown that it is possible to robustly characterise the interactions
of a Gibbs state with a few samples [Ans, HKT21]. However, even for many-body states, recovery
in terms of the trace distance requires a number of samples that scales polynomially in the number
of qubits, in contrast to shadows for which the scaling is logarithmic.

These considerations naturally lead to the question of identifying settings where it is possible
to combine the strengths of shadows and many-body tomography. In [RF21], some of the authors
proposed a first solution by combining these with new insights from the emerging field of quantum
optimal transport. They obtained a tomography algorithm that only requires a number of samples
that scales logarithmically in the system’s size and learns all quasi-local properties of a state.
These properties are characterised by so-called “Lipschitz observables”. However, that first step
was confined to topologically trivial states such as high-temperature Gibbs states of commuting
Hamiltonians or outputs of shallow circuits. Here, we significantly extend these results to all states
exhibiting exponential decay of correlations and the approximate Markov property.

Learning Phases of Matter. Tomographical techniques by themselves are somewhat limited
in that they tell us nothing about nearby related states – often states belong to a phase of matter
in which the properties of the states vary smoothly and are in some sense “well behaved”, and we
wish to learn properties of this entire phase of matter. A recent line of research in this direction
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that has gained significant attention from the quantum community is that of combining machine
learning methods with the ability to sample complex quantum states from a phase of matter to
efficiently characterise the entire phase [BWP+17, CM17]. A landmark result in this direction
is [HKT+22]. There the authors showed how to use machine learning methods combined with
classical shadows to learn local linear and nonlinear functions of states belonging to a gapped
phase of matter with a number of samples that only grows logarithmically with the system’s size.
That is, given states from that phase drawn from a distribution and the corresponding parameters
of the Hamiltonian, one can train a classical algorithm that would predict local properties of other
points of the phase. However, there are some caveats to this scheme: (i) the scaling of the number
of samples in terms of the precision is exponential, (ii) it does not immediately apply to phases of
matter beyond gapped ground states, (iii) the results only come with guarantees on the errors in
the prediction in expectation. That is, given another state sampled from the same distribution as
the one used to train, only on average is the error made by the ML algorithm proven to be small.

In this work, we address all of these shortcomings. First, our result extends to thermal phases
of matter which exhibit exponential decay of correlations, which includes all thermal systems away
from criticality/poles in the partition function [HMS20, Section 5]. Our result also extends to
gapped phases that satisfy local topological quantum order [MZ13, BHM10, NSY22]. Furthermore,
the sample complexity of our algorithm is quasi-polynomial in the desired precision, which is an
exponential improvement over previous work [HKT+22]. And, importantly, it comes with point-
wise guarantees on the quality of the recovery, as opposed to average guarantees.

Interestingly, our results are easier to grasp through the lens of the concentration of measure
phenomenon rather than machine learning: we show that local expectation values of quantum
states are quite smooth under perturbations in the same class of states. And, as is showcased
by the concentration of measure phenomenon, smooth functions on high-dimensional spaces do
not show a lot of variability. Thus, it suffices to collect a few examples to be able to predict
what happens in the whole space, while the price we pay for these stronger recovery guarantees
is that our algorithm does not work for any distribution over states, but needs some form of
anti-concentration which holds e.g. for the uniform distribution (see Appendix D for a technical
discussion). In other words, our algorithm necessitates to “see” enough of the space to work and
struggles if there are large, low-probability corners.

II. SUMMARY OF MAIN RESULTS

In this paper, we consider a quantum system defined over a D-dimensional finite regular lattice
Λ = [−L,L]D, where n = (2L + 1)D denotes the total number of qubits constituting the system.
We assume for simplicity that each site of the lattice hosts a qubit, so that the total system’s
Hilbert space is HΛ :=

⊗
j∈Λ C2. All of the results presented here easily extend to qudits, but we

will focus on qubits for simplicity.

Our focus in this work are nontrivial statements about what can be learned about many-body
states of n qubits in the setting where we are only given Θ(polylog(n)) copies. The common
theme is that we will assume exponential decay of correlations for our class of states, but will show
results in two different regimes. In Section II A we summarise our results on how to estimate all
quasi-local properties of a given state given identical copies of it. This is the traditional setting
of quantum tomography. In contrast, in Section II B we summarise our findings on how to learn
local properties of a class of states given samples from different states from that class. This is the
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setting of [HKT+22] where ground states of gapped quantum phases of matter were studied. Here
we consider (a) thermal phases of matter with exponentially decaying correlations and (b) gapped
ground states with local topological quantum order.

A. Optimal Tomography of Many-Body Quantum States

We first consider the task of obtaining a good approximation of expected values of extensive
properties of a fixed unknown n-qubit state over Λ. The state is assumed to be a Gibbs state
of an unknown local Hamiltonian H(x) :=

∑
j∈Λ hj(xj), x = {xj} ∈ [−1, 1]m, defined through

interactions hj(xj), each depending on parameters xj ∈ [−1, 1]` for some fixed integer ` and
supported on a ball Aj around site j ∈ Λ of radius r0. We also assume that the matrix-valued
functions xj 7→ hj(xj) as well as their derivatives are uniformly bounded: ‖hj‖∞, ‖∇hj‖∞ ≤ h.
The corresponding Gibbs state at inverse temperature β > 0, and the ground state as β →∞ take
the form

σ(β, x) :=
e−βH(x)

tr
[
e−βH(x)

] and ψg(x) := lim
β→∞

σ(β, x) . (II.1)

In the case when [hj(xj), hj′(xj′)] = 0 for all j, j′ ∈ Λ, the Hamiltonian H(x) and its associated
Gibbs states σ(β, x) are said to be commuting.

1. Preliminaries on Lipschitz observables

Extensive properties of a state are well-captured by the recently introduced class of Lipschitz
observables [RD19, DPMTL21].

Definition II.1 (Lipschitz Observable [DPMTL21] ). An observable L on HΛ is said to be
Lipschitz if ‖L‖Lip := maxi∈Λ minLic 2‖L − Lic ⊗ Ii‖∞ = O(1), where ic is the complement of
the site i in Λ and the scaling is in terms of the number of qubits in the system.

In words, ‖L‖Lip quantifies the amount by which the expectation value of L changes for states
that are equal when tracing out one site. By a simple triangle inequality together with [DPMTL21,
Proposition 15], one can easily see that ‖L‖∞ ≤ n‖L‖Lip. Given the definition of the Lipschitz
constant, we can also define the quantum Wasserstein distance of order 1 by duality [DPMTL21].

Definition II.2 (Wasserstein Distance [DPMTL21]). The Wasserstein distance between two n
qubit quantum states ρ1, ρ2 is defined as W1(ρ0, ρ1) := sup‖L‖Lip≤1 tr

[
L(ρ0 − ρ1)

]
≤ n‖ρ− σ‖1.

Having W1(ρ, σ) = O(εn) is sufficient to guarantee that the expectation value of ρ and σ on
extensive, quasi-local observables is the same up to a multiplicative error εn. This justifies why we
focus on learning states up to an error O(εn) in Wasserstein distance instead of the usual trace
distance bound of order O(ε): although a trace distance guarantee of order O(ε) gives the same
error estimate, it requires exponentially more samples even for product states, as shown in [RF21,
Appendix G]. In Appendix B, we argue that Lipschitz observables and the induced Wasserstein
distance capture linear and nonlinear extensive properties of many-body quantum states.
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2. Gibbs state tomography

In this section, we turn our attention to the problem of obtaining approximations of linear
functionals of the form fL(β, x) := tr[Lσ(β, x)] for all Lipschitz observables L from the measure-
ment and classical post-processing of as few copies of the associated unknown Gibbs state σ(β, x)
as possible. We will further require that the state satisfies the property of exponential decay of
correlations: for any two observables XA, resp. XB, supported on region A, resp. B,

Covσ(β,x)(XA, XB) ≤ C min{|A|, |B|} ‖XA‖∞ ‖XB‖∞ e−ν dist(A,B) , (II.2)

for some constants C, ν > 0, where dist(A,B) denotes the distance between regions A and B, and
where the covariance is defined by

Covσ(X,Y ) :=
1

2
tr
[
σ
{
X − tr[σX], Y − tr[σY ]

}]
. (II.3)

Our first main result is a method to learn Gibbs states with few copies of the unknown state:

Theorem II.3 (Tomography algorithm for decaying Gibbs states (informal)). For any unknown
commuting Gibbs state σ(β, x) satisfying Equation (II.2), there exists an algorithm that provides
the description of parameters x′ such that the state σ(β, x′) approximates σ(β, x) to precision nε in
Wasserstein distance with probability 1−δ with access to N = O

(
log(δ−1) polylog(n) ε−2

)
samples

of the state (see Appendix C 3 a). The result extends to non-commuting Hamiltonians whenever
one of the following two assumptions is satisfied:

(i) the high-temperature regime, β < βc (see Appendix C 3 b).

(ii) uniform clustering/Markov conditions (see Corollary C.12).

In case (ii), we find good approximation guarantees under the following slightly worst scaling in
the precision ε: N = O(ε−4 polylog(nδ−1)).

The results for commuting Hamiltonians and in the high-temperature regime proceed directly
from the following continuity bound on the Wasserstein distance between two Gibbs states, whose
proof requires the notion of quantum belief propagation in the non-commuting case (see Corol-
lary C.4): for any x, y ∈ [−1, 1]m,

W1(σ(β, x), σ(β, y)) = ‖x− y‖`1 O(polylog(n)) . (II.4)

Furthermore, this inequality is tight up to a polylog(n) factor for β = Θ(1). Equation (II.4) reduces
the problem of recovery in Wasserstein distance to that of recovering the parameters x up to an
error εn/polylog(n) in `1 distance. This is a variation of the Hamiltonian learning problem for
Gibbs states [AAKS21, HKT21] which relies on lower bounding the `2 strong convexity constant
for the log-partition function.

In [Ans], the authors give an algorithm estimating x with eO(βkD)O(log(δ−1n)ε−2) copies of
σ(β, x) up to ε in `∞ distance when σ(β, x) belongs to a family of commuting, k-local Hamiltonians
on a D-dimensional lattice. If we assume m = O(n), this translates to an algorithm with sample

complexity eO(βkD)O(ε−2polylog(δ−1n)) to learn x up to εn in `1 distance. It should also be

noted that the time complexity of the algorithm in [Ans] is O(neO(βkD)ε−2polylog(δ−1n)). Thus,
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any commuting model at constant temperature satisfying exponential decay of correlations can
be efficiently learned with polylog(n) samples. We refer the reader to Appendix C 3 for more
information and classes of commuting states that satisfy exponential decay of correlations. In the
high-temperature regime, we rely on a result of [HKT21] where the authors give a computationally
efficient algorithm to learn x up to error ε in `∞ norm from O(ε−2polylog(δ−1n)) samples. This
again translates to a O(εn) error in `1 norm thanks to (II.4).

Furthermore, in Appendix C 3 c we more directly extend the strategy of [AAKS21] by introdu-
cing the notion of a W1 strong convexity constant for the log-partition function and showing that
it scales linearly with the system size under (a) uniform clustering of correlations and (b) uniform
Markov condition. This result also generalises the strategy of [RF21] which relied on the exist-
ence of a so-called transportation cost inequality previously shown to be satisfied for commuting
models at high-temperature. For the larger class of states satisfying conditions (a) and (b), we are
able to find x′ s.t. W1(σ(β, x), σ(β, x′)) = O(εn) with O(ε−4polylog(δ−1n)) samples. Note that
the uniform Markov condition is expected to hold for a large class of models that goes beyond
high-temperature Gibbs states [KB19, KKBa20].

3. Beyond linear functionals

So far, we considered properties of the quantum system which could be related to local linear
functionals of the unknown state. In [HKP20, HKT+22], the authors propose a simple trick in
order to learn non-linear functionals of many-body quantum systems, e.g. their entropy over a small
subregion. However, such methods require a number of samples scaling exponentially with the size
of the subregion, and thus very quickly become inefficient as the size of the region increases. Here
instead, we make use of the continuity of the entropy functional with respect to the Wasserstein
distance, mentioned in Equation (B.6), together with the following Wasserstein continuity bound
in order to estimate the entropic quantities of Gibbs states over regions of arbitrary size (see
Corollary C.6): assuming Equation (II.2), for any region S of the lattice and any two x, y ∈ [−1, 1]m

W1(trSc(σ(β, x)), trSc(σ(β, y))) ≤ ‖x|S(rS) − y|S(rS)‖`1 polylog(|S(rS)|) , (II.5)

where rS = max
{
r0, 2ξ log

(
2|S|C1‖x|S(r0) − y|S(r0)‖−1

`1

)}
with r0 being the smallest integer such

that x|S(r0) 6= y|S(r0), S(rS) := {xj | supp(hj(xj)) ∩ S(rS) 6= ∅}, S(rS) := {i ∈ Λ : dist(i, S) ≤ rS},
and C1, ξ > 0 are constants introduced in Lemma C.5.

Let us recall a few definitions: denoting by ρR := trRc(ρ) the marginal of a state ρ ∈ D(HΛ) on
a region R ⊂ Λ, and given separated regions A,B,C ⊂ Λ of the lattice: S(A)ρ := − tr[ρA log ρA]
is the von Neumann entropy of ρ on A, S(A|B)ρ := S(AB)ρ − S(B)ρ is the conditional entropy
on region A conditioned on region B, I(A : B)ρ := S(A)ρ + S(B)ρ − S(AB)ρ is the mutual
information between regions A and B, and I(A : B|C)ρ := S(AC)ρ+S(BC)ρ−S(C)ρ−S(ABC)ρ
is the conditional mutual information between regions A and B conditioned on region C. The
following corollary is a direct consequence of Equation (B.6) together with Equation (II.5):

Corollary II.4. Assume the decay of correlations holds uniformly, as specified in Equation (II.2),
for all {σ(β, x)}x∈[−1,1]m, m = O(n). Then, in the notations of the above paragraph, for any two
Gibbs states σ(β, x) and σ(β, y), x, y ∈ [−1, 1]m, and any region A ⊂ Λ:

|S(A)σ(β,x) − S(A)σ(β,y)| = ‖x|S(rS) − y|S(rS)‖`1O(polylog(|S(rS)|)) ,
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for S ≡ A. The same conclusion holds for |S(A|B)σ(β,x) − S(A|B)σ(β,y)| (S ≡ AB), |I(A :
B)σ(β,x) − I(A : B)σ(β,y)| (S ≡ AB), and |I(A : B|C)σ(β,x) − I(A : B|C)σ(β,y)| (S ≡ ABC).

Thus, given an an estimate y of x satisfying ‖x − y‖`∞ = O(ε/polylog(n)), we can also ap-
proximate entropic quantities of the Gibbs state to a multiplicative error. More generally, entropic
continuity bounds can be directly used together with Theorem II.3(ii) in order to estimate entropic
properties of Gibbs states satisfying both uniform clustering of correlations and the approximate
Markov condition (see Appendix C 3 c for details).

B. Learning Expectation Values of Parametrised Families of Many-Body Quantum Systems

Next, we turn our attention to the task of learning Gibbs or ground states of a parameterised
Hamiltonian H(x) known to the learner and sampled according to the uniform distribution U
over x ∈ [−1, 1]m. More general distributions can also be dealt with under a condition of anti-
concentration, see Appendix D. Here we restrict our results to local observables of the form O =∑M

i=1Oi where Si := supp(Oi) is contained in a ball of diameter independent of the system size.
The setup in this section is similar to [HKT+22]. The idea is that we have access to some samples
of a state chosen from different values of the parameterised Hamiltonian, and we want to use these
to learn observables everywhere in the parameter space with high precision. We then want to
know: what is the minimum number of samples drawn from this distribution which allows us to
accurately predict expectation values of local observables for all choices of parameters?

1. Learning Expectation Values in Thermal Phases of Matter

The learner is given samples {(xi, σ(β, xi))}Ni=1, where the parameters xi ∼ U , and their task
is to learn fO(x) := tr[σ(β, x)O] for an arbitrary value of x ∈ [−1, 1]m and an arbitrary local
observable O. We assume that everywhere in the parameter space x ∈ [−1, 1]m the Gibbs states
are in the same phase of exponentially decaying correlations. Then we have:

Theorem II.5 (Learning algorithm for quantum Gibbs states). With the conditions of the previ-
ous paragraph, given a set of N samples {xi, σ̃(β, xi)}Ni=1, where σ̃(β, xi) can be stored efficiently

classically, and N = O
(

log
(
M
δ

)
log
(
n
δ

)
epolylog(ε−1)

)
, there exists an algorithm that, on input

x ∈ [−1, 1]m and a local observable O =
∑M

i=1Oi, produces an estimator f̂O such that, with prob-
ability (1− δ),

sup
x∈[−1,1]m

|fO(x)− f̂O(x)| ≤ ε
M∑
i=1

‖Oi‖∞ .

Moreover, the samples σ̃(β, xi) are efficiently generated from measurements of the Gibbs states
{σ(β, xi)}Ni=1 followed by classical post-processing.

Our estimator f̂O is constructed as follows: during a training stage, we pick N points
Y1, . . . , YN ∼ U and estimate the reduced Gibbs states over large enough enlargements Si∂ of
the supports Si := {xj | supp(hj(xj)) ∩ Si∂ 6= ∅} ∩ [x − ε, x + ε]m of the observables Oi. Due to
the anti-concentration property of the uniform distribution, the probability that a small region
Si∂ in parameter space contains t variables Yi1 , . . . , Yit becomes large for N ≈ log(M). We then



8

run the classical shadow tomography protocol on those states in order to construct efficiently
describable and computable product matrices σ̃(β, Y1), . . . , σ̃(β, YN ). Then for any region Si, we
select the shadows σ̃(β, Yi1), . . . σ̃(β, Yit) whose local parameters are close to that of the target
state and construct the empirical average σ̃Si(x) := 1

t

∑t
j=1 trSci

[
σ̃(β, Yij )

]
. Using belief propaga-

tion methods (see Proposition D.2), it is possible to show that exponential decay of correlations
ensures that the estimator is a good approximation to local observables. Thus such operators can
be well approximated using the reduced state trSci σ(β, x) for t ≈ log(n). The estimator f̂O is then

naturally chosen as f̂O(x) :=
∑M

i=1 tr[Oi σ̃Si(x)]. A key part of the proof is demonstrating that
exponential decay of correlations implies that fO(x) does not change too much as x varies.

2. Learning ground states under local indistinguishability

We now move our attention to the problem of learning ground states. Again, the learner is
given samples {xi, ψg(xi)}Ni=1, xi ∼ U , and their task is to learn fO,g(x) := tr[ψg(x)O]. In fact, the
previous argument for Gibbs states can be extended to the present setting as long as the condition
of exponentially decaying correlations in the Gibbs state is replaced by the following condition
of local topological quantum order (LTQO) [MZ13, BHM10, NSY22]: A quantum system satisfies
LTQO if for any two regions A ⊂ B ⊂ Λ and all x ∈ [−1, 1]m,∥∥ trAc(ψg(x,B)− ψg(x,Λ))

∥∥
1
≤ CT |A| e

−dist(A,Bc)
ξ0 (II.6)

for some constants CT , ξ0 > 0, and where, given a region R ⊂ Λ we denote by ψg(x,R) the
ground state corresponding to the Hamiltonian HR(x) =

∑
j∈R hj(xj). In words, LTQO states

that observables localised away from the boundary of the volume B cannot distinguish between
different ground states. Many systems of practical interest are known to satisfy Equation (II.6),
including frustration-free spin chains with a unique translation-invariant matrix product ground
state [AKLT88] and quantum double models, which include Kitaev’s toric code [Kit06, Kit03,
CDH+20]. For more details on LTQO, we refer to [NSY22] and the references therein.

Theorem II.6 (Learning algorithm for quantum ground states). With the conditions of the pre-
vious paragraph, given a set of N samples {xi, ψ̃(xi)}Ni=1, where ψ̃(xi) can be stored efficiently

classically, and N = O
(

log
(
M
δ

)
log
(
n
δ

)
epolylog(ε−1)

)
, there exists an algorithm that, on input

x ∈ [−1, 1]m and a local observable O =
∑M

i=1Oi, produces an estimator f̂O such that, with prob-
ability (1− δ),

sup
x∈[−1,1]m

|fO(x)− f̂O(x)| ≤ ε
M∑
i=1

‖Oi‖∞ .

Moreover, the samples ψ̃(xi) are efficiently generated from measurements of the ground states
{ψg(xi)}Ni=1 followed by classical post-processing.

To prove this statement, we reduce it to the problem of learning Gibbs states of the previous
section. The LTQO condition permits approximating the expectation of the local observable Oi
in the state ψg(x) by the one in the state ψg(x, Si∂). The latter is approximated by the local

Gibbs state σ(β, x, Si∂) ∝ e−βHSi∂(x) for large but constant β (see Lemma E.5). By a continuity
argument, these states are approached by σ(β, Yit , Si∂), which in turn are close to ψg(Yit). This
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chain of approximation steps together with a robust version of the shadow tomography protocol for
ground states, stated in Proposition E.7, allows us to conclude. We expect that the assumption of
LTQO is not the only assumption that can be made to achieve similar scaling. Indeed, we expect
that a lower bound on the spectral gap in the parameterized region would achieve similar results.

III. COMPARISON TO PREVIOUS WORK

A. Classical literature

The problem of Hamiltonian learning for classical models has attracted a lot of attention in
the last years by the computer science community [Bre15, PSBR20, LVMC18, ZKKW20] which
traditionally refers to it as Ising model — or Markov field — learning. The question of what can be
inferred from very few samples was also asked classically [DDDK20]. Our work sheds further light
on this question and is of interest even when restricting to classicaapproximatingbservables. Indeed,
to the best of our knowledge, the statements of Corollary C.4 and Corollary C.6 are new even for
classical Gibbs distributions. Previous work by the authors of [RF21] already established similar
learning results for measures satisfying a so-called transportation cost inequality (TC) [BG99,
Tal96], although the present condition of exponential decay of correlations is more standard.

It should be noted that if a Gibbs measure satisfies TC, then any Lipschitz function of a random
variable distributed according to it satisfies a Gaussian concentration bound [Led01]. This can
easily be seen to imply that we can estimate the expectation value of M Lipschitz functions up to
an error ε with probability of success δ from O(ε−2 log(Mδ−1)) samples by taking the empirical
average. At first sight this might look comparable with the sample complexity we obtain with
our learning algorithm. However, this only holds for one basis, whereas our result holds for
any basis. Furthermore, if the number of Lipschitz observables satisfies M = ecΩ(n), then the
number of samples required to obtain a good estimate through the empirical average becomes
polynomial. On the other hand, given that W1(σ(β, x), σ(β, x′)) ≤ εn, we can evaluate as many
Lipschitz observables as we wish from σ(β, x′) without requiring any further samples. Thus, even
for observables in a fixed basis our result has advantages.

B. Previous work on many-body quantum state tomography

As mentioned before, one striking advantage of our Gibbs tomography algorithm when es-
timating expectation values of local observables compared to state-agnostic methods like classical
shadows is the exponential speedup in the size of the support of the observable. In fact, our method
gives good guarantees on the larger class of Lipschitz observables, which includes non-local ob-
servables. This advantage is even more visible when it comes to estimating entropic quantities:
whereas the polynomial approximation proposed in [HKP20] works universally for any n-qubit
state, it only gives good approximation guarantees for reduced states on very few qubits. Here
instead, we avoid this issue by leveraging the Wasserstein continuity bounds offered in [DPMTL21].

Our framework also differs from the one of Hamiltonian learning algorithms tackled in [Ans,
AAKS21, HKT21]: in these papers, the authors were interested in estimating the parameter
x of a given Hamiltonian H(x) given access to copies of the state σ(β, x), in `2 or `∞. Here
instead, we argue that a good recovery in W1 distance is implied by the weaker condition of
recovery in `1. Clearly, one can leverage these previous results to further control our `1 bound,
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as we argue in Section II A 2. It should be noted however that our bound only requires that the
Gibbs state σ(β, x) satisfies an exponential decay of correlations, whereas these learning algorithms
provide very efficient `∞ or `2 recovery either for (i) commuting Hamiltonians or (ii) in the high-
temperature regime. It remains an important question whether the condition of exponential decay
of correlations is enough to get good `1 recovery. Furthermore, in Appendix C 3 c we show that
under the additional assumptions of uniform Markovianity and clustering of correlations, it is
possible to learn in W1 through the maximum entropy method, without resorting directly to
learning the parameters x.

C. Previous work on learning observables in phases of matter

In [HKT+22], the authors found a machine learning algorithm which, for any smoothly para-
meterised family of local Hamiltonians {H(x)}x∈[−1,1]m in a finite spatial dimension with a constant
spectral gap, can be trained to predict expected values of sums of local observables in the associated
ground state ψg(x). More precisely, given a local observable O =

∑M
i=1Oi with supp(Oi) = O(1),

they construct an estimator f̂O(x) of the expectation value of the observable such that

Ex∼U([−1,1]m)

[∣∣ tr[Oψg(x)]− f̂O(x)
∣∣2] ≤ ε2

( M∑
i=1

‖Oi‖∞
)2
, (III.1)

as long as the training size (i.e. the number of sampled points within the phase) is N =(∑M
i=1 ‖Oi‖∞

)2
mO(1/ε2).

In Theorem II.6, we improve this result for ground states in three ways, up to further imposing
the LTQO condition: first, we can assume that the parameters x are distributed according to a
much larger class of distributions than the uniform distribution. This extension does not carry
so easily in the proof of [HKT+22] which uses Fourier analysis techniques involving integration
over the Lebesgue measure to derive Equation (III.1). Second, theirs is a result in expectation,
that is in ‖.‖L2 , whereas our bound in Theorem II.6 works in the worst-case setting associated to
the stronger ‖.‖∞-norm topology. Third and most importantly, the dependence of the number of
training data points scales exponentially in the precision parameter ε in Equation (III.1), whereas
ours scales only quasi-polynomially.

Finally, we extend the learning result beyond ground states to finite temperature phases of
matter with exponential decay of correlations. This not only includes all high-temperature phases
of matter (regardless of the Hamiltonian), but also low-temperature phases with the relevant
correlation functions [DCGR19]. This is a particularly relevant result since zero temperature is
never achieved in practice, so in reality we are always working with low-temperature thermal states.

We also recognise independent, concurrent work by [LTL+23]. Here the authors consider the
same setup of gapped ground states as [HKT+22] and also improved over Equation (III.1) to achieve
the same sample complexity as Theorem II.6. However, their result is not directly comparable to
ours. We emphasise [LTL+23] consider gapped, ground state phases, whereas our work focuses on
thermal phases and ground states with LTQO. We also note they remove all conditions on the prior
distribution over the samples x, whereas we still need to assume a type of mild anti-concentration
over the local marginals. However, their result is still stated as an ‖.‖L2-bound due to the use of
machine learning machinery, whereas our more straightforward Gibbs approximation tools allow
us to get stronger bounds in ‖.‖∞. Conceptually speaking, our methods for approximating local
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expectation values requires no knowledge of machine learning techniques. Our work also shows that
it is possible to go beyond gapped quantum phases and learn thermal phases with exponentially
decaying correlations, as well as ground states with LTQO.

IV. DISCUSSION AND CONCLUSIONS

We have contributed to the tasks of tomography and learnability of quantum many-body states
by combining previous techniques with approaches not considered so far in this field to obtain
novel and powerful features.

Tomography. First, we extended the results of [RF21] on the efficient tomography of high-
temperature commuting Gibbs states to Gibbs states with exponentially decaying correlations.
This result permits to significantly enlarge the class of states for which we know how to learn
all quasi-local properties with a number of samples that scales polylogarithmically with the sys-
tem’s size. In particular, our results now also hold for classes of Gibbs states of non-commuting
Hamiltonians. As we require exponentially fewer samples to learn in the Wasserstein metric when
compared with the usual trace distance and still recover essentially all physically relevant quantit-
ies associated to the states, we hope that our results motivate the community to consider various
tomography problems in the Wasserstein instead of trace distance.

As we achieved this result by reducing the problem of learning the states to learning the para-
meters of the Hamiltonian in `1, we hope our work further motivates the study of the Hamiltonian
learning problem in `1-norm with polylog samples. 1D Gibbs states are a natural place to start,
but obtaining Hamiltonian learning algorithms just departing from exponential decay of correla-
tions would provide us with a complete picture. In Appendix C 3 c we also partially decoupled
the Hamiltonian learning problem from the W1 learning one by resorting to the uniform Markov
condition. Thus, it would be important to establish the latter for a larger number of systems.

It would be interesting to investigate the sharpness of our bounds, and to understand if expo-
nential decay of correlations is really necessary. One way of settling this question would be to prove
polynomial lower bounds for learning in Wasserstein distance for states at critical temperatures.

Learning Phases of Matter. Second, we improved the results of [HKT+22] for learning
a class of states in several directions, including the scaling in precision, the classes of states it
applies to and the form of the recovery guarantee. In particular, the results now apply to Gibbs
states, which are the states of matter commonly encountered experimentally. Interestingly, we did
not need to resort to machine learning techniques to achieve an exponentially better scaling in
precision by making arguably mild assumptions on the distributions the states are drawn from.

Although the results proved here push the state-of-the-art of learning quantum states, we believe
that our methods, for instance the novel continuity bounds for various local properties of quantum
many-body states, will find applications in other areas of quantum information.

Beyond the thermal phases and LTQO ground states studied here, it would be interesting
to find other families of states which can be efficiently learned, and indeed if more restrictive
assumptions on the parameterization of Hamiltonians can result in more efficient learning. One
interesting open problem that goes beyond the present paper’s scope is finding families of states
satisfying LTQO without belonging to a common gapped phase of matter. If such a family existed,
it would clarify the differences between our framework and that of [HKT+22]. Finally, we realise
that although the results proved here are for lattice systems, they almost certainly generalise to
non-lattice configurations of particles.
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14

volume 19, pages 2955–2978. Springer, 2018.
[KB19] Kohtaro Kato and Fernando GSL Brandao. Quantum approximate Markov chains are thermal.

Communications in Mathematical Physics, 370(1):117–149, 2019.
[KGE14] Martin Kliesch, Christian Gogolin, and Jens Eisert. Lieb-Robinson bounds and the simulation

of time-evolution of local observables in lattice systems. In Many-Electron Approaches in Physics,
Chemistry and Mathematics, pages 301–318. Springer, 2014.

[KGK+14] Martin Kliesch, Christian Gogolin, MJ Kastoryano, A Riera, and J Eisert. Locality of temper-
ature. Physical review x, 4(3):031019, 2014.

[Kim17] Isaac H Kim. Markovian matrix product density operators: Efficient computation of global entropy.
arXiv preprint arXiv:1709.07828, 2017.

[Kit03] A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30,
2003.

[Kit06] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics, 321(1):2–111,
2006.

[KKBa20] Tomotaka Kuwahara, Kohtaro Kato, and Fernando G. S. L. Brandão. Clustering of condi-
tional mutual information for quantum gibbs states above a threshold temperature. Phys. Rev. Lett.,
124:220601, Jun 2020.

[Led01] Michel Ledoux. The concentration of measure phenomenon. Number 89. American Mathematical
Soc., 2001.

[LR72] Elliott H Lieb and Derek W Robinson. The finite group velocity of quantum spin systems. In
Statistical mechanics, pages 425–431. Springer, 1972.

[LSS19] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Fisher zeros and correlation decay in the
Ising model. Journal of Mathematical Physics, 60(10):103304, 2019.

[LTL+23] Laura Lewis, Viet T. Tran, Sebastian Lehner, Richard Kueng, Hsin-Yuan Huang, and John
Preskill. Improved machine learning algorithm for predicting ground state properties. arXiv, 2023.

[LVMC18] Andrey Y. Lokhov, Marc Vuffray, Sidhant Misra, and Michael Chertkov. Optimal structure and
parameter learning of Ising models. Science Advances, 4(3), March 2018.

[MZ13] Spyridon Michalakis and Justyna P Zwolak. Stability of frustration-free Hamiltonians. Commu-
nications in Mathematical Physics, 322(2):277–302, 2013.

[NSY22] Bruno Nachtergaele, Robert Sims, and Amanda Young. Quasi-locality bounds for quantum lattice
systems. part ii. perturbations of frustration-free spin models with gapped ground states. In Annales
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SUPPLEMENTAL MATERIAL

Appendix A: Preliminaries

Given a finite dimensional Hilbert spaceH, we denote by B(H) the algebra of bounded operators
on H, whereas Bsa(H) denotes the subspace of self-adjoint operators. We denote by D(H) the set
of positive operators on H of unit trace, and by D+(H) the subset of positive, full-rank operators
on H. Schatten norms are denoted by ‖.‖p for p ≥ 1. The identity matrix in B(H) is denoted by
I. Given a bipartite system AB, the normalised partial trace over a subsystem A is written τA,
i.e. τA := 2−|A| trA.

In this work, we consider a family of local qubit interactions {hj(xj)}xj∈[−1,1]` , j = 1, . . . , n over

the D-dimensional lattice Λ = [−L,L]D, for some fixed integer `, where n = (2L+1)D denotes the
total number of qubits constituting the system. For each j and all xj ∈ [−1, 1]`, hj(xj) is supported
on a ball Aj around site j ∈ Λ of radius r0. We also assume that the matrix-valued functions xj 7→
hj(xj) as well as their derivatives are uniformly bounded: ‖hj‖∞, ‖∇xhj(x)‖∞ ≤ h. For sake of
simplicity, we assume that the interactions are linear functions of their parameters, that is hj(xj) =
xjVj for some fixed operator Vj . However this assumption is not necessary in any of our proofs,
as commented in Appendix F. Concatenating the vectors xj into x = (x1, . . . , xn) = (x′1, . . . , x

′
m),

m = n`, the local interactions induce the following family of Hamiltonians {H(x)}x∈[−1,1]m , with:

H(x) =

m∑
j=1

hj(xj) . (A.1)

More generally, given a region B ⊂ Λ of the lattice, we denote by HB(x) :=
∑

j|Aj⊂B hj(x) the

Hamiltonian restricted to B. We denote by x|S(r) the concatenation of vectors xj corresponding
to interactions hj supported on regions intersecting S(r) := {l ∈ Λ| dist(l, S) ≤ r}.

For much of the following, we will be concerned with Gibbs states, defined as

σ(β, x) :=
e−βH(x)

tr[e−βH(x)]
.

In particular, we will be interested in systems satisfying the following type of correlation decay:

Condition A.1 (Exponential Decay of Correlations). For a state σ and any operator XA,
resp. XB, supported on region A, resp. B, we say the state satisfies exponential decay of correla-
tions if

Covσ(XA, XB) ≤ C min{|A|, |B|} ‖XA‖∞ ‖XB‖∞ e−ν dist(A,B) , (A.2)

for any choice of XA,XB, and for some parameters C, ν > 0 which we assume independent of x
and of the lattice size n, and where

Covσ(A,B) :=
1

2
tr
[
σ
{
A− tr[σA], B − tr[σB]

}]
.

Condition A.1 is satisfied by many classes of Gibbs states, including high-temperature Gibbs
states [HMS20, KKBa20] and 1D Gibbs states at any constant temperature [HMS20, BCPH22]. It
is also known to hold for ground states of gapped Hamiltonians [HK06]. In fact, the class of Gibbs
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states for which Condition A.1 holds is larger than that for which polylog algorithms to learn the
parameters of the Hamiltonian are known. In Appendix C 3 we will discuss several examples for
which it is known how to learn the parameters efficiently. In Appendix C 3 c we will also consider
the case when we have the additional assumption of uniform Markovianity to show that then it is
possible to bypass having to learn the parameters.

Appendix B: Lipschitz observables

In this appendix, we argue that Lipschitz observables and the induced Wasserstein distance
capture most observables of physical interest, such as local and quasi-local observables, as well
as quasi-local polynomials of the state and entropic quantities of subsystems. They can even
capture global properties, including some of physical interest like global entropies. These classes
of examples justify the claim that Lipschitz observables and the Wasserstein distance capture well
both linear and nonlinear extensive properties of quantum states.

Let us illustrate our previous claims. An important class of Lipschitz observables are those of
the form

M∑
i=1

Oi, M = O(n), ‖Oi‖ = O(1), max
1≤j≤n

|{i : supp(Oi) ∩ {j} 6= ∅}| = O(1). (B.1)

Observables like those defined in Equation (B.1) include local observables w.r.t. to a regular
lattice. However, it is also not difficult to see that the expectation values of such observables are
characterised by the marginals of the states on a few qubits. But Lipschitz observables capture
more than strictly local properties. Indeed, as shown in [RF21], the time evolution of local observ-
ables like those in Equation (B.1) by a shallow quantum circuit or a short continuous-time evolution
satisfying a Lieb-Robinson bound are Lipschitz. These include evolutions by Hamiltonians with
algebraically decaying interactions, which will map strictly local Hamiltonians to quasi-local ob-
servables. In fact, recent results [ABF23] show that Lipschitz observables can distinguish two
random quantum states almost optimally. As such states are locally indistinguishable [BHH16,
Corollary 15], this fact shows that Lipschitz observables capture much more than just quasi-local
properties of quantum states.

Although so far we only discussed how to use the Wasserstein distance to control linear func-
tionals of the state, the fact that the Wasserstein distance behaves well under tensor products
means that it is also easy to control the error for non-linear functions. Indeed, in [DPMTL21,
Propostion 4], the authors show that the Wasserstein distance is additive under tensor products.
i.e. for all states ρ, σ and integer k we have

W1(ρ⊗k, σ⊗k) = kW1(ρ, σ). (B.2)

We can then combine this additivity with the standard trick that a polynomial of degree k on a
quantum state can be expressed as the expectation value of a certain observable O on ρ⊗k. In
particular, if this polynomial is an average over polynomials in reduced density matrices of constant
size, it is not difficult to see that the corresponding observable on ρ⊗k will be Lipschitz as well.

Let us exemplify this in the case of the average purity of a state. For a subset A ⊂ [n] of the

qubits of size l, let FA ∈
(
C2
)⊗2l

be the flip operator acting on two copies of those qubits:

FA(|ψ〉 ⊗ |ϕ〉) = |ϕ〉 ⊗ |ψ〉 . (B.3)



18

It can be shown in a few lines that tr
[
FAρ⊗2

]
= tr

[
ρ2
A

]
. Furthermore, observables of the form

O =
M∑
i=1

FAi , M = O(n), max
1≤j≤n

|{i : Ai ∩ {j} 6= ∅}| = O(1). (B.4)

satisfy ‖O‖Lip = O(1). Then

M∑
i=1

tr
[
ρ2
Ai − σ

2
Ai

]
= tr

[
O(ρ⊗2 − σ⊗2)

]
≤ ‖O‖LipW1(ρ⊗2, σ⊗2) = 2‖O‖LipW1(ρ, σ). (B.5)

By a direct generalisation of the above, we see that W1(ρ, σ) = O(εn/k) is sufficient to ensure that
degree k polynomials of the states are approximated to a multiplicative error. As we will see later
in Section II A 3, this polynomial trick can be used to ensure that averages of various subsystem
entropies, mutual informations and conditional mutual informations are well-approximated given
a Wasserstein bound.

Once again it should be emphasised that a Wasserstein bound can be used to control global
properties, even non-linear ones. A good example of that is the entropy of a quantum state.
In [DPMTL21, Theorem 1], the authors show the continuity bound:

|S(ρ)− S(σ)| ≤ g(W1(ρ, σ)) +W1(ρ, σ) log(4n), (B.6)

where g(t) = (t + 1) log(t + 1) − t log(t). In this case, it turns out that a Wasserstein distance of
W1(ρ, σ) = O(εn/ log(n)) suffices to obtain a multiplicative error for the entropy. Finally, it is also
worth mentioning observables that are not Lipschitz. Simple examples include linear combinations
of high-weight Paulis.

Appendix C: Gibbs states tomography

In this section, our main goal is to devise an efficient tomography algorithm for Gibbs states
σ(β, x). In particular, we wish to learn the parameters x to high precision. We prove the following
lemma:

Theorem C.1 (Tomography algorithm for decaying Gibbs states ). Let H(x) =
∑

i hi(xi) be
a Hamiltonian such that each hi(xi), xi ∈ [−1, 1]`, is not more than k-local, for k = O(1),
and all terms commute. For some unknown x, let σ(β, x) be its associated Gibbs state satisfying
exponential decay of correlations as per Condition A.1. Then there exists an algorithm that provides
the description of parameters x′ such that the state σ(β, x′) satisfies:

W1(σ(β, x), σ(β, x′)) ≤ εn (C.1)

with probability greater than 1 − δ, such that the algorithm requires access to no more than N =
O
(

log(δ−1) polylog(n) ε−2
)

samples of the state (see Appendix C 3 a).

The result extends to the case where {hi(xi)}i do not commute whenever one of the following
two assumptions is satisfied:

(i) the high-temperature regime, β < βc (see Appendix C 3 b).
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(ii) uniform clustering/Markov conditions (see Corollary C.12).

In case (ii), we find good approximation guarantees under the following slightly worst scaling in
the precision ε: N = O(ε−4 polylog(nδ−1)).

Proof Outline. The full proof is laid out in sections C 1, C 2 and C 3.

The fundamental part of the result uses the continuity estimate of the Wasserstein distance
between two Gibbs states that is of interest on its own. In Corollary C.4 we will show that under
exponential decay of correlations we have:

W1(σ(β, x), σ(β, y)) ≤ ‖x− y‖`1 polylog(n) . (C.2)

The significance of the bound in Equation (C.2) is that it reduces the problem of obtaining a good
estimate of σ(β, x) in W1 to estimating the parameters x in `1 distance. This is a variation of
the Hamiltonian learning problem [AAKS21, GCC22, HKT21], and we can then directly import
results from the literature for our tomography algorithm.

As we argued before in Section II A 1, the recovery guarantee in Equation (C.1) suffices to ensure
that σ(β, x′) mirrors all the quasi-local properties of σ(β, x). Furthermore, the polylog complexity
in system size is exponentially better than what is required to obtain a recovery guarantee in trace
distance [RF21, Appendix G], even for product states.

1. Quantum belief propagation

We start by recalling a well-known tool in the analysis of quantum Gibbs states known as
quantum belief propagation [Has07, Kim17, KB19]. We assume a parameterisation of the Hamilto-
nian as H(x) =

∑m
j=1 xjVj for appropriate operators Vj (we will generalise this to other paramet-

erisation later) and for some observable L we define the function fL(β, x) = tr [σ(β, x)L]. The
belief propagation method then states that we have that for any k ∈ [m],

∂x′kfL(β, x) = −β
2

tr
[
L
{

ΦH(x)(∂x′kH(x)), σ(β, x)
}]

+ β tr(∂x′kH(x)σ(β, x)) tr(Lσ(β, x)) .

where the quantum belief propagation operator ΦH(x) is defined as

ΦH(x)(V ) :=

∫ ∞
−∞

dt κβ(t) e−iH(x)tV eiH(x)t ,

for some smooth, fast-decaying probability density function κβ(t) := 1
2π

∫
κ̃β(ω)eiωtdω of Fourier

transform

κ̃β(ω) :=
tanh(βω/2)

βω/2
.

The function κβ was in fact computed in [AAKS21, Appendix B]: for t ∈ R\{0}:

κβ(t) :=
2

πβ
log

eπ|t|/β + 1

eπ|t|/β − 1
≤ 4

πβ

1

eπ|t|/β − 1
(C.3)
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Rewriting the above derivative, and using the notations 〈O〉β,x ≡ tr(σ(β, x)O) for the expected
value of an observable O in the Gibbs state σ(β, x), we have that

∂x′kfL(β, x) = −β
2
〈
{
L, H̃k(x)− 〈H̃k(x)〉β,x

}
〉β,x (C.4)

where H̃k(x) := ΦH(x)(∂x′kH(x)). We define the covariance between two observables A and B in
the state σ as

Covσ(A,B) :=
1

2
tr
[
σ
{
A− tr[σA], B − tr[σB]

}]
.

Therefore

∂x′kfL(β, x) = −β Covσ(β,x) (L, H̃k(x)) . (C.5)

In what follows, we will need to approximate H̃k(x) by observables supported on bounded regions.
For this, we make use of Lieb-Robinson bounds for Hamiltonians of finite-range interactions [LR72,
Pou10, KGE14, BHV06, Has10, Sid09, CLMPG15]. Here we choose a version proven in [CLMPG15,
Lemma 5.5]: for any observable OA supported on a region A of the lattice, and any B ⊃ A, we
denote by αt, resp. by αBt , the unitary evolution generated by H(x), resp. by HB(x), up to time
t, i.e.

αt(O) := e−iH(x)tOeiH(x)t , αBt (O) := e−iHB(x)tOeiHB(x)t .

which then satisfy

‖αt(OA)− αBt (OA)‖∞ ≤ c |A| ‖OA‖∞ evt−µ dist(A,Bc) , (C.6)

for some parameters c, v, µ > 0 which depend on the interactions hj but can be chosen independent
of n and x.

Lemma C.2. For any region A ⊂ B ⊂ Λ and operator OA supported in A and all x,

‖ΦH(x)(OA)− ΦHB(x)(OA)‖∞ ≤ c′ |A| ‖OA‖∞ e−µ
′ dist(A,Bc)

for some parameters c′ and µ′ depending on H(x) and β but independent of n.

Proof. We make use of the exponential decay of κβ provided in Equation (C.3) together with the
Lieb-Robinson bound Equation (C.6):

‖ΦH(x)(OA)− ΦHB(x)(OA)‖∞ ≤
∫ ∞
−∞
|κβ(t)| ‖αt(OA)− αBt (OA)‖∞ dt

≤ c |A| ‖OA‖∞e−µ dist(A,Bc)

∫ δ

−δ
|κβ(t)| evt dt

+ 2 ‖OA‖∞
∫

[−δ,δ]c
|κβ(t)| dt .

For the first integral above, we use that |κβ(t)| ∝ log(1/t) for t small. More precisely,∫ δ

−δ
|κβ(t)| evt dt ≤ 4evδ

πβ

∫ δ

0
log

(
eπt/β + 1

tπ/β

)
dt ≤ 4e(v+π/β)δ

π2
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For the other integral, we use the exponential decay of κβ:∫
[−δ,δ]c

|κβ(t)| dt ≤ 8

πβ

∫ ∞
δ

1

eπt/β − 1
dt ≤ 8

πβ

∫ ∞
δ

e
− πt

2β dt =
16

π2
e
−πδ

2β ,

where the second inequality holds for δ ≥ 2β
π sh−1

(
1
2

)
≡ δ1. Choosing δ := δ1+µdist(A,Bc)/(2

(
v+

π/β
)
), we get

‖ΦH(x)(OA)− ΦHB(x)(OA)‖∞ ≤ c′ |A|‖OA‖∞ e−µ
′d(A,Bc) ,

for some constant c′ ≡ c′(β, v), where µ′ = µmin
{

1
2 ,

π
4β(v+π/β)

}
.

2. Continuity estimate for W1 distance on Gibbs states

In this subsection, we will prove Equation (C.2). First, we use the bound derived in Lemma C.2
together with the assumption that σ(β, x) has exponential decay of correlations in order to control
the derivatives ∂x′kfL:

Lemma C.3. Assume that σ(β, x) satisfies the condition of decay of correlations, Condition A.1.
Then for any k ∈ [m],

|∂x′kfL(β, x)| ≤ ‖L‖Lip polylog(n) , (C.7)

for some polynomial of log(n) of degree D with coefficients depending on β, r0, D, h, c
′, ν, µ′ and C.

Proof. Denoting by jk the index of the interaction hjk which depends on variable x′k, we have that,

given ΦH(x)(∂x′khj) = δj,jkΦH(x)(∂x′khjk), and denoting h̃k = ΦH(x)(∂x′khjk), from Equation (C.5)
we have:

|∂x′kfL(β, x)| = β Covσ(β,x)(L, H̃k(x)) = β Covσ(β,x)(L, h̃k) .

Next, given a region Bk ⊃ Ajk , define the observable

OBk := ΦHBk (x)(∂x′khjk)− 〈ΦHBk (x)(∂x′khjk)〉β,x . (C.8)

Then by Lemma C.2 we have that

Covσ(β,x)(L, h̃k(x)) = Covσ(β,x)(L, h̃k(x)−OBk) + Covσ(β,x)(L, OBk)

≤ 2‖L‖∞ ‖ΦH(x)(∂x′khjk)− ΦHBk (x)(∂x′khjk)‖∞ + Covσ(β,x)(L, OBk)

≤ 2nc′(2r0)D h ‖L‖Lip e
−µ′ dist(Ajk ,B

c
k) + Covσ(β,x)(L,OBk) .

Next, we estimate the last covariance above. Denoting Bk(r) := {i ∈ Λ : dist(i, Bk) ≤ r}, we get

Covσ(β,x)(L,OBk) = Covσ(β,x)(L− τBk(r)(L), OBk) + Covσ(β,x)(τBk(r)(L), OBk)

≤ 2h‖L− τBk(r)(L)‖∞ + 2C|Bk|h‖L‖∞ e−νr

≤ 2h|Bk(r)| ‖L‖Lip + 2C|Bk|hn‖L‖Lip e
−νr ,
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where the second line above follows from the condition of decay of correlations Condition A.1.
Choosing Bk = Ajk(blog(n)/µ′c), so that dist(Ajk , B

c
k) = blog(n)/µ′c, and r = blog(n)/νc, we

have shown that, given 1/ν ′ := 1/µ′ + 1/ν,

|∂x′kfL(β, x)| ≤ 2β h ‖L‖Lip

(
c′(2r0)D h + (2(r0 + log(n)/ν ′))D(1 + C)

)
The result follows.

With the bound of Lemma C.3, we show that for Gibbs states belonging to a phase with
exponentially decaying correlations, the difference of expected values of Lipschitz observables in
two such states is controlled by the `1-norm of their associated parameters.

Corollary C.4. With the conditions of Lemma C.3, for any x, y ∈ [−1, 1]m,

W1(σ(β, x), σ(β, y)) ≤ ‖x− y‖`1 polylog(n) . (C.9)

Furthermore, this inequality is tight up to a polylog(n) factor for β = Θ(1).

Proof. To get the upper bound Equation (C.9), it suffices to interpolate between the two states as
follows: for any Lipschitz observable L, and a path x(s) = (1− s)x+ sy,

| tr [L(σ(β, x)− σ(β, y))] | ≤
m∑
k=1

|x′k − y′k|
∫ 1

0
|∂kfL(β, x)| ds .

The result follows from using Equation (C.7) above, and using the resulting inequality in the
definition of Wasserstein distance, definition II.2.

To see that the inequality is tight up to the polylog(n) factor, consider the family of Hamilto-
nians H(x) =

∑
i xiZi, which gives rise to diagonal, product Gibbs states that clearly satisfy

exponential decay of correlations. We then have:

W1(σ(β, x), σ(β, y)) ≥ 1

2
tr

[∑
i

Zi(σ(β, x)− σ(β, y))

]
, (C.10)

as
∑

i Zi has Lipschitz constant 2. A simple computation shows that:

1

2
tr

[∑
i

Zi(σ(β, x)− σ(β, y))

]
=

1

2

∑
i

(
e−βxi

e−βxi + e+βxi
− e−βyi

e−βyi + e+βyi

)
. (C.11)

We will assume without loss of generality that xi < yi (as otherwise we can consider the observable
with −Zi instead). Under this condition, the summands are all positive and thus:

1

2
tr

[∑
i

Ziσ(β, x)− σ(β, y))

]
=

1

2

∑
i

∣∣∣∣ e−βxi

e−βxi + e+βxi
− e−βyi

e−βyi + e+βyi

∣∣∣∣ . (C.12)

Yet another simple computation shows that the derivative of the function y 7→ e−βy

e−βy+e+βy
is given

by

−β
2

sech(βy). (C.13)
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Let cβ denote the minimum of the function in Equation (C.13) for a fixed β = Θ(1) over y ∈ [−1, 1].
Then, by the mean value theorem:

1

2

∑
i

∣∣∣∣ e−βxi

e−βxi + e+βxi
− e−βyi

e−βyi + e+βyi

∣∣∣∣ ≥ cβ
2

∑
i

|xi − yi| , (C.14)

from which we conclude that:

W1(σ(β, x), σ(β, y)) ≥
cβ
2
‖x− y‖`1 . (C.15)

We next prove that when given a local observable O supported on a ball S ⊂ Λ of diameter
at most k0 around site i of the lattice, to study its behaviour as H(x) varies for Gibbs states,
it is sufficient to only consider the components of x which parameterise local terms which are
geometrically close to the observable O (up to some small error).

Before we prove this, we remember that we denote by x|S(r) the concatenation of vectors xj
corresponding to interactions hj supported on regions intersecting S(r) := {i ∈ Λ| dist(i, S) ≤ r}.

Lemma C.5 (Gibbs local indistinguishability). Assuming the exponential decay of correlations in
Condition A.1, then for any observable O supported on region S, any r ∈ N, denoting fO(x) :=
tr[Oσ(β, x)] and identify x|S(r) with the vector (x|S(r), 0S(r)c) ∈ [−1, 1]m, then the following bound
holds:

sup
x∈[−1,1]m

|fO(x)− fO(x|S(r))| ≤ C1 e
− r

2ξ ‖O‖∞ ,

for O(1) constants C1, ξ > 0 independent of n. In other words:

sup
x∈[−1,1]m

‖ trSc(σ(β, x)− σ(β, x|S(r)))‖1 ≤ C1 e
− r

2ξ . (C.16)

Proof. We identify x|S(r) with the vector (x|S(r), 0S(r)c) ∈ [−1, 1]m. Given the path x(s) = (1 −
s)x+ sx|S(r) with components {x′l(s)}ml=1, we get

|fO(x)− fO(x|S(r))| ≤
∑

l∈S(r)c

|x′l(0)|
∫ 1

0

∣∣∂l tr [Oσ(β, x(s))
]∣∣ ds (C.17)

= β
∑

l∈S(r)c

|x′l(0)|
∫ 1

0

∣∣Covσ(β,x(s))

(
O, H̃l(x(s))

)
| ds ,

for H̃l(x) := ΦH(x)(∂lH(x)), where the second line comes from Equation (C.5). Next, we call
jl ∈ Λ the unique site such that x′l is a coordinate of xjl , and denote Ajl be the support of hjl .

Now, the above covariance is small if r is large enough, since H̃j(x(s)) can be well approximated
by an observable on Sc. Indeed,

∂lH(x) = ∂lhj` ,
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where jl denotes the index of interaction hjl which depends on variable x′l. Therefore, whenever
Ajl ∩ S = ∅, we proceed similarly to Lemma C.3: given a region Bl ⊃ Ajl such that Bl ∩ S = ∅,
denoting the observable

OBl := ΦHBl (x)(∂x′lhjl)− 〈ΦHBl (x)(∂x′lhjl)〉β,x ,

we have by Lemma C.2 as well as the assumption that the state σ(β, x) has exponential decay of
correlations we have the following (refer to Figure 1 for a diagram of the regions):

Covσ(β,x)(O, H̃l(x)) = Covσ(β,x)(O, H̃l(x)−OBl) + Covσ(β,x)(O, OBl)

≤ 2‖O‖∞ ‖ΦH(x)(∂x′lhjl)− ΦHBl (x)(∂x′lhjl)‖∞ + Covσ(β,x)(O, OBl)

≤ 2‖O‖∞c′|Ajl |h e
−µ′ dist(Ajl ,B

c
l ) + 2C|S| ‖O‖∞ h e−ν dist(S,Bl)

≤ 2(C + c′) ‖O‖∞ (2r0 + k0)D h
(
e−µ

′ dist(Ajl ,B
c
l ) + e−ν dist(S,Bl)

)
By construction, for r > 2r0, the condition that Ajl ∩ S = ∅ is met, and therefore the bound

holds. We recall that i ∈ Λ is defined as the center of S. Since dist(i, jl) = k0/2 + dist(S,Bl) +
dist(Ajl , Bl)+r0, we can choose Bl so that dist(S,Bl),dist(Ajl , Bl) ≥ dist(i, jl)/2−k0/4−r0/2−1.
Therefore,

Covσ(β,x)(O, H̃l(x)) ≤ 4(C + c′)C ′′‖O‖∞(2r0 + k0)D he− dist(i,jl)/ξ

where 1/ξ = min{µ′, ν} and C ′′ := emax{µ′,ν}(k0/4+r0/2+1). Therefore

|fO(x)− fO(x|Si(r))| ≤ 4β(C + c′)h (2r0 + k0)D ‖O‖∞
∑

l∈S(r)c

e−dist(i,jl)/ξ .

Upon shifting the center of the lattice at site i, we get

|fO(x)− fO(x|S(r))| ≤ 4β(C + c′)C ′′ h (2r0 + k0)D ‖O‖∞
∑

|l|≥r+k0/2

e−|l|/ξ

= 4β(C + c′)C ′′ h (2r0 + k0)D ‖O‖∞
∑

a>r+k0/2

(
a+D − 1

D − 1

)
e−a/ξ

≤ 4β(C + c′)C ′′ h (2r0 + k0)DDD−1‖O‖∞
∑

a>r+k0/2

aD−1 e−a/ξ

≤ 4β(C + c′)C ′′ h (2r0 + k0)D(D − 1)!(2ξ)D−1DD−1‖O‖∞
∑

a>r+k0/2

e
− a

2ξ

≤ 4β(C + c′)C ′′ h (2r0 + k0)D(D − 1)!(2ξ)D−1DD−1‖O‖∞
e
− r+k0/2+1

2ξ

1− e−
1
2ξ

≡ C1 e
− r

2ξ ‖O‖∞ ,

where C1 depends upon all the parameters of the problem.

In the case when we are interested in distinguishing two Gibbs states with Lipschitz observables,
over extended subregions of the lattice, the following extension of Corollary C.4 can be easily shown
to hold:
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Figure 1. Diagram showing the regions involved in the proof Lemma C.5.

Corollary C.6. Assume that the states σ(β, x) satisfy the condition of decay of correlations Con-
dition A.1. Then for any region S of the lattice and any two x, y ∈ [−1, 1]m

W1(trSc(σ(β, x)), trSc(σ(β, y))) ≤ ‖x|S(r) − y|S(r)‖`1 polylog(|S(r)|) ,

where r = max
{
r0, 2ξ log

(
2|S|C1

‖x|S(r0)−y|S(r0)‖`1

)}
with r0 being the smallest integer such that

x|S(r0) 6= y|S(r0), and C1, ξ are the same constants as in Lemma C.5.
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Proof. Given LS a Lipchitz observable supported on region S of the lattice, we have for any r ∈ N:∣∣fLS (x)− fLS (y)
∣∣ ≤ ‖LS‖∞ (∥∥ trSc

(
σ(β, x)− σ(β, x|S(r))

)∥∥
1

+
∥∥ trSc

(
σ(β, y)− σ(β, y|S(r))

)∥∥
1

)
+W1

(
σ(β, x|S(r)), σ(β, y|S(r))

)
≤ 2 |S| ‖LS‖LipC1 e

− r
2ξ +W1

(
σ(β, x|S(r)), σ(β, y|S(r))

)
,

where the second line follows from Equation (C.16). By Corollary C.4, we conclude that

W1

(
trSc(σ(β, x)), trSc(σ(β, y))

)
≤ 2 |S|C1 e

− r
2ξ +W1

(
σ(β, x|S(r)), σ(β, y|S(r))

)
≤ 2 |S|C1 e

− r
2ξ + ‖x|S(r) − y|S(r)‖`1 polylog(|S(r)|) .

Next, we choose r = 2ξ log
(

2|S|C1

‖x|S(r0)−y|S(r0)‖`1

)
, where r0 is the smallest integer such that x|S(r0) 6=

y|S(r0).

3. Hamiltonian estimation and optimal Gibbs state tomography

From Corollary C.4 it is immediate that we reduced the problem of obtaining a good estimate
in W1 to the problem of estimating the parameters of the Gibbs state σ(β, x). Indeed, it is clear
that if we can obtain an estimate x′ of x satisfying

‖x− x′‖`1 = O(εn/polylog(n)), (C.18)

then it suffices to ensure that W1(σ(β, x), σ(β, x′)) = εn. Let us discuss some examples where we
can obtain this efficiently with O(ε−2polylog(n)) samples.

a. Commuting Hamiltonians

In [Ans], the authors give an algorithm which with

eO(βkD)O(log(δ−1n)ε−2) (C.19)

copies of σ(β, x) learns x up to ε in `∞ distance when σ(β, x) belongs to a family of commuting,
k-local Hamiltonians on a D-dimensional lattice. As we assumed that the number of parameters
m = O(n), this translates to an algorithm with sample complexity eO(βkD)O(ε−2polylog(δ−1n))
to learn x up to εn in `1 distance. It should be noted that the time complexity of their algorithm
is O(neO(βkD)ε−2polylog(δ−1n)).

Thus, any commuting model at constant temperature satisfying exponential decay of correla-
tions can be efficiently learned with polylog(n) samples. Examples of classes of commuting states
that satisfy exponential decay of correlations include:

1. 1D translation-invariant Hamiltonians at any positive temperature [Ara69].

2. Commuting Gibbs states of Hamiltonians on regular lattices below a threshold temperat-
ure [KGK+14, HMS20].

3. Classical spin models away from criticality [DS87, LSS19, HMS20].

4. Ground states of uniformly gapped systems [BHM10, BH11, MZ13, NSY22].
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b. High-temperature Gibbs states

Another class of states for which the conditions of our results hold are local Gibbs states on
a lattice above a threshold temperature that depends on the locality of the Hamiltonian and
the dimension of the lattice. These systems are known to have exponential decay of correla-
tions [KGK+14, HMS20]. Furthermore, in [HKT21] the authors give an algorithm to learn x up
to error ε in `∞ norm from O(ε−2polylog(δ−1n)) samples. This again translates to a O(εn) error
in `1 norm. Note that their algorithm also is computationally efficient.

We note that in [AAKS21] the authors give an algorithm to learn the Hamiltonian of any Gibbs
state of positive temperature through the maximum entropy method. However, their results require
a polynomial number of samples to recover the parameters in `1 distance. Thus, their results do
not work for the polylog regime investigated in this work.

c. Gibbs state of exponentially decaying correlations and conditional mutual information

In the previous section, we extracted two regimes for which there exist efficient Gibbs tomo-
graphy algorithms from previous works, namely the commuting and the high-temperature regimes.
As said before, depending on the Hamiltonian, exponential decay of correlations can also occur in
the low-temperature regime, and it is an interesting open question whether our strategy can be
adapted to that setting for non-commuting interactions.

Here, we show that the Gibbs state σ(β, x) of a possibly non-commuting Hamiltonian H(x) can
also be estimated in Wasserstein distance up to multiplicative error εn given polylog(n) copies of
it as long as the latter has exponentially decaying correlations and is close to a quantum Markov
chain, hence partially answering an open problem previously raised in [AAKS21].

To be more precise, in this section we will require a stronger notion of decay of correlations:

Definition C.7 (Uniform clustering). The Gibbs state σ(β, x) is said to be uniformly ζ(`)-
clustering if for any X ⊂ Λ and any A ⊂ X and B ⊂ X such that dist(A,B) ≥ `,

Covσ(β,x,X)(XA, XB) ≤ ‖XA‖∞ ‖XB‖∞ ζ(`)

for any XA supported on A and XB supported on B.

As pointed out in [BK18], this property is called uniform clustering to contrast with regular
clustering property that usually only refers to properties of the state σ(β, x).

Definition C.8 (Uniform Markov condition). The Gibbs state σβ(x) is said to satisfy the uniform
δ(`)-Markov condition if for any ABC = X ⊂ Λ with B shielding A away from C and such that
dist(i, j) ≥ ` for any i ∈ A and j ∈ C, we have

I(A : C|B)σ(β,x,X) ≤ δ(`) .

This property always holds for commuting Gibbs states for a function δ(`) = 0 as soon as
` is larger than twice the interaction range. Although not proven yet, it is believed that the
approximate Markov property holds with some generality for non-commuting Gibbs states. The
1D and high-temperature settings were investigated in [KB19] and [KKBa20], respectively. The
decay of the conditional mutual information was also shown for finite temperature Gibbs states
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of free fermions, free bosons, conformal field theories, and holographic models [SM16], as well as
more recently for purely generated finitely correlated states in [SK22].

We will now show how to learn states that satisfy both the uniform Markov condition and the
uniform clustering of correlations. Our strategy consists in using the maximum entropy estimation
[Jay57b, Jay57a, Jay82, BKL+17], already appearing in [AAKS21], to construct an estimator x̂
of the parameter x ∈ [−1, 1]m. The condition of exponential decay of correlations and that of
approximate Markov chain will ensure that W1(σ(β, x̂), σ(β, x)) = o(n). Thus, we once again
emphasise that our goal is to obtain a good recovery of the state, not of the parameter x.

For sake of clarity and simplicity of presentation, we only consider the 1D setting, although our
method easily extends to arbitrary dimension. We assume that each interaction hj(xj) is of the
form

hj(xj) :=
∑̀
l=1

xj,l hj,l

for some self-adjoint operators hj,l supported in Aj := {k ∈ Λ| dist(k, j) ≤ r0} with ‖hj,l‖ ≤ h,
where we denoted by xj,l the entries of xk. We also recall that given a region R of the lattice, we
denote HR(x) :=

∑
k∈R hk(xk). In what follows, with a slight abuse of notations, we denote by

the same symbol a vector y = {yk,l}k∈Nj and its embedding (y, 0) onto [−1, 1]m. Then, given an
inverse temperature β > 0, we define the partition function as

Zβ(x) = tr
[
e−βH(x)

]
.

The maximum entropy problem consists in the following strongly convex optimisation problem.

Theorem C.9 ([AAKS21]). Given an unknown Hamiltonian H(x) =
∑
hj(xj), define ek,l =

tr[hk,`σ(β, x)]. Solving the following optimisation problem:

x̂ := arg min
y∈[−1,1]m

L(y) , where L(y) := logZβ(y) + β
∑
k∈Λ

∑̀
l=1

yk,l ek,l (C.20)

gives x̂ such that σ(β, x̂) = σ(β, x).

In an experimental setting, we will not have access to the exact {ek,l}k,l, but instead may be
able to approximate them using by having access to the state. However, we want to be sure that
having a reasonably good approximation to ek,l is sufficient to approximate x. To do so one can
make use of the fact that

logZβ(x̂) ≤ logZβ(x) + β
∑
k∈Λ

∑̀
l=1

(xk,l − x̂k,l) ẽk,l . (C.21)

Further assuming α2 is a lower bound on the strong convexity constant associated to the function
x 7→ logZβ(x), that is ∇2Zβ ≥ α2 I, we have by Taylor expansion and since ∂xk,l logZβ(x) =
−βek,l(x):

logZβ(x̂) ≥ logZβ(x)− β
∑
k∈Λ

∑̀
l=1

(x̂k,l − xk,l) ek,l(x) +
α2

2
‖x− x̂‖2`2 . (C.22)
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Combining the two bounds above, we find that

‖x− x̂‖2`2 ≤
2β

α2

∑
k,l

(xk,l − x̂k,l)(ẽk,l − ek,l(x)) ≤ 2β

α2
‖x− x̂‖`2 ‖e− ẽ‖`2 ,

and hence ‖x− x̂‖`2 ≤
2β
√
`|Λ| η
α2

, thus giving the following theorem:

Theorem C.10 ([AAKS21]). Suppose ẽk,l is an approximation of ek,l(x) := tr
[
hk,l σ(β, x)

]
with

‖ẽ − e(x)‖`∞ ≤ η. Assume that the following inequality is satisfied for some α2: ∇2Zβ ≥ αI.
Solving the following optimisation problem:

x̂ := arg min
y∈[−1,1]m

L(y) , where L(y) := logZβ(y) + β
∑
k∈Λ

∑̀
l=1

yk,l ẽk,l (C.23)

gives an output x̂ satisfying:

‖x̂− x‖`2 ≤
2βη
√
`Λ

α2
.

Using the bound on x̂ from Theorem C.10 the equivalence between `1 and `2-norms, we have
that

‖x− x̂‖`1 ≤
2β`nη

α2
,

which provides us with the right scaling for our `1 approximation problem as long as η = o(1)
and α2 = Ω(1). Unfortunately, the constant α2 could only be proved to scale inverse polynomially
with n in [AAKS21]. A first idea from there is to try and find a constant α1 = Ω(n−1) such that
the following strong convexity bound with respect to the `1-norm holds. As per eq. (C.22), this
would imply:

logZβ(x̂) ≥ logZβ(x)− β
∑
k,l

(x̂k,l − xk,l) ek,l(x) +
α1

2
‖x− x̂‖2`1 . (C.24)

If such a bound held, we would conclude similarly to the previous setting that

‖x− x̂‖`1 ≤
2βη

α1
= o(ηn) .

Which together with the continuity bound Equation (C.9) would allow us to get the desired
recovery estimate in Wasserstein distance. Now, it can be seen that Equation (C.24) is equivalent
to

‖x− x̂‖2`1 ≤
2

α1
D(σ(β, x)‖σ(β, x̂)) . (C.25)

Here we recall that the relative entropy between two quantum states ρ and σ with supp(ρ) ⊆
supp(σ) is D(ρ‖σ) := tr ρ log ρ − tr ρ log σ. This together with Equation (C.9) would lead to the
following local version of the transportation cost inequality

W1(σ(β, x), σ(β, x̂))2 ≤ O(n polylog(n))D(σ(β, x)‖σ(β, x̂)) . (C.26)
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In [PR22], such inequality was shown to hold in the high-temperature regime only for commuting
H, albeit when σ(β, x) can be replaced by an arbitrary state ρ on the lattice. The latter is referred
to as a transportation-cost inequality for the state σ(β, x̂). Since Equation (C.24) consists in a
strengthening of Equation (C.26), proving it directly appears difficult. Here instead, we want to
show the following weakening of (C.26):

W1(σ(β, x), σ(β, x̂))2 ≤ O(n polylog(n))D(σ(β, x)‖σ(β, x̂)) + o(εn) ,

for some constant δ which depends on the approximate Markov as well as the correlation decay
properties of the Gibbs state σ(β, x̂). More precisely, we show the following extension of [PR22,
Theorem 4] to Gibbs states of non-commuting Hamiltonians.

Proposition C.11 (Generalised transportation-cost inequality). With the notations of the above
paragraph, for all states ρ:

W1(ρ, σ(β, x)) ≤ inf
`∈N
O(`
√
n)
√
D(ρ‖σ(β, x)) + n2

(
δ(O(`)) + ζ(O(`)) + e−O(`)

)
.

In particular, if both ζ(l), δ(l) = O(e−ξl), then for l = O(ξ−1 log(nε−1)) we have

W1(ρ, σ(β, x)) ≤ O(log(nε−1)
√
n)
√
D(ρ‖σ(β, x)) + o(εn). (C.27)

Proof. The proof is adapted from that of [PR22, Theorem 4]. We first consider a bipartite quantum
subsystem AB ⊂ Λ and a joint quantum state ωAB of AB. We then define the so-called quantum
recovery map [SBT16, JRS+18] by its action on a quantum state ρA on region A:

ΦA→AB(ρA) =

∫
R
ω

1−it
2

AB ω
it−1
2

A ρA ω
− 1+it

2
A ω

1+it
2

AB dµ0(t) , (C.28)

where µ0 is the probability distribution on R with density

dµ0(t) =
π dt

2 (cosh(πt) + 1)
. (C.29)

If A is in the state ωA, the recovery map ΦA→AB recovers the joint state ωAB, i.e., ΦA→AB(ωA) =
ωAB. The relevance of the recovery map comes from the recoverability theorem [SBT16], which
states that ΦA→AB can recover a generic joint state ρAB from its marginal ρA if removing the
subsystem B does not significantly decrease the relative entropy between ρ and ω. More precisely,
for any quantum state σAB of AB we have

D(σAB‖ωAB)−D(σA‖ωA) ≥ DM(σAB‖ΦA→AB(σA)) , (C.30)

where DM denotes the measured relative entropy [Don86, Pet86, HP91, BFT17]

DM(σ‖ω) := sup
(X ,M)

D(Pσ,M‖Pω,M ) , (C.31)

where the supremum above is over all positive operator valued measures M that map the input
quantum state to a probability distribution on a finite set X with probability mass function given
by Pρ,M (x) = tr ρM(x).
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Next, we split region A into regions A1 and A2 such that A1 shields A2 away from B, and take
σAB := tr(AB)c(σ(β, x)) and ωAB = σA1B ⊗ σA2 In that case, (C.30) becomes

I(B : A2|A1)σ ≥ DM
(
σ‖ΦA1→A1B(σA)

)
, (C.32)

where we also used that the state ω is a tensor product in the cut A1B − A2, so that ΦA→B =
ΦA1→B.

Next, we pave the chain Λ into unions of intervals A = ∪Mi=1Ai and B = ∪Mi=1Bi such that
Ai ∩ Bi 6= ∅ and Bi ∩ Ai+1 6= ∅. As in [BK18], we then define the channel F := FA ◦ FB where
FB :=

⊗
i σ(β, x,Bi)⊗trBi and FA :=

∏
j ΦAi\B→Ai ◦trAi . In words, the channel FB first prepares

the Gibbs state in the region B, whereas FA prepares the remaining of the Gibbs state onto region
A\B. Then, we have, for any state ρ

W1(ρ, σ(β, x)) ≤W1(ρ,FB(ρ)) +W1(FB(ρ),FA ◦ FB(ρ)) +W1(F(ρ), σ(β, x))

≤
∑
i

W1(σ(A, i), σ(A, i+ 1)) +
∑
i

W1(σ(B, i), σ(B, i+ 1)) + n ‖F(ρ)− σ(β, x)‖1

(1)

≤ R
∑
i

‖σ(A, i)− σ(A, i+ 1)‖1 + ‖σ(B, i)− σ(B, i+ 1)‖1 + n‖F(ρ)− σ(β, x)‖1 ,

where σ(A, i) :=
⊗

j<i σ(β, x,Bj) ⊗ trBj (ρ) and σ(B, i) :=
⊗

j<i ΦAj\B,→Aj ◦ trAj (FB(ρ)), and
where R = max{|Bi|, |Ai|} so that (1) follows from [DPMTL21, Propositiom 5]. Next, we use
Pinsker’s inequality, so

W1(ρ, σ(β, x))

≤ R
√

2
∑
i

√
DM(σ(A, i)‖σ(A, i+ 1)) +

√
DM(σ(B, i)‖σ(B, i+ 1)) + n ‖F(ρ)− σ(β, x)‖1

≤ 2R
√
M

(∑
i

DM(σ(A, i)‖σ(A, i+ 1)) +DM(σ(B, i)‖σ(B, i+ 1))

) 1
2

+ n‖F(ρ)− σ(β, x)‖1

(1)

≤ 2R
√
M
√
D(ρ‖σ(β, x)) + n‖F(ρ)− σ(β, x)‖1

(2)

≤ 2R
√
M
√
D(ρ‖σ(β, x)) + n2

(
δ(O(R)) + ζ(O(R)) + C1e

−c2R) ,
where (1) follows from multiple uses of (C.30) as well as the sub-additivity of the relative entropy
under tensor products in its second argument, whereas (2) comes from [BK18, Theorem 6]. The
result follows.

We can then easily turn the previous statement into one about learning the state σ(β, x):

Corollary C.12 (W1 learning from the uniform Markov condition). Under the same conditions
of Proposition C.11 assume further that ζ(l), δ(l) = O(e−ξl). Then O(ε−4 polylog(nδ−1)) samples
of σ(β, x) suffice to learn a state σ(β, x′) s.t. with probability at least 1− δ

W1(σ(β, x), σ(β, x′)) = O(εn). (C.33)
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Proof. We simply need to adapt the proof of Equation (C.25). First, we recall that

D(σ(β, x)‖σ(β, x̂)) = β
∑
k,l

(x̂k,l − xk,l) ek,l(x) + logZβ(x̂)− logZβ(x) .

Together with Equation (C.27), we have the following approximate strong convexity bound for the
log partition function in the Wasserstein topology:

W1(σ(β, x), σ(β, x̂))2 ≤ O(log(nε−1)2n)D(ρ‖σ(β, x)) + o(ε2n2)

Combining with Equation (C.21) and assuming that ‖ẽ− e(x)‖`∞ ≤ η, we get

W1(σ(β, x), σ(β, x̂))2 ≤ O(log(nε−1)2n)β
∑
k,l

(x̂k,l − xk,l)(ek,l(x)− ẽk,l) + o(ε2n2)

≤ O(log(nε−1)2n2) η + o(ε2n2) .

Above, we have managed to reduce the problem to that estimating the coefficients ek,l to precision
η = O(ε2/ polylog(n)). This can be done with probability 1− δ given O(ε−4 polylog(nδ−1)) copies
of the state σ(β, x) through various methods (see e.g. [RF21, Appendix A] or [AAKS21, Corrolary
27] for more details).

Remark C.13. The main difference between the approach outlined in the proposition above and
that of Corollary C.4 is that, besides requiring the additional assumption of uniform Markovianity,
it has an ε−4 scaling with the precision instead of ε−2. However, it completely bypasses the need for
a good algorithm to learn the parameters x, which is required to apply Corollary C.4. Conversely,
if combined with an `2 strong convexity guarantee on the partition function, the ε−2 scaling can be
recovered (see e.g. [RF21, Theorem A.1] for more details). But, since we are currently only able to
get this guarantee for commuting Hamiltonians or in the high-temperature regimes, Corollary C.4
provides a more direct path than the strategy previously exhibited in [RF21].

Appendix D: Algorithm for learning observables on Gibbs states with the same phase

Next, we assume we are given different Gibbs states σ(β, x) where x is sampled according
to the uniform distribution U over x ∈ [−1, 1]m, and wish to learn the expectation value of an
unknown observable for all values of x ∈ [−1, 1]m. We assume that the Gibbs states in the interval
[−1, 1]m has exponentially decaying correlations everywhere, which can be thought of as defining
a continuous phase of matter. For commuting Hamiltonians, this relationship can be made more
precise [HMS20].

During a training stage, we pick N points Y1, . . . , YN ∼ U independently distributed uniformly
at random in [−1, 1]m and are given access to the Gibbs states σ(β, Yj). Next, fix r ∈ N. Given

an observable O =
∑M

i=1Oi, we define Si = supp(Oi) and for each Si there is a ball of diameter
at most k0 containing Si, and Si(r) := {j ∈ Λ|dist(j, Si) ≤ r}. We construct for any x ∈ [−1, 1]m

the estimator

f̂O(x) =
M∑
i=1

tr
[
Oi σ(β, Ŷi(x))

]
, with Ŷi(x) = argminYk ‖x|Si(r) − Yk|Si(r)‖`∞ , (D.1)
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where we recall that we denote by xSi(r) the concatenation of vectors xj corresponding to interac-
tions hj supported on regions intersecting Si(r). In words, we approximate the expectation value
of Oi by that of the Gibbs state whose parameters in a region around Si are the closest to the
state of interest. We also denote Si ≡ Si(0).

Lemma C.5 demonstrates that to measure a particular observable, it is sufficient to consider
the parameters only spatially local to it. Next, we show that if we are given a number of samples
uniformly sampled from [−1, 1]m, we can construct an estimator for the observable to high preci-
sion.

Proposition D.1. Assuming the exponential decay of correlations in Condition A.1, the estimator
f̂O(x) :=

∑
i tr[Oi σ(β, Ŷi(x))] satisfies the bound

sup
x∈[−1,1]m

|fO(x)− f̂O(x)| ≤ ε
M∑
i=1

‖Oi‖∞ ,

with probability at least 1− δ, whenever

N =
(γ

2

)−[2(r+r0+k0)]D`
log
(M
δ

)
+ [2(r + r0 + k0)]D` log

(2

γ

)(γ
2

)−[2(r+r0+k0)]D`

with

r =

2ξ log

16β(C + c′)h (2r0 + k0)D(D − 1)!(2ξ)D−1DD−1

ε e
k0+1
2ξ (1− e−

1
2ξ )

 ,
γ =

ε e−[2(r+k0)]D(3 log 2+5βh)

2[2(r + k0)]Dh`
.

Before we prove this result, let us simplify its statement. First, r = Θ(log(ε−1)), γ =

Θ
(
ε e
− log(ε−1)D

log(ε−1)D

)
, so that the number of samples needed is asymptotically

N = Θ

(
log
(M
δ

)
epolylog(ε−1)

)
.

Proof. We fix Oi and r > 0, and restrict ourselves to the subset of parameters x|Si(r). The number
of parameters in that subset is bounded by the volume V (r + r0 + k0) of the ball Si(r + r0) times
the number ` of parameters per interaction. We denote it by mr := V (r + r0 + k0)`. Next,
we partition the parameter space [−1, 1]mr onto cubes of side-size γ ∈ (0, 1). By the coupon
collector’s problem, we have that the probability that none of the sub-vectors Yj |Si(r) is within one

of those cubes is upper bounded by e−N(γ/2)mr+mr log(2/γ). By union bound, the probability that
for any i ∈ [M ], any cube is visited by at least one sub-vector Yj |Si(r) is lower bounded by 1− δ,
δ := Me−N(γ/2)mr+mr log(2/γ). In other words, with probability 1− δ there is a Ŷi(x)|Si(r) in the N
samples satisfying

‖x|Si(r) − Ŷi(x)|Si(r)‖`∞ ≤ γ (D.2)

for all i ∈ [M ].
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Denoting f̂Oi(x) := tr
[
Oi σ(β, Ŷi(x)|Si(r))

]
, we next control |fOi(x|Si(r))− f̂Oi(x)|. This is easily

done in terms of the `∞ norm distance between Ŷi(x)|Si(r) and x|Si(r) by Lipschitz estimate: writing

H(x|Si(r)) ≡ H1 and H(Ŷi(x)|Si(r)) ≡ H2,∣∣fOi(x|Si(r))− f̂Oi(x)
∣∣ ≤ ‖Oi‖∞ ‖σ(β, x|Si(r))− σ(β, Ŷi(x)|Si(r))‖1

≤ ‖Oi‖∞
∥∥∥∥ e−βH1

tr[e−βH1 ]
− e−βH2

tr[e−βH2 ]

∥∥∥∥
1

≤ ‖Oi‖∞
(
‖e−βH1 − e−βH2‖1

tr[e−βH1 ]
+ ‖e−βH2‖1

| tr[e−βH1 ]− tr[e−βH2 ]|
tr[e−βH1 ] tr[e−βH2 ]

)
≤ ‖Oi‖∞ ‖e−βH1 − e−βH2‖1

tr
[
e−βH1 + e−βH2

]
tr
[
e−βH1

]
tr
[
e−βH2

]
≤ 22V (r+k0)+1‖Oi‖∞ ‖e−βH1 − e−βH2‖∞ e3βV (r+k0)h .

Next, we use the integral perturbation bound for the exponential in order to bound

‖e−βH1 − e−βH2‖∞ ≤
∫ 1

0
‖e−(1−s)βH1(H1 −H2)e−βsH2‖∞ ds

≤ e2βV (r+k0)h ‖H1 −H2‖∞
≤ e2βV (r+k0)h

∑
j∈Si(r)

‖hj(xj − Ŷi(x)j)‖∞

≤ e2βV (r+k0)h V (r + k0)h`γ ,

where the last line comes from Equation (D.2). Combining this with Lemma C.5, from which
we have that

| tr
[
Oi (σ(β, x)− σ(β, x|Si(r)))

]
|, | tr

[
Oi (σ(β, Ŷi(x))− σ(β, Ŷi(x)|Si(r)))

]
| ≤ C1 e

− r
2ξ ‖Oi‖∞,

we have proven that for all x ∈ [−1, 1]m,

|fOi(x)− f̂Oi(x)| ≤
(
2C1e

− r
2ξ + C2(r)γ

)
‖Oi‖∞ , (D.3)

where C2(r) := 22V (r+k0)+1e5βV (r+k0)hV (r + k0)h`. Now, the volume V (s) of a ball of radius s in
Λ is equal to

V (s) =
∑
a≤s

(
a+D − 1

D − 1

)
≤ (2s)D .

We then fix r so that 2C1e
−r/2ξ ≤ ε/2, γ so that C2(r)γ ≤ 22D+1(r+k0)D+1e5β2D(r+k0)Dh2D(r +

k0)Dh` ≤ ε/2, and therefore a lower bound on N arises from the constraint

δ := Me−N(γ/2)mr+mr log(2/γ) .

Namely:

r =

2ξ log

16β(C + c′)h (2r0 + k0)D(D − 1)!(2ξ)D−1DD−1

ε e
k0+1
2ξ (1− e−

1
2ξ )

 ,
γ =

ε e−[2(r+k0)]D(3 log 2+5βh)

2[2(r + k0)]Dh`
.
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Therefore,

N =
(γ

2

)−[2(r+r0+k0)]D`
log
(M
δ

)
+ [2(r + r0 + k0)]D` log

(2

γ

)(γ
2

)−[2(r+r0+k0)]D`

copies suffice for the approximation claimed to hold with probability 1− δ.

At this stage, we use the shadow tomography protocol to get classical shadows σ̃(β, Ŷi(x)) for
each of the states σ(β, Ŷi(x)). Since only one copy of each σ̃(β, Ŷi(x)) is available, its reconstruc-
tion is likely going to be too noisy. Instead, we will use several non-identical copies σ(β, Ŷi(x))
which almost coincide on large enough regions surrounding the supports of observables Oi in order
to improve the precision of the estimation of f̂O. We first develop the following Gibbs shadow
tomography protocol which we believe to be of independent interest.

Consider a Gibbs state σ(β, x) and a family σ(β, x1), . . . , σ(β, xN ) of Gibbs states with the
promise that for any i ∈ [M ] there exist t vectors xi1 , . . . , xit such that maxj∈[t] ‖x|Si(r) −
xij |Si(r)‖∞ ≤ γ. We run the shadow protocol and construct product operators σ̃(β, x1), . . . , σ̃(β, xN ).
Then for any ball B of radius k0, we select the shadows σ̃(β, xi1), . . . σ̃(β, xit) and construct the
empirical average

σ̃B(x) :=
1

t

t∑
j=1

trBc
[
σ̃(β, xij )

]
.

Proposition D.2 (Robust shadow tomography for Gibbs states). Fix ε, δ ∈ (0, 1). In the notations
of Proposition D.1, with probability 1 − δ′, for any ball B of radius k0, the shadow σ̃B satisfies
‖σ̃B − trBc [σ(β, x)]‖1 ≤ 2C1 e

− r
2ξ + C2(r)γ + ε as long as

t ≥ 8.12k0

3.ε2
log

(
nk02k0+1

δ′

)
. (D.4)

Proof. In view of Proposition G.1, it is enough to show that the reduced states trBc [σ(β, xij )]
are close to trBc [σ(β, x)]. This is done by simply adapting some of the estimates in the proof of
Proposition D.1. In particular, we have shown that

‖ trBc
[
σ(β, x)− σ(β, xij )

]
‖1 ≤ 2C1 e

− r
2ξ + C2(r)γ .

The result follows directly from Proposition G.1.

We are now ready to state and proof the main result of this section. We denote f̃Oi(x) =
tr
[
Oi σ̃Si(x)

]
the function constructed from the Gibbs shadow tomography protocol of Proposi-

tion D.2, and write f̃O :=
∑M

i=1 f̃Oi .

Theorem D.3 (Learning algorithm for quantum Gibbs states). In the notation of the previous
paragraph, consider a set of N shadows {σ̃(β, xi)}Ni=1. Given an arbitrary local observable O, we
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fix

r :=

2ξ log

24β(C + c′)h (2r0 + k0)D(D − 1)!(2ξ)D−1DD−1

ε e
k0+1
2ξ (1− e−

1
2ξ )

 ,
γ =

ε e−[2(r+k0)]D(3 log 2+5βh)

3[2(r + k0)]Dh`
,

t :=

⌈
24.12k0

ε2
log

(
nk02k0+1

δ′

)⌉
.

Then, we have that with probability (1− δ).(1− δ′),

|fO(x)− f̃O(x)| ≤ ε
∑
i

‖Oi‖∞ ,

as long as

N = t
(γ

2

)−[2(r+r0+k0)]D`
log
(M
δ

)
+ t log

[
t
(2

γ

)[2(r+r0+k0)]D`](γ
2

)−[2(r+r0+k0)]D`
.

Once again, upon careful checking of the bounds, we have found

N = Θ

(
log
(M
δ

)
log
(n
δ′

)
epolylog(ε−1)

)
.

Proof. Adapting the proof of Proposition D.1, it is clear that with probability

1− δ := 1−Me−N
1
t
(γ/2)mr+mr log(2/γ)+log t

each cube is visited at least t times. Conditioned on that event, and choosing t such that Equa-
tion (D.4) holds, we have that with probability 1− δ′

|fOi(x)− f̃Oi(x)| ≤
(

2C1e
− r

2ξ + C2(r)γ + ε
)
‖Oi‖∞ .

Remark D.4. We emphasise that the classical data {σ̃(β, xi)}Ni=1 are fixed, and then any local
observable O can be chosen after the data has been taken which will satisfy the bounds in the-
orem D.3.

Remark D.5. Our proof readily extends to distributions µ that satisfy the following anti-concentration
property: for any x0 ∈ [−1, 1]mr and for all π permutations of the coordinates of [−1, 1]n we have:

µ(A(x0, ε, π)) > 0 =⇒ µ(A(x0, ε, π)) = Ω((2ε)mr/polylog(n)) , (D.5)

where A(x0, ε, π) := π((x0 + [−ε, ε]mr) × [−1, 1]n−mr). To see this, notice that the condition in
Equation (D.5) implies that we can discretise the number of cubes with size ε and positive weight
into at most O((2ε)−mrpolylog(n)) cubes for any choice of mr coordinates. By e.g. rejection
sampling we can then generate a sample from the uniform distribution on those cubes by taking
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at most O(polylog(n)) samples from the distribution µ. Once given uniform samples over those
cubes we can argue as in the proof above.

One distribution that satisfies the condition in Equation (D.5) but is far from uniform over
the whole space is e.g. a Dirac measure on a single state. It is also satisfied for various natural
distributions, such as i.i.d. distributions on each coordinate.

Remark D.6. It is clear that our stronger L∞ recovery guarantee cannot hold for arbitrary dis-
tributions and requires some sort of anti-concentration. To see this, consider a distribution over
parameters that outputs a state ρ0 with probability 1 − p and a different, locally distinguishable
state ρ1 with probability p. Before we have drawn Ω(p−1) samples it is unlikely that we gained
access to even a single sample of ρ1. But algorithms like ours with L∞ guarantees also need to
perform well on such rare outputs. Thus, we see that the sample complexity for L∞ guarantees
will have to depend on the parameter p and will blow-up as p → 0. In contrast, if we wish to
obtain good recovery in L2 for this simple example as p→ 0, we can always output the expectation
value w.r.t. ρ0.

1. Learning the High-Temperature Phase

Theorem D.7 (Learnability of the High-Temperature Phase). Let H(x) be a geometrically local
Hamiltonian. Then there exists a temperature range β ∈ [βc, 0], such for all x ∈ [−1, 1]m then the
parameters of Theorem D.3 are sufficient to learn

|fO(x)− f̃O(x)| ≤ ε
∑
i

‖Oi‖∞ ,

with probabilities and parameters as given in Theorem D.3.

Proof. From [KGK+14], we see that for sufficiently high-temperatures (low β), then the Gibbs
states must satisfy exponentially decaying correlations. Thus we can utilise Theorem D.3 directly
to get the parameters required to learn the high-temperature phase.

Remark D.8. For 1D, translationally invariant Hamiltonians, the Gibbs state has exponential
decay of correlations for all temperatures [BCPH22] and hence the phase can be learned efficiently
everywhere.

Remark D.9. For commuting and 1D Hamiltonians we can relate the learnability of the phase to
the analyticity of the free energy, and thus to a more rigorous notion of phase, defined as regions
of parameter space where the free energy is analytic (assuming the Hamiltonian is parameterised
in an analytic fashion). The free energy is defined as F (β, x) = − log(tr[e−βH(x)]). This is done
using [HMS20, Theorem 32] which demonstrates that for commuting and 1D geometrically local
Hamiltonians, exponential decay of correlations holds in the sense of Equation (II.2). Thus we can
utilise Theorem D.3 directly to get the parameters.

One might attempt to relate this to the free energy of non-commuting Hamiltonians, however,
as per [HMS20, Theorem 31], exponential decay of correlations in regions with analytic free energy
is only known for observables O1, O2 whose supports are distance Ω(log(n)) away from each other.
Although one would be able to prove learnability with more samples scaling with n, [HMS20,
Theorem 31] is not strong enough to give the scaling we desire.
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Remark D.10. Although we do not prove it here, it is likely we can flip the above remark on its
head. If we consider a region of parameter space in which the free energy is analytic, we expect
all local observables to be analytic in x in this region. As such, we should be able to approximate
the local observable using polynomial interpolation (or some other technique) and learning the
polynomial of this observable everywhere in the phase with small error.

It is worth noting that high-temperature Gibbs states of commuting Hamiltonians as well as
those of 1D Hamiltonians can be efficiently prepared and hence desired observables could be meas-
ured directly [BK18]. Hence Theorem D.7 becomes most useful in the setting where parameters
are a priori unknown to us and we wish to extract useful information.

Appendix E: Learning ground states

The previous results can be adapted to ground states with exponentially decaying correlations
through the following tricks. Here by ground state we mean the limit

ψg(x) := lim
β→∞

σ(β, x) .

1. Commuting models

We first consider the same family of Hamiltonians {H(x)}x∈[−1,1]m as the one defined in Equa-
tion (A.1), and assume the interactions hj(xj) to be commuting for all x. The ground state H(x) is
denoted by ψg(x). It was shown in [Ans] that the reduced Gibbs states trRc σ(β, x) of commuting
Hamiltonians can be written as

trRc σ(β, x) =
e−β(HR(x)+ΦR(x))

tr
(
e−β(HR(x)+ΦR(x))

) ≡ σ′(x, β,R), (E.1)

where we recall that HR(x) corresponds to the Hamiltonian restricted to the regions R, and where
ΦR(x) is an effective interaction term supported on the inner boundary ∂−R of R, which commutes
with HR and satisfies ‖ΦR(x)‖∞ ≤ 2|∂R|, where ∂R denotes the boundary of R.

Lemma E.1. For any region R of the lattice, we denote by λR(x) the spectral gap of HR(x) +
ΦR(x). Then for any observable XA, resp. XB, supported on region A, resp. B, and any β ≥

2
λA∪B(x) log

(
8.2|A∪B|

ε

)
,∣∣Covσ(β,x)(XA, XB)− Covψg(x)(XA, XB)

∣∣ ≤ ε ‖XA‖∞ ‖XB‖∞ .

Proof. The proof follows by rudimentary estimates: given an arbitrary region R ⊆ Λ, we denote
σR, resp. ψR, the reduced state trRc(σ(β, x)), resp. trRc(ψg(x)). By the triangle inequality and
Hölder’s inequality, we have∣∣Covσ(β,x)(XA, XB)− Covψg(x)(XA, XB)

∣∣
≤
[
4 ‖σAB − ψAB‖1 + 2

(
‖σA − ψA‖1 + ‖σB − ψB‖1

)]
‖XA‖∞ ‖XB‖∞

≤ 8 ‖σAB − ψAB‖1 ‖XA‖∞ ‖XB‖∞ ,
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where the third line follows from the monotonicity of the trace distance under partial tracing.
Next, for any region R, we denote ψ′g(x,R) the limit limβ→∞ σ

′(x, β,R). This is a projection
onto the ground eigenspace of HR(x) + ΦR(x). By Pinsker inequality, we have, denoting E0(x) <
E1(x) < . . . the ordered energies of HR(x) + ΦR(x) with corresponding multiplicities mj(x), and
λR(x) its gap:

‖σAB − ψAB‖21 = ‖σ′(x, β,AB)− ψ′(x,AB)‖21
≤ 2D(ψ′g(x,AB)‖σ′(x, β,AB))

≤ −2 log(m0(x))− 2 tr
[
ψ′g(x,AB) log(σ′(x, β,AB))

]
≤ −2 log(m0(x))− 2 log

(
e−βE0(x)

tr
[
e−β(HR(x)+ΦR(x))

])
= −2 log(m0(x)) + 2

(
βE0(x) + log

∑
j≥0

e−βEj(x)mj(x)
)

= −2 log(m0(x)) + 2 log
(∑
j≥0

e−β(Ej(x)−E0(x))mj(x)
)

= 2 log

1 +
∑
j≥1

e−β(Ej(x)−E0(x))mj(x)

m0(x)


≤ 2 e−βλAB(x)

∑
j≥1

mj(x)

m0(x)

≤ 22|A∪B| e−βλA∪B(x) . (E.2)

The result follows after imposing the above bound to be smaller than ε2/8.

Remark E.2. Under suitable assumptions on the density of states, it is possible to improve the

dependency of the temperature to β ≥ Ω
(

1
λA∪B(x) log

(
|A ∪B|ε−1

))
.

2. Non-commuting models and LTQO

To go beyond the commuting case, we make use of the notion of local topological quantum order
(LTQO) [MZ13, BHM10, NSY22]: in words, the latter states that observables localised away from
the boundary of the volume cannot distinguish between different ground states. From now on,
given a region R ⊂ Λ we denote by σ(β, x,R), resp. ψg(x,R), the Gibbs state corresponding to
the Hamiltonian HR(x) at inverse temperature β, resp. the ground state

ψg(x,R) := lim
β→∞

σ(β, x,R) .

Definition E.3 (Local Topological Quantum Order). A quantum system satisfies LTQO if for
any region A ⊂ B ⊂ Λ, all x ∈ [−1, 1]m,∥∥ trAc(ψg(x,B)− ψg(x,Λ))

∥∥
1
≤ CT |A| e− dist(A,Bc)/ξ0 (LTQO)

for some constants CT , ξ0 > 0.
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Remark E.4. The LTQO property is generally defined with respect to a fast-enough decaying
function of dist(A,Bc). Here, we only considered exponential decay for simplicity, but it is not
difficult to extend our proof to the general settings. It is also worth mentioning that the notion of
LTQO was also extended to models with multiple distinguishable ground states, such as the Ising
model, by replacing the above trace distance by an optimisation over observables XA that satisfy
a symmetry condition in [NSY22].

With this notion at hand, we can extend Lemma E.1 to the non-commutative setting:

Lemma E.5. Assume that the quantum system is uniformly gapped, infR infxHR(x) ≥ λ0 > 0,

and satisfies LTQO. Then for any balls A,B of radius r0, and all β ≥ 2
λ0

log
(

25(2(r+r0))
D

ε

)
,∣∣Covψg(x)(XA, XB)− Covσ(β,x,A∪B(r))(XA, XB)

∣∣ ≤ ε ‖XA‖∞ ‖XB‖∞ ,

where r := ξ0 log
(

16|A∪B|CT
ε

)
. Similarly, for any observable XA supported on ball A of radius r0,∣∣ tr(XAψg(x))− tr(XAσ(β, x,A(r)))

∣∣ ≤ ε ‖XA‖∞ . (E.3)

for all β ≥ 2
λ0

log
(

22(2(r+r0))
D

ε

)
, where r = ξ0 log

(
2CT |A|

ε

)
.

Proof. We take a region R that includes A ∪B. By LTQO, we have∣∣Covψg(x)(XA, XB)− Covψg(x,R)(XA, XB)
∣∣ ≤ 8 ‖ tr(AB)c(ψg(x)− ψg(x,R))‖1 ‖XA‖∞ ‖XB‖∞
≤ 8CT |A ∪B| e− dist(A∪B,Rc)/ξ0 ‖XA‖∞ ‖XB‖∞ .

(E.4)

Next, by the same computation to the one that leads to Equation (E.2), we have∣∣Covψg(x,R)(XA, XB)− Covσ(β,x,R)(XA, XB)
∣∣ ≤ 8 ‖ψg(x,R)− σ(β, x,R)‖1 ‖XA‖∞ ‖XB‖∞

≤ 24|R| e−
β
2
λR(x) ‖XA‖∞ ‖XB‖∞ . (E.5)

We now choose R and β so that the right-hand sides of Equation (E.4) and Equation (E.5) are
each bounded by ε

2‖XA‖∞‖XB‖∞. The proof of Equation (E.3) follows the same lines.

Both Lemma E.1 and Lemma E.5 can be used to learn ground states of local Hamiltonians.
We illustrate this in the next theorem. We first need a replacement for Proposition D.1.

Proposition E.6. Denote fOi,g(x) := tr(ψg(x)Oi) and fO,g(x) :=
∑

i fOi,g(x). With the assump-

tions of Lemma E.5, the estimator f̂O,g(x) :=
∑

i tr[Oi ψg(Ŷi(x))] satisfies the bound

sup
x∈[−1,1]m

|fO,g(x)− f̂O,g(x)| ≤ ε
M∑
i=1

‖Oi‖∞ ,

with probability at least 1− δ, whenever

N =
(γ

2

)−[2(r+r0+k0)]D`
log
(M
δ

)
+ [2(r + r0 + k0)]D` log

(2

γ

)(γ
2

)−[2(r+r0+k0)]D`



41

with

r = ξ0 log

(
3|Si|Ct
ε

)
,

β =
2

λ0
log

(
3.2(2r+k0)D

ε

)
,

γ =
ε e−[2(r+k0)]D(3 log 2+5βh)

3[2(r + k0)]Dh`
.

Proof. We simply need to adapt the proof of Proposition D.1. Using the same notations as there,
with probability

1− δ := 1−Me−N(γ/2)mr+mr log(2/γ)

each cube is visited at least one time. By Lemma E.5, we have that∣∣ tr [Oi(ψg(x)− σ(β, x|Si(r)))
]∣∣ ≤ (CT e− r

ξ0 |Si| + 2|Si(r)|e−
βλ0
2

)
‖Oi‖∞ ≡ C̃1(r, β) ‖Oi‖∞ .

Similarly ∣∣ tr [Oi(ψg(Ŷi(x))− σ(β, Ŷi(x)|Si(r)))
]∣∣ ≤ C̃1(r, β) ‖Oi‖∞ .

Next, we can reuse the bound on |fi(x|Si(r))−f̂Oi(x)| =
∣∣ tr[Oiσ(β, x|Si(r))]−tr

[
Oiσ(β, Ŷi(x)|Si(r))

]∣∣
found in the proof of Proposition D.1. This leads us to the following adaptation of the bound in
Equation (D.3):∣∣fOi,g(x)− f̂Oi,g(x)

∣∣ ≤ (CT e− r
ξ0 |Si| + 2|Si(r)|e

−βλ0
2 + C2(r)γ

)
‖Oi‖∞ ,

where f̂Oi,g(x) := tr
[
Oiψg(Ŷi(x)|Si(r))

]
. We conclude by choosing r so that CT e

− r
ξ0 |Si| ≤ ε

3 , β

such that 2|Si(r)|e−
βλ0
2 ≤ ε

3 and γ such that C2(r)γ ≤ ε
3 .

Next, in complete analogy with Proposition D.2, we develop a robust classical shadow tomo-
graphy algorithm for ground states of quantum systems with LTQO: consider a ground state ψg(x)
and a family ψg(x1), . . . , ψg(xN ) of groups states with the promise that for any i ∈ [M ] there exist
t vectors xi1 , . . . , xit such that maxj∈[t] ‖x|Si(r)−xij |Si(r)‖∞ ≤ γ. We run the shadow protocol and

construct product operators ψ̃g(x1), . . . , ψ̃g(xN ). Then for any ball B of radius k0, we select the

shadows ψ̃g(xi1), . . . ψ̃g(xit) and construct the empirical average

ψ̃B(x) :=
1

t

t∑
j=1

trBc
[
ψ̃g(xij )

]
.

Proposition E.7 (Robust shadow tomography for ground states). Fix ε, δ ∈ (0, 1). In the nota-
tions of Proposition E.6, with probability 1−δ′, for any ball B of radius k0, the shadow ψ̃B satisfies

‖ψ̃B − trBc [ψg(x)]‖1 ≤ CT e
− r
ξ0 |B| + 2|B(r)|e

−βλ0
2 + C2(r)γ + ε as long as

t ≥ 8.12k0

3.ε2
log

(
nk02k0+1

δ′

)
. (E.6)
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Proof. In view of Proposition G.1, it is enough to show that the reduced states trBc [ψg(xij )]
are close to trBc [ψg(x)]. This is done by simply adapting some of the estimates in the proof of
Proposition E.7. In particular, we have shown that

‖ trBc
[
ψg(x)− ψ(xij )

]
‖1 ≤ CT e

− r
ξ0 |B| + 2|B(r)|e

−βλ0
2 + C2(r)γ .

The result follows directly from Proposition G.1.

We are now ready to state and prove the main result of this section. We denote f̃Oi(x) =

tr
[
Oi ψ̃Si(x)

]
the function constructed from the Gibbs shadow tomography protocol of Proposi-

tion D.2, and write f̃O :=
∑M

i=1 f̃Oi .

Theorem E.8 (Learning algorithm for ground states). With the assumptions of Proposition E.6,
we fix

r = ξ0 log

(
4|Si|Ct
ε

)
, β =

2

λ0
log

(
4.2(2r+k0)D

ε

)
, γ =

ε e−[2(r+k0)]D(4 log 2+5βh)

3[2(r + k0)]Dh`
.

Then, we have that with probability (1− δ).(1− δ′),

|fO(x)− f̃O(x)| ≤ ε
∑
i

‖Oi‖∞ ,

as long as

N = t
(γ

2

)−[2(r+r0+k0)]D`
log
(M
δ

)
+ t log

[
t
(2

γ

)[2(r+r0+k0)]D`](γ
2

)−[2(r+r0+k0)]D`
.

In other words, once again,

N = Θ

(
log
(M
δ

)
log
(n
δ′

)
epolylog(ε−1)

)
.

Proof. Adapting the proof of Proposition D.1, it is clear that with probability

1− δ := 1−Me−N
1
t
(γ/2)mr+mr log(2/γ)+log t

each cube is visited at least t times. Conditioned on that event, and choosing t such that Equa-
tion (E.6) holds, we have that with probability 1− δ′

|fOi(x)− f̃Oi(x)| ≤
(
CT e

− r
ξ0 |B| + 2|B(r)|e

−βλ0
2 + C2(r)γ + ε

)
‖Oi‖∞ .

3. Examples

In this section, we gather examples of lattice quantum systems satisfying LTQO. For more
details, we refer the interested reader to [NSY22] and references therein.
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i. Frustration-free spin chains with a unique translation-invariant matrix product ground state,
such as the famous AKLT chain [AKLT88], provide a class of families of ground states
satisfying LTQO [CGLW13, OT19, Tas18].

ii. Quantum double models, among which the well-known Toric code introduced by Kitaev
[Kit06, Kit03], models of commuting Hamiltonians and were recently shown to satisfy LTQO
in [CDH+20].

iii. Levin-Wen models are another class of two-dimensional commuting Hamiltonians studied
for their good properties as quantum error correcting codes. Their LTQO property was
shown in [QW20].

iv. The stability of LTQO was proved in [NSY22, Theorem 7.2] for a large class of local per-
turbations under the condition that an unperturbed family of Hamiltonians is uniformly
gapped and frustration-free. If the frustration-free condition is removed, stability no longer
holds in general, and there exist families of Hamiltonians with uncomputable spectral gaps
[CPGW15].

Appendix F: Non-Linear Parameterisations of the Hamiltonian

Here we show that taking a parameterisation of the Hamiltonian that is not a sum of Paulis
does not change the results of Appendix D.

Lemma F.1. Consider a Hamiltonian parameterised in terms of Pauli strings:

H(x) =
∑
j

xjPj

where Pj is a Pauli string. Consider an alternative parameterisation of the same Hamiltonian in
terms of the local terms:

H(y) =
∑
j

hj(y
(j))

where y(j) ∈ [−1, 1]b, b = O(1), and hj only depends on the coordinates in y(j). We will also
assume that each hj is k-local and ‖∂uhj(y)‖ ≤ 1.

Then, assuming all the non-zero elements of Jacobian are bounded as 1/C ′ ≤ |∂ym/∂xk| ≤ C
for C,C ′ = O(1), the following holds: ∥∥∥∥∥∂hj(y(j))

∂xm

∥∥∥∥∥ ≤ b4kC,
and

|∂ymfL(y)| ≤ C ′′max
m
|∂xifL(β, x)|,

where C ′ = O(1).
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Proof. We see that:

∂hj(y
(j))

∂xm
=
∑
i

∂yi
∂xm

∂hj(y
(j))

∂yi

We note that
∂hj(y

(j))
∂yi

is only non-zero for a b terms. Furthermore, since hj is k-local, then it can

be written as a sum of ≤ 4k Pauli strings. Hence:∥∥∥∥∥∂hj(y(j))

∂xm

∥∥∥∥∥ ≤∑
i

∣∣∣ ∂yi
∂xm

∣∣∣ ∥∥∥∥∥∂hj(y(j))

∂yi

∥∥∥∥∥
≤ b4kC max

∥∥∥∥∥∂hj(y(j))

∂yi

∥∥∥∥∥
≤ b4kC = O(1).

We now consider the functions fL(y) = tr[Lρ(y)], fL(β, x) = tr[Lρ(x)].

∂ymfL(y) =
∑
i

∂xi
∂ym

∂xifL(β, x)

Using that a given ym can depend on at most 4k xm coordinates, we see that for a given ym, at
most poly(4k) = O(1) many ∂xi

∂ym
can be non-zero. Thus

|∂ymfL(y)| ≤ poly(4k)
∣∣∣ ∂xi
∂ym

∣∣∣|∂xifL(β, x)|

≤ poly(4k)C ′|∂xifL(β, x)|.

The lemma statement then follows for C ′′ = poly(4k)C ′.

This lemma allows us to prove up bounds on the derivative of fL(y), and thus an equivalent to
Lemma C.2 holds for local observables. The rest of the results in appendix D follow similarly.

Appendix G: Shadow tomography for non-identical copies

In this appendix, we extend the shadow tomography protocol to the case of non-identical copies.
Consider a state σ and a family σ1, . . . , σN of states over n qubits with the promise that for any
subset A of qubits of size |A| ≤ r there exists a subfamily of states σi1 . . . σit , flagged in advance,
with the promise that maxj∈[t] ‖ trAc(σij − σ)‖1 ≤ η.

We run the shadow protocol and construct product operators σ̃1, . . . , σ̃N . Then for any region
A, we select the shadows σ̃i1 , . . . σ̃it and construct the empirical average

σ̃A :=
1

t

t∑
j=1

trAc(σ̃ij ) .

Proposition G.1 (Shadows for non-identical copies). Fix ε, δ ∈ (0, 1). With probability 1− δ, the
shadow σ̃A satisfies ‖σ̃A − σA‖1 ≤ ε+ η as long as

t ≥ 8.12r

3.ε2
log

(
nr2r+1

δ

)
.
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In order to prove the above proposition, we need an extension of the matrix Bernstein inequal-
ity used in proving the convergence guarantee of the standard shadow protocol to the case of
independent, non-identically distributed random matrices:

Lemma G.2 (Matrix Bernstein for non-i.i.d. random matrices [T+15]). Let S1, . . . , St be inde-
pendent, centered random matrices with common dimension d1 × d2, and assume that each one is
uniformly bounded:

E[Sj ] = 0 and ‖Sj‖∞ ≤ L for all j = 1, . . . , t.

Denote the sum Z =
∑t

j=1 Sj and let ν(Z) := max
{
‖E[ZZ∗]‖∞, ‖E[Z∗Z]‖∞

}
. Then,

P
(
‖Z‖∞ ≥ s

)
≤ (d1 + d2) exp

(
−s2/2

ν(Z) + Ls/3

)
for all s ≥ 0 .

Proof of Proposition G.1. In the notations of the previous paragraph and of Lemma G.2, we take
Sj := trAc(σ̃ij − σij ), j = 1 . . . t, so that Z/t = σ̃A − E[σ̃A]. Adapting the proof for the standard
shadow tomography protocol (see e.g. [HKT+22]), we have

‖ trAc(σ̃ij − σij )‖∞ ≤ 2r + 1 and
ν(Z)

t
=

1

t

∥∥∥ t∑
j=1

E[S2
j ]
∥∥∥
∞
≤ 3r .

Since ‖X‖∞ ≤ ‖X‖1 ≤ 2r ‖X‖∞, we have

P
(
‖σ̃A − E[σ̃A]‖1 ≥ s

)
≤ 2r+1 exp

(
−ts2/22r+1

3r + (2r + 1)s/(3.2r)

)
≤ 2r+1 exp

(−3ts2

8.12r

)
.

Next, we observe that under the assumption maxj∈[t] ‖ trAc(σij − σ)‖1 ≤ η, then:

E[σ̃A] =
1

t

t∑
j=1

trAc(σij ) ⇒ ‖E[σ̃A]− trAc(σ)]‖1 ≤ η .

Hence,

P
(
‖σ̃A − trAc(σ)‖1 ≥ η + ε

)
≤ P

(
‖σ̃A − E[σ̃A]‖1 ≥ s

)
≤ 2r+1 exp

(−3tε2

8.12r

)
.

By union bound, the result follows after choosing δ := nr2r+1 exp
(
−3tε2

8.12r

)
.
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