
HAL Id: hal-03967005
https://hal.science/hal-03967005

Submitted on 1 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounded functions on the character variety
Konstantin Ardakov, Laurent Berger

To cite this version:
Konstantin Ardakov, Laurent Berger. Bounded functions on the character variety. Münster Journal
of Mathematics, In press. �hal-03967005�

https://hal.science/hal-03967005
https://hal.archives-ouvertes.fr


BOUNDED FUNCTIONS ON THE CHARACTER VARIETY

KONSTANTIN ARDAKOV AND LAURENT BERGER

With an appendix by Dragos, Cris,an and Jingjie Yang

Abstract. This paper is motivated by an open question in p-adic Fourier theory, that seems
to be more difficult than it appears at first glance. Let L be a finite extension of Qp with
ring of integers oL and let Cp denote the completion of an algebraic closure of Qp. In their
work on p-adic Fourier theory, Schneider and Teitelbaum defined and studied the character
variety X. This character variety is a rigid analytic curve over L that parameterizes the set
of locally L-analytic characters λ : (oL,+)→ (C×p ,×). One of the main results of Schneider
and Teitelbaum is that over Cp, the curve X becomes isomorphic to the open unit disk. Let
ΛL(X) denote the ring of bounded-by-one functions on X. If µ ∈ oL[[oL]] is a measure on oL,
then λ 7→ µ(λ) gives rise to an element of ΛL(X). The resulting map oL[[oL]] → ΛL(X) is
injective. The question is: do we have ΛL(X) = oL[[oL]]?

In this paper, we prove various results that were obtained while studying this question. In
particular, we give several criteria for a positive answer to the above question. We also recall
and prove the “Katz isomorphism” that describes the dual of a certain space of continuous
functions on oL. An important part of our paper is devoted to providing a proof of this
theorem which was stated in 1977 by Katz. We then show how it applies to the question.
Besides p-adic Fourier theory, the above question is related to the theory of formal groups,
the theory of integer valued polynomials on oL, p-adic Hodge theory, and Iwasawa theory.
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1. Introduction

1.1. Motivation. Let L be a finite extension of Qp and let Cp denote the completion of
an algebraic closure of Qp. In their work on p-adic Fourier theory [ST01], Schneider and
Teitelbaum defined and studied the character variety X. This character variety is a rigid
analytic curve over L that parameterizes the set of locally L-analytic characters λ : (oL,+)→
(C×p ,×). One of the main results of Schneider and Teitelbaum is that over Cp, the curve X
becomes isomorphic to the open unit disk.

The ring OL(X) of holomorphic functions on X is a Prüfer domain, with an action of oL
coming from the natural action of oL on the set of locally L-analytic characters. One can then
localize and complete OL(X) in order to obtain the Robba ring RL(X), and define (ϕ, o×L )-
modules over that ring and some of its subrings. These objects are defined and studied in
Berger–Schneider–Xie [BSX20], with the hope that they will be useful for a generalization of
the p-adic local Langlands correspondence from GL2(Qp) to GL2(L).

In this paper, we instead consider a natural subring of OL(X), the ring ΛL(X) of functions
whose norms are bounded above by 1. If µ ∈ oL[[oL]] is a measure on oL, then λ 7→ µ(λ) gives
rise to such a function. The resulting map oL[[oL]] → ΛL(X) is injective. We do not know of
any example of an element of ΛL(X) that is not in the image of the above map.

Question 1.1.1. Do we have ΛL(X) = oL[[oL]]?
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This question seems to be more difficult than it appears at first glance, and so far we have
not been able to answer it (except of course for L = Qp). The results of this paper were
obtained while we were studying this problem. A related question is raised in remark 2.5 of
[Col16]. We now give more details about the character variety X, and then explain our main
results.

1.2. The character variety. Let B denote the open unit disk, seen as a rigid analytic
variety. This space naturally parameterizes the set of locally Qp-analytic characters λ :
(Zp,+) → (C×p ,×). Indeed, if K is a closed subfield of Cp and z ∈ mK = B(K), then
the map λz : a 7→ (1 + z)a is a K-valued locally Qp-analytic character on Zp, and every such

character arises in this way. Note that λ′z(0) = log(1 + z). If d = [L : Qp], then oL ' Zdp and

hence Bd parameterizes the set of locally Qp-analytic characters λ : (oL,+)→ (C×p ,×). Such
a character is locally L-analytic if and only if λ′(0) is L-linear. In coordinates z = (z1, . . . , zd),
there exists α2, . . . , αd ∈ L such that the character corresponding to z is locally L-analytic
if and only if log(1 + zi) = αi · log(1 + z1) for all i = 2, . . . , d. These d− 1 Cauchy–Riemann
equations cut out the character variety X inside Bd. Schneider and Teitelbaum showed [ST01]
that X is a smooth rigid analytic group curve over L.

The ring of Qp-analytic distributions DQp−an(oL, L) on oL is isomorphic to the ring of
power series in d variables that converge on the open unit polydisk. Every distribution µ ∈
DQp−an(oL, L) gives rise to an element of OL(X) via the map λ 7→ µ(λ). This gives rise to a
surjective (but not injective if L 6= Qp) map DQp−an(oL, L) → OL(X), whose restriction to
oL[[oL]] is injective and has image contained in ΛL(X).

1.3. Schneider and Teitelbaum’s uniformization. We now explain why over Cp, the

curve X becomes isomorphic to the open unit disk. Let GL = Gal(Qp/L). Choose a uniformizer
π of oL and let G denote the Lubin–Tate formal group attached to π. This gives us a Lubin–
Tate character χπ : GL → o×L and, once we have chosen a coordinate Z on G, a formal
addition law X ⊕ Y ∈ oL[[X,Y ]], endomorphisms [a](Z) ∈ oL[[Z]] for all a ∈ oL, and a
logarithm logLT(Z) ∈ L[[Z]].

By the work of Tate on p-divisible groups, there is a non-trivial homomorphism G → Gm

defined over oCp . Concretely, there exists a power series G(Z) ∈ oCp [[Z]] (a generator of
HomoCp (G,Gm)) such that G(X ⊕ Y ) = G(X) · G(Y ). If z ∈ mCp , then the map λz : a 7→
G([a](z)) is a locally L-analytic character on oL, and every such character arises in this way.
This explains the main idea behind the proof of the statement that over Cp, the curve X
becomes isomorphic to the open unit disk.

In particular, OCp(X) is isomorphic to the ring of power series
∑

i≥0 aiZ
i with ai ∈ Cp that

converge on the open unit disk. Let χcyc denote the cyclotomic character, and let τ : GL → o×L
denote the character τ = χcyc · χ−1

π . The Galois group GL acts on OCp(X) by the formula

g(
∑

i≥0 aiZ
i) =

∑
i≥0 g(ai)[τ(g)−1](Z)i. This action is called the twisted Galois action, and

we write GL, ∗ to recall the twist. It follows from the Ax-Sen-Tate theorem that CGLp = L

and then, by unravelling the definitions, that OL(X) = OCp(X)GL,∗. At the level of bounded

functions, this tells us that ΛL(X) = oCp [[Z]]GL,∗. The natural map oL[[oL]] → ΛL(X) sends,
for instance, the Dirac measure δa with a ∈ oL to G([a](Z)) ∈ ΛL(X).

1.4. The operators ϕq, ψq. The monoid (oL,×) acts on oL by multiplication, and hence
on the set of locally L-analytic characters, on X, and on the ring OCp(X). If a ∈ oL, then
this action is given by f(Z) 7→ f([a](Z)). Let q denote the cardinality of the residue field kL
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of oL and let ϕq denote the action of π on OCp(X). The ring OCp(X) is a free ϕq(OCp(X))-
module of rank q. Let ψq : OCp(X) → OCp(X) be the map defined by ϕq(ψq(f(Z))) =
1/q · TrOCp (X)/ϕq(OCp (X))(f(Z)). The action of oL and the operator ψq commute with the

twisted action of GL, and therefore preserve OL(X). If we consider the image of the map
DQp−an(oL, L) → OL(X), we have a · δb = δab and ψq(δb) = 0 if b ∈ o×L and ψq(δb) =

δb/π if b ∈ πoL. In particular, oL[[oL]]ψq=0 coincides with oL[[o×L ]], those measures that are

supported in o×L . We use later on the fact (lemma 5.1.9) that ΛL(X) = oL[[oL]] if and only

if ΛL(X)ψq=0 = oL[[o×L ]]. Note that if L 6= Qp, then ψq(ΛCp(X)) is not contained in ΛCp(X)
as TrOCp (X)/ϕq(OCp (X))(f(Z)) is divisible by π, but not always by q. Our first result is the

following.

Theorem 1.4.1. We have ΛL(X) = oL[[oL]] if and only if ψq(ΛL(X)) ⊂ ΛL(X).

This is proved at the end of §3.1.

1.5. The polynomials Pn. Recall that G(Z) is a generator of HomoCp (G,Gm) and that

τ = χcyc · χ−1
π . In fact, we have G(Z) = exp(Ω · logLT(Z)) = 1 + Ω · Z + O(Z2), where Ω

is a certain special element of mCp such that g(Ω) = τ(g) · Ω. In particular, for all n ≥ 0,
there exists a polynomial Pn(Y ) ∈ L[Y ] such that G(Z) =

∑
n≥0 Pn(Ω) · Zn. For n ≥ 0,

the polynomial Pn(Y ) is of degree n, and its leading coefficient is 1/n!. For example, assume

that the coordinate Z is chosen in a way that logLT(Z) =
∑

k≥0 Z
qk/πk. Then we have (see

Proposition 4.3.1 for more details)

Pn(Y ) =
∑

n0+qn1+···+qdnd=n

Y n0+···+nd

n0! · · ·nd! · π1·n1+2·n2+···+d·nd
.

If a ∈ oL, then G([a](Z)) =
∑

n≥0 Pn(Ω) · [a](Z)n =
∑

n≥0 Pn(aΩ) · Zn. This implies for

instance that Pn(aΩ) ∈ oCp for all a ∈ oL. For n ≥ 0 and i ≥ n, let σn,i(Y ) ∈ L[Y ] denote

the polynomials such that [a](Z)n =
∑

i≥n σn,i(a)Zi for all a ∈ oL. The σn,i(Y ) are all

elements of Int, the oL-submodule of L[Y ] of integer valued polynomials on oL. The fact
that

∑
n≥0 Pn(Ω) · [a](Z)n =

∑
n≥0 Pn(aΩ) · Zn implies that Pn(aΩ) =

∑n
i=0 σi,n(a)Pi(Ω). If

µ ∈ DQp−an(oL, L), then its image inOL(X) is therefore fµ(Z) =
∑

n≥0 Z
n·
∑n

i=0 µ(σi,n)Pi(Ω).

Let Pol denote the oL-span of the σn,i(Y ) inside L[Y ], so that Pol ⊂ Int. The following gives a
relation between our question and the theory of integer valued polynomials ([dS16], [dSI09]):

Theorem 1.5.1. If ΛL(X) = oL[[oL]], then Pol = Int.

The proof can be found at the end of §4.2. The converse statement is not true, but “Pol =
Int” is equivalent to U [[Z]]GL,∗ = oL[[oL]], where U is the oL-submodule of oCp generated by
{Pn(Ω)}n≥0. We have not been able to prove that Pol = Int, although we can show that Pol
is p-adically dense in Int. Some numerical evidence indicates that Pol = Int seems to hold:
the details can be found in the Appendix by D. Crisan and J. Yang at the end of our paper.

We now explain how to compute the valuation of Pn(Ω) for certain n. The elements z ∈ mCp
such that G(z) = 1 correspond to those locally L-analytic characters λz such that λz(1) = 1.
Being locally L-analytic, they are necessarily trivial on an open subgroup of oL, and corre-
spond to certain torsion points of G. We know the valuations of these torsion points, and this
way we can determine the Newton polygon of G(Z) − 1. Using this idea, we can prove the
following. Let e be the ramification index of L/Qp. If m ≥ 0, let km = b(m − 1)/ec, so that
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m = ekm + r with 1 ≤ r ≤ e. For m ≥ 0, let xm = qm/pkm+1 (so that x0 = 1 and x1 = q/p).
Write m = en+ r and let

y0 =
e

p− 1
− 1

q − 1
and ym =

e

pn(p− 1)
− r

pn+1
− 1

(q − 1)pn+1
.

Theorem 1.5.2. For all m ≥ 0, we have valπ(Pxm(Ω)) = ym.

For example, if L = Qp2 , then valp(Ppk(Ω)) = 1/pk−1(q − 1) for all k ≥ 0.

1.6. Galois-continuous functions and the Katz map. Following Katz [Kat77], we let
C0

Gal(oL, oCp) denote the oL-module of Galois-continuous functions, namely those continuous
functions f : oL → oCp such that g(f(a)) = f(τ(g) · a) for all a ∈ oL and g ∈ GL. If
P (T ) ∈ L[T ], then a 7→ P (a · Ω) is such a function. Let K be a closed subfield of Cp
containing L. The dual Katz map is the map K∗ : HomoL(C0

Gal(oL, oCp), oK)→ oK [[Z]] given by

µ 7→
∑

n≥0 µ(Pn) ·Zn. Let oK [[Z]]ψq-int denote the set of f(Z) ∈ oK [[Z]] such that ψnq (f(Z)) ∈
oK [[Z]] for all n ≥ 1. Our main technical result is the following

Theorem 1.6.1. Suppose that L = Qp2 .

(1) The map K∗ : HomoL(C0
Gal(oL, oCp), oK)→ oK [[Z]] is injective.

(2) Its image is equal to oK [[Z]]ψq-int.

An important part of our paper is devoted to providing a proof of this theorem, which is
completed at the end of §3.6. We note that Theorem 1.6.1 was stated by Katz at [Kat77, p.
60], but he did not give a proof. The remarks contained in the last paragraph of [Kat77, §IV]
seem to indicate that his proof is different to ours.

The hardest part of the theorem is the claim concerning the image of K∗. Note that when
L = Qp2 , the dual of the p-divisible group attached to G has dimension 1. Using this and
Theorem 1.5.2 for L = Qp2 , we can prove (see Proposition 3.6.5) that every element of

o∞ = oker τ
Cp can be written as

∑
n≥0 λn · Pn(Ω) where λn ∈ oL and λn → 0. This important

ingredient of the proof of Theorem 1.6.1 is not known to be available if L 6= Qp2 .

1.7. Applications of the Katz isomorphism. Throughout this section, we assume that
L = Qp2 and π = p, so that K∗ : HomoL(C0

Gal(oL, oCp), oK)→ oK [[Z]]ψq-int is an isomorphism.

Let L∞ = Cker τ
p and o∞ = oker τ

Cp . Since π = p, L∞ is also the completion of L(G[p∞]).

Theorem 1.6.1 gives us an isomorphism K : HomoL(C0
Gal(o

×
L , oCp), oK) → oK [[Z]]ψq=0, and

we have a natural isomorphism C0
Gal(o

×
L , oCp) → o∞. Applying this to K = L, we get the

following result (Theorem 5.1.4), where o∗∞ = HomoL(o∞, oL):

Theorem 1.7.1. The map K∗ gives rise to an isomorphism o∗∞ ' oL[[Z]]ψq=0.

Let ΓLT
L = Gal(L(G[p∞])/L) and Γcyc

Qp = Gal(Qp(µp∞)/Qp). In the cyclotomic setting,

Perrin-Riou showed [PR90, Lemma 1.5] that Zp[[Z]]ψp=0 is a free Zp[[Γcyc
Qp ]]-module of rank 1.

She also raised the question of what happens in the present setting. Using Theorem 1.7.1, we
show in Corollary 5.2.12 that oL[[Z]]ψq=0 is in fact not a free oL[[ΓLT

L ]]-module of rank 1.

We can also apply the isomorphism HomoL(o∞, oK) ' oK [[Z]]ψq=0 to K = L∞, and we
get HomoL(o∞, o∞) ' o∞[[Z]]ψq=0. The natural action of GL on the left is the twisted Galois
action on the right. Since ΛL(X) = oCp [[Z]]GL,∗ = o∞[[Z]]GL,∗, we get the following result
(Theorem 5.1.6):

Theorem 1.7.2. We have EndGLoL (o∞) ' ΛL(X)ψq=0.
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Recall that oL[[o×L ]] ⊂ ΛL(X)ψq=0. If a ∈ o×L , then δa ∈ oL[[o×L ]] acts on o∞ by an element

g ∈ GL such that τ(g) = a. Since ΛL(X) = oL[[oL]] if and only if ΛL(X)ψq=0 = oL[[o×L ]], we get
the following criterion (Theorem 5.1.8):

Theorem 1.7.3. We have ΛL(X) = oL[[oL]] if and only if every continuous L-linear and
GL-equivariant map f : L∞ → L∞ comes from the Iwasawa algebra L⊗oL oL[[ΓLT

L ]].

In the cyclotomic case, Tate’s normalized trace maps Tn : Qcyc
p → Qp(µpn) are examples

of continuous Qp-linear and GQp-equivariant maps f : Qcyc
p → Qcyc

p that do not come from
the Iwasawa algebra L ⊗oL oL[[Γcyc

Qp ]]. The lack of normalized trace maps in the Lubin–Tate

setting is a source of many complications. In his PhD thesis, Fourquaux considered continuous
L-linear and GL-equivariant maps f : L∞ → L∞. We generalize some of Fourquaux’s results:
we prove in Proposition 5.1.13 that if f 6= 0 is such a map, then there exists n ≥ 0 such that
f(L∞) contains a basis of the Ln-vector space Ln[log Ω], where Ln = L(G[pn]). In particular,
f necessarily has a very large image, so there can be no analogue of the equivariant trace
maps Tn.

The Katz isomorphism also allows us to prove several results about the span of the polyno-
mials Pn in C0

Gal(oL,Cp). Recall that by [ST01, Theorem 4.7], every Galois-continuous locally
analytic function on oL can be expanded as an overconvergent series in the Pn. One may
then wonder about the existence of such an expansion for Galois-continuous functions. Let
C0(L) denote the set of sequences {λn}n≥0 with λn ∈ L and λn → 0. The Katz isomorphism,
and computations involving ψq, imply the following (Proposition 5.3.1, Corollary 5.3.4, and
Corollary 5.3.9):

Theorem 1.7.4. The map C0(L)→ C0
Gal(oL,Cp), given by {λn}n≥0 7→

[
a 7→

∞∑
n=0

λn · Pn(aΩ)

]
is injective, has dense image, but is not surjective.

The same methods imply the following precise estimates for those elements of C0
Gal(oL,Cp)

that are given by a polynomial function a 7→ Q(aΩ) with Q(T ) ∈ L[T ]. See prop 5.3.6 and
coro 5.3.12.

Theorem 1.7.5. Assume that Z is a coordinate on G such that [p](Z) = Zq + pZ. Let
Q(T ) ∈ L[T ] be a polynomial such that Q(aΩ) ∈ oCp for all a ∈ oL, and write Q(T ) =∑degQ

n=0 λn · Pn(T ).

(1) We have λn ∈ p−koL if n ≤ qk.
(2) There exists such a polynomial Q for which λqk−1 = p−k.

1.8. Other criteria. The following two criteria for our main question may be of interest.
Let ∂ : Cp[[Z]]→ Cp[[Z]] denote the invariant derivative ∂ = log′LT(Z)−1 · d/dZ. It does not

commute with the twisted action of GL, but D = Ω−1 · ∂ does. We get a map D : OCp(X)→
OCp(X) that does not preserve ΛCp(X) if L 6= Qp since valp(Ω

−1) < 0. Note that D(δa) = a ·δa
if a ∈ oL, so that D does preserve oL[[oL]]. We have the following result.

Theorem 1.8.1. If L = Qp2 , then ΛL(X) = oL[[oL]] if and only if Dq−1(ΛL(X)) ⊂ ΛL(X).

This Theorem follows from Theorem 1.4.1 and the following result, which is inspired by
computations of Katz: assume that L = Qp2 and that π = p. Let λ = Ωq−1/p(q − 1)! ∈ o×Cp .
If f(Z) ∈ oCp [[Z]], then ϕψq(f)− λ ·Dq−1(f) ∈ oCp [[Z]].

Here is another result concerning our main question. It says that if the answer is yes for a
finite extension K/L, then the answer is also yes for L.



BOUNDED FUNCTIONS ON THE CHARACTER VARIETY 7

Theorem 1.8.2. If K/L is finite and if ΛK(XK) = oK [[oK ]], then ΛL(XL) = oL[[oL]].

1.9. Acknowledgements. This paper grew out of a project started with Peter Schneider.
The authors are very grateful to him for numerous discussions, interesting insights (in partic-
ular, considering the Katz isomorphism), and several invitations to Münster. Several results
in this paper were obtained in collaboration with him. L.B. also thanks Pierre Colmez for
some discussions about the main problem of this paper.

2. The character variety

2.1. Notation. Let Qp ⊆ L ⊂ Cp be a field of finite degree d over Qp, oL the ring of integers
of L, π ∈ oL a fixed prime element, kL = oL/πoL the residue field, q := |kL| and e the absolute
ramification index of L. We always use the absolute value | | on Cp which is normalized by

|p| = p−1. We let GL := Gal(L/L) denote the absolute Galois group of L. Throughout our
coefficient field K is a complete intermediate extension L ⊆ K ⊆ Cp.

2.2. The p-adic Fourier transform. We are interested in the character variety X of the
L-analytic commutative group (oL,+). We refer to [ST01, §2] for a precise definition, but
recall that X is a rigid analytic variety defined over L, whose set of K-points (for K a field
extension of L complete with respect to a non-archimedean absolute value extending the
one on L) is the group X(K) of K-valued characters χ : (oL,+) → (K×,×) that are also
L-analytic functions:

X(K) := {f ∈ CL−an(oL,K) : f(a+ b) = f(a)f(b) for all a, b ∈ oL}.
Here CL−an(oL,K) is the space of locally L-analytic K-valued functions on oL.

Let DL−an(oL,K) be the K-algebra of locally L-analytic distributions on oL, defined in
[ST02, §2]. One of the main results of p-adic Fourier Theory — [ST01, Theorem 2.3] — tells
us that there is a canonical isomorphism

F : DL−an(oL,K)→ O(X×L K)

called the p-adic Fourier Transform. This isomorphism is determined by

F(λ)(χ) = λ(χ) for all λ ∈ DL−an(oL,K), χ ∈ X(K).

Since X is a rigid L-analytic variety, we have at our disposal the subalgebra O◦(X) of O(X)
consisting of globally-defined, rigid analytic functions on X that are power-bounded — see
[BGR84, §1.2.5].

Definition 2.2.1. Write Λ(X) := O◦(X).

The functorial definition of the character variety does not shed much light on its internal
structure. It turns out that the base change X×L K is isomorphic to the rigid analytic open
unit disc over K, provided the field K is large enough. This isomorphism is obtained with the
help of Lubin-Tate formal groups and their associated p-divisible groups.

2.3. Lubin-Tate formal groups. Let Z be an indeterminate and let

Fπ :=
(
πZ + Z2oL[[Z]]

)
∩ (Zq + πoL[[Z]])

be the set of possible Frobenius power series. Recall [Lan90, Theorem 8.1.1]1. that for every
Frobenius power series ϕ(Z) ∈ Fπ, there is a unique formal group law Fϕ(Z) = Z1 +G Z2 ∈

1Note that what Lang calls a formal group should really be called a formal group law.
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oL[[Z1, Z2]] such that ϕ(Z) is an endomorphism of Fϕ(Z). Since we have fixed a coordinate Z

on the power series ring oL[[Z]], this formal group law defines a formal group2 (G,⊕) on the
underlying formal affine scheme Spf oL[[Z]]. This formal group is called a Lubin-Tate formal
group. Up to isomorphism of formal groups, it does not depend on the choice of the Frobenius
power series ϕ(Z), however it does depend on the choice of π. The base change of G to the

completion L̂ur of the maximal unramified extension Lur of L does not even depend on the
choice of π.

The Lubin-Tate formal group G is in fact a formal oL-module. This means that there is a
ring homomorphism oL → End(G), a 7→ [a](Z) ∈ oL[[Z]], such that [a](Z) ≡ aZ mod Z2oL[[Z]]
for all a ∈ oL. In other words, the formal group G admits an action of oL by endomorphisms
of formal groups, in such a way that the differential of this action at the identity element 1
of G agrees with the natural oL-action on the cotangent space of G at 1. The action of π ∈ oL
is given by the power series [π](Z) = ϕ(Z).

2.4. A review of p-divisible groups. In his seminal paper [Tat67], Tate introduced p-
divisible groups and considered their relation to formal groups. Here we review some of his
fundamental theorems.

Let R be a commutative base ring and let Γ = (Spf A, ∗) is a commutative formal group
over R where A = R[[X1, · · · , Xd]] is a power series ring in d variables over R. Then we can
associate with Γ the p-divisible group Γ(p) = (Γ(p)n, in) over R where Γ(p)n := Γ[pn] is the
subgroup of elements of Γ killed by pn. More precisely, let ψ : A → A be the continuous R-
algebra homomorphism which corresponds to multiplication by p on Γ and let Jn be the ideal
Aψn(X1) + · · ·+Aψn(Xd) of A; then A/Jn is a Hopf algebra over R free of finite rank over
R, and Γ(p)n = Spec(A/Jn) is the corresponding commutative finite flat group scheme over
R. The closed immersions in : Γ(p)n → Γ(p)n+1 are obtained from the R-algebra surjections
A/Jn+1 � A/Jn.

Theorem 2.4.1 (§2.2, Proposition 1 [Tat67]). Let R be a complete Noetherian ring whose
residue field k is of characteristic p > 0. Then Γ 7→ Γ(p) is an equivalence between the category
of divisible commutative formal groups over R and the category of connected p-divisible groups
over R.

Recall that the formal group Γ is said to be divisible if A/J1 is finitely generated as an
R-module, and a p-divisble group (Γn, in) is said to be connected if every finite flat group
scheme Γn is a connected scheme.

Remark 2.4.2. Inspecting the proof of [Tat67, Proposition 1], we see that the fact that the
functor Γ 7→ Γ(p) is fully faithful holds in greater generality: if R is any commutative ring
and G,H are divisible formal groups defined over R such that O(G) and O(H) are power
series rings in finitely many variables over R, then the natural map

HomR−fgp(G,H)→ Homp−div(G(p), H(p))

is a bijection.

Now we specialise to the case where R is our complete discrete valuation ring oL. The Tate
module associated to a p-divisible group Γ = (Γn, in) is by definition

T (Γ) := lim←−Γn(L)

2a group object in the category of formal schemes over Spf oL
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where L is the algebraic closure of L, Γn(L) = HomoL−alg(O(Γn), L) is the set of L-points of
Γn, and the connecting maps in the inverse limit are induced by the multiplication-by-p-maps
jn : Γn+1 → Γn. By functoriality, the Tate module T (Γ) carries a natural action of the absolute
Galois group GL = Gal(L/L), making T (Γ) into a continuous Zp-linear representation of GL
of rank equal to the height h of Γ. Remarkably, it turns out that this Galois representation
completely determines the p-divisible group Γ. More precisely, we have the following

Theorem 2.4.3 (§4.2, Corollary 1 [Tat67]). The functor Γ 7→ T (Γ) is a fully faithful embed-
ding of the category of p-divisible groups over oL into the category of finite rank Zp-linear
continuous representations of GL.

2.5. Cartier duality for p-divisible groups. The category of commutative finite flat group
R-schemes admits a duality called Cartier duality : if G is a commutative finite flat group
scheme over R, then its Cartier dual is defined by G∨ = Spec(O(G)∗) where O(G)∗ :=
HomR(O(G), R) is the R-linear dual of the coordinate ring O(G). The group structure on G∨

is obtained by dualising the multiplication map on O(G) and the scheme structure on G∨ is
obtained by dualising the comultiplication map on O(G) encoding the group structure on G.

Tate shows in [Tat67, §2.3] that Cartier duality extends naturally to a duality Γ 7→ Γ∨

on the category of p-divisible groups. He also shows that in [Tat67, §4] when R = oL, the
Tate-module functor to Galois representations converts Cartier duality into what is now called
Tate duality on Galois representations, namely V 7→ Hom(V,Zp(1)). In other words, there is
a natural isomorphism of continuous GL-representations on finite rank Zp-modules

T (Γ∨) ∼= HomZp(T (Γ),Zp(1))

where Zp(1) := T (Ĝm(p)) is the Tate module associated to the formal multiplicative group

Ĝm, the formal completion at the identity of the group scheme Gm := Spec oL[T, T−1].

2.6. The character τ : GL → o×L and the period Ω. We return to the Lubin-Tate formal
group G as in §2.3, which is easily seen to be divisible. Because G is a formal oL-module,
the functoriality of T (−) implies that the Tate module T (G(p)) of the p-divisible group G(p)
associated with G is actually an oL-module. It is a fundamental fact due to Lubin and Tate
— see [LT65, Theorem 2] — that T (G(p)) is a free oL-module of rank one. Since oL is
itself a free Zp-module of rank d = [L : Qp], it follows that the underlying Zp-module of
T (G(p)∨) ∼= HomZp(T (G(p)),Zp) is free of rank d as a Zp-module as well. Since it is also an
oL-module by the functoriality of HomZp(−,Zp), we see that T (G(p)∨) is also a free oL-module
of rank 1.

On the way to his proof of Theorem 2.4.3, Tate explains how to compute T (G(p)∨): using
Cartier duality, on [Tat67, p. 177] he obtains a natural isomorphism of abelian groups

(1) T (G(p)∨) ∼= Homp−div /oCp
(G(p)×oL oCp , Ĝm(p)×oL oCp).

On the other hand, applying Remark 2.4.2 with R = oCp , we see that the natural map

(2) Homfgp /oCp
(G ×oL oCp , Ĝm ×oL oCp)→ Homp−div /oCp

(G(p)×oL oCp , Ĝm(p)×oL oCp)

is a bijection. As a consequence, we see that Homfgp /oCp
(G ×oL oCp , Ĝm ×oL oCp) is free of

rank 1 as an oL-module.

Definition 2.6.1.

(1) We fix a generator t′o for T (G(p)∨) as an oL-module.
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(2) We let Ft′o be the generator for the oL-module Homfgp /oCp
(G ×oL oCp , Ĝm ×oL oCp),

which corresponds to t′o along the isomorphism

T (G(p)∨)
∼=→ Homfgp /oCp

(G ×oL oCp , Ĝm ×oL oCp)

obtained by combining (1) and (2).
(3) We let τ : GL → o×L be the character afforded by the free rank 1 oL-module T (G(p)∨):

σ(t′o) = τ(σ)t′o for all σ ∈ GL.

The morphism of formal groups Ft′o : G ×oL oCp → Ĝm ×oL oCp is an element of

Ft′o(Z) ∈ O(G ×oL oCp) = oCp [[Z]].

Then 1+Ft′o(Z) is “grouplike” in the topological Hopf algebra oCp [[Z]]: it satisfies the relation

1 + Ft′o(Z1 +G Z2) = (1 + Ft′o(Z1))(1 + Ft′o(Z2)).

When we further base change the formal group G ×oL oCp to Cp, it becomes isomorphic to
the additive formal group. It follows from this that logFt′o(Z) is necessarily “primitive” in
the topological Hopf algebra Cp[[Z]]: it satisfies the relation

log(1 + Ft′o(Z1 +G Z2)) = log(1 + Ft′o(Z1)) + log(1 + Ft′o(Z2)).

Since the logarithm logLT(Z) of the formal group G spans the space of primitive elements in
Cp[[Z]], it follows that there exists a unique element Ω ∈ Cp such that

1 + Ft′o(Z) = exp(Ω logLT(Z)).

Definition 2.6.2. The element Ω is called the period of the dual p-divisible group G(p)∨.

Let IL ⊆ GL denote the inertia subgroup.

Lemma 2.6.3. If L 6= Qp, then the character τ : IL → o×L has an open image.

Proof. Let χπ be the character describing the GL-action on the Tate module T of G. By local
class field theory we know that on IL, NormL/Qp ◦χπ = χcyc, the cyclotomic character. From

Definition 2.6.1(2), we have τ = χ−1
π · χcyc. Hence τ : IL → o×L is the composition of the

surjective map χπ : IL → o×L and of the map given by x 7→
∏
σ:L→Qp, σ 6=Id σ(x).

On the Lie algebra L of o×L , the derivative of the above map is given by U = TrL/Qp − Id.
We prove that U : L→ L is injective, hence surjective, which implies the lemma. If U(x) = 0,
then x = (U + Id)x = TrL/Qp(x) ∈ Qp and hence U(x) = ([L : Qp]− 1)x so that x = 0. �

For future use, we record here the more precise result due to B. Xie which gives a sufficient
criterion for τ to be surjective.

Lemma 2.6.4. If d− 1 and (p− 1)p are coprime, then τ : IL → o×L is surjective.

Proof. Since τ = χ−1
π · χcyc and χcyc = NormL/Qp ◦χπ, we have

τ(g) = χπ(g)−1 NormL/Qp(χπ(g)) for any g ∈ IL.

Note also that the restriction to IL of the totally ramified surjective character χπ � o×L is

still surjective. Let now u ∈ o×L be any fixed element.

We first show that there is an a ∈ Z×p such that ad−1 = NormL/Qp(u). Let v := NormL/Qp(u)

and let v̄ denote its image in F×p . By our assumption the polynomial Zd−1 − v̄ is separable
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over Fp and has a root in F×p . Hence Hensel’s lemma implies that the polynomial Zd−1 − v
has a root a ∈ Z×p .

Choosing now a g ∈ IL such that χπ(g) = au−1 we deduce that

τ(g) = (au−1)−1 NormL/Qp(au
−1) = ua−1ad NormL/Qp(u

−1) = u . �

2.7. The Amice-Katz transform. With the period Ω ∈ Cp in hand, now we recall some
constructions from p-adic Fourier Theory [ST01]. For each a ∈ oL, define

∆a := 1 + Fat′o(Z) = exp(aΩ logLT(Z)) ∈ Cp[[Z]]×.

The map (oL,+) → (Cp[[Z]]×,×) which sends a ∈ oL to ∆a is a group homomorphism. The
fundamental property of these power series is that their coefficients all lie in oCp :

∆a ∈ oCp [[Z]]× for all a ∈ oL.

This follows from the fact that for each a ∈ oL, Fat′o : G ×oL oCp → Ĝm ×oL oCp is a homo-
morphism of formal groups defined over oCp ; see also [ST01, Lemma 4.2(5)].

Definition 2.7.1.

(1) Let L∞ be the closure in Cp of the subfield L(Ω) of Cp generated by L and Ω.

(2) Let Lτ := L∞ ∩ L.
(3) Let o∞ := L∞ ∩ oCp .
(4) Let oτ := Lτ ∩ oCp .

Lemma 2.7.2. We have L∞ = Cker τ
p and o∞ = oker τ

Cp .

Proof. From the relation appearing in Definition 2.6.1(3), we deduce

σ(Ω) = τ(σ)Ω for all σ ∈ GL.

This immediately implies that L∞ ⊆ Cker τ
p . Let H := Gal(L/Lτ ), a closed subgroup of GL,

and let g ∈ H. Then g extends to a unique continuous Lτ -linear automorphism g of Cp. Now
L∞ is the closure of Lτ in Cp, so g fixes Ω ∈ L∞. Hence τ(g) = 1 by the above relation.

Hence H ≤ ker τ which implies that Cker τ
p ≤ CHp . But L

H
is dense in CHp by the Ax-Sen-Tate

theorem, [BC09, Proposition 2.1.2], and L
H

= Lτ by infinite Galois theory. Hence Lτ is dense
in CHp , so CHp is contained in the closure of Lτ in Cp, namely L∞. Hence Cker τ

p ≤ L∞.

The second statement follows from the first by intersecting L∞ = Cker τ
p with oCp . �

It is clear from the definition of ∆a that in fact

∆a ∈ o∞[[Z]]× for all a ∈ oL.

Definition 2.7.3. We write oL[[oL]] for the completed group ring of the abelian group oL
with coefficients in oL. The Amice-Katz transform is the unique extension to a continuous
oL-algebra homomorphism

µ : oL[[oL]]→ O(G ×oL o∞) = o∞[[Z]]

of the group homomorphism oL → oCp [[Z]]× which sends a ∈ oL to ∆a ∈ o∞[[Z]]×.
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2.8. The Schneider-Teitelbaum uniformisation. At this point, rigid analytic geometry
enters the picture. Let B be the rigid L∞-analytic open disc of radius one, with local coor-
dinate Z. By definition, B is the colimit of the rigid L∞-analytic closed discs B(r) of radius
r < 1, as r ∈ |L×∞| approaches 1 from below:

B = colimr<1 B(r), B(r) = SpL∞〈Z/ṙ〉

where ṙ is any choice of an element of L×∞ such that |ṙ| = r. Choosing, for convenience, any
strictly increasing sequence r1 < r2 < r3 < · · · of real numbers in |L∞| ∩ (0, 1) approaching
1 from below, we have a descending chain of L∞-algebras, each one containing o∞[[Z]]:

L∞〈Z/ṙ1〉 ) L∞〈Z/ṙ2〉 ) L∞〈Z/ṙ3〉 ) · · · )
∞⋂
n=1

L∞〈Z/ṙn〉 = O(B) ⊇ o∞[[Z]]⊗oL L.

With this notation in place, it follows from one of Schneider-Teitelbaum’s main results, [ST01,
Theorem 3.6], that the oL-algebra homomorphism µ : oL[[oL]]→ o∞[[Z]] extends to a continu-
ous isomorphism of L-Fréchet algebras

µrig : DL−an(oL, L∞)
∼=−→ O(B)

which makes the following diagram commutative:

oL[[oL]]⊗oL L
µ //

��

o∞[[Z]]⊗oL L

�� ��
DL−an(oL, L∞)

∼=
µrig

// O(B)

The vertical arrow on the left is the natural restriction map oL[[oL]]⊗oL L into DL−an(oL, L),
witnessing the fact that every locally L-analytic function on oL is continuous, and hence
that every continuous distribution on oL restricts to a locally L-analytic distribution on oL;
see [ST02] for more details. The vertical arrow on the right is the inclusion o∞[[Z]] ⊗oL L ⊂
O(B) from the above discussion. Combining the isomorphism µrig with the Fourier transform
F : DL−an(oL, L∞)→ O(X×L L∞), we obtain an isomorphism of L∞-Fréchet algebras

µrig ◦ F : O(X×L L∞)
∼=−→ O(B).

Since X ×L L∞ and B are both Stein rigid analytic varieties over L∞, this isomorphism
determines, and is completely determined by, an isomorphism

κ := Sp(µrig ◦ F) : B
∼=−→ X×L L∞.

This is a version of [ST01, Theorem 3.6]: the base-change of the character variety X to L∞
is isomorphic to the rigid L∞-analytic open disc of radius one, so κ can be viewed as giving
a uniformisation of X×L L∞ by B. Schneider and Teitelbaum also show that the morphism
κ is given on Cp-points by the following rule: for each z ∈ B(Cp) we can evaluate the power
series ∆a ∈ o∞[[Z]] at Z = z to obtain an element ∆a(z) ∈ o×Cp , and the locally L-analytic

character κ(z) : oL → Cp is given by

κ(z)(a) = ∆a(z) for all a ∈ oL.
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2.9. ΛL(X) and the twisted GL-action on Cp[[Z]]. It is natural to enquire, in the light of
the Schneider-Teitelbaum isomorphism

κ : B
∼=−→ X×L L∞

how far the character variety X is itself from being isomorphic to an open rigid L-analytic
unit disc. For general reasons, X×LL∞ carries a natural action of the Galois group GL, acting
on the second factor, giving an isomorphism of L-Fréchet algebras

O(X) ∼= O(X×L L∞)GL .

Definition 2.9.1. The twisted GL-action on O(B) is given as follows:

σ ∗ F (Z) := (σF )([τ(σ)−1](Z)) for all F (Z) ∈ O(B), σ ∈ GL.

Here F 7→ σF is the ”coefficient-wise” GL-action on Cp[[Z]] ⊃ O(B), given explicitly by

σ(
∞∑
n=0

anZ
n) =

∞∑
n=0

σ(an)Zn for all σ ∈ GL.

Schneider and Teitelbaum showed that this twisted GL-action on O(B) in fact comes from
the following twisted GL-action on the set of Cp-points B(Cp):

σ ∗ z = κ−1(σ ◦ κ(z)) for all z ∈ B(Cp), σ ∈ GL.
From the proof of [ST01, Corollary 3.8], we can also deduce the following

Proposition 2.9.2. The algebra isomorphism κ∗ = µrig ◦ F : O(X ×L L∞)
∼=−→ O(B) is

equivariant with respect to the natural GL-action on the source, and the twisted GL-action
on the target.

Corollary 2.9.3. The map µrig restricts to give an isomorphism of oL-algebras

(µrig ◦ F)◦ : O◦(X)
∼=−→ o∞[[Z]]GL,∗.

Proof. Applying the functor O◦ to the isomorphism of rigid L∞-analytic varieties κ : B →
X×L L∞, we see that µrig ◦ F restricts to an o∞-algebra isomorphism

O(X×L L∞)◦
∼=−→ O(B)◦.

It is well known that O(B)◦ = o∞[[Z]] and that ΛL(X) = O(X)◦ = (O(X ×L L∞)◦)GL . The
result follows by passing to GL-invariants and applying Proposition 2.9.2. �

Consequently, the image of the Amice-Katz transform µ : oL[[oL]] → o∞[[Z]] lands in the
subring of twisted GL-invariants. Our main goal in this paper is to study the following

Question 2.9.4. Is the Amice-Katz transform µ : oL[[oL]]→ o∞[[Z]]GL,∗ an isomorphism?

2.10. Some properties of ΛL(X). Recall that ΛL(X) is the ring O≤1
L (X) = o∞[[Z]]GL,∗. From

[BSX20] we know (through the LT-isomorphism) that ΛL(X) is an integral domain and that
the norm ‖ ‖X = ‖ ‖1 on ΛL(X) is multiplicative.

Lemma 2.10.1. If L 6= Qp and if K is a finite extension of L, then k[[Z]]GK ,∗ = kK .

Proof. If g ∈ IK , then g acts trivially on k, so that the GL,∗ action of g ∈ IK on k[[Z]] is given

by g :
∑

n≥0 anZ
n 7→

∑
n≥0 an([τ(g)−1]Z)n. The character τ : IK → o×L has an open image by

lemma 2.6.3. This image therefore contains χπ(IM ) where M ⊂ L∞ is some finite extension of
L, and k[[Z]]IK ,∗ = k[[Z]]IM where IM acts on k[[Z]] via g :

∑
n≥0 anZ

n 7→
∑

n≥0 an([χπ(g)]Z)n.
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We know from the theory of the field of norms that k[[Z]] with that action of IM embeds into

Ẽ+ ' lim←−(−)q
oCp in an IM -equivariant way. Let P := CIMp . We have (Ẽ+)IM ' lim←−(−)q

oP = k

since P/Qp is finitely ramified. Hence k[[Z]]IM = k and k[[Z]]IK ,∗ = k. The lemma then follows

from the fact that on k, the twisted GL-action coincides with the usual GL-action, so that

k
GK ,∗ = kK . �

We have a surjective map ΛL(X) → k given by f 7→ f(χtriv) mod mL. Its kernel m(X) :=
{f ∈ ΛL(X) : f(χtriv) ∈ mL} is a maximal ideal of ΛL(X), with residue field k. Lemma 2.10.1
above implies that m(X) = OmCp (X)GL,∗.

Lemma 2.10.2. The ring ΛL(X) is a local ring.

Proof. We have to show that m(X) is the unique maximal ideal, i.e., that f is a unit in
ΛL(X) if and only if f(χtriv) ∈ o×L . The direct implication is obvious. We therefore assume

that f(χtriv) ∈ o×L . The image F (Z) ∈ oCp [[Z]] of f under the LT-isomorphism then satisfies

F (0) ∈ o×L and hence is a unit in oCp [[Z]]. We deduce that f is a unit in OCp(X). Since the
twisted GL-action must fix with f also its inverse we obtain that f is a unit in OL(X) and
hence in ObL(X) by [BSX20] Cor. 1.24. The multiplicativity of the norm ‖ ‖X finally implies
that 1 = ‖f‖X = ‖f−1‖X. �

The oL-algebra ΛL(X) carries two natural topologies. One is the p-adic topology which is
induced by the norm ‖ ‖X. The other is the topology induced by the Frechet topology of
OL(X). We will call the latter the weak topology on ΛL(X).

Remark 2.10.3. The weak topology on ΛL(X) is coarser than the p-adic topology.

Proof. Let X =
⋃
n≥1 Xn be a Stein covering by affinoid subdomains Xn (cf. [BSX20] §1.3).

The Frechet topology of OL(X) is the projective limit of the Banach topologies on the affinoid
algebras OL(Xn). Since X is reduced these Banach topologies are defined by the respective
supremum norm (cf. [BGR84] Thm. 6.2.4/1). Therefore the Banach topology on OL(Xn)
induces on its unit ball with respect to the supremum norm the p-adic topology. It follows
that the natural maps ΛL(X)→ OL(Xn) are continuous for the p-adic topology on the source
and the Banach topology on the target. Therefore the inclusion ΛL(X) ⊆ OL(X) is continuous
for the p-adic topology on the source and the Frechet topology on the target. �

Lemma 2.10.4. ΛL(X) is p-adically separated and complete.

Proof. We show that, for any reduced rigid analytic variety Y over L, the ring O≤1
L (Y) of

holomorphic functions bounded by 1 is p-adically separated and complete. Let Y =
⋃
i∈I Yi

be an admissible covering by affinoid subdomains. Since Y is assumed to be reduced, the
supremum seminorm on each OL(Yi) is a norm and defines its affinoid Banach topology (cf.

[BSX20] §1.3). Hence ‖ ‖Y is a norm on ObL(Y) and defines the p-adic topology on O≤1
L (Y). In

particular, the p-adic topology on O≤1
L (Y) is separated. Now let (fn)n be a Cauchy sequence

for ‖ ‖Y in O≤1
L (Y). It restricts to a Cauchy sequence in O≤1

L (Yi) for each i ∈ I which

converges to a function gi ∈ O≤1
L (Yi). Obviously the gi glue to a function g ∈ O≤1

L (Y).
We have to show that the sequence (fn)n converges to g with respect to ‖ ‖Y. Let ε > 0 be
arbitrary. First we find an integer N > 0 such that ‖fm−fn‖Y < ε for all m,n > N . Secondly,
for any i ∈ I, we have ‖g − fm‖Yi < ε for all sufficiently large (depending on i) m. It follows
that ‖g− fn‖Yi ≤ max(‖g− fm‖Yi , ‖fm− fn‖Yi) ≤ max(‖g− fm‖Yi , ‖fm− fn‖Y) < ε for any
n > N and any i ∈ I. Hence ‖g − fn‖Y ≤ ε for any n > N . �
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Proposition 2.10.5. ΛL(X) is compact in the weak topology.

Proof. According to [Eme17] Prop. 6.4.5 the space X is strictly quasi-Stein. This means
that a Stein covering X =

⋃
n≥1 Xn can be chosen such that the inclusion maps Xn ⊆

Xn+1 are relatively compact. By loc. cit. Prop. 2.1.16 this implies that the restriction maps
OL(Xn+1) → OL(Xn), which we simply view as inclusions, are compact maps between Ba-
nach spaces. Working over a locally compact field we deduce (cf. [Sch02] Remark 16.3 and

[PGS10] Cor. 6.1.14) that the closure Cn of O≤1
L (Xn+1) in OL(Xn) is compact. We, of course,

have ΛL(X) ⊆ O≤1
L (Xn+1) ⊆ Cn. Therefore, if Ln ⊆ OL(Xn) is any open lattice, then the

oL-modules ΛL(X)/ΛL(X)∩Ln ⊆ Cn/Cn∩Ln are finite. It is straightforward to see that then
ΛL(X)/ΛL(X) ∩ L must be finite for any open lattice L ⊆ OL(X). On the other hand ΛL(X)
is weakly closed in OL(X) and hence is weakly complete. It follows (cf. [Sch02] Cor. 7.6) that
ΛL(X) with its weak topology is the projective limit of the finite groups ΛL(X)/ΛL(X) ∩ L
and hence is compact. �

Lemma 2.10.6.

(1) Any open neighbourhood of zero for the weak topology on ΛL(X) contains a power of
the maximal ideal m(X).

(2) If the ideal m(X) is finitely generated then the weak topology on ΛL(X) coincides with
the m(X)-topology.

Proof. We have m(X) = πLΛL(X) + n, where n denotes the ideal of all functions in ΛL(X)
which vanish in χtriv. We consider the divisor ∆ on X which maps χtriv to 1 and all other
points to zero. For any integer m ≥ 1 we have the ideal Im∆ ⊆ OL(X) corresponding to the
divisor m∆. As a consequence of [BSX20] Prop. 1.4 these ideals are closed in OL(X) and
satisfy

⋂
m Im = {0}. Hence the ideals Im ∩ΛL(X) are closed in ΛL(X) with zero intersection.

Let now U ⊆ ΛL(X) be any fixed open neighbourhood of zero for the weak topology. Suppose
that Im ∩ ΛL(X) " U for any m ≥ 1. We then may pick, for any m ≥ 1, a function fm ∈
(Im ∩ ΛL(X)) \ U . According to Prop. 2.10.5 the weak topology on ΛL(X) is compact. Hence
the sequence (fm)m has a convergent subsequence with a limit f ∈ ΛL(X). On the one
hand we have fn ∈ Im ∩ ΛL(X) for any n ≥ m. Since Im ∩ ΛL(X) is closed it follows that
f ∈ Im ∩ΛL(X) for any m ≥ 1. Therefore f = 0. But on the other hand all the fm and hence
f lie in the closed complement of the open subset U . This is a contradiction. We conclude
that nm ⊆ Im ∩ ΛL(X) ⊆ U for any sufficiently large m. As a consequence of Remark 2.10.3
we also have πmL ΛL(X) ⊆ U for any sufficiently large m. Hence m(X)2m ⊆ πmL ΛL(X)+nm ⊆ U
for large m. This proves (1).

We have to show that the ideals m(X)m are open for the weak topology. Under our assump-
tion all ideals m(X)m, for m ≥ 1, are finitely generated. Hence all m(X)m+1/m(X)m are finite
dimensional k-vector spaces. We see that each quotient ΛL(X)/m(X)m, for m ≥ 1, is a finite
oL-module. Hence it suffices to show that the ideal m(X)m is closed for the weak topology. Let
f1, . . . , fr be generators of m(X)m. Then m(X)m is the image of the map ΛL(X)r → ΛL(X)
sending (h1, . . . , hr) to

∑
i hifi, which is a continuous map between compact spaces by Prop.

2.10.5. This proves (2). �

Remark 2.10.7. Any f ∈ m(X) satisfies ‖f‖Xn < 1 for any n.

Proof. If ‖f‖Xn = 1 then the maximum modulus principle for the affinoid Xn implies that
there is a point z ∈ Xn such that |f(z)| = 1. By considering f as an element of oCp [[T ]], we
see that f(0) is a unit so that f is not in m(X). �
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Next we consider the injective map

Λ(oL) = oL[[oL]] −→ ΛL(X) ,

which we treat as an inclusion. More explicitly, let a1, . . . ad be a basis of oL as a Zp-module.
Then the image of the above map is the ring of formal power series oL[[δa1 − δ0, . . . , δad − δ0]]
inside ΛL(X). We immediately conclude from Lemma 2.10.1 that

m(X) ∩ oL[[oL]] = 〈πL, δa1 − δ0, . . . , δad − δ0〉 ⊆ oL[[oL]] .

Lemma 2.10.8. O<1
L (X) ∩ oL[[oL]] = πLoL[[oL]].

Proof. We have πLoL[[oL]] ⊆ P := O<1
L (X) ∩ oL[[oL]]. It follows that P := P/πLoL[[oL]] is a

“canonical” prime ideal in the formal power series ring k[[oL]]: in particular, it is invariant for
the o×L action on the mod-p Iwasawa algebra k[[oL]]. It certainly is not the unique maximal

ideal. In this situation, [Ard12, Corollary 8.1(b)] implies that P must be the zero ideal,
provided we can show that the open subgroup 1 + poL ⊂ o×L acts rationally irreducibly on oL.

We have to show that every non-trivial 1 + poL-stable subgroup of oL is open in oL. But
such a subgroup contains (1 + poL)a − a = paoL for some 0 6= a ∈ oL, and is therefore open
in oL. �

Corollary 2.10.9. The restriction of the norm ‖ · ‖ on ΛL(X) to oL[[oL]] coincides with the
π-adic norm on oL[[oL]]: for any x ∈ πnoL[[oL]]\πn+1oL[[oL]] we have

‖x‖ = |πn|.

Proof. Since ‖πny‖ = |πn|‖y‖ for any y ∈ oL[[oL]], we may assume that n = 0. But now since
x /∈ πoL[[oL]], Lemma 2.10.8 tells us that ‖x‖ = 1. �

Corollary 2.10.10. The oL-module ΛL(X)/oL[[oL]] is torsionfree.

Proof. Suppose that f ∈ ΛL(X) is such that πnf ∈ oL[[oL]] for some n ≥ 0. Choose n least
possible and suppose for a contradiction that n ≥ 1. Then πnf ∈ oL[[oL]]\πoL[[oL]], else
otherwise we would be able to deduce that πn−1f ∈ oL[[oL]]. Hence ‖πnf‖ = 1 by Corollary
2.10.9, which implies that |π|−n = ‖f‖ ≤ 1. Hence n = 0. �

Corollary 2.10.11. We have ΛL(X) ∩ (L⊗oL oL[[oL]]) = oL[[oL]].

3. The Katz isomorphism

3.1. The ψq-operator. We denote by ⊕ the formal group law of G. Furthermore let G1

denote the group of π-torsion points of G. Its cardinality is q. It coincides with the set of zeros
of the Frobenius power series [π](Z) = ϕ(Z).

We fix a π-adically complete and flat oL-algebra S in what follows and define an injective
S-algebra endomorphism ϕ : S[[Z]]→ S[[Z]] by setting

ϕ(F )(Z) := F ([π](Z)) for all F (Z) ∈ S[[Z]].

Lemma 3.1.1.

(1) For any F ∈ S[[Z]] there is a unique F0 ∈ S[[Z]] and a unique polynomial F1 ∈ S[Z] of
degree < q such that F = ϕ(Z)F0 + F1.

(2) {F ∈ S[[Z]] : F (ζ) = 0 for any ζ ∈ G1} = ϕ(Z)S[[Z]].
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Proof. (1). This is a form of Weierstrass division. Since ϕ(Z) ≡ Zq mod πoL[[Z]], the proof of
[Bou98, VII.3.8 Prop. 5] goes through by replacing the maximal ideal of S in the argument
with the ideal πS.

(2). Since ϕ(Z) vanishes on G1, the inclusion ⊇ is clear. If F ∈ S[[Z]] vanishes on G1 then
using (1) we may assume that F ∈ S[Z] with degF < q. But then F = 0, which gives the
other inclusion. �

Using the above lemma the proof of [Col79, Lemma 3] remains valid for S and gives

ϕ(S[[Z]]) = {F ∈ S[[Z]] : F (Z) = F (ζ ⊕ Z) for any ζ ∈ G1}.
Since the map ϕ is injective, Lemma 3.1.1(2) implies the existence of a unique S-linear endo-
morphism ψCol of S[[Z]] such that

ϕ(ψCol(F )(Z)) =
∑
ζ∈G1

F (ζ ⊕ Z) for any F ∈ S[[Z]] .

Definition 3.1.2. Let S[[Z]]L := S[[Z]]⊗oL L. The ψq-operator is defined by

ψq :=
1

q
ψCol : S[[Z]]L → S[[Z]]L.

Note that ψCol (respectively, ψq) preserves S′[[Z]] (respectively, S′[[Z]]L) for any intermediate
π-adically complete and flat oL-subalgebra S′ of S. These operators satisfy the following useful
Projection Formula.

Lemma 3.1.3. For any F,G ∈ S[[Z]] we have ψq(Fϕ(G)) = ψq(F )G.

Proof. We may instead establish the analogous formula for ψCol. Note that [π](ζ ⊕ Z) =
[π](ζ)⊕ [π](Z) = [π](Z) for any ζ ∈ G1, since [π](ζ) = ϕ(ζ) = 0. Therefore

ϕ(ψCol(Fϕ(G))) =
∑
ζ∈G1

(Fϕ(G))(ζ ⊕ Z) =
∑
ζ

F (ζ ⊕ Z)G([π](ζ ⊕ Z))

=
∑
ζ

F (ζ ⊕ Z)G([π](Z)) =
∑
ζ

F (ζ ⊕ Z)ϕ(G)

= ϕ(ψCol(F ))ϕ(G) = ϕ(ψCol(F )G) .

The result follows because ϕ is injective. �

Corollary 3.1.4. We have the fundamental equation ψq ◦ ϕ = 1S[[Z]]L .

Proof. Note that ϕ(ψCol(1)) = q1, so ϕ(ψq(1)) = 1 and hence ψq(1) = 1. Now set F = 1 in
Lemma 3.1.3. �

Next, we remind the reader what the operators ϕ and ψq do to the special power series
∆a = exp(aΩ logLT(Z)) from §2.7.

Lemma 3.1.5. Let a ∈ oL.

(1) ϕ(∆a) = ∆πa.
(2) ψq(∆a) = δa∈πoL∆a/π.

Proof. (1) More generally, whenever a, b ∈ oL we have

∆a([b](Z)) = exp(aΩ logLT([b](Z))) = exp(abΩ logLT(Z)) = ∆ab(Z).

Hence ϕ(∆a) = ∆a([π](Z)) = ∆πa as claimed.
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(2) Using the fact that logLT is a formal homomorphism from G to the formal additive
group we compute

ϕ(ψCol(∆a)) =
∑
ζ∈G1

∆a(ζ ⊕ Z) =
∑
ζ

exp(aΩ logLT(ζ ⊕ Z))

=
∑
ζ

exp (aΩ(logLT(ζ) + logLT(Z)))

=
( ∑
ζ∈G1

∆a(ζ)
)
∆a .

Under the Schneider-Teitelbaum isomorphism κ, the group G1 corresponds to the group of
characters χ of the finite group oL/πLoL, and, if ζ corresponds to χ, then ∆a(ζ) = eva(χ) =
χ(a), where a := a+ πoL. Hence

ϕ(ψCol(∆a)) =

(∑
χ

χ(a)

)
∆a.

By column orthogonality of characters of the finite group oL/πL, we have
∑

χ χ(a) = qδa,0 =

qδa∈πoL . Hence qϕ(ψq(∆a)) = qδa∈πoL∆a = qδa∈πoLϕ(∆a/π), using part (1). Since ϕ is injec-
tive, we deduce that ψq(∆a) = δa∈πoL∆a/π as required. �

Write m := 〈π, Z〉 and A := S[[Z]].

Lemma 3.1.6. The operators ϕ and ψCol on A are m-adically continuous.

Proof. Since ϕ(Z) ∈ 〈Z〉, we see that ϕ(mn) ⊆ 〈π, ϕ(Z)〉n ⊆ mn for all n ≥ 0. This implies
the m-adic continuity of ϕ.

Suppose first that G1 is contained in S. Then the S-linear maps A → A sending F (Z) to
F (Z +G ζ) are continuous with respect to m-adic topology for each ζ ∈ G1; hence ϕ ◦ ψCol

is also m-adically continuous in this case. Let L1 = L(G1), a finite extension of L and let
S1 := oL1 ⊗oL S. Since oL1 is a free oL-module of finite rank, S1 is still a π-adically complete
and flat oL-algebra, so letting A1 = S1[[Z]], we see that ϕ ◦ ψCol : A1 → A1 is mA1-adically
continuous. It follows that ϕ ◦ ψCol : A→ A is also m-adically continuous.

Let n ≥ 0 be given. Since ϕ(Z) ≡ Zq mod πA, we have mqn = 〈π, Z〉qn ⊆ 〈π, Zq〉n =
〈π, ϕ(Z)〉n = Aϕ(mn). Therefore mqn ∩ ϕ(A) ⊆ Aϕ(mn) ∩ ϕ(A) = ϕ(mn) where this last
equation follows from the fact that ϕ(A) admits a direct complement in A as a ϕ(A)-module.
However since ϕ ◦ ψCol is continuous, ϕψCol(m

m) ⊆ mqn for some m ≥ 0. Hence

ϕψCol(m
m) ⊆ mqn ∩ ϕ(A) ⊆ ϕ(mn).

The m-adic continuity of ψCol now follows from the injectivity of ϕ. �

Lemma 3.1.7. We have ϕn(an) → 0 in the m-adic topology on A, for any sequence of
elements (an) contained in ZA.

Proof. Since ϕ(Z) ∈ G we see that ϕ(Z) ∈ Zm. Assume inductively that ϕn(Z) ∈ Zmn; then
ϕn+1(Z) ∈ ϕ(Zmn) ⊆ ϕ(Z)mn ⊆ Zmn+1, completing the induction. Write an = Zbn for some
bn ∈ A; then ϕn(an) = ϕn(Z)ϕ(bn) ∈ Zmn ⊆ mn+1 for all n ≥ 0, so ϕn(an)→ 0. �

Proposition 3.1.8. If f ∈ ΛL(X) is such that ψnq (µ(f)∆a) ∈ ΛL(X) for all a ∈ oL and n ≥ 0,
then f ∈ oL[[oL]].
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Proof. We will show that |f(1a+πnoL)| ≤ 1 for all a ∈ oL and n ≥ 0. By [ST01, Lemma 4.6(4)],
we have

f(1a+πnoL) = (fδ−a)(1πnoL).

The orthogonality of columns in the character table of the finite group oL/π
noL implies that

1πnoL =
1

qn

∑
[πn](z)=0

κz.

Hence by ibid., (fδ−a)(1πnoL) = 1
qn

∑
[πn](z)=0

f(z)∆−a(z). We now observe that

1

qn

∑
[πn](z)=0

f(z)∆−a(z) = ψnq (µ(f)∆−a)(0).

Since ψnq (µ(f)∆−a) ∈ ΛL(X) by assumption, we have |f(1a+πnoL)| ≤ 1 for all a ∈ oL and
n ≥ 0, as claimed. Therefore f ∈ oL[[oL]]. �

Corollary 3.1.9. IfR is a sub oL[[oL]]-algebra of ΛL(X) such that ψ(R) ⊂ R, thenR = oL[[oL]].

We can now prove Theorem 1.4.1 from the introduction.

Theorem 3.1.10. We have ΛL(X) = oL[[oL]] if and only if ψq(ΛL(X)) ⊂ ΛL(X).

Proof. The forward implication is clear in view of Lemma 3.1.5(1). The reverse implication
follows from Corollary 3.1.9 applied with R = ΛL(X). �

3.2. The covariant bialgebra of G. Katz [Kat81, §1] talks about the “algebra Diff(G) of all
G-invariant oL-linear differential operators from O(G) into itself”. Because we are not aware
of any place in the literature which adequately deals with invariant differential operators on
formal groups, we will instead use the covariant bialgebra of G which will turn out to be
isomorphic to Katz’s Diff(G).

Definition 3.2.1.

(1) Let Z1 +G Z2 ∈ oL[[Z1, Z2]] denote the formal group law defining the formal group G.
(2) Let U(G) denote the set of all oL-linear maps from O(G) = oL[[Z]] to oL that vanish

on some power of the augmentation ideal ZoL[[Z]]. In other words,

U(G) = lim
−→

HomoL(O(G)/ZnO(G), oL).

(3) For each f, g ∈ U(G), define the product f · g by the formula

(f · g)(F (Z)) = (f⊗̂g)(F (Z1 +G Z2)) for all F (Z) ∈ oL[[Z]].

(4) With this product, U(G) is the covariant bialgebra of G, defined at [Haz12, 36.1.8].
(5) For each m ≥ 0, let um ∈ U(G) be the unique oL-linear map that satisfies

um(Zn) = δmn for all n ≥ 0.

(6) Let 〈−,−〉 : U(G)×O(G)→ oL be the evaluation pairing:

〈f, F 〉 := f(F ).

This covariant bialgebra is also known as the hyperalgebra or the distribution algebra of G.
We will now explain the link with Katz’s work, using his notation.

Lemma 3.2.2.
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(1) {un : n ≥ 0} is an oL-module basis for U(G).

(2) Let i ≥ 0 and write (Z1 +G Z2)i =
∞∑

n,m≥0
n+m≥i

λ(n,m; i)Zn1Z
m
2 for some λ(n,m; i) ∈ oL.

Then for all n,m ≥ 0 we have

un · um =

n+m∑
k=0

λ(n,m; k)uk.

(3) Let s be a variable. The map L[s] → U(G) ⊗oL L which sends s to u1 ⊗ 1 is an
isomorphism of positively filtered L-algebras.

Proof. (1) This is clear because ZnoL[[Z]] = oLZ
n ⊕ Zn+1oL[[Z]] for any n ≥ 0.

(2) We compute that for every n,m, i ≥ 0 we have

(un · um)(Zi) = (un⊗̂um)((Z1 +G Z2)i) = (un⊗̂um)

 ∞∑
a,b≥0

a+b≥i

λ(a, b; i)Za1Z
b
2

 = λ(n,m; i).

Because
n+m∑
k=0

λ(n,m; k)uk also sends Zi to λ(n,m; i), it must be equal to un · um.

(3) From (2) we see that the oL-submodule U(G)n of U(G) generated by {ui : 0 ≤ i ≤ n}
defines an algebra filtration on U(G):

U(G)n · U(G)m ⊆ U(G)n+m for all n,m ≥ 0.

The associated graded ring is the free oL-module with basis {grun : n ≥ 0}. Since Z1 +G Z2 ≡
Z1 + Z2 mod (Z1, Z2)2, we see that λ(n,m;n + m) =

(
n+m
n

)
for any n,m ≥ 0. Hence from

(2) we see that the multiplication in grU(G) is given by

(grun) · (grum) =

(
n+m

n

)
grun+m.

The same formulas hold in gr(U(G)⊗oL L). Induction on n shows that (gru1)n = n! grun for
all n ≥ 0. Since L has characteristic zero, we see that gr(U(G)⊗oL L) is generated by gru1 as
an L-algebra. The result follows. �

We will henceforth identify U(G)⊗oLL with the polynomial ring L[s]. Recall the polynomials
Pn(Y ) ∈ L[Y ] from [ST01, Definition 4.1], which are defined by the following formal expansion:

exp(Y logLT(Z)) =
∞∑
m=0

Pm(Y )Zm.

Lemma 3.2.3. For every n ≥ 0, we have un = Pn(u1) inside U(G)⊗oL L.

Proof. The structure constants of Katz’s algebra Diff(G) are the same as the ones in U(G)
by [Kat81, (1.2)] and Lemma 3.2.2(2). So the oL-linear map that sends D(n) ∈ Diff(G) to
un ∈ U(G) is an oL-algebra isomorphism. Comparing [Kat81, Corollary 1.8] with [ST01,
Definition 4.1] shows that D(n) = Pn(D(1)) in Diff(G)⊗oL L for all n ≥ 0. The result follows
by applying the algebra isomorphism Diff(G)→ U(G) established above. �
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Of course in the context of affine group schemes, this isomorphism between the algebra of
left-invariant differential operators on the group scheme and the distribution algebra of the
group scheme is the well known ‘Invariance Theorem’, [DG80, Chapter II, §4, Theorem 6.6].

Next, we consider the action of the monoid oL on the formal group G. The covariant
bialgebra construction is functorial in G: if ϕ : G → H is a morphism of formal groups, then
U(ϕ) : U(G) → U(H) is the morphism of oL-bialgebras which is the transpose to the oL-
algebra homomorphism ϕ∗ : O(H) → O(G) induced by ϕ. Using the evaluation pairing, we
have the following formula which defines this action:

(3) 〈U(ϕ)(f), F 〉 = 〈f, ϕ∗(F )〉 for all f ∈ U(G), F ∈ O(G).

Definition 3.2.4. Let a ∈ oL.

(1) Let [a] : G → G be the action of a on G.
(2) Write a · f := U([a])(f) for all f ∈ U(G).

The oL-algebra endomorphism U([a]) of U(G) extends to an L-algebra endomorphism
U([a])⊗ 1 of U(G)⊗oL L = L[s]. What does this action do to the generator s of L[s]?

Lemma 3.2.5. We have a · s = as for all a ∈ oL.

Proof. We know that [a](Z) ≡ aZ mod Z2oL[[Z]]. Hence

〈U([a])(u1), Zn〉 = 〈u1, [a](Z)n〉 = aδn,1 = 〈au1, Z
n〉 for all n ≥ 0

using Definition 3.2.1(5). Hence a · u1 = au1 and so a · s = as. �

Corollary 3.2.6. For each j ≥ i ≥ 0 and a ∈ oL there exists σij(a) ∈ oL such that

a · uj = Pj(as) =

j∑
i=0

σij(a)Pi(s) =

j∑
i=0

σij(a)ui.

Proof. It follows from Lemma 3.2.5 that the L-algebra endomorphisms of L[s] given by s 7→ as
preserve the oL-subalgebra U(G) ⊂ L[s]. Hence a · uj = Pj(as) lies in U(G) for all a ∈ oL and
all j ≥ 0. But U(G) has {ui : i ≥ 0} as an oL-module basis by Lemma 3.2.2(a), so Pj(as)
must be an oL-linear combination of these ui’s. On the other hand, Pj(s) is a polynomial of
degree j in s, therefore so is Pj(as); because degPi = i for each i it follows that Pj(as) is an
L-linear combination of P0(s), · · · , Pj(s) only. �

We now introduce a coefficient ring S, which we assume to be a π-adically complete oL-
algebra. For every S-module M , let M∗ := HomS(M,S) be the S-module of S-linear func-
tionals on M . We will need to work with a larger class of S-linear functionals on S[[Z]] than
those arising from U(G), namely the continuous ones.

Definition 3.2.7. We say that λ ∈ S[[Z]]∗ is continuous if it is continuous with respect to
the 〈π, Z〉-adic topology on S[[Z]], and the π-adic topology on S. Let S[[Z]]∗cts denote the set
of these continuous S-linear functionals on S[[Z]].

Explicitly λ ∈ S[[Z]]∗ is continuous if and only if for all n ≥ 0 there exists m ≥ 0 such that
λ(〈π, Z〉m) ⊆ πnS.

Consider now the base change U(GS) := U(G)⊗oL S, and its π-adic completion

Û(GS) = lim←−U(G)⊗oL (S/πnS).
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Since {um : m ≥ 0} is an oL-module basis for U(G) by Lemma 3.2.2(1), we see that Û(GS)
has the following description:

(4) Û(GS) =

{ ∞∑
m=0

amum : am ∈ S, lim
m→∞

am = 0

}
.

Here we equip S with the π-adic topology.

Lemma 3.2.8.

(1) The pairing 〈−,−〉 : U(G)× oL[[Z]]→ oL extends to an S-bilinear pairing

〈−,−〉 : Û(GS)× S[[Z]]→ S.

(2) For each u ∈ Û(GS), the S-linear map 〈u,−〉 : S[[Z]]→ S is continuous.

(3) The map Û(GS)→ S[[Z]]∗cts, u 7→ 〈u,−〉, is an S-linear bijection.

(4) The map S[[Z]]→ Û(GS)
∗
, F 7→ 〈−, F 〉, is an S-linear bijection.

Proof. (1) Let u =
∞∑
m=0

amum ∈ Û(GS), F =
∞∑
n=0

FnZ
n ∈ S[[Z]] and define 〈u, F 〉 =

∞∑
m=0

amFm.

This series converges in S because am → 0 as m → ∞ and because S is assumed to be
π-adically complete.

(2) Let n ≥ 0 and write u =
∞∑
m=0

amum with am → 0. Then for some r ≥ 0, am ∈ πnS for

all m ≥ r. Hence 〈u,−〉 sends the ideal 〈πn, Zr〉 of S[[Z]] into πnS. Since 〈π, Z〉n+r ⊆ 〈πn, Zr〉,
we conclude that 〈u,−〉 is 〈π, Z〉-adically continuous.

(3) The injectivity of u 7→ 〈u,−〉 follows by evaluating on each Zn. Now let λ ∈ S[[Z]]∗cts

and define am := λ(Zm) ∈ S for each m ≥ 0. Since λ is 〈π, Z〉-adically continuous, for each
n ≥ 0 we can find some r ≥ 0 such that λ(〈π, Z〉r) ⊆ πnS. Then am ∈ πnS for all m ≥ r

which implies that am → 0 as m → ∞. Hence u :=
∞∑
m=0

amum is an element of Û(GS) and

〈u,−〉−λ vanishes on S[Z] by construction. Since this difference is continuous and since S[Z]
is dense in S[[Z]] with respect to the 〈π, Z〉-adic topology, we conclude that λ = 〈u,−〉.

(4) Again, the injectivity of F 7→ 〈−, F 〉 follows from 〈um, F 〉 = Fm. Given an S-linear

map λ : U(GS) → S, let F :=
∞∑
n=0

λ(un)Zn. Then 〈um, F 〉 = λ(um) for all m ≥ 0. Since the

um span U(GS) as an S-module, λ = 〈−, F 〉. �

As an immediate consequence of Lemma 3.2.8, we have the following

Corollary 3.2.9.

(1) For every continuous S-linear α : S[[Z]] → S[[Z]] there exists a unique S-linear map

α∗ : Û(GS)→ Û(GS) such that

〈α∗u, F 〉 = 〈u, αF 〉 for all u ∈ Û(GS), F ∈ S[[Z]].

(2) For every S-linear β : Û(GS)→ Û(GS) there exists a unique S-linear map
β∗ : S[[Z]]→ S[[Z]] such that

〈u, βF 〉 = 〈β∗u, F 〉 for all u ∈ Û(GS), F ∈ S[[Z]].
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We also extend this S-linear pairing to an SL := S ⊗oL L-linear pairing

〈−,−〉 : Û(GS)L × S[[Z]]L → SL

which we will use without further mention.

Lemma 3.2.10. The restriction map Û(GS)
∗
→ HomoL(Û , S) is an S-linear isomorphism.

Proof. Let λ : Û(GS)→ S be an S-linear map whose restriction to Û is zero. Then in particular

λ(um) = 0 for all m ≥ 0, so λ vanishes on all finite sums of the form
n∑

m=0
amum ∈ Û(GS)

with am ∈ S. These sums are π-adically dense in Û(GS) in view of (4), so for any x ∈ Û(GS),

λ(x) ∈
∞⋂
n=0

πnS. Since we’re assuming that S is π-adically complete, this intersection is zero,

so λ = 0 and the restriction map in question is injective.

Suppose now λ : Û → S is an oL-linear map. Using the description of Û(GS) given in (4),

we extend it to an S-linear map λ̃ : Û(GS)→ S by setting for every zero-sequence (am) in S

λ̃

( ∞∑
m=0

amum

)
:=

∞∑
m=0

amλ(um).

Since lim
m→∞

am = 0 in S, the series on the right hand side converges in S because S is assumed

to be π-adically complete. So, λ̃ is a well-defined S-linear map extending λ. �

3.3. Gal-continuous functions. Let C0(oL,Cp) be the Cp-Banach space of all continuous
Cp-valued functions on oL, equipped with the supremum norm. The unit ball of this Cp-
Banach space is the oCp-submodule C0(oL, oCp) of continuous oCp-valued functions.

Definition 3.3.1. A function f ∈ C0(oL,Cp) is said to be Gal-continuous if

σ(f(a)) = f(aτ(σ)) for all a ∈ oL, σ ∈ GL.
We write C := C0

Gal(oL,Cp) for the set of all Gal-continuous Cp-valued functions.

Evidently C := C0
Gal(oL, oCp) = C ∩ C0(oL, oCp) forms an oL-lattice in C.

Lemma 3.3.2. Let f ∈ C. Then im f ⊆ L∞, and im f ⊆ o∞ if f ∈ C.

Proof. By Definition 3.3.1, we have im f ⊆ Cker τ
p for all f ∈ C, and im f ⊆ oker τ

Cp for all f ∈ C.
But Cker τ

p = L∞ and oker τ
Cp = o∞ by Lemma 2.7.2. �

Lemma 3.3.3. For each u ∈ Û , the function a 7→ K(u)(a) := 〈u,∆a〉 on oL is Gal-continuous.

Proof. By definition, K(u) is the composition of µ|oL : oL → o∞[[Z]]× with the restriction of

the linear functional 〈u,−〉 : o∞[[Z]] → o∞ to o∞[[Z]]×. This linear functional is continuous
by Lemma 3.2.8(3), so to establish the continuity of K(u) it remains to show that µ|oL is
continuous. Since µ|oL is a group homomorphism, it is enough to show that it is continuous at
the identity element 0 of oL. Let n > 0 and consider the basic open neighbourhood 1+〈π, Z〉n
of 1 ∈ o∞[[Z]]×. Since ϕn(Z) → 0 as n → ∞ in o∞[[Z]] by Lemma 3.1.7, we can find m ≥ 0
such that ϕm(Z) ∈ 〈π, Z〉n. Hence for any a ∈ oL, using Lemma 3.1.5 we calculate

∆πma −∆0 = ϕm(∆a − 1) ∈ ϕm(Zo∞[[Z]]) ⊆ ϕm(Z)o∞[[Z]] ⊆ 〈π, Z〉n.
Hence µ|oL is continuous as required.
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Now let σ ∈ GL; since ∆a ∈ o∞[[Z]] is invariant for the ∗-action of GL on o∞[[Z]], we know

that σ(∆a) = ∆a([τ(σ)](Z)) = ∆aτ(σ) for any a ∈ oL. Since u ∈ Û , we have for any a ∈ oL
σ(K(u)(a)) = σ(〈u,∆a〉) = 〈u, σ(∆a)〉 = 〈u,∆aτ(σ)〉 = K(u)(aτ(σ)).

Hence K(u) is indeed Gal-continuous. �

Definition 3.3.4.

(1) Define the Katz map K : Û → C as follows:

K(u)(a) = 〈u,∆a〉 for any u ∈ Û , a ∈ oL.

(2) Define K1 : Û → o∞ by K1 = ev1 ◦K.
(3) Define ψC : C → C by the rule

ψC(f)(a) = δa∈πoLf(a/π) for all a ∈ oL.
The operator ψC : C → C is by definition the restriction of ψC to C.

(4) Define ϕC : C → C by the rule

ϕC(f)(a) = f(πa) for all a ∈ oL.
The operator ϕC : C → C is by definition the restriction of ϕC to C.

Now we recall the coefficient ring S that was introduced before Definition 3.2.7. Applying
the S-linear duality functor

(−)∗ := HomoL(−, S)

to the Katz map K : Û → C gives us the dual Katz map

K∗ : C∗ → Û∗

defined on the space of S-valued Galois measures C∗ = HomoL(C, S). We identify Û∗ =

HomoL(Û , S) with S[[Z]] using Lemma 3.2.10 and Lemma 3.2.8(4); then K∗ : C∗ → S[[Z]] is
given explicitly by

(5) 〈um,K∗(λ)〉 = λ(Pm(−Ω))) for all λ ∈ C∗,m ≥ 0.

After Lemma 3.1.6 and Corollary 3.2.9 applied with S = oL, we have at our disposal the dual

oL-linear endomorphisms ψ∗Col and ϕ∗ of Û .

Lemma 3.3.5. We have Kϕ∗ = ϕCK and Kψ∗Col = qψCK.

Proof. Let u ∈ ÛL and a ∈ oL. Then using Lemma 3.1.5, we have

K(ψ∗Col(u))(a) = 〈ψ∗Col(u),∆a〉 = 〈u, ψCol(∆a)〉 = 〈u, qψq(∆a)〉
= q〈u, δa∈πoL∆a/π〉 = qδa∈πoLK(u)(a/π) = qψC(K(u))(a)

which gives the second equation. The first equation is proved in a similar manner. �

Corollary 3.3.6. We have K∗ϕ∗C = ϕK∗ and K∗ψ∗C = ψqK∗.

Proof. We apply the S-linear duality functor (−)∗ = HomoL(−, S) to the equations from
Lemma 3.3.5. Using Lemma 3.2.8, we see that

K∗ϕ∗C = (ϕCK)∗ = (Kϕ∗)∗ = ϕ∗∗K∗ = ϕK∗,
and similarly,

qK∗ψ∗C = (qψCK)∗ = (Kψ∗Col)
∗ = ψColK∗ = qψqK∗.

Now divide both sides by q. �
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Lemma 3.3.7. We have ψq ◦ K∗1 = 0.

Proof. Corollary 3.3.6 gives ψqK∗1 = ψqK∗ ev∗1 = K∗ψ∗C ev∗1 = (ev1 ψCK)∗. But ev1 ψC(f) =
ψC(f)(1) = 0 for any f ∈ C by Definition 3.3.4(3), because δ1∈πoL = 0. �

Proposition 3.3.8. Suppose K is injective and τ is surjective. Then q kerK1 ⊆ ψ∗Col(Û).

Proof. In this proof we may assume S = oL. Suppose that ev1 ◦K(u) = 0 for some u ∈ Û . Then
K(u) is zero on o×L because τ is surjective and because K(u) is Gal-continuous by Lemma 3.3.3.
Hence K(u) = ψCϕCK(u). But qψCϕCK(u) = qψCKϕ∗(u) = Kψ∗Colϕ

∗(u) by Lemma 3.3.5, so

K(qu− ψ∗Colϕ
∗(u)) = 0. Since K is injective by assumption, qu = ψ∗Col(ϕ

∗(u)) ∈ ψ∗Col(Û). �

Proposition 3.3.9. Suppose that τ : GL → o×L and K1 : Û → o∞ are surjective, and that

K : Û → C is injective. Then
K∗1 : o∗∞ → S[[Z]]ψq=0

is an S-linear bijection.

Proof. The image of K∗ : o∗∞ → S[[Z]] is contained in S[[Z]]ψq=0 by Lemma 3.3.7. If K∗1(`) = 0

for some ` ∈ o∗∞, then ` ◦ K1 = 0 so `(K1(Û)) = 0. But K1(Û) = o∞ by assumption, so ` = 0.
Hence K∗1 is injective and it remains to prove it is also surjective.

Take some F ∈ S[[Z]]ψq=0 and let ` := 〈−, F 〉 ∈ Û(GS)
∗ ∼= Û∗ be the S-valued oL-linear

functional on Û given by Lemma 3.2.10 and Lemma 3.2.8(4). Then since ψCol(F ) = qψq(F ) =
0,

0 = 〈u, ψCol(F )〉 = 〈ψ∗Col(u), F 〉 = `(ψ∗Col(u)) for all u ∈ Û .
So, ` vanishes on ψ∗Col(Û) and hence also on q kerK1 by Proposition 3.3.8. Since oL has no
q-torsion, we see that ` is zero on kerK1. Hence ` descends to an S-valued oL-linear functional

on Û/ kerK1. But this quotient is isomorphic to o∞ by assumption. So, we get a well-defined

oL-linear form ` : o∞ → S such that `(K1(u)) = `(u) for all u ∈ Û . Then

〈u,K∗1(`)〉 = `(K1(u)) = `(u) = 〈u, F 〉 for all u ∈ Û
which implies that F = K∗1(`) by Lemma 3.2.8(4). Hence K∗1 is surjective. �

We make the following tentative

Conjecture 3.3.10. K1 : Û → o∞ is surjective and K : Û → C is injective whenever τ is
surjective.

3.4. The largest ψq-stable oL-submodule of oL[[Z]]. For brevity, we will write

A := S[[Z]]

in this subsection. The ψq-operator is only defined on AL and it does not preserve A, in
general.

Definition 3.4.1. Let Aψq-int be the largest S-submodule of A stable under ψq.

Remark 3.4.2. We have Aψq-int = {F ∈ A : ψnq (F ) ∈ A for all n ≥ 0}.

Lemma 3.4.3. The image of K∗ : C∗ → A is contained in Aψq-int.

Proof. Let λ ∈ C∗. By Corollary 3.3.6, ψnq (K∗(λ)) = K∗((ψ∗C)n(λ)) lies in A for all n ≥ 0. Now
use Remark 3.4.2. �
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Clearly, Aψq=0 is contained in Aψq-int; moreover this last is ϕ-stable in view of Remark
3.4.2 and the fact that ψq ◦ ϕ = 1A by Corollary 3.1.4. Therefore

S +

∞∑
n=0

ϕn
(
Aψq=0

)
⊆ Aψq-int.

Our next result makes this relation more precise; first we need some more notation.

Definition 3.4.4. We have the following truncation operators:

(1) s : C → C, given by s(f) = f − f(0)1, and
(2) t : A→ A, given by t(a) = a− a(0)1.

It will be helpful to observe that tϕ = ϕt as S-linear endomorphisms of A.

Proposition 3.4.5. There is a well-defined oL-linear bijection

1⊕
∞∑
n=0

ϕnt : oL ⊕
∞∏
n=0

Aψq=0 ∼=−→ Aψq-int.

Proof. Given any (an)n ∈
∏∞
n=0A

ψq=0, Lemma 3.1.7 implies that ϕn(t(an)) → 0 as n → ∞,
because t(an) ∈ ZA for all n ≥ 0. Hence

(z, (an)n) 7→ z +
∞∑
n=0

ϕn(t(an))

is a well-defined S-linear map γ : S⊕
∞∏
n=0

Aψq=0 → A. Now Aψq-int is a t-stable S-submodule of

A since ψq(1) = 1. Because an ∈ Aψq=0, this implies that ϕn(t(an)) = tϕn(an) ∈ t(Aψq-int) ⊆
Aψq-int for any n ≥ 0. Since ψCol : A → A is continuous by Lemma 3.1.6 and since Aψq-int =
{a ∈ A : ψnCol(a) ∈ qnA for all n ≥ 0} by Remark 3.4.2, we see that Aψq-int is a closed
S-submodule of A with respect to the 〈π, Z〉-adic topology on A = S[[Z]]. Hence the image of
γ is contained in Aψq-int, and it remains to show that γ is bijective.

Suppose that γ(z, (an)n) = 0 so that z = −
∞∑
n=0

ϕn(t(an)). Since ZA is closed in A, this infi-

nite sum lies in ZA. Since S∩ZA = 0, we conclude that z = 0. Hence a0 = −
∞∑
n=1

ϕn(t(an)) ∈

ϕ(A). But a0 ∈ Aψq=0 by definition, and

Aψq=0 ∩ ϕ(A) = 0

because ψq ◦ϕ = 1A by Corollary 3.1.4. Hence a0 = 0. Proceeding inductively on n, we quickly
deduce that an = 0 for all n ≥ 0 in a similar manner. Hence γ is injective.

Now let a ∈ Aψq-int; then by definition, ψnq (a) ∈ A for all n ≥ 0, so we can define

an := ψnq (a)− ϕψn+1
q (a) ∈ A.

Since ψq ◦ ϕ = 1A by Corollary 3.1.4, we see that an ∈ Aψq=0 for all n ≥ 0. Since tϕ = ϕt,

m∑
n=0

ϕn(t(an)) = t

(
m∑
n=0

ϕn(ψnq (a)− ϕψn+1
q (a))

)
= t(a− ϕm+1ψm+1

q (a))
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for any m ≥ 0. Since tϕm+1ψm+1
q (a) = ϕm+1(tψm+1

q (a))→ 0 as m→∞ by Lemma 3.1.7,

γ(a(0), (an)n) = a(0) + t(a)− lim
m→0

ϕm+1(tψm+1
q (a)) = a.

Hence γ is surjective. �

Lemma 3.4.6. For each n ≥ 0, there is a commutative diagram

o∗∞
ev∗πn //

K∗1
��

C∗

K∗
��

s∗ // C∗

K∗
��

Aψq=0
ϕn

// Aψq-int
t

// Aψq-int.

Proof. To see that the square on the left commutes, we use Corollary 3.3.6:

ϕnK∗1 = ϕnK∗ ev∗1 = K∗ϕ∗C ev∗1 = K∗(ev1 ϕC)
∗ = K∗ ev∗πn .

Hence in view of Lemma 3.2.8(4), it remains to show that

〈um,K∗(s∗(λ))〉 = 〈um, t(K∗1(λ))〉 for all m ≥ 0, λ ∈ C∗.

Since t kills the constant term of a power series in A, we have

〈um, t(a)〉 = δm≥1〈um, a〉 for all a ∈ A.

Now K(um)(0) = Pm(0) = δm,0 by [ST01, Lemma 4.2] and K(u0) = K(1) = 1, so

〈um,K∗(s∗(λ))〉 = λ(s(K(um)) = λ(K(um)−K(um)(0)1) = δm≥1λ(K(um)) = 〈um, t(K∗(λ))〉.

The result follows. �

Let c0(o∞) := {(xn)n ∈
∞∏
n=0

o∞ : lim
n→∞

xn = 0}.

Lemma 3.4.7. Suppose that τ is surjective. Then the map

η : C → oL ⊕ c0(o∞)

given by η(f) = (f(0), (f(πn)− f(0))n) is an oL-linear bijection.

Proof. Recall that any f ∈ C takes values in o∞ by Lemma 3.3.2. Since πn → 0 as n→∞ in
oL and since f is continuous, f(πn)− f(0)→ 0 as n→∞ in o∞. Thus η is well-defined.

Suppose η(f) = 0 for some f ∈ C. Then f(0) = 0 and f(πn) = 0 for all n ≥ 0. Hence
f(πnτ(σ)) = σ(f(πn)) = 0 for all σ ∈ GL, so f also vanishes on πnτ(GL) for each n ≥ 0.

Since τ is surjective, f vanishes on
∞⋃
n=0

πno×L ∪ {0} = oL, so f = 0. Hence η is injective.

To show η is surjective, let (z, (zn)n) ∈ oL ⊕ c0(o∞) and define f : oL → o∞ by setting
f(0) = z and f(πnτ(σ)) := z + σ(zn) for all n ≥ 0 and all σ ∈ GL. This makes sense because
τ is surjective, and if τ(σ) = τ(σ′) for some σ, σ′ ∈ GL then σ−1σ′ ∈ ker τ fixes o∞ by Lemma
2.7.2, so σ′(zn) = σ(σ−1σ′(zn)) = σ(zn) for any n ≥ 0. It is easy to see that f : oL → o∞ is
Gal-continuous and that η(f) = (z, (zn)n). Hence η is surjective. �

Lemma 3.4.7 allows us to give an explicit description of the space of Galois measures C∗.
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Corollary 3.4.8. Suppose τ is surjective. Then

η∗ : oL ⊕
∞∏
n=0

o∗∞ → C∗

is an oL-linear bijection.

Proof. The functor (−)∗ = HomoL(−, S) from oL-modules to S-modules commutes with finite

direct sums and sends c0(o∞) to
∞∏
n=0

o∗∞. Now apply this functor to the isomorphism η : C
∼=−→

oL ⊕ c0(o∞) from Lemma 3.4.7. �

Theorem 3.4.9. Suppose that τ is surjective and that K∗1 : o∗∞ → Aψq=0 is an isomorphism.
Then K∗ : C∗ → Aψq-int is an isomorphism as well.

Proof. Using Corollary 3.4.8 and Proposition 3.4.5, we can build the following diagram:

S ⊕
∞∏
n=0

o∗∞
η∗ //

1⊕
∞∏
n=0
K∗1
��

C∗

K∗

��
S ⊕

∞∏
n=0

Aψq=0

1⊕
∞∑
n=0

ϕnt

// Aψq-int.

Note that we can write η = ev0⊕(evπn ◦s)n. Lemma 3.4.6 implies that

K∗(evπn ◦s)∗ = K∗s∗ ev∗πn = tϕnK∗1 = ϕntK∗1 for any n ≥ 0.

Using Pm(0) = δm,0 again together with (5), we also have

K∗(η∗(1, (0)n)) = K∗(ev∗0(1)) =
∞∑
m=0

ev∗0(1)(Pm(−Ω))Zm =
∞∑
m=0

Pm(0)Zm = 1.

Therefore the diagram is commutative. Now η∗ is an isomorphism by Corollary 3.4.8, and
bottom map is an isomorphism by Proposition 3.4.5. Since K∗1 is an isomorphism by assump-
tion, the vertical map on the left is an isomorphism as well. Hence K∗ is also an isomorphism
by the commutativity of the diagram. �

Corollary 3.4.10. Let S be any π-adically complete oL-algebra. The dual Katz map

K∗ : C∗ → S[[Z]]ψq-int

is an isomorphism if τ : GL → o×L and K1 : Û → o∞ are surjective, and K : Û → C is injective.

Proof. Apply Theorem 3.4.9 together with Proposition 3.3.9. �

3.5. The Newton polygon of ∆1(Z) − 1. In this section, we obtain some estimates on
vπ(Pk(Ω)), k ≥ 1. Recall that d and e and f denote the degree and ramification and inertia
indices of L/Qp, respectively.

Lemma 3.5.1. If k ≥ 0 and 1 ≤ r ≤ e, then we have an isomorphism of abelian groups

oL/π
ek+roL ∼= (Z/pkZ)f(e−r) ⊕ (Z/pk+1Z)fr.
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Proof. Note that poL = πeoL ⊆ πroL since e ≥ r by assumption, so oL/π
roL is an elementary

abelian p-group of order |oL/πroL| = pfr. Hence, using the elementary divisors theorem, we
can find v1, · · · , vd ∈ oL such that

oL = Zpv1 ⊕ · · · ⊕ Zpvd and πroL =
s⊕
i=1

Zpvi ⊕
d⊕

i=s+1

Zppvi

for some integer s with 1 ≤ s ≤ d. We deduce that fr = d − s, so s = f(e − r). Since
πek+roL = pkπroL, the result now follows easily. �

Lemma 3.5.2. In oL/π
ek+roL, the image of 1 has order pk+1.

Proof. This can be proved directly as pk · 1 ∈ πek · o×L 6= 0 in oL/π
ek+roL. �

Definition 3.5.3. Let m ≥ 0.

(1) Let km = b(m− 1)/ec, so that m = ekm + r with 1 ≤ r ≤ e.
(2) Define xm := qm/pkm+1.
(3) Define

y0 =
e

p− 1
− 1

q − 1
and ym =

e

p− 1
−
m−1∑
j=1

1

pkj+1
− q

pkm+1(q − 1)
.

For example, x0 = 1 and x1 = q/p. Note that if m = en+ r with 1 ≤ r ≤ e, then

yen+r =
e

pn(p− 1)
− r

pn+1
− 1

(q − 1)pn+1
.

Theorem 3.5.4. The vertices of the Newton polygon of ∆1(Z)− 1 (using the valuation vπ,
and excluding the point (0,+∞)) are the points (xm, ym) for m ≥ 0.

Proof. Via the Schneider-Teitelbaum isomorphism, the zeroes of the power series

∆1(Z)− 1 =
∞∑
m=1

Pm(Ω)Zm ∈ oCp [[Z]]

are the z ∈ mCp such that κz is an L-analytic character satisfying κz(1) = 1. These characters

are torsion 3, and correspond to some of the torsion points of the Lubin-Tate group G. There
are precisely qm points in G[πm], and the common valuation of each point z ∈ G[πm]\G[πm−1]
is vπ(z) = 1/qm−1(q − 1).

If we write m = ek + r as above, then in view of Lemma 3.5.1 and Lemma 3.5.2 there are
xm = qm/pkm+1 elements z ∈ G[πm] such that κz(1) = 1.

Let ((x′m, y
′
m))∞m=0 be the vertices of the Newton polygon, so that the first vertex is

(x′0, y
′
0) = (1, vπ(Ω)) = (x0, y0). The slope of the line segment between (x′m−1, y

′
m−1) and

(x′m, y
′
m) is minus the common valuation of the elements of z ∈ G[πm] \ G[πm−1] satisfying

κ(z) = 1, that is 1/qm−1(q − 1). Hence x′m = xm for all m ≥ 0. Using the definitions of xm
and ym, we have the formula

ym = y0 −
x1 − x0

q1−1(q − 1)
− · · · − xm − xm−1

qm−1(q − 1)

which implies that y′m = ym for all m ≥ 0. �

3Suppose that κ(1) = 1. Then κ(a) = 1 for all a ∈ Zp. Hence κ′(1) = 0. Since κ is locally L-analytic, κ′ is
L-linear, and hence κ′ = 0 so that κ is locally constant, and hence torsion.
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Remark 3.5.5. As m→ +∞, ym → 0, consistent with the fact that ‖∆1(Z)− 1‖ = 1.

Corollary 3.5.6. We have the following formulas for vπ(Pk(Ω)).

(1) For all m ≥ 0, we have vπ(Pxm(Ω)) = ym.
(2) For all n ≥ 0, we have vπ(Ppn(d−1)) = 1/pn · vπ(Ω).

Proof. Item (1) follows immediately from Theorem 3.5.4. Item (2) follows from item (1) with

m = en. Indeed, xen = qen/pn = pn(d−1) and

yen =
e

p− 1
− e

p
− e

p2
− · · · − e

pn−1
− e− 1

pn
− q

pn(q − 1)
=

1

pn
·
(

e

p− 1
− 1

q − 1

)
. �

Remark 3.5.7. If L/Qp is unramified, then item (2) of Corollary 3.5.6 gives all the valuations
of the Pk(Ω) that can be computed using the Newton polygon. For n ≥ 0, we get

valp(Ppn(d−1)) = 1/pn · vπ(Ω) =
1

pn−1(p− 1)
· q/p− 1

q − 1
.

Corollary 3.5.8. Suppose that L = Qp2 and π = p. Then we have

valp(Ppk(Ω)) =
1

pk−1(q − 1)
for all k ≥ 1,

and if k ≥ 1 and pk−1 ≤ m ≤ pk, then

valp(Pm(Ω)) ≥ 1

pk−1(q − 1)
+

pk −m
qk−1(q − 1)

=
1

pk−2(q − 1)
− m− pk−1

qk−1(q − 1)
.

3.6. Verifying Conjecture 3.3.10 in a special case.

Definition 3.6.1. Fix m ≥ 1.

(1) Let Gm = G[πm] be the finite flat oL-group scheme of πm-torsion points in the Lubin-
Tate formal group G.

(2) Let G′m be the Cartier dual of Gm.
(3) Let U(m) := O(G′m) = HomoL(oL[[Z]]/〈ϕm(Z)〉, oL).
(4) Let G′ := colimG′m be the dual p-divisible group to the p-divisible group defined by

the formal group G.

Recall that by Cartier duality — see [Tat67, p. 177] — the period Ω ∈ Cp corresponds to
a choice of generator t′ ∈ TpG′ = TπG′ as an oL-module. We recall how this correspondence
works. First, the element

∆1 =
∞∑
n=0

Pn(Ω)Zn ∈ oCp [[Z]]

gives a compatible system of group-like elements (∆1(m))∞m=1 ∈
∞∏
m=1
O(Gm), where ∆1(m) is

the image of ∆1 in O(Gm×oL oCp) = oCp [[Z]]/〈ϕm(Z)〉 under the natural surjective homomor-
phism of oCp-algebras oCp [[Z]] � O(Gm ×oL oCp). Since O(Gm ×oL oCp) can be identified with
HomoCp (O(G′m×oL oCp), oCp), ∆1(m) can be viewed as an oCp-linear map U(m)⊗oL oCp → oCp
which is in fact an oCp-algebra homomorphism because ∆1(m) is group-like. This map is de-
termined by its restriction to U(m); this restriction is an oL-algebra homomorphism t′m :
U(m) → oCp and is therefore an element of G′m(Cp). Finally, the multiplication-by-π-maps
G′m+1(Cp) → G′m(Cp) in the inverse system defining the Tate module TπG′ are induced by
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the inclusions of oL-algebras U(m) ↪→ U(m + 1), so t′m+1|U(m) = t′m for all m ≥ 1, and the

generator t′ ∈ TπG′ is given by t′ = (t′m)∞m=1 ∈
∞∏
m=1
G′m(Cp).

Lemma 3.6.2. Let m ≥ 1. The restriction of K1 to U(m) ⊂ Û is equal to t′m.

Proof. Recall that we have identified Û with oL[[Z]]∗cts using Lemma 3.2.8(3). Let u ∈ U(m)

and let ũ ∈ Û be the corresponding oL-linear map oL[[Z]]→ oL which kills 〈ϕm(Z)〉. Then

t′m(u) = ∆1(m)(u) = 〈ũ,∆1〉 = K(ũ)(1) = K1(ũ)

and the result follows. �

For each m ≥ 1, let Lm be the finite Galois extension of L contained in L∞ = Cker τ
p defined

by Gal(L∞/Lm) = τ−1(1 + πmoL).

Lemma 3.6.3. Let m ≥ 1. Then t′m(U(m)) ⊆ oLm .

Proof. Let σ ∈ Gal(L∞/Lm) so that τ(σ) ∈ 1 + πmoL. Then by definition of the character
τ , σ acts trivially on G′m(Cp). In other words, σ(t′m(u)) = t′m(u) for all u ∈ U(m) and hence

t′m(U(m)) ⊆ LGal(L∞/Lm)
∞ = Lm. But U(m) is a finitely generated oL-module so t′m(U(m)) is

integral over oL and is therefore contained in oLm . �

Definition 3.6.4. For each m ≥ 1, let U(m)k := im(U(m)→ Û/πÛ).

We will identify Uk := U/πU with Û/πÛ via the natural map U/πU → Û/πÛ and we
regard U(m)k as being naturally embedded into U(m+ 1)k.

Proposition 3.6.5. Suppose that t′m(U(m)) = oLm for all m ≥ 1. Then K1 : Û → o∞ is
surjective.

Proof. Consider oτ := L∩o∞. Since oτ is π-adically dense in o∞, to prove that K1(Û) contains
o∞, it is enough to prove that it contains oτ . Fix m ≥ 1. By Lemma 3.6.2, the restriction of

K1 : Û → oCp to U(m) is equal to t′m. Hence by assumption oLm = t′m(U(m)) = K1(U(m)),

so oτ =
⋃
m≥1

oLm is also contained in K1(Û). �

Lemma 3.6.6. For each m ≥ 1, we have U(m) + πÛ =
qm−1∑
r=0

oLur + πÛ .

Proof. Let u ∈ U(m) and let ũ : oL[[Z]] → oL be the corresponding oL-linear form which

vanishes on 〈ϕm(Z)〉. Consider v := ũ −
qm−1∑
r=0

ũ(Zr)ur ∈ Û . For each r < qm, ur sends

〈ϕm(Z)〉 into πoL because ϕm(Z) ≡ Zq
m

mod πoL[[Z]]. Since ũ kills 〈ϕm(Z)〉, we see that v
also sends 〈ϕm(Z)〉 into πoL. By construction, v is zero on 1, Z, · · · , Zqm−1. Since

(6) oL1⊕ oLZ ⊕ · · · ⊕ oLZq
m−1 ⊕ 〈ϕm(Z)〉 = oL[[Z]],

we conclude that v (oL[[Z]]) ⊆ πoL and hence v = πw for some oL-linear form w : oL[[Z]]→ oL.

Since v : oL[[Z]] → oL is continuous for the weak topology on oL[[Z]], so is w. Hence w ∈ Û

and hence ũ ∈
qm−1∑
r=0

oLur + πÛ . This shows that ⊆ holds.
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For the reverse containment, it is enough to show that ur ∈ U(m) + πÛ for each r =
0, . . . , qm − 1. Using (6), define an oL-linear form wr : oL[[Z]]→ oL which is zero on 〈ϕm(Z)〉
and which sends Zi to δi,r for each 0 ≤ i < qm. Since ur sends 〈ϕm(Z)〉 into πoL, the same is
true of ur−wr. Since ur−wr is zero on 1, Z, · · · , Zqm−1 by construction, we see that ur−wr
sends all of oL[[Z]] into πoL. Hence ur − wr = πvr for some oL-linear form vr : oL[[Z]] → oL.
Since ur − wr is continuous for the weak topology on oL[[Z]], so is vr. Because wr is zero on

〈ϕm(Z)〉, it lies in U(m) and hence ur = wr + πvr ∈ U(m) + πÛ . �

Proposition 3.6.7. If L = Qp2 , then t′m(U(m)) = oLm for all m ≥ 1.

Proof. Fix m ≥ 1. By Lemma 3.6.6, for each 0 ≤ r < qm we can find wr ∈ U(m) such that

wr − ur ∈ πÛ . Set r := p2m−1 = pqm−1 < qm. Note that K1(ur) = K(ur)(1) = 〈ur,∆1〉 =
Pr(Ω). Since L = Qp2 , Corollary 3.5.8 applied with k = 2m− 1 tells us that

valp(K1(ur)) = valp(Pr(Ω)) =
1

p2m−2(q − 1)
=

1

qm−1(q − 1)
= [Lm : L]−1 < 1.

Now πoL = poL since L = Qp2 , so K1(ur−wr) ∈ K1(πÛ) ⊆ poCp since K1 takes values in oCp .

Hence valp(K1(ur) − K1(wr)) ≥ 1 and valp(K1(wr)) = valp(K1(ur)) = [Lm : L]−1. Therefore
K1(wr) is a uniformiser in Lm and the result follows. �

Now we start to explore the injectivity of K : Û → C.

Lemma 3.6.8. For each m ≥ 1, we have U(m) ∩ πÛ = πU(m).

Proof. Let g = πh ∈ U(m) for some h ∈ Û . Then π〈h, F 〉 = 〈πh, F 〉 = 0 for any F ∈ 〈ϕm(Z)〉.
Hence 〈h, F 〉 = 0 for all such F as well, so h ∈ U(m) and g ∈ πU(m). �

Corollary 3.6.9. The map O(G′m ×oL k) = U(m)/πU(m)→ U(m)k is an isomorphism.

Since G′ forms a p-divisible group, we have a closed immersion G′m → G′m+1 for each
m ≥ 1. The comorphism of this map O(G′m+1) → O(G′m) is the dual of the oL-Hopf algebra
map O(Gm) → O(Gm+1) induced by ϕ : O(G) → O(G). Using Corollary 3.6.9, we obtain
connecting maps ϕ∗k : U(m+ 1)k → U(m)k.

Lemma 3.6.10. The comorphisms ϕ∗k : U(m+ 1)k → U(m)k are surjective for all m ≥ 1.

Proof. By Corollary 3.6.9, U(m)k is isomorphic to O(G′m ×oL k) = Homk(O(Gm ×oL k), k) as
a k-vector space. Since ϕ(Z) ≡ Zq mod πoL[[Z]], we have O(Gm ×oL k) = k[[Z]]/〈Zqm〉 and

the k-algebra homomorphism ϕk : k[[Z]]/〈Zqm〉 → k[[Z]]/〈Zq(m+1)〉 which sends Z to Zq is
injective. Hence the dual map

ϕ∗k : Homk(k[[Z]]/〈Zq(m+1)〉, k)→ Homk(k[[Z]]/〈Zqm〉, k)

is surjective and the result follows. �

Next we consider an ideal I of Uk and we set I(m) := I ∩ U(m) for all m ≥ 1. We assume
that I is ϕ∗-stable, in the sense that ϕ∗(I) ⊆ I.

Proposition 3.6.11. Suppose that I is a ϕ∗-stable ideal of Uk such that lim←−
U(m)k
I(m) is finite

dimensional over k. Then Uk/I = colim U(m)
I(m) is also finite dimensional over k.
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Proof. Let m ≥ 1 and consider the short exact sequence

0→ I(m)→ U(m)k → U(m)k/I(m)→ 0.

Since I is ϕ∗-stable by assumption, we get a short exact sequence of towers of finite-dimensional
k-vector spaces. Passing to the inverse limit therefore gives an exact sequence

0→ I(∞) := lim←− I(m)→ lim←−U(m)k → lim←−
U(m)k
I(m)

→ 0.

By assumption, the term on the right is a finite dimensional k-vector space. We see from
Lemma 3.6.10 that the connecting maps U(m + 1)k/I(m + 1) → U(m)k/I(m) induced by
ϕ∗ are surjective. Therefore, for large m, all of these maps are necessarily isomorphisms, and
therefore there exists m0 ≥ 1 such that

dim
U(m+ 1)k
I(m+ 1)

= dim
U(m)k
I(m)

for all m ≥ m0.

Now the definition of I(m) shows that the natural connecting maps in the opposite direc-
tion U(m)k/I(m) → U(m + 1)k/I(m + 1) is injective for any m ≥ 1. They are therefore
isomorphisms whenever m ≥ m0. The result follows. �

Proposition 3.6.12. Let J = kerK and let I := (J + πÛ)/πÛ be its image in Uk. Then I is
a ϕ∗-stable ideal in Uk such that dimUk/I =∞.

Proof. Since Kϕ∗ = ϕCK by Lemma 3.3.5, we see that J is a ϕ∗-stable ideal in Û . Hence its
image I in Uk is also ϕ∗-stable.

Suppose that h ∈ Û and r ≥ 1 are such that πrh ∈ J . Then K(πrh) = 0 in C, so K(h) = 0

as well. So J ∩ πrÛ = πrJ for all r ≥ 1. Now consider the short exact sequence

0→ J → Û → K(U)→ 0.

Equip both Û and K(U) with the π-adic filtrations. Then the above shows that the subspace

filtration on J induced by the π-adic filtration on Û coincides with the π-adic filtration on J .
Therefore we get a short exact sequence of gr oL-modules

0→ gr J → gr Û → grK(U)→ 0.

So, if dimUk/I < ∞, then gr Û/ gr J ∼= (Uk/I)[grπ] is a finitely generated module over
gr oL, so grK(U) is a finitely generated gr oL-module. The π-adic filtration on C is separated,
hence the π-adic filtration on K(U) is also separated. Therefore K(U) is a finitely generated
oL-module by [LvO96, Chapter I, Theorem 5.7]. Hence K(U [1/π]) is a finite dimensional
L-vector space. But this contradicts [ST01, Theorem 4.7]: the space of locally L-analytic Gal-
continuous functions is not finite dimensional over L since it contains the subspace of locally
constant Gal-continuous functions, which is infinite dimensional over L. �

Corollary 3.6.13. Suppose that d := [L : Qp] = 2. Then K : Û → C is injective.

Proof. By Proposition 3.6.12, I = (kerK+πÛ)/πÛ is a ϕ∗-stable ideal in Uk of infinite codien-
sion in Uk. Hence I(∞) := lim←−(I ∩U(m)k) is an ideal of infinite codimension in lim←−U(m)k by

Proposition 3.6.11. By [Hop19, Example 2.5.3], the Dieudonné module M(Gk) associated with
the Lubin-Tate formal group Gk = G×oLk over the perfect field k has basis {γ, V γ, · · · , V d−1γ}
over W(k) and satisfies V d = p. Hence the Verschiebung operator V on M(Gk) is topologi-
cally nilpotent. Therefore the Cartier dual G′k is connected. Hence lim←−U(m)k ∼= O(G′ ×oL k)
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is isomorphic to k[[X1, · · · , Xd−1]] by [Tat67, Propositions 1 and 3]. Since d = 2, we conclude
that I(∞) = 0. Hence I(m) = 0 for all m ≥ 1 and hence I = 0. So kerK = 0 as well. �

Theorem 3.6.14. Suppose that L = Qp2 . Then

K∗1 : o∗∞ → oL[[Z]]ψq=0

is an oL-linear bijection.

Proof. Since d = 2, we know that τ is surjective by Lemma 2.6.4. Then K : Û → C is injective

by Corollary 3.6.13 and K1 : Û → o∞ is surjective by Proposition 3.6.5 and Proposition 3.6.7.
Now apply Proposition 3.3.9. �

We can now prove Theorem 1.6.1 from the Introduction. In fact, we prove the following
more general version, from which Theorem 1.6.1 follows as a special case by setting S = oK .

Theorem 3.6.15. Let L = Qp2 and let S be a π-adically complete oL-algebra.

(1) The map K∗ : HomoL(C0
Gal(oL, oCp), S)→ S[[Z]] is injective.

(2) Its image is equal to S[[Z]]ψq-int.

Proof. Since d = 2, we know that τ is surjective by Lemma 2.6.4. By Theorem 3.6.14, the
map K∗1 : o∗∞ → oL[[Z]]ψq=0 is an isomorphism. Now apply Theorem 3.4.9. �

4. Integer-valued polynomials

4.1. The algebraic dual of O◦(XK). Pick a basis {v1, · · · , vd} for oL as a Zp-module with
v1 = 1. We view oL as a p-valued group with p-valuation ω given by

ω

(
d∑
i=1

λivi

)
= 1 + min

1≤i≤d
valp(λi).

Let r be a real number in the range 1/p ≤ r < 1. Recall from [ST02, §4] that DQp−an(oL,K)
carries a norm || · ||r given by

(7) ||
∑
α∈Nd

dαbα||r = sup
α∈Nd

|dα|r|α|.

where bi := δvi − 1 ∈ DQp−an(oL,K) for i = 1, · · · , d, bα = bα1
1 · · · b

αd
d ∈ D

Qp−an(oL,K) and

|α| = τα = α1 + · · ·+ αd for all α ∈ Nd.

Definition 4.1.1. Let 1/p ≤ r < 1.

(1) Let D
Qp−an
r (oL,K) denote the completion of DQp−an(oL,K) with respect to || · ||r.

(2) Let X0(r)K := SpD
Qp−an
r (oL,K).

(3) Let X(r)K := XK ∩ X0(r)K = SpDL−an
r (oL,K), where DL−an

r (oL,K) is the factor

algebra of D
Qp−an
r (oL,K) by the ideal generated by the elements

u2 − v2u1, u3 − v3u1, · · · , ud − vdu1

where ui := log(1 + bi) ∈ DQp−an(oL,K).

As r approaches 1 from below, the K-affinoid varieties X(r)K form an increasing family of
K-affinoid subvarieties of XK : whenever 1/p ≤ r < r′ < 1 we have

(8) 1 ∈ X(1/p)K ⊂ · · · ⊂ X(r)K ⊂ X(r′)K ⊂ · · · ⊂ XK =
⋃

1/p≤r<1

X(r)K .
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Here 1 ∈ XK is the trivial character : the ideal generated by b1, · · · , bd.

Lemma 4.1.2. The completed local ring ÔXK ,1 of X at 1 is isomorphic to a power series
ring in one variable b := b1 over K:

ÔX,1
∼= K[[b]].

Proof. We have O(X0(1/p)K) = K〈b1/p, · · · , bd/p〉 = K〈u1/p, · · · , ud/p〉. Quotienting out by
the ideal generated by the elements ui− viu1 shows that O(X0(1/p)K) = K〈u1/p〉 = K〈b/p〉.
So X0(1/p)K is isomorphic to the closed disc of radius |p| = 1/p with local coordinate b; it is
well known that the completed local ring at b = 0 of such a disc is K[[b]]. The result follows

since 1 ∈ X(1/p)K implies that ÔXK ,1 = ̂OX(1/p)K ,1 = K[[b]]. �

Applying the functor O◦ to the increasing chain of rigid K-varieties (8) and using Lemma
4.1.2 yields a decreasing chain of oK-algebras

(9) K[[b]] ⊃ O◦(X(1/p)K) ⊃ · · · ⊃ O◦(X(r)K) ⊃ O◦(X(r′)K) ⊃ · · · ⊃ O◦(XK) ⊇ oK [[oL]].

Definition 4.1.3. Let A be an oK-subalgebra of K[[b]] and let m ≥ 0. The m-th infinitesimal
neighbourhood of 1 in A is the image Am of A in K[[b]]/bm+1K[[b]]:

Am :=
A+ bm+1K[[b]]

bm+1K[[b]]
⊂ K[[b]]

bm+1K[[b]]
.

Remark 4.1.4. This construction respects inclusions and compatible with variation in m.
More precisely, whenever A ⊆ B are two oK-subalgebras of K[[b]], for every n ≥ m there is a
commutative diagram of oK-algebras

An //

��

Bn

��
Am // Bm

with injective horizontal arrows and surjective vertical arrows.

Definition 4.1.5. Let A be an oK-subalgebra of K[[b]] and let A∗m := HomoK (Am, oK) for
each m ≥ 0. The algebraic dual of A is

A∗∞ := colim
m≥0

A∗m.

Lemma 4.1.6. Let oK [[oL]] ⊆ A ⊆ B be two oK-subalgebras of K[[b]] and let n ≥ m ≥ 0.

(1) In the commutative square

A∗n B∗noo

A∗m

OO

B∗moo

OO

all arrows are injective.
(2) The map B∗∞ → A∗∞ is injective.

Proof. (1) The vertical maps A∗m → A∗n are injective because An → Am is surjective. Let
C be the cokernel of the map An → Bn. Since An contains oK [[oL]]n which is an oK-lattice
in K[[b]]n, we see that C is a torsion oK-module. The dual functor (−)∗ is left exact, so we
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have the exact sequence 0 → C∗ → B∗n → A∗n. Since C is torsion, C∗ = 0 which shows the
injectivity of the horizontal arrows in our diagram.

(2) This follows by taking the colimit over all of the horizontal maps in part (1) above. �

Thus we see that the connecting maps appearing in the colimit in Definition 4.1.5 are
injective. Applying the contravariant algebraic dual functor (−)∗∞ to the chain (9) and using
Lemma 4.1.6(2) gives us a chain of algebraic duals

O◦(X(1/p)K)∗∞ ⊂ · · · ⊂ O◦(X(r)K)∗∞ ⊂ O◦(X(r′)K)∗∞ ⊂ · · · ⊂ O◦(XK)∗∞ ⊆ oK [[oL]]∗∞.

We can now calculate the largest one of these, namely the algebraic dual of the Iwasawa
algebra oK [[oL]], but first we must introduce integer-valued polynomials. Recall the following
notion from [Bha97].

Definition 4.1.7. A π-ordering for oL is a subset {α0, α1, α2, . . .} of oL such that

(10) vπ

(
k−1∏
i=0

(αk − αi)

)
= inf

s∈o
vπ

(
k−1∏
i=0

(s− αi)

)
for all k ≥ 1.

Starting from an arbitrary element α0 ∈ oL, it is possible to construct a π-ordering
{α0, α1, . . .} of oL by induction on k, choosing at each stage αk to minimise the expres-
sion appearing on the right hand side of (10). In particular, π-orderings always exist, but are
far from unique.

Definition 4.1.8. Let{α0, α1, . . .} be a π-ordering for oL.

(1) Define the Lagrange polynomials as follows: f0(X) := 1 and

fk(X) :=
(X − α0)(X − α1) · · · (X − αk−1)

(αk − α0)(αk − α1) · · · (αk − αk−1)
∈ L[X] for each k ≥ 1.

(2) Suppose that R is an oL-algebra which embeds into RL := R ⊗oL L. Then we define
the ring of R-valued polynomials on oL as follows:

Int(oL, R) := {g(X) ∈ RL[X] : g(oL) ⊂ R}
(3) For each m ≥ 0, let Int(oL, R)m denote the R-submodule of Int(oL, R) consisting of

all R-valued polynomials on oL of degree at most m.

The following result, closely related to de Shalit’s work on Mahler bases [dS16], explains
why we are interested in these Lagrange polynomials.

Lemma 4.1.9. {f0, f1, f2, . . .} is an R-module basis for Int(oL, R).

Proof. It follows directly from Definition 4.1.7 that vπ(fk(s)) ≥ 0 for all s ∈ oL and all k ≥ 0.
Hence fk(oL) ⊂ oL ⊂ R for all k ≥ 0 which implies that

(11) Rf0 +Rf1 +Rf2 + · · ·+Rfn + · · · ⊆ Int(oL, R).

If g ∈ RL[X] has degree n and leading coefficient λ, then g − λ(αn − α0) · · · (αn − αn−1)fn
has degree strictly less than n. This implies that {f0, f1, f2, . . .} generates RL[X] as an RL-
module. Now let g ∈ Int(oL, R) and write g = λ0f0 + · · ·+ λnfn for some λ0, · · · , λn ∈ RL as
above. Setting X = α0 shows that λ0 = g(α0) ∈ R since g ∈ Int(oL, R). Assume inductively
that λ0, . . . , λt−1 ∈ R for some 1 ≤ t ≤ n. Setting X = αt shows that

λt = g(αt)− λ0f0(αt)− λ1f1(αt)− · · · − λt−1ft−1(αt)
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and this lies in R because g(αt) ∈ R and fi(αt) ∈ R for all i. This completes the induction
and shows that we have equality in (11). Taking g = 0 in the above argument also shows that
the sum on the left hand side of (11) is direct. �

Using Lemma 4.1.9, we obtain the following

Corollary 4.1.10.

(1) The multiplication map

Int(oL, oL)⊗oL oK → Int(oL, oK)

is an isomorphism, which sends Int(oL, oL)m⊗oL oK onto Int(oL, oK)m for any m ≥ 0.
(2) The Lagrange polynomials {f0(Y ), · · · , fm(Y )} associated with a choice of π-ordering

for oL form an oK-module basis for Int(oL, oK)m.

Proposition 4.1.11. The evaluation map ev : Int(oL, oK)m −→ oK [[oL]]∗m defined by

ev(f(Y ))(λ) := λ(f(Y ))

for all f(Y ) ∈ Int(oL, oK)m, λ ∈ oK [[oL]] is an oK-module isomorphism.

Proof. This is essentially a complicated-looking tautology, but we try to give the details.
Note that oK [[oL]]m is an oK-lattice in K[[b]]m. We can therefore identify oK [[oL]]∗m with an

oK-submodule of V := HomK(K[[b]]m,K), a K-vector space of dimension m + 1. The linear
functionals ev(1), ev(Y ), · · · , ev(Y m) are linearly independent in V because if

∑m
i=0 ci ev(Y i) =

0 then ev(
∑m

i=0 ciY
i)(δa) =

∑m
i=0 cia

i = 0 for all a ∈ oL and this forces c0 = · · · = cm = 0. It
follows that ev : K[Y ]m → V is injective and is therefore an isomorphism by the rank-nullity
theorem.

Hence ev : Int(oL, oK)m → oK [[oL]]∗m is injective. However if g ∈ oK [[oL]]∗m then by the above
we can find some f(Y ) ∈ K[Y ]m such that ev(f(Y )) = g. Since δa ∈ oK [[oL]] for all a ∈ oL,
we see that f(a) = ev(f(Y ))(δa) = g(δa) must lie in oK for all a ∈ oL. �

Corollary 4.1.12. The map ev : Int(oL, oK)→ oK [[oL]]∗∞ is an isomorphism.

Proof. This follows immediately from Proposition 4.1.11. �

Proposition 4.1.13. Suppose that K is discretely valued. Then

O◦(XK)∗∞ = colim
r<1

O◦(X(r)K)∗∞.

Proof. Since colimits commute with colimits, it is enough to show that for every m ≥ 0,

O◦(XK)∗m = colim
r<1

O◦(X(r)K)∗m.

Fix m ≥ 0. Then O◦(X(r)K)m form a decreasing chain of oK-submodules of the m + 1-
dimensional K-vector space K[[b]]m, and all of them contain the oK-lattice oK [[oL]]m. Since
K is discretely valued, the oK-module (K/oK)m+1 satisfies the descending chain condition.
Hence there exists r0 < 1 such that

(12) O◦(X(r)K)m = O◦(X(r0)K)m whenever r0 ≤ r < 1.

Following an argument of Schmidt [Sch14, proof of Proposition 4.9], we will now show that

O◦(XK)m = O◦(X(r0)K)m.
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The forward inclusion is clear, so fix some ξ ∈ O◦(X(r0)K)m, choose a sequence of real numbers
r0 < r1 < r2 < · · · approaching 1 and consider the K-Banach space

Aj := O(X(rj)K).

Let ϕj : A◦j → K[[b]]m be the obvious oK-linear map. Using (12) we see that the convex subset

ϕ−1
j (ξ) ⊂ Aj

is non-empty. It was recorded in the proof of [ST02, Lemma 6.1] that the restriction maps
Aj+1 → Aj are compact. We may therefore argue as in [Gru68, Proposition V.3.2] that

∞⋂
j=0

ϕ−1
j (ξ) ⊆ O◦(XK)

is non-empty. Then any element λ in this intersection satisfies λm = ξ, so ξ ∈ O◦(XK)m as
required. Hence O◦(XK)∗m = O◦(X(r)K)∗m whenever r0 ≤ r < 1, and the result follows. �

4.2. The matrix coefficients ρi,j(Y ). Let BCp be the rigid analytic open unit disc of radius
1 defined over Cp, with global coordinate function Z. There is a twisted GL = Gal(Cp/L)-
action on O(BCp) given by F 7→ F σ ◦ [τ(σ−1)], which induces an L-algebra isomorphism

µ : O(XL)
∼=−→ O(BCp)

GL,∗,

see [ST01, Corollary 3.8]. Inspecting the proof of this result, we see that it extends naturally
to give a description of O(XK) for more general closed coefficient fields L ⊆ K ⊆ Cp as well:

Lemma 4.2.1. There is a K-algebra isomorphism

µK : O(XK)
∼=−→ O(BCp)

GK ,∗.

Since O◦(BCp) = oCp [[Z]], we deduce the following

Corollary 4.2.2. There is an isomorphism of oK-algebras

µK : O◦(XK)
∼=−→ oCp [[Z]]GK ,∗.

Until the end of §4.2, we assume that Ω is transcendental over K.

Definition 4.2.3. We call an oK-subalgebra R of K[Ω]∩ oCp admissible if Pn(Ω) ∈ R for all
n ≥ 0, and if R is stable under the natural GL-action on K[Ω] ∩ oCp .

Example 4.2.4. K[Ω] ∩ oCp is itself an admissible oK-subalgebra of K[Ω].

Proof. This follows from Corollary 4.2.2 together with [ST01, Lemma 4.2(5)]. �

Definition 4.2.5. Let R ⊂ K[Ω] be an admissible oK-subalgebra.

(1) Let K[Ω]n := {f(Ω) ∈ K[Ω] : deg(f) ≤ n} for each n ≥ 0.
(2) Let Rn := R ∩K[Ω]n for each n ≥ 0.
(3) {bn(Ω) : n ≥ 0} ⊂ R is a regular basis if

b0(Ω) = 1, and Rn = Rn−1 ⊕ oKbn(Ω) for all n ≥ 1.

Lemma 4.2.6. Suppose that K is discretely valued. Then a regular basis exists for every
admissible oK-subalgebra R of K[Ω] ∩ oCp .
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Proof. Since Ω is assumed to be transcendental over K, the K-vector space K[Ω]n has dimen-
sion n+1. The restriction of the norm | · | on Cp to K[Ω]n turns it into a normed vector space
over K and by Definition 4.2.3(1), Rn is contained in the unit ball with respect to this norm.
Since any two norms on a finite dimensional K-vector space are equivalent — see [Sch02,
Proposition 4.13] — it follows that Rn ⊆ π−moK [Ω]n for sufficiently large m.

Since K is discretely valued, its valuation ring oK is Noetherian and this forces Rn to be
a free oK-module of rank n+ 1. Because the Rn’s form a nested chain, we can now construct
the desired oK-module basis for R by induction on n. �

Example 4.2.7. Let U :=
∞∑
n=0

oKPn(Ω). Then U is an admissible subalgebra of K[Ω], and

{Pn(Ω) : n ≥ 0} is a regular basis for R: since degPj(Y ) = j, an element f(Ω) of Un is a
K-linear combination of P0(Ω), · · · , Pn(Ω) lying in U , but {Pm(Ω) : m ≥ 0} is an oL-module
basis for U so all coefficients of f(Ω) must in fact lie in oL.

Until the end of §4.2, we assume that

• K is a discretely valued intermediate subfield L ⊆ K ⊆ Cp,
• Ω is transcendental over K,
• R ⊆ K[Ω] ∩ oCp is an admissible oK-subalgebra, and
• {bn(Ω) : n ≥ 0} is a regular basis for R.

Lemma 4.2.8. Let j ≥ 0.

(1) There are unique ρ0,j(Y ), ρ1,j(Y ), · · · , ρj,j(Y ) ∈ K[Y ] such that

Pj(Y Ω) =

j∑
i=0

ρi,j(Y )bi(Ω).

(2) deg ρi,j(Y ) ≤ j whenever 0 ≤ i ≤ j.
(3) deg ρj,j(Y ) = j.
(4) ρi,j(a) ∈ oK whenever a ∈ oL and 0 ≤ i ≤ j.

Proof. (1) Ω is transcendental over K, and {bi(Ω) : i ≥ 0} is a K-vector space basis for
K[Ω] with deg bi(Ω) = i for each i. Hence it is also a K[Y ]-module basis for the two-variable
polynomial algebra K[Ω, Y ], so we can find unique ρi,j(Y ) ∈ K[Y ] such that

Pj(Y Ω) =
∑
i≥0

ρi,j(Y )bi(Ω)

where ρi,j(Y ) = 0 for sufficiently large i. Now Pj(s) is a polynomial in s of degree j by
[ST01, Lemma 4.2(3)], so Ωj is the highest degree monomial in Ω appearing in Pj(Y Ω). Since
deg bi(Ω) = i, this means ρi,j(Y ) = 0 for i > j.

(2) Since the highest degree monomial in Y appearing in Pj(Y Ω) is Y j , this means that
deg ρi,j(Y ) ≤ j for each i ≤ j.

(3) The monomial Y jΩj appears in Pj(Y Ω) with a non-zero coefficient. This monomial
does not appear in ρi,j(Y )bi(Ω) for any i < j because deg bi(Ω) = i for all i. So it must appear
in ρj,j(Y )bj(Ω), and because of (2), this can only happen if deg ρj,j(Y ) = j.

(4) Let a ∈ oL. We know that Pj(aΩ) ∈ oCp by [ST01, Lemma 4.2(5)]; in fact, Pj(aΩ) is an
oL-linear combination of the Pi(Ω) for 0 ≤ i ≤ j by Corollary 3.2.6, so Pj(aΩ) ∈ R. Setting
Y = a in (1) shows that ρi,j(a) ∈ oK , since {bi(Ω) : i ≥ 0} is a regular basis for R. �
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Theorem 4.2.9. For each λ ∈ DL−an(oL,K) we have

µK(λ) =
∞∑
j=0

j∑
k=0

λ(ρk,j(Y ))bk(Ω)Zj .

In the case when λ = δa for some a ∈ oL, Lemma 4.2.8 implies that

µ(δa) =
∞∑
j=0

Pj(aΩ)Zj =
∞∑
j=0

(
j∑
i=0

ρi,j(a)bi(Ω)

)
Zj =

∞∑
j=0

j∑
k=0

δa(ρk,j(Y ))bk(Ω)Zj

which explains where the formula comes from. We will now give a rigorous argument to show
that the formula is valid for any λ ∈ DL−an(oL,K).

Lemma 4.2.10. Let t := logLT (Z) be the Lubin-Tate logarithm. Then

µK(λ) =

∞∑
k=0

λ(Y k/k!)Ωktk for all λ ∈ DL−an(oL,K).

Proof. Since we may identify Cp[[t]] with Cp[[Z]], we can write µK(λ) =
∞∑
m=0

ci,mt
m for some

ci,m ∈ Cp. Then applying [ST01, Lemma 4.6(8)], we have

λ(Y k/k!) = {µK(λ), Y k/k!} =
(Ω−1∂t)

k

k!
(µK(λ))(0) = Ω−kci,k for all k ≥ 0. �

Proposition 4.2.11. Let λ ∈ HomL(L[Y ],K). Then in Cp[[t]] = Cp[[Z]] we have

∞∑
k=0

λ(Y k/k!)Ωktk =
∞∑
j=0

j∑
k=0

λ(ρk,j(Y ))bk(Ω)Zj .

Proof. For each k ≥ 0, write tk =
∞∑
j=k

d
(k)
j Zj ∈ L[[Z]]. Substituting this into Lemma 4.2.10

gives

(13)
∞∑
k=0

λ(Y k/k!)Ωktk =
∞∑
k=0

λ(Y k/k!)Ωk
∞∑
j=k

d
(k)
j Zj =

∞∑
j=0

(
j∑

k=0

1

k!
d

(k)
j Ωkλ(Y k)

)
Zj .

On the other hand, the identity
∞∑
j=0

Pj(Y Ω)Zj = exp(Y Ωt) =
∞∑
k=0

1

k!
tkΩkY k =

∞∑
k=0

Y kΩk

k!

∞∑
j=k

d
(k)
j Zj

together with Lemma 4.2.8 shows that for all j ≥ 0 we have

(14)

j∑
k=0

1

k!
d

(k)
j ΩkY k = Pj(ΩY ) =

j∑
k=0

ρk,j(Y )bk(Ω).

Now, the L-linear form λ : L[Y ] → K extends to a K[Ω]-linear form K[Ω, Y ] → K[Ω].
Applying this extension to (14) gives

j∑
k=0

1

k!
d

(k)
j Ωkλ(Y k) =

j∑
k=0

λ(ρk,j(Y ))bk(Ω).
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Substituting this equation into (13) gives the result. �

Proof of Theorem 4.2.9. Follows immediately from Lemma 4.2.10 and Proposition 4.2.11. �

Definition 4.2.12. Let Ř be the oK-linear span of {ρk,j(Y ) : j ≥ k ≥ 0} in the space
I := Int(oL, oK) of oK-valued polynomials on oL.

We will see shortly that Ř does not depend on the choice of regular basis for R.

Corollary 4.2.13. Let λ ∈ DL−an(oL,K). Then µK(λ) ∈ R[[Z]] if and only if λ(Ř) ⊆ oK .

Proof. Theorem 4.2.9 tells us that µK(λ) ∈ R[[Z]] if and only if
j∑

k=0

λ(ρk,j(Y ))bk(Ω) ∈ R for

all j ≥ 0. Since {bk(Ω) : k ≥ 0} is a regular basis, this is equivalent to λ(ρk,j(Y )) ∈ oK for all
j ≥ k ≥ 0. �

Proposition 4.2.14. Let λ ∈ HomK(K[Y ],K) be such that λ(Ř) ⊆ oK . Then there exists

λ̃ ∈ µ−1
K (R[[Z]]) ⊆ O◦(XK) such that λ̃|K[Y ] = λ.

Proof. The twisted GL-action on Cp[[Z]] preserves R[[Z]] since we assumed that R ⊆ K[Ω]∩oCp
is GL-stable in Definition 4.2.3. Therefore R[[Z]]GL,∗ makes sense.

Define Fλ :=
∞∑
j=0

j∑
k=0

λ(ρk,j(Y ))bk(Ω)Zj ∈ Cp[[Z]]. Then Fλ ∈ K[[Ωt]] = Cp[[Z]]GK ,∗ by

Proposition 4.2.11 and Fλ ∈ R[[Z]] because λ(Ř) ⊆ oK . Hence Fλ ∈ R[[Z]]GK ,∗ ⊆ oCp [[Z]]GK ,∗,

so Fλ = µK(λ̃) for some λ̃ ∈ O◦(XK) by Corollary 4.2.2. In particular, λ̃ ∈ µ−1
K (R[[Z]]).

Next, applying [ST01, Lemma 4.6(8)] we see that for all m ≥ 0,

λ̃(Y m/m!) = {µK(λ̃), Y m/m!} = {Fλ, Y m/m!} =

{ ∞∑
k=0

λ(Y k/k!)Ωktk, Y m/m!

}
= λ(Y m/m!).

Since the Y m/m! span K[Y ] as a K-vector space, we conclude that λ̃|K[Y ] = λ. �

Recall the isomorphism ev : Int(oL, oK)→ oK [[oL]]∗∞ from Corollary 4.1.12.

Theorem 4.2.15. We have ev(Ř) = µ−1
K (R[[Z]])∗∞.

Proof. T contains the oK-submodule of K[Y ] generated by {ρj,j(Y ) : j ≥ 0} and deg ρj,j(Y ) =

j for each j ≥ 0 by Lemma 4.2.8(3). Hence Ř spans K[Y ] as a K-vector space. On the other
hand, Řn := Ř ∩K[Y ]≤n is contained in Int(oL, oK)n by Lemma 4.2.8(4), which is a finitely
generated oK-module by Remark 4.1.10(2). Since K is discretely valued, Řn is a finitely
generated oK-module for each n ≥ 0. So we can find an oK-module basis {t0, t1, · · · , tn, · · · }
for Ř such that {t0, · · · , tn} is an oK-module basis for Řn for each n ≥ 0. It follows that the
natural map Ř ⊗oK K → K[Y ] is an isomorphism, and we may identify HomoK (Ř, oK) with
{φ ∈ HomK(Ř,K) : φ(Ř) ⊆ oK}.

Let {t∗m : m ≥ 0} ⊂ HomoK (Ř, oK) be determined by

t∗m(tn) = δm,n for all m,n ≥ 0.

Then by Proposition 4.2.14, t∗m extends to some λm ∈ µ−1
K (R[[Z]]) such that λm|K[Y ] = t∗m. In

particular, we have λm(tn) = δm,n for all m,n ≥ 0.
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Now suppose that g ∈ µ−1
K (R[[Z]])∗∞ ⊆ oK [[oL]]∗∞. Then g = ev(h) for some h ∈ Int(oL, oK)m

by Proposition 4.1.11. Since h ∈ K[Y ]≤m and since {t0, · · · , tm} is a K-vector space basis for
K[Y ]m, we can write h =

∑m
n=0 cntn for some cn ∈ K. But then

g(λn) = ev(h)(λn) = λn(h) = t∗n(h) = cn for all n ≥ 0.

Since λn ∈ µ−1
K (R[[Z]]) and g ∈ µ−1

K (R[[Z]])∗∞, we conclude that g(λn) ∈ oK for all n ≥ 0.

Hence h ∈
∑m

n=0 oKtn ⊆ Ř and g = ev(h) ∈ ev(Ř). Hence µ−1
K (R[[Z]])∗∞ ⊆ ev(Ř).

Conversely, let λ ∈ µ−1
K (R[[Z]]). Then λ(Ř) ⊆ oK by Corollary 4.2.13 and thus for all g ∈ Ř,

ev(g)(λ) = λ(g) ∈ oK . Hence ev(Ř) ⊆ µ−1
K (R[[Z]])∗∞. �

Corollary 4.2.16. Let S ⊆ R be two admissible subalgebras of K[Ω]. Then Ř ⊆ Š.

Proof. We have µ−1
K (S[[Z]]) ⊆ µ−1

K (R[[Z]]), so µ−1
K (R[[Z]])∗∞ ⊆ µ−1

K (S[[Z]])∗∞ by Lemma 4.1.6(2).

Hence ev(Ř) ⊆ ev(Š) by Theorem 4.2.15. Hence Ř ⊆ Š because ev is an isomorphism by
Corollary 4.1.12. �

Note that Theorem 4.2.15 implies that the oK-module Ř depends only on the admissible
subalgebra R and not the particular choice of regular basis {bn(Ω) : n ≥ 0} for R.

Lemma 4.2.17. Let λ ∈ DL−an(oL,K). Then λ ∈ oK [[oL]] if and only if λ(Int(oL, oK)) ⊆ oK .

Proof. Suppose that λ(Int(oL, oK)) ⊆ oK . The π-adic completion of I is naturally isomorphic
to the ring C0(oL, oK) of oK-valued continuous functions on oL. Since λ(I) ⊆ oK , λ extends

to an oK-linear form λ̃ : C0(oL, oK) → oK which is automatically continuous. View λ̃ as an

element of oK [[oL]] = Dcts(oL,K). The restrictions of λ̃ and of λ ∈ DL−an(oL,K) to K[Y ]
agree by construction. Since K[Y ] is dense in Can(oL,K), we conclude that λ lies in oK [[oL]].

Conversely, if λ ∈ oK [[oL]] = C0(oL, oK)∗, then λ must take integer values on Int(oL, oK) ⊂
C0(oL, oK). �

Theorem 4.2.18. Let R be an admissible subalgebra of K[Ω]. Then µ−1
K (R[[Z]]) = oK [[oL]] if

and only if Ř = I.

Proof. (⇐). Suppose that Ř = I, and let λ ∈ µ−1
K (R[[Z]]). Then λ(Ř) ⊆ oK by Corollary

4.2.13. Since Ř = I, this means that λ(I) ⊆ oK . Hence λ ∈ oK [[oL]] by Lemma 4.2.17.
(⇒). Suppose that Ř < I. Since K is discretely valued, K/oK is an injective cogenerator

of the category of oK-modules. Hence HomoK (I/Ř,K/oK) is non-zero. So there exists an
oK-linear map λ : I → K such that λ(Ř) ⊆ oK , but λ(I) * oK . Regard λ as an element

of HomK(K[Y ],K); then by Proposition 4.2.14, λ extends to some λ̃ ∈ O◦(XK) such that

λ̃|K[Y ] = λ. Since λ(Ř) ⊆ oK , using Theorem 4.2.9 we see that µK(λ̃) ∈ R[[Z]]. However,

λ̃ /∈ oK [[oL]] by Lemma 4.2.17 because λ̃(I) * oK , so λ̃ ∈ µ−1
K (R[[Z]])\oK [[oL]]. �

We will now see what implications the above general results have for particular choices of
the admissible subalgebra R. Let B = K[Ω]∩oCp be the largest possible admissible subalgebra

of K[Ω], and let U :=
∞∑
n=0

oKPn(Ω) be the smallest possible one. Recall from Example 4.2.7

that {Pn(Ω) : n ≥ 0} forms a regular basis for U .

Corollary 4.2.19.

(1) Ǔ = Int(oL, oK) if and only if µ−1
K (U [[Z]]) = oK [[oL]].

(2) oK [[oL]] = ΛK(X) if and only if B̌ = Int(oL, oK).
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Proof. (1) This is an immediate consequence of Theorem 4.2.18 with R = U .
(2) Theorem 4.2.18 tells us that B̌ = I if and only if oK [[oL]] = µ−1

K (B[[Z]]). However

µ−1
K (B[[Z]]) = µ−1

K (Cp[[Z]]GL,∗ ∩B[[Z]]) since µK(O(X)K) is fixed by the twisted GL-action on

Cp[[Z]] by Lemma 4.2.1. Hence µ−1
K (B[[Z]]) = µ−1

K (oCp [[Z]]GL,∗) = ΛK(X) by Corollary 4.2.2,
and the result follows. �

Recall the matrix coefficients σi,j(a) from Corollary 3.2.6.

Lemma 4.2.20. Let R = U and let bn := Pn for each n ≥ 0. Then

(1) ρij(Y ) = σi,j(Y ) for all j ≥ i ≥ 0, and

(2) [a](Z)i =
∞∑
j=i

σi,j(a)Zj for any a ∈ oL, i ≥ 0.

Proof. (1) This follows by comparing Corollary 3.2.6 with Lemma 4.2.8(1).
(2) Using Definition 3.2.1(5) and Lemma 3.2.3 we see that 〈Pk(s), Zi〉 = δki for all i, k ≥ 0.

By Corollary 3.2.6 we have Pj(as) =
j∑

k=0

σkj(a)Pk(s). Fix i ≥ 0 and apply 〈−, Zi〉 to this

equation: using equation (3) we then have

σi,j(a) =

〈
j∑

k=0

σkj(a)Pk(s), Z
i

〉
= 〈Pj(as), Zi〉 = 〈Pj(s), [a](Z)i〉.

Hence σi,j(a) is precisely the coefficient of Zj in the power series [a](Z)i. �

This justifies the definition of the polynomials σi,j(Y ) which was given in §1.5. We can now
give the proof of Theorem 1.5.1 from the Introduction.

Theorem 4.2.21. If ΛL(X) = oL[[oL]], then Pol = Int.

Proof. Note that Pol = Ǔ , in view of Lemma 4.2.20(1) and Definition 4.2.12. Now ΛL(X) =
O◦(XL), so if this is equal to oL[[oL]], then B̌ = Int(oL, oL) by Corollary 4.2.19(2). But U ⊆ B,
so B̌ ⊆ Ǔ ⊆ Int(oL, oL) by Corollary 4.2.16. Hence Ǔ = Int(oL, oL) as claimed. �

4.3. Calculating the matrix coefficients σi,j(Y ). Here we will assume that the coordinate
Z on the Lubin-Tate formal group is chosen in such a way that

logLT (Z) =
∞∑
n=0

Zq
n

πn
.

It turns out that the polynomials Pj(s) are sparse: the coefficient of si in Pj(s) is non-zero
only if i ≡ j mod (q− 1). We will obtain more information about these coefficients; this will
require developing some notation to deal with this sparsity. The calculations that follow rest
on the following observation.

Proposition 4.3.1. For every n ≥ 0, we have

Pn(Y ) =
∑

k0+qk1+···+qdkd=n

Y k0+···+kd

k0! · · · kd! · π1·k1+2·k2+···+d·kd
.
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Proof. If logLT(Z) =
∑∞

k=0 Z
qk/πk and exp is the usual exponential, then

∞∑
n=0

Pn(Y )Zn = exp(Y · logLT(Z)) =
∏
`≥0

exp(Y · Zq`/π`) =
∏
`≥0

∑
k≥0

(Y · Zq`/π`)k/k!

The coefficient of Zn in this product is the sum of Y k0+···+kd/k0! · · · kd! ·π1·k1+2·k2+···+d·kd over
all tuples (k0, · · · , kd) of positive integers such that k0 + qk1 + · · ·+ qdkd = n. �

The following formula for the derivative d
dY Pn(Y ) will be very useful in the calculations.

Proposition 4.3.2. For every n ≥ 0, we have d
dY Pn(Y ) =

∑
k≥0 π

−k · Pn−qk(Y ).

Proof. By [ST01, Lemma 4.2(4)], we have Pn(Y +Z) = Pn(Y ) +
∑n

j=1 Pj(Z)Pn−j(Y ). Hence

it is enough to determine which Pj(Z) have a term of degree 1 in them, and what the corre-
sponding coefficient is in this case. The answer now follows from Proposition 4.3.1. �

We fix m ∈ {0, 1, 2, · · · , q − 2} from now on. We will use the convenient notation

i := m+ i(q − 1) for all i ≥ 0.

Definition 4.3.3. For each j ≥ i ≥ 0, we define

Qm(i, j) :=

{
k ∈ N∞ :

∞∑
`=0

k` = i,

∞∑
`=1

k`

(
q` − 1

q − 1

)
= j − i

}
, and

r
(m)
i,j :=

∑
k∈Qm(i,j)

(
i

k0; k1; k2; · · ·

)
· π
−
∞∑̀
=1

`·k`
.

Here
( i
k0;k1;k2;···

)
= (i)!

k0!·k1!·k2!··· is the multinomial coefficient.

Lemma 4.3.4. We have r
(m)
jj = 1 for all j ≥ 0.

Proof. If i = j, then the second condition on a vector k ∈ N∞ to lie in Qm(i, j) forces

k1 = k2 = · · · = 0 because q`−1
q−1 > 0 for all ` ≥ 1. But then k0 = i = j from the first condition,

so the formula for r
(m)
jj collapses to give 1. �

Proposition 4.3.5. Let n = j for some j ≥ 0. Write

Pn(s) =

n∑
k=0

b
(n)
k sk

with b
(n)
k ∈ L for k = 0, . . . , n.

(1) We have b
(n)
k = 0 if k 6≡ n mod (q − 1).

(2) For each 0 ≤ i ≤ j, we have b
(j)

i =
r
(m)
i,j

i! .

Proof. By Proposition 4.3.1, the coefficient b
(n)
k of sk in Pn(s), is given by

b
(n)
k =

∑
k

1

(k0!k1!k2! · · · )π0·k0+1·k1+2·k2+··· ,



BOUNDED FUNCTIONS ON THE CHARACTER VARIETY 45

where the sum runs over all possible sequences k = (k0, k1, k2, · · · ) of non-negative integers
satisfying the following two conditions:

k0 + k1 + k2 + · · · = k, and k0 + qk1 + q2k2 + · · · = n.

Of course given any such sequence, necessarily k` must be zero for all sufficiently large `
depending only on n and k, and the set of solutions to these equations is always finite, so the
sum of all these fractions makes sense.

Next note that if k0, k1, · · · satisfies these two conditions, then necessarily

n ≡ k mod (q − 1).

This implies part (1). For part (2), let k = i and n = j, and suppose that the non-negative
integers k0, k1, · · · satisfy k0 + k1 + · · · = k; then subtracting gives

k0 + qk1 + q2k2 + · · · = m+ (q − 1)j ⇔ (q − 1)k1 + (q2 − 1)k2 + · · · = (q − 1)(j − i).

In this way, we see that Qm(i, j) is precisely the set of sequences that contribute to the
coefficient of si in Pj(s). This coefficient is then

b
(n)
k =

1

k!

∑
k∈Qm(i,j)

k!

k0!k1! · · ·
· π
−
∞∑̀
=1

`·k`
=
r

(m)
i,j

k!
. �

Lemma 4.3.6. Suppose that j ≥ i ≥ 0. Then r
(m)
ij is the coefficient of Zj in logLT (Z)i.

Proof. Write logLT (Z)k =
∑∞

n=k d
(k)
n Zn. Then

∞∑
n=0

Pn(Y )Zn = exp(Y logLT (Z)) =
∞∑
k=0

1

k!
logLT (Z)kY k =

∞∑
k=0

1

k!

∞∑
n=k

d(k)
n ZnY k .

Equating the coefficent of ZnY k shows that

b
(n)
k =

1

k!
d(k)
n for 1 ≤ j ≤ n.

Applying Proposition 4.3.5(2), we have r
(m)
i,j = i!b

(j)

i = d
(i)
j . �

Corollary 4.3.7. Define polynomials R
(m)
j (t) ∈ L[t] for j ≥ 0 by the formula

R
(m)
j (t) :=

j∑
i=0

r
(m)
i,j

(i)!
ti.

Then for all j ≥ 0 we have Pj(s) = sm ·R(m)
j (sq−1).

Lemma 4.3.8. For each j ≥ i ≥ 0 there exist σi,j(Y ) ∈ Int(oL, oL) such that

Pj(Y s) =

j∑
i=0

σi,j(Y )Pi(s).

Proof. By Example 4.2.7, {Pn(Ω) : n ≥ 0} forms a regular basis for the admissible subalgebra
∞∑
n=0

oKPn(Ω) of L[Ω]. Apply Lemma 4.2.8 and use the transcendence of Ω over L. �
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Of course this is just another way of rephrasing Corollary 3.2.6. We will now see that the
matrix of polynomials (σi,j(Y ))i,j is sparse as well.

Proposition 4.3.9. Let j ≥ 0 and suppose that 0 ≤ k ≤ j.
(1) σk,j(Y ) = 0 if k 6≡ m mod (q − 1).

(2) For each i = 0, . . . , j there exists τ
(m)
i,j (X) ∈ L[X] such that

σi,j(Y ) = Y m · τ (m)
i,j (Y q−1).

Proof. Using Lemma 4.3.8, we have

Pj(Y s) =

j∑
k=0

σk,j(Y )Pk(s).

Dividing both sides by Y msm we obtain an equality of Laurent polynomials

(15) R
(m)
j (Y q−1sq−1) =

j∑
k=0

Y −mσk,j(Y ) · s−mPk(s).

The left hand side of (15) is a polynomial in sq−1 with coefficients in L[Y ]. The Laurent
polynomial s−mPk(s) lies in sk−mL[sq−1, s1−q] by Proposition 4.3.5. Since

L[Y ][s, s−1] =

q−2⊕
c=0

scL[Y ][sq−1, s1−q],

looking at the component of the right hand side of (15) that lies in scL[Y ][sq−1, s1−q] for
c ∈ {1, · · · , q − 2} and then looking at the leading coeffiicent of s−mPk(s) implies (1).

Using Corollary 4.3.7, we can now rewrite (15) as follows:

(16) R
(m)
j (Y q−1sq−1) =

j∑
i=0

Y −mσi,j(Y ) ·R(m)
i (sq−1).

Since the left hand side of (16) is now a polynomial in Y q−1 with coefficients in L[sq−1],
we deduce by looking at the right hand side of (16) that the a priori Laurent polynomial
Y −mσi,j(Y ) in Y in fact lies in L[Y q−1]. Part (2) follows. �

Setting t = sq−1 and X = Y q−1, we deduce the following

Corollary 4.3.10. The polynomials R
(m)
j (tX) satisfy

R
(m)
j (tX) =

j∑
i=0

τ
(m)
i,j (X) R

(m)
i (t).

Definition 4.3.11. Consider the following infinite upper-triangular matrices.

(1) [r(m)]ij = r
(m)
ij for j ≥ i ≥ 0,

(2) T (m)
ij = τ

(m)
i,j (X), and

(3) DX := diag(1, X,X2, · · · ).

Lemma 4.3.12. We have the matrix equation

r(m) · T (m) = DX · r(m).
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Proof. Note that each matrix appearing on the right hand side has infinitely many rows and
columns, but each one is also upper triangular, so matrix multiplcation makes sense. Moreover,

because r
(m)
jj = 1 for all j ≥ 0 by Lemma 4.3.4, the matrix r(m) is invertible, with inverse

matrix having entries on L.

Substitute the definition of R
(m)
j (t) from Corollary 4.3.7 into Corollary 4.3.10 to obtain

j∑
`=0

r
(m)
`,j

(`)!
t`X` =

j∑
i=0

τ
(m)
i,j (X)

i∑
`=0

r
(m)
`,i

(`)!
t`.

Equate the coefficients of t` to get

r
(m)
`,j X

` =

j∑
i=0

τ
(m)
i,j (X) · r(m)

`,i .

The right hand side is the (`, j)-th entry of r(m) ·T (m). The left hand side is the (`, j)-th entry

of DX · r(m). The result follows. �

The following two results on the coefficients r
(m)
i,j are strictly speaking not needed for the

calculations appearing in Appendix A, but they are nevertheless interesting in their own right.

Lemma 4.3.13. For each j ≥ i ≥ 0, we have

r
(m)
i,j =

 ∑
k∈Qm(i,j)

(
i

k0; k1; · · ·

)
π

∞∑̀
=1

k`

(
q`−1
q−1
−`
) · πi−j .

Proof. Let k ∈ Qm(i, j). Then
∑∞

`=1 k`

(
q`−1
q−1

)
= j − i, and therefore

π

∞∑̀
=1

k`

(
q`−1
q−1
−`
)
· πi−j = πj−i · π

−
∞∑̀
=1

`k`
· πi−j = π

−
∞∑̀
=1

`k`
.

The result now follows from Definition 4.3.3. �

Proposition 4.3.14. Let j ≥ i ≥ 0. Then

(1) πj−i · r(m)
i,j ∈ oL, and

(2) πj−i · r(m)
i,j ≡

(
i
j−i
)

mod πq−1oL.

Proof. (1) Note that for every ` ≥ 1 we have

α` := q`−1
q−1 − ` = (1+(q−1))`−1

q−1 − ` =
1+`(q−1)+(`2)(q−1)2+···+(q−1)`−1

q−1 − `
=

(
`
2

)
(q − 1) +

(
`
3

)
(q − 1)2 + · · ·+ (q − 1)`−1.

.

Thus α` ≥ 0 always. Hence the expression in the big brackets in Lemma 4.3.13 lies in oL.
(2) The exponent of π appearing in the term in the sum corresponding to k ∈ Qm(i, j)

is equal to
∑∞

`=1 k`α`. It follows from the formula for α` established above that α1 = 0.
Hence this exponent is a positive multiple of q − 1, unless k` = 0 for all ` ≥ 2. In this
case, the exponent is 0 and the corresponding term is equal to

(
i
j−i
)

because in this case

k1 =
∞∑̀
=1

k`
q`−1
q−1 = j − i. �
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5. Consequences of the Katz isomorphism

5.1. Equivariant endomorphisms of L∞. Throughout this §, we assume that L = Qp2

and that π = p. In particular, L∞ is the completion of L(G[p∞]). We recall the statement of
the Katz isomorphism (Theorem 3.6.15): if S is a π-adically complete oL-algebra, then the
map K∗ : HomoL(C0

Gal(oL, oCp), S)→ S[[Z]]ψq-int is an isomorphism.
Note the following criterion.

Lemma 5.1.1. A measure µ ∈ HomoL(C0
Gal(oL, oCp), S) is supported in o×L if and only if

ψq(K∗(µ)) = 0.

There is the usual GL, ∗ action on oCp [[X]], and on HomoL(C0
Gal(oL, oCp), oCp) it is given by

g∗(µ)(f) = g(µ(g−1(f))) = g(µ(a 7→ f(τ(g)−1 · a)) since f is Gal continuous. In particular,
Theorem 3.6.15 applied with S = oCp implies the following.

Corollary 5.1.2. We have

(1) HomoL(C0
Gal(oL, oCp), oCp)

GL,∗ = ΛL(X)ψq-int.

(2) HomoL(C0
Gal(o

×
L , oCp), oCp)

GL,∗ = ΛL(X)ψq=0.

Since L = Qp2 , the map τ is surjective. Let ΓL = Gal(L(G[p∞])/L).

Lemma 5.1.3. The map C0
Gal(o

×
L , oCp) → o∞ given by f 7→ f(1) is an isomorphism of oL-

modules.

Proof. This follows from the surjectivity of τ . More precisely, if x ∈ o∞, let fx ∈ C0
Gal(o

×
L , oCp)

be given by fx(1) = x and fx(τ(g)) = g(x). Every element of C0
Gal(o

×
L , oCp) is of this form. �

Theorem 3.6.15 applied with S = oL now gives us the following

Theorem 5.1.4. The map K∗ gives rise to an oL-linear isomorphism o∗∞ ' oL[[Z]]ψq=0.

Proposition 5.1.5. The space HomoL(C0
Gal(o

×
L , oCp), oCp)

GL,∗ is naturally isomorphic to the
space of ΓL-equivariant oL-linear maps o∞ → o∞.

Proof. If x ∈ o∞, let fx ∈ C0
Gal(o

×
L , oCp) be as in the proof of Lemma 5.1.3 above. If µ ∈

HomoL(C0
Gal(o

×
L , oCp), oCp)

GL,∗, we define a map T : o∞ → o∞ by T (x) = µ(fx). We have
fx+y = fx + fy and fax = afx if a ∈ oL so that T is oL-linear. In addition, T is ΓL-
equivariant because µ is fixed under the GL, ∗-action. Indeed, g(T (x)) = g(µ(fx)) = µ(g(fx))
and g(fx)(1) = g(x) so that g(fx) = fg(x). Therefore, g(T (x)) = T (g(x)).

Conversely, a ΓL-equivariant oL-linear map T : o∞ → o∞ as above gives an element µ ∈
HomoL(C0

Gal(o
×
L , oCp), oCp)

GL,∗ via µ(fx) = T (x). �

Combining Corollary 5.1.2 and Proposition 5.1.5, we get the following.

Theorem 5.1.6. We have EndGLoL (o∞) ' ΛL(X)ψq=0.

Corollary 5.1.7. We have ΛL(X) = oL[[oL]] if and only if every ΓL-equivariant oL-linear map
o∞ → o∞ comes from an element of oL[[ΓL]].

Proof. By Lemma 5.1.9 below, we have ΛL(X) = oL[[oL]] if and only if ΛL(X)ψ=0 = Λ(o×L ).

If µ ∈ ΛL(X)ψ=0, then it corresponds to an element of HomoL(C0
Gal(o

×
L , oCp), oCp)

GL,∗ by

Corollary 5.1.2. By Proposition 5.1.5, the element µ ∈ ΛL(X)ψ=0 comes from an element
ν ∈ oL[[ΓL]]. The element µ then corresponds to the image of ν in Λ(o×L ) via τ . Indeed, if
g ∈ ΓL and T is given by x 7→ g(x), then it corresponds to µ : fx 7→ g(x) and g(x) = fx(τ(g))
so that µ = δτ(g). �
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Using Corollary 5.1.7, we get the following

Theorem 5.1.8. We have ΛL(X) = oL[[oL]] if and only if every continuous L-linear and
GL-equivariant map f : L∞ → L∞ comes from the Iwasawa algebra L⊗oL oL[[ΓL]].

Proof. Indeed, by Corollary 2.10.11, ΛL(X) ∩ (L⊗oL oL[[oL]]) = oL[[oL]]. �

Lemma 5.1.9. If ΛL(X)ψ=0 = Λ(o×L ), then ΛL(X) = oL[[oL]].

Proof. If f ∈ ΛL(X), then δ1 · ϕ(f) ∈ ΛL(X)ψ=0. So ϕ(f) ∈ oL[[oL]] and f = ψqϕ(f) ∈
oL[[oL]]. �

The following is pretty much in Fourquaux’s PhD; it implies that there are no Tate trace
maps L∞ → L or L∞ → Ln (recall that L∞ is the completion of L(G[p∞])).

Proposition 5.1.10. Let f : L∞ → L∞ be a continuous, ΓL-equivariant and L-linear map.
If f(L∞) is included in a finite field extension of L, then f(1) = 0.

Proof. We have log Ω ∈ L∞ and (g − 1) log Ω = log τ(g) if g ∈ ΓL. Hence

(g − 1)f(log Ω) = f((g − 1) log Ω) = f(log τ(g)) = log τ(g) · f(1).

Therefore if f(1) 6= 0, then f(log Ω) is a period for log τ , and in particular does not belong to
a finite extension of L. �

Proposition 5.1.10 can be strengthened. Almost the same proof gives us the following.

Proposition 5.1.11. Let f : L∞ → L∞ be a continuous, ΓL-equivariant and L-linear map.
If f 6= 0, then there exists a1 6= 0, a0 ∈ L(G[p∞]) such that f(L∞) contains a1 log Ω + a0.

Proof. We have log Ω ∈ L∞ and (g − 1) log Ω = log τ(g) if g ∈ ΓL. Take x ∈ L(G[p∞])
such that f(x) 6= 0, and choose (recall that f(Ln) ⊂ Ln by Ax-Sen-Tate) some n such that
x, f(x) ∈ Ln. If g ∈ Γn, then

(g − 1)f(x · log Ω) = f((g − 1)(x · log Ω)) = f(x · log τ(g)) = log τ(g) · f(x).

Therefore (g−1)(f(x·log Ω)−f(x)·log Ω) = 0 for all g ∈ Γn, so that f(x·log Ω)−f(x)·log Ω ∈
Ln by Ax-Sen-Tate. We can take a1 = f(x) and a0 = f(x · log Ω)− f(x) · log Ω. �

This can be strengthened even further. Let Lalg
∞ denote the locally algebraic vectors in

L∞. Let c(g) = log τ(g) = logχσp (g). The set Lalg
∞ is the set of x ∈ L∞ such that there

exists an open subgroup Γx of ΓL and d ≥ 0 and x0 = x, x1, . . . , xd ∈ L∞ such that g(x) =
x0 + x1c(g) + · · · + xdc(g)d if g ∈ Γx. Note that technically, these are the locally σ-analytic
locally algebraic vectors in L∞. However since L = Qp2 , every locally analytic vector is locally
σ-analytic (see [BC16]).

Lemma 5.1.12. We have Lalg
∞ = L(G[p∞])[log Ω].

Proof. One inclusion is easy. Now take x ∈ Lalg
∞ and write g(x) = x0 + x1c(g) + · · ·+ xdc(g)d

if g ∈ Γx. On Lalg
∞ we have the derivative ∇ : x 7→ x1 and we know (from the theory of locally

analytic vectors) that ∇j(x)/j! = xj for all j. In particular, ∇(xd) = 0, so that xd ∈ L(G[p∞]).

The element x− xd logd Ω is then in Lalg
∞ and it is of degree ≤ d− 1, which allows us to prove

the lemma by induction. �
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We see that ∇ = d
d log Ω . For all n, the map ∇ : Ln[log Ω] → Ln[log Ω] is surjective, and

its kernel is Ln. If f : L∞ → L∞ is a continuous, ΓL-equivariant and L-linear map, then

f(Lalg
∞ ) ⊂ Lalg

∞ . In addition, ∇ = limg→1(g − 1)/c(g) so that f ◦ ∇ = ∇ ◦ f .

Proposition 5.1.13. Let f : L∞ → L∞ be a continuous, ΓL-equivariant and L-linear map.
If f 6= 0, there exists n ≥ 0 such that Ln · f(Ln[log Ω]) contains Ln[log Ω].

Proof. Take x ∈ L(G[p∞]) such that f(x) 6= 0 and let n ≥ 0 be such that x, f(x) ∈ Ln. We
prove by induction on d that Ln · f(Ln[log Ω]) contains Ln[log Ω]deg≤d. In order to do this, we

prove that f(x · logd Ω) is a polynomial (in log Ω) of degree d. The case d = 0 follows from
the fact that f(x) 6= 0. Now assume that the result holds for d− 1. We have

∇f(x · logd Ω) = f(x · ∇ logd Ω) = f(dx · logd−1 Ω),

so that f(x · logd Ω) is a polynomial of degree d. This implies the claim. �

5.2. The dual of the ring of integers of a p-adic Lie extensions. Recall that π ∈ oL is
a uniformiser and kL := oL/πoL is the residue field of L. In this §, L∞/L is an infinite Galois
extension with Galois group Γ = Gal(L∞/L). We fix a chain

Γ ⊇ Γ1 ⊇ Γ2 ⊇ · · ·

of open normal subgroups of Γ such that
∞⋂
n=1

Γn = 1.

Definition 5.2.1. Let n ≥ 1.

(1) Ln := LΓn
∞ , a finite Galois extension of L with Galois group Γ/Γn.

(2) on is the integral closure of oL in Ln.
(3) o∗n := HomoL(on, oL).
(4) kn := on/πon.
(5) k∨n := HomkL(kn, kL).

Note that on and o∗n are naturally oL[Γ/Γn]-modules, both free of finite rank as an oL-
module, and kn and k∗n are kL[Γ/Γn]-modules, both finite dimensional over kL.

Remark 5.2.2. Let n ≥ 1.

(1) o∗n can be identified with the inverse different d−1
Ln/L

of the extension Ln/L.

(2) Applying the duality functor (−)∗ = HomoL(−, oL) to the natural inclusion of oL-
modules on → on+1, we obtain a natural connecting map o∗n+1 → o∗n. This map is
surjective, because the on+1/on is a finitely generated and torsion-free oL-module.

Lemma 5.2.3. For each n ≥ 1, there is a short exact sequence of oL[Γ/Γn]-modules

0→ o∗n
π−→ o∗n → k∨n → 0.

Proof. Let M be an oL-module and consider the complex of oL-modules

0→M∗
π−→M∗

ηM−→ (M/πM)∨ → 0

whereM∗ := HomoL(M, oL), (M/πM)∨ = HomkL(M/πM, kL) and ηM (f)(m+πM) = f(m)+
πoL ∈ kL. This complex commutes with finite direct sums and is exact in the case when
M = oL. So the complex is exact whenever M is a finitely generated free oL-module. If M
also happens to be an oL[G]-module for some group G, then the maps in the complex are
oL[G]-linear. The result follows when we set M = on, an oL[Γ/Γn]-module which is free of
finite rank as an oL-module. �
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We now pass to the limit as n→∞.

Definition 5.2.4. Recall the Iwasawa algebras Λ(Γ) = lim←− oL[Γ/Γn] and Ω(Γ) = lim←− kL[Γ/Γn].

(1) o∞ := colim on, an oL[Γ]-module.
(2) o∗∞ := lim←− o

∗
n, a Λ(Γ)-module.

(3) k∞ := colim kn, a kL[Γ]-module.
(4) k∨∞ := lim←− k

∨
n , an Ω(Γ)-module.

Lemma 5.2.5. There is a short exact sequence of Λ(Γ)-modules

0→ o∗∞
π−→ o∗∞ → k∨∞ → 0.

Proof. The short exact sequences from Lemma 5.2.3 are compatible with variation in n, in
other words we get a short exact sequence of towers of Λ(Γ)-modules. Applying the inverse
limit functor gives a long exact sequence

0→ o∗∞
π−→ o∗∞ → k∨∞ → lim←−

(1)o∗n.

The lim←−
(1) term on the right vanishes in view of Remark 5.2.2(2), whence the result. �

Remark 5.2.2(2) also implies that the natural maps o∗∞ → o∗n are surjective.

Proposition 5.2.6. The Λ(Γ)-modules o∞ and o∗∞ are faithful.

Proof. Suppose ξ ∈ Λ(Γ) kills o∞. Then its image ξn ∈ o[Γ/Γn] kills on. Therefore ξn ∈
L[Γ/Γn] kills Ln = on⊗oL L. But Ln is a free L[Γ/Γn]-module of rank 1 by the Normal Basis
Theorem. So, ξn = 0 for all n ≥ 0 and therefore ξ = 0 as well.

Suppose now ξ ∈ Λ(Γ) kills o∗∞. Then ξ kills each the quotients o∗n of o∗∞. But the action of
Λ(Γ) on o∗n factors through oL[Γ/Γn], so the image ξn of ξ in oL[Γ/Γn] kills o∗n. Since ξn also
kills on ∼= (o∗n)∗, we deduce from the above that ξn = 0 for all n. Hence ξ = 0. �

Proposition 5.2.7. Suppose that p - |Γ/Γ1|. Then k∨1 is a free kL[Γ/Γ1]-module of rank 1.

Proof. The field extension L1/L is tamely ramified by our assumption on |Γ/Γ1|. Now it
follows from Noether’s Theorem on rings of integers in tamely ramified extensions that o1 is
a free oL[Γ/Γ1]-module of rank one — see, e.g. [Tho10, Proposition 2.1]. Hence o1/πo1 is a
free kL[Γ/Γ1]-module of rank one, and we can apply Lemma 5.2.3 to conclude. �

Lemma 5.2.8. Suppose that Γ is a p-adic Lie group. Let M = lim←−Mn be an inverse limit

of a tower of Ω(Γ)-modules, where each Mn is finite dimensional over kL. Then the natural
map on Γ-coinvariants

MΓ → lim←−(Mn)Γ

is an isomorphism.

Proof. The Iwasawa algebra Ω(Γ) is Noetherian, so its augmentation ideal J = (Γ − 1)Ω(Γ)
is finitely generated. Let u1, · · · , ur ∈ J be generators and let N be an Ω(Γ)-module; then

NΓ = N/(Γ− 1) ·N = N/JN = N/(u1N + · · ·+ urN).

In other words, we have the short exact sequence of kL-vector spaces

(17) N r (u1,··· ,ur)−→ N → NΓ → 0.

Applying this to each Mn, we obtain an exact sequence of towers of Ω(Γ)-modules

M r
n

(u1,··· ,ur)−→ Mn → (Mn)Γ → 0
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where each term is a finite dimensional kL-vector space. The inverse limit functor is exact on
such towers, since they all satisfy the Mittag-Leffler condition. So passing to the inverse limit
we obtain the exact sequence of kL-vector spaces

M r (u1,··· ,ur)−→ M → lim←−(Mn)Γ → 0.

Comparing this with (17) applied with N = M gives the result. �

Theorem 5.2.9. Suppose that

• Γ is abelian,
• p - |Γ/Γ1|,
• Γ1 is a torsionfree pro-p group of finite rank.

Then o∗∞ is a free Λ(Γ)-module of rank 1 if and only if the map k1 → kΓ1
∞ is an isomorphism.

Proof. (⇐) Note that the connecting maps kn → kn+1 in the colimit k∞ := colim kn are
injective: if x+ πon ∈ kn maps to zero in kn+1 then there is y ∈ on+1 such that x = πy; but
then y ∈ Ln ∩ on+1 = on and hence x = πy ∈ πon. Under our hypothesis that k1 → kΓ1

∞ is an

isomorphism, it follows that for each n ≥ 1, the map kΓ1
n → kΓ1

n+1 is an isomorphism. Applying
the (−)∨ = HomkL(−, kL) functor, we deduce that for each n ≥ 1, the map on Γ1-coinvariants

(k∨n+1)Γ1 → (k∨n )Γ1

is an isomorphism. Now, Lemma 5.2.8 tells us that

(k∨∞)Γ1
∼= lim←−(k∨n )Γ1 .

Since the maps in the tower of Γ1-coinvariants are all isomorphisms, we conclude that the
natural map of k[Γ/Γ1]-modules

(k∨∞)Γ1 → k∨1

must be an isomorphism. Now k∨1 is a cyclic kL[Γ/Γ1]-module by Proposition 5.2.7 and the
ideal JΩ(Γ) generated by the augmentation ideal J of Ω(Γ1) is topologically nilpotent in the
sense that Jn → 0 as n → ∞, because Γ1 is assumed to be pro-p. In this situation we can
apply the Nakayama Lemma for compact Λ-modules — see [BH97, Corollary to Theorem 3]
— to deduce that k∨∞ is a cyclic Ω(Γ)-module: any lift of a kL[Γ/Γ1]-module generator for k∨1
to k∨∞ will generate it as an Ω(Γ)-module.

Now o∗∞/πo
∗
∞
∼= k∨∞ by Lemma 5.2.5. The Λ(Γ)-module o∗∞ is profinite and πn → 0 as

n → ∞ in Λ(Γ), so applying the Nakayama Lemma again, we conclude that o∗∞ is a cyclic
Λ(Γ)-module.

Since o∗∞ is a faithful Λ(Γ)-module by Proposition 5.2.6 and since Γ is abelian, we deduce
that o∗∞ must be a free Λ(Γ)-module of rank 1.

(⇒) We reverse the argument above. Assume o∗∞ is a free Λ(Γ)-module of rank 1. Then
Lemma 5.2.5 implies that k∨∞ is a free Ω(Γ)-module of rank 1. Hence (k∨∞)Γ1 is a free k[Γ/Γ1]-
module of rank 1. By Lemma 5.2.8 we have (k∨∞)Γ1

∼= lim←−(k∨n )Γ1 and the connecting maps

in the tower (k∨n )Γ1 are surjective, with the bottom term being (k∨1 )Γ1 = k∨1 . Since this is a
free kL[Γ/Γ1]-module of rank 1 by Proposition 5.2.7, the natural map (k∨∞)Γ1 → k∨1 from the
inverse limit to the bottom term is a surjection between two free kL[Γ/Γ1]-modules of rank 1.
So it is also an isomorphism. Dualising shows that k1 → kΓ1

∞ is an isomorphism as well. �

Lemma 5.2.10. In the situation of Proposition 5.2.9, suppose that o∗∞ is a free Λ(Γ)-module
of rank 1. Then Ln/L is tamely ramified for all n ≥ 1.
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Proof. Consider the Γn-coinvariants of o∗∞. This must be a free rank 1 oL[Γ/Γn]-module by
assumption. On the other hand, by construction, there’s a surjective oL[Γ/Γn]-linear map

(o∗∞)Γn → o∗n

(see the remark just before Proposition 5.2.6). Both sides are free oL-modules of rank [Ln : L],
so this surjective map must actually be an isomorphism by the rank-nullity theorem. So, o∗n
is a free rank 1 oL[Γ/Γn]-module. But then using, for example [AB07, Lemma], we see that

on = HomoL(o∗n, oL) = HomoL[Γ/Γn](o
∗
n, oL[Γ/Γn])

must also be a free rank 1 oL[Γ/Γn]-module. In other words, on has an integral normal basis,
so by [Tho10, Proposition 2.1] Ln/L must be tamely ramified. �

The following result, which may be of independent interest, shows that the hypothesis that
the action map ρ : Ω(Γ) → EndΩ(Γ)(k

∨
∞) is an isomorphism has strong implications about

ramification behaviour in the tower L∞/L.

Lemma 5.2.11. Suppose that in the situation of Proposition 5.2.9, we have Γ1 = Γ and that
the action map ρ : Ω(Γ) → EndΩ(Γ)(k

∨
∞) is an isomorphism. Then Ln/L is tamely ramified

for all n ≥ 1.

Proof. Let a ∈ kΓ1
∞ and consider the multiplication-by-a map `a : k∞ → k∞. Since a is fixed

by Γ = Γ1, this map is Ω(Γ)-linear. By our assumption on ρ, we can find some b ∈ Ω(Γ) such
that ρ(b) = a. Now a is algebraic over kL and ρ is injective by assumption, so b ∈ Ω(Γ) must
be algebraic over kL as well. Since Γ = Γ1, the mod-p Iwasawa algebra Ω(Γ) is a power series
ring over kL in finitely many variables. The only elements of such a power series ring that
are algebraic over kL are constants. Hence b ∈ kL and so a ∈ kL = k1 since Γ = Γ1. Hence
kΓ1
∞ = k1. Now the result follows from Theorem 5.2.9 and Lemma 5.2.10. �

Returning to the setting of §1.7, we have the following conclusion.

Corollary 5.2.12. Suppose that L = Qp2 and π = p, and let G be the Lubin-Tate formal

group attached to π. We have L∞ = L(G[p∞]); let ΓLTL = Gal(L∞/L). Then oL[[Z]]ψq=0 is not
a free oL[[ΓLT

L ]]-module of rank 1.

Proof. It is well known that Ln/L is not tamely ramified for any n ≥ 2. Hence o∗∞ is not a free
Λ(ΓLTL )-module of rank 1 by Lemma 5.2.10. Since G is self-dual, the tower L∞/L coincides
with the one defined at Definition 2.7.1(1). The result now follows from Theorem 1.7.1. �

5.3. The operator ψ and the span of the Pn. We now turn to some consequences of the
Katz isomorphism for the span of the Pn, where Pn is the element of C0

Gal(oL, oCp) given by

a 7→ Pn(a · Ω). The Katz map K∗ : HomoL(C0
Gal(oL, oCp), S) → S[[Z]]ψq-int is then given by

µ 7→
∑

n≥0 µ(Pn)Zn.

Proposition 5.3.1. The L-span of the Pn is dense in the L-Banach space C0
Gal(oL,Cp).

Proof. Let W denote the closure of the L-span of the Pn in C0
Gal(oL,Cp). If W 6= C0

Gal(oL,Cp),
then it has a closed complement in C0

Gal(oL,Cp) and we can find a measure µ 6= 0 that is zero
on W (and hence on all of the Pn). This is a contradiction. �

Remark 5.3.2. There is another proof of this result. Indeed, locally analytic functions are
dense in C0(oL,Cp) and for locally analytic functions, we have the generalized Mahler expan-
sion of [ST01, Theorem 4.7]. So it is enough to prove that locally analytic and Gal continuous
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functions are dense in C0
Gal(oL,Cp). A Gal-continuous function is determined by (f(pn))∞n=0

where each f(pn) ∈ L∞ and f(0) ∈ L and f(pn)→ f(0). We can approximate each f(pn) by
an element of L∞ and this way, we can show that Gal-continuous locally constant functions
are dense in the Gal-continuous functions. More precisely, given a sequence {fn} as above
and some k ≥ 0, we have fn− f∞ ∈ pkoCp for all n ≥ n(k), so we replace these fn by f∞, and

approximate the others to within p−k.

We now choose a coordinate X on LT such that [p]LT(X) = pX +Xq. The polynomials Pi
depend on the choice of coordinate. However, the oL-module ⊕ni=0oL ·Pi is independent of the
coordinate. Given this choice of coordinate, we have formulas and estimates for ψq in [FX13,
§2A].

Lemma 5.3.3. If k ≥ 1, then ψq(X
k) ∈ L[X]k−1.

Proof. See [FX13, Proposition 2.2]. �

Let c0(A) denote the set of sequences {cn}n≥0 with cn ∈ A and cn → 0 (A = oL or L).

Corollary 5.3.4. The map c0(oL)→ C0
Gal(oL, oCp) given by {ci}i≥0 7→

∑
i≥0 ciPi is injective,

as well as the same map c0(L)→ C0
Gal(oL,Cp).

Proof. Lemma 5.3.3 implies that for all k ≥ 0, there exists n = n(k) such that pnXk ∈
oL[[X]]ψq-int. Let µ be the corresponding measure. We have µ(

∑
i≥0 ciPi) = pnck hence if∑

i≥0 ciPi = 0, then ck = 0. The second assertion follows from the first. �

Lemma 5.3.5. If k ≥ 1, then ψq(p
k · oL[X]qk) ⊂ pk−1 · oL[X]qk−1 .

Proof. This follows from [FX13, Proposition 2.2]. �

Let Hn ⊂ L[Ω] denote the set of P (Ω) such that degP ≤ n and P (aΩ) ∈ oCp for all

a ∈ oL. Obviously, Un = ⊕ni=0oL · Pi(Ω) ⊂ Hn. Let µi : C0
Gal(oL, oCp) → L be the measure

corresponding to Xi, so that µi(Pj) = δij .

Proposition 5.3.6. If Q(Ω) =
∑n

i=0 ciPi(Ω) ∈ Hn, then ci ∈ p−moL if i ≤ qm.

Proof. We have Q(Ω) ∈ C0
Gal(oL, oCp). By Lemma 5.3.5, pmXi ∈ oL[[X]]ψq-int if i ≤ qm, and

hence pmµi ∈ HomoL(C0
Gal(oL, oCp), oL) for all 0 ≤ i ≤ qm. Hence pmci ∈ oL. �

Corollary 5.3.7. We have Hqk ⊂ p−kUqk .

Let ψp = p · ψq so that ψp(oL[[X]]) ⊂ oL[[X]].

Lemma 5.3.8. ψp(X
qk+(q−1)) = Xk mod p and ψp(X

m) = 0 mod p if m 6= −1 mod q.

Proof. This follows from [FX13, Proposition 2.2]. �

Corollary 5.3.9. The map c0(L)→ C0
Gal(oL,Cp) is not surjective.

Proof. By Corollary 5.3.4, it is injective. If it is a bijection, then the continuous dual of
C0

Gal(oL,Cp) is naturally isomorphic to oL[[X]][1/p] via the map µ 7→
∑

n≥0 µ(Pn)Xn. However

by the Katz isomorphism, the image of this map is oL[[X]]ψq-int[1/p].

Take f(X) = 1 + Xq−1 + Xq2−1 + · · · . Lemma 5.3.8 implies that ψp(f) = f mod p and

hence ψnp (f) = f mod p. We therefore have ψnq (f) ∈ p−nf + p−(n−1)oL[[X]] for all n ≥ 1, so

that f(X) is not in oL[[X]]ψq-int[1/p]. Hence oL[[X]][1/p] 6= oL[[X]]ψq-int[1/p]. �
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In order to say more using Katz’ result, we need more elements of oL[[X]]ψq-int. There is

oL[[X]]ψq=0, which contains Xi for 1 ≤ i ≤ q − 2 and pXq−1 + (q − 1) and hence (⊕q−2
i=1X

i ·
ϕq(oL[[X]])) ⊕ (pXq−1 + (q − 1)) · ϕq(oL[[X]]). If fn(X) ∈ (X · oL[[X]])ψq-int and the bn are

in oL, then
∑

n≥0 bnϕ
n
q (fn) ∈ oL[[X]]ψq-int as well (the sum converges for the weak topology,

and ψq is continuous for that topology). For example, if f(X) ∈ (X · oL[[X]])ψq=0, then∑
n≥0 ϕ

n
q (f) ∈ oL[[X]]ψq=1.

Remark 5.3.10. We have

(1) ψq(X
i) = 0 if 1 ≤ i ≤ q − 2 and q + 1 ≤ i ≤ 2q − 3 and 2q + 1 ≤ i ≤ 3q − 4

(2) ψq(1) = 1 and ψq(X
q−1) = (1− q)/p and ψq(X

q) = X
(3) ψq(X

2q−2) = q − 1 and ψq(X
2q−1) = X(1/p− 2p) and ψq(X

2q) = X2

(4) More generally, ψq(X
k) = Xψq(X

k−q)− pψq(Xk+1−q)

Lemma 5.3.11. We have pkXqk−1 ∈ oL[[X]]ψq-int, but not pk−1Xqk−1.

Proof. Recall that ψq(X
q−1) = (1−q)/p. This implies that ψq(1/X) = ψq((X

q−1+p)/ϕq(X)) =
1/pX. If k ≥ 1, then (

qk−1

i

)
· pi =

(
qk−1 − 1

i− 1

)
· qk−1pi/i ∈ pkoL.

This implies that ϕq(X
qk−1

) ∈ Xqk + pkXoL[X]qk−1. By Lemma 5.3.5, we have

ψq(X
qk−1) = ψq

(
ϕq(X

qk−1
) +Xqk − ϕq(Xqk−1

)

X

)
∈ X

qk−1−1

p
+ oL[[X]]ψq-int.

This implies the Lemma by induction on k. �

Corollary 5.3.12. There is an h ∈ H in which the coefficient of Pqk−1 is in p−ko×L .

Proof. Let cqk−1 ∈ C0
Gal(oL,Cp)∗ be the linear form corresponding to Xqk−1. There is an

f ∈ C0
Gal(oL, oCp) such that cqk−1(f) ∈ p−ko×L (if it was in p1−koL for all f , then pk−1cqk−1

would be an integral linear form, and we’d have pk−1Xqk−1 ∈ oL[[X]]ψq-int. This is not the case
by lemma 5.3.11). By Corollary 5.3.1, the L-span of the Pn is dense in C0

Gal(oL,Cp). Therefore

there is an h ∈ H such that ‖f − h‖ ≤ p−1. We then have cqk−1(h) ∈ p−ko×L . �

6. Other criteria

We indicate how to prove Theorems 1.8.1 and 1.8.2.

6.1. The Lubin-Tate derivative. As we said in the Introduction, Theorem 1.8.1 follows
from Theorem 1.4.1 and Proposition 6.1.2 below.

Lemma 6.1.1. The sum
∑

[p](ω)=0 ω
n is q if n = 0, it is 0 if (q− 1) - n, and it is (q− 1)(−p)k

if n = (q − 1)k with k ≥ 1.

Proof. Since [p](T ) = pT + T q, the sum is over 0 and the roots of T q−1 = −p. If λ is one
of the roots, the set of all the roots is {ηλ}ηq−1=1. The result follows (for n = 0 it is a
convention). �

Proposition 6.1.2. Assume that L = Qp2 and that π = p. Let λ = Ωq−1/p(q − 1)! ∈ o×Cp .
If f(Z) ∈ oCp [[Z]], then ϕψq(f)− λ ·Dq−1(f) ∈ oCp [[Z]].
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Proof. Recall from [Kat81, p. 667] that f(Z⊕Y ) =
∑

n≥0 Y
nPn(∂)f(Z). We have ϕψq(f)(Z) =

1/q ·
∑

[p](ω)=0 f(Z ⊕ ω), so that

ϕψq(f)(Z) =
1

q

∑
[p](ω)=0

∑
n≥0

ωnPn(∂)f(Z) =
1

q

∑
n≥0

 ∑
[p](ω)=0

ωn

Pn(∂)f(Z).

By Lemma 6.1.1, the
∑
ωn for n not divisible by q−1 are zero, and the

∑
ωn for n = (q−1)k

are divisible by q except when k = 1. Hence

ϕψq(f)− 1

q
(q − 1)(−p)Pq−1(∂)(f) ∈ oCp [[Z]].

The proposition now follows from the fact that

Pq−1(∂) =
∂q−1

(q − 1)!
= pDq−1 · Ωq−1

p(q − 1)!
= pDq−1 · λ. �

6.2. Changing the base field. We now turn to Theorem 1.8.2. If K is a subfield of L, we
also have a character variety X for K; write XK and XL. An L-analytic character η : oL → C×p
can be restricted to oK , and it is then K-analytic. This gives a rigid analytic map XL → XK .
This map in turn gives rise to a map resL/K : OCp(XK) → OCp(XL), which sends bounded
functions to bounded functions, and OM (XK) to OM (XL) for all closed subfields L ⊂M ⊂ Cp.

Lemma 6.2.1. On bounded functions, resL/K : ObCp(XK)→ ObCp(XL) is injective.

Proof. Suppose that f ∈ ObCp(XK) is zero on the restriction to oK of every L-analytic character

of oL. Since oK is a direct summand of oL, every torsion character of oK extends to a torsion
character of oL. Hence f is zero on all torsion characters of oK . This implies that f = 0 as f
is bounded. �

If µ is a distribution on oK , we define a distribution resL/K(µ) on oL as follows: if f ∈
Can(oL), we let resL/K(µ)(f) = µ(f |oK ). This is compatible with the above map if we view

elements of OCp(X) as distributions.

Lemma 6.2.2. If µ is a distribution on oK , whose image under resL/K(µ) is a measure on
oL, then there exists a measure µ̃ on oK such that µ = µ̃ on LC(oK).

Proof. Let f be a locally constant function on oK . Since oK is a direct summand in oL,
we can extend f to a locally constant function f̃ on oL, in a way that the sup norm of f̃
on oL is the sup norm of f on oK . Since resL/K(µ) is a measure, there exists C such that
‖ resL/K(µ)(g)‖oL ≤ C · ‖g‖oL for all locally constant functions g on oL. We then have

‖µ(f)‖oK = ‖resL/K(µ)(f̃)‖oL ≤ C · ‖f̃‖oL = C · ‖f‖oK .
We can now let µ̃(f) = µ(f) for any f ∈ LC(oK). The above estimate shows that µ̃ extends
continuously to C0(oK). �

Proposition 6.2.3. If ObL(XL) = L⊗oL Λ(oL), then ObL(XK) = L⊗oK Λ(oK).

Proof. If µ ∈ ObL(XK), then µ can be seen as a distribution on oK , and it gives rise via resL/K
to an element of L⊗oL Λ(oL). By Lemma 6.2.2, there is a measure µ̃ on oK such that µ = µ̃
on LC(oK). The image of the distribution µ − µ̃ under resL/K belongs to L ⊗oL Λ(oL) and
is zero on locally constant functions, hence resL/K(µ − µ̃) = 0. By Lemma 6.2.1, µ = µ̃ and
hence µ is a measure on oK . �



BOUNDED FUNCTIONS ON THE CHARACTER VARIETY 57

Theorem 6.2.4. If K/L is finite and if ΛK(XK) = oK [[oK ]], then ΛL(XL) = oL[[oL]].

Appendix A. An algorithm for whether the σi,j’s span Int(oL, oL)

Dragos, Cris,an and Jingjie Yang
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A.1. Introduction. Let Qp ⊆ L ( Cp be a field of finite degree d over Qp, oL the ring of
integers of L, π ∈ oL a fixed prime element, and q := |oL/πLoL| the dimension of the residue
field.

For an oL-submodule S of L[Y ] and an integer n, let Sn = {f ∈ S : deg(f) < n}.
Recall that the polynomials Pn(Y ) are defined by

exp(Y · logLT(Z)) =

∞∑
n=0

Pn(Y )Zn.

We will choose the coordinate Z such that logLT(Z) =
∑∞

k=0 π
−kZq

k
.

Define the upper-triangular matrix (σi,j)i,j≥0 with entries in L[Y ] by

Pj(Y s) =

j∑
i=0

σi,j(Y )Pi(s).

By Lemmas 4.3.8 and 4.2.8, we know that σi,j(Y ) ∈ Int(oL, oL) and that deg(σi,j(Y )) ≤ j.
The question is whether the oL-linear span of {σi,j(Y ) : 0 ≤ i ≤ j} equals Int(oL, oL). In this
write-up we develop an algorithm to check whether

(
Int(oL, oL)

)
n

is contained in the oL-
linear span of {σi,j(Y ) : 0 ≤ i ≤ j < N} for some fixed N , where for convenience we require
q − 1 | N .

A.2. Theory.

A.2.1. Reduction to τ
(a)
i,j . To ease notation, for a fixed a ∈ {0, 1, . . . , q − 2}, we denote i =

a+ (q − 1)i.

By Proposition 4.3.9(2), there exist upper-triangular matrices τ
(a)
i,j (Y ) such that

σi,j(Y ) = Y a · τ (a)
i,j (Y q−1).(18)

Definition A.2.1. For a polynomial P (x), we denote by γn(P ) the coefficient of xn in P .

Definition A.2.2. Let M be the oL-linear span of {σi,j(Y ) : 0 ≤ i ≤ j}. For a fixed a,

let M (a) be the oL-linear span of
{
σi,j(Y ) : 0 ≤ i ≤ j

}
. Let S(a) be the oL-linear span of{

τ
(a)
i,j (Y ) : 0 ≤ i ≤ j

}
.

Lemma A.2.3. Let (f
(a)
b )b≥0 be a regular basis for S(a) — that is, each f

(a)
b has degree b.

Then, M = Int(oL, oL) if and only if for all a ∈ {0, 1, . . . q − 2} and b ≥ 0, we have

νπ(γb(f
(a)
b )) = −wq(a+ b(q − 1)).
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Proof. For a fixed a ∈ {0, 1, . . . q − 2}, by (18), we have γs(σi,j(Y )) = 0 if s 6≡ j (mod q − 1).

So, by definition, M =
⊕q−2

a=0M
(a).

We write S(a)(Y q−1) = {f(Y q−1) : f ∈ S(a)}. Equation (18) shows that

M (a) = Y a ·N (a)(Y q−1).

Having chosen a regular basis (f
(a)
b )b≥0, these give regular bases

(
f

(a)
b (Y q−1)

)
b≥0

for

S(a)(Y q−1).

So, we get regular bases
(
Y af

(a)
b (Y q−1)

)
b≥0

forM (a) and thus a regular basis {Y af
(a)
b (Y q−1) :

a ∈ {0, 1, . . . q − 2}, b ≥ 0} for M .

Then, M = Int(oL, oL) is equivalent to νπ(γa+b(q−1)(Y
af

(a)
b (Y q−1))) = −wq(a + b(q − 1)),

which is equivalent to νπ(γb(f
(a)
b )) = −wq(a+ b(q − 1)). �

Let n = a + b(q − 1), where a, b are integers, with a ∈ {0, 1, . . . q − 2}. The proof above
shows that a polynomial of degree n with π-valuation of leading term equal to −wq(n) exists
in MN if and only a polynomial of degree b with the same valuation of leading term exists in

S
(a)
N/(q−1). So, the strategy will be to compute regular bases for S

(a)
N/(q−1).

A.2.2. A formula for τ
(a)
i,j . One advantage of this approach is that the matrices τ

(a)
i,j (Y ) can

be computed quickly. Recall Definition 4.3.3 (where we merely change notation, calling m by
a instead):

Definition A.2.4. For each j ≥ i ≥ 0, let

Qa(i, j) :=

{
k ∈ N∞ :

∞∑
`=0

k` = i,
∞∑
`=1

k`

(
q` − 1

q − 1

)
= j − i

}
;

r
(a)
i,j :=

∑
k∈Qa(i,j)

(
i

k0; k1; . . .

)
· π−

∑∞
`=1 `·k` .

Define the upper triangular matrix (Di,j)i,j of coefficients as follows:

Definition A.2.5. Let Di,j = i!γiPj(Y ).

This does not depend on a. From Proposition 4.3.2, we obtain the following recursion
formula, valid for i ≥ 1:

Di,j =
∑
r≥0

π−rDi−1,j−qr ,

with the initial conditions being D0,j = δ0,j .

Now, by Proposition 4.3.5(2) it follows that r
(a)
i,j = Di,j . To tie this back to τ

(a)
i,j , we recall

from Definition 4.3.11(3) the notation DY := diag(1, Y, Y 2, . . .). Then, Lemma 4.3.12 gives

τ (a) = (r(a))−1 · DY · r(a). This gives a fast algorithm to compute the matrices τ (a), as the

recurrence relation for D allows us to compute r(a) easily.
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A.2.3. Gaussian elimination over a (discrete) valuation ring. Let R be a (discrete) valuation
ring and let A be an m × n matrix with entries in R. We define notions of elementary row
operations and row echelon form over R, similarly to the definitions over a field.

Definition A.2.6. Given a matrix A as above, the elementary row operations are as follows.

(1) Swap two rows.
(2) Multiply an entire row by a unit in R.
(3) Add an R-multiple of a row to another row.

Lemma A.2.7. Performing elementary row operations on a matrix preserves its R-row span.

Proof. For each elementary row operation on A, we define an m ×m matrix B with entries
in R such that the result of applying the elementary row operation on A is BA. Observe that
in each case, B is invertible, so BA has the same R-row span as A. �

Lemma A.2.8 (Gaussian Elimination). Let A be a matrix as above. Assume that m ≥ n
and that A has rank n. Then, one can perform a sequence of elementary row operations on
A to produce an upper-triangular matrix of rank n.

Proof. We will exhibit an algorithm that puts A in the required form.
We start with the leftmost column. As A has rank n, there is a non-zero entry on column

1. Pick the one with minimal valuation and swap rows, so that the entry on column 0 with
minimal valuation is on position (0, 0). Let the new matrix be B.

Then, for each row i ≥ 1, subtract bi0
b00
× (row 0) from row i. After all of these operations,

the matrix has block form: [
b00 ∗
0 A′

]
where ∗ denotes some 1× (n−1) matrix, and A′ is an (m−1)× (n−1) matrix. Observe that,
as A had rank n and the elementary row operations don’t change the rank, A′ will have rank
n− 1.

Now, we can inductively apply the same procedure to A′. Observe that all row operations
on A′ extend to row operations on the whole matrix that don’t change the block structure
(as the corresponding entries in the first column are all 0’s). By construction, the end result
is an upper-triangular matrix, which has the same rank as the initial matrix A. �

A.3. Implementation. We focus on the totally ramified extension L = Qp(p
1/d) and the

unramified extension of degree d, where we take the prime p, the degree d, and the cutoff N
as input parameters.

Fix a ∈ {0, 1, . . . , q−2}. Firstly, we compute the matrices (τ (a))0≤i≤j<N/(q−1) following the
method discussed in Section A.2.2. Then, for s = 0, . . . , N/(q − 1)− 1, we will appeal to the

following result to inductively compute a basis (g
(a),s
b )0≤b≤s for the oL-span of {τ (a)

i,j : 0 ≤ i ≤
j ≤ s}, with each g

(a),s
b having degree b.

Proposition A.3.1. Fix s ≥ 0, and let (g
(a),s−1
b )0≤b≤s−1 be a basis for the oL-span of

{τ (a)
i,j : 0 ≤ i ≤ j ≤ s− 1} such that each g

(a),s−1
b has degree b.
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Record the coefficients of these polynomials g
(a),s−1
∗ in s row vectors, and append s+1 new

row vectors obtained from the coefficients of τ
(a)
∗,s to obtain the (2s+ 1)× (s+ 1) matrix

B :=

Y s Y s−1 1



• ∗ · · · ∗ τ
(a)
s,s

• · · · ∗ g
(a),s−1
s−1

. . .
...

• g
(a),s−1
0

∗ ∗ · · · ∗ τ
(a)
0,s

...
...

...

∗ ∗ · · · ∗ τ
(a)
s−1,s

with coefficients in L. The •’s are non-zero (where Bs,0 6= 0 because σs,s = Y s by Lemma

4.3.8 which by Equation 18 implies that τ
(a)
s,s = Y s), so B has rank s+ 1.

Bring the full-rank matrix B to upper-triangular form B′ using Gaussian elimination over
the discrete valuation ring oL as per Lemma A.2.8. Then

(i) we can define the new polynomials g
(a),s
s , g

(a),s
s−1 , . . . , g

(a),s
0 by reading off the first s + 1

rows of B′, so that each g
(a),s
b has degree b and (g

(a),s
b )0≤b≤s form a basis for the oL-span

of {τ (a)
i,j : 0 ≤ i ≤ j ≤ s};

(ii) for each b = 0, . . . , s − 1, the π-adic valuation of the leading coefficient in the new

polynomial g
(a),s
b is at most that of the old polynomial g

(a),s−1
b .

Proof. By Lemma A.2.8 the upper-triangular matrix B′ still has rank s + 1, so it has only

non-zero elements on its main diagonal. Hence for each b = 0, 1, . . . , s, the polynomial g
(a),s
b

obtained by reading off the b-th row has degree b. Then of course these polynomials are
linearly independent. Also they are the only non-zero rows in B′, so by Lemma A.2.7 their
oL-span is the same as that of the rows of B, which by construction is precisely the oL-span

of {τ (a)
i,j : 0 ≤ 1 ≤ j ≤ s}, giving (i).

Now fix 0 ≤ b ≤ s − 1, and consider what happens to the b-th column when we reduce B
to B′. Observe that in the proof of Lemma A.2.8, when we operate on the j-th column for

j = 0, . . . , s−b−1, as the row for g
(a),s−1
b has a 0 entry in the j-th column, it is neither chosen

to be the pivot row nor altered as we subtract off multiples of the pivot row. Thus when we
operate on the (s−b)-th column to determine the (s−b)-th row and column of B′, the leading

coefficient of g
(a),s−1
b must be a candidate for the pivot. But the pivot B′s−b,s−b is chosen to

have minimal valuation, so νπ(γb(g
(a),s−1
b )) ≥ νπ(B′s−b,s−b). Now B′s−b,s−b = γb(g

(a),s
b ) by

definition, giving (ii). �

For b fixed, it follows that

νπ(γb(g
(a),s
b )), s = b, b+ 1, . . .

is a non-increasing sequence. Moreover, as g
(a),s
b ∈ S(a) can be written as an oL-linear combi-

nation of the f
(a)
i ’s and each f

(a)
i is of degree i, we must have g

(a),s
b =

∑
0≤i≤b λif

(a)
i for some
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λi ∈ oL; by looking at the leading coefficient, it follows that

νπ(γb(g
(a),s
b )) ≥ νπ(γb(f

(a)
b )) ≥ −wq(a+ b(q − 1)).

These observations motivate us to look at the following

Definition A.3.2. For n = a+b(q−1), let s0(n) be the minimal s ≥ b such that (g
(a),s
b )0≤b≤s

satisfies νπ(γb(g
(a),s
b )) = −wq(n), if such s exists; otherwise set s0(n) =∞.

Then whenever s ≥ s0(n) in the computations, we can immediately conclude that the

equality νπ(γb(f
(a)
b )) = −wq(a+ b(q − 1)) in Lemma A.2.3 holds for this n = a+ b(q − 1).

We may thus make a small optimisation: at any stage s, if s ≥ s0(a + b(q − 1)) for all
0 ≤ b < d then we can just drop the last d columns when carrying out Gaussian elimination.

Indeed for all s′ > s it is unnecessary to compute (g
(a),s′

b )0≤b<d as the π-adic valuation of
each leading term has already hit the desired minimum, and to compute the leading terms of

(g
(a),s′

b )d≤b≤s′ we do not need the lower-order terms in the last d columns.

Figure 1. extension = "3,2,800,ram" — s0(n) in the quadratic ramified
extension Q3(

√
3) for n < 800. Red points are the n’s for which s0(n) ≥ 800.

A.4. Data. For reference, the computations in Figure 1 took

• 227.04 seconds for D;
• 616.45 seconds for τ (0) and 616.43 seconds for τ (1);
• 0.20 seconds for s = 50, 1.89 seconds for s = 100, 6.15 seconds for s = 150, 12.09

seconds for s = 200, etc. for a = 0, and slightly less for a = 1.

We see that s0(n)−b seems to depend on the p-adic digits of n; we only managed to prove a
special case of this pattern, which we will discuss below. Nonetheless, the data do suggest that
s0(n) is finite for every n and hence that Int(oL, oL) is spanned by the σi,j ’s as an oL-module.

A similar pattern emerges for larger p and unramified extensions: see Figures 2 and 3 below.
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More data and plots can be found on our GitHub repository.

Figure 2. extension = "17,2,3216,ram" — s0(n) in the quadratic ramified
extension Q17(

√
17) for n < 3216. Note that red points are the n’s for which

s0(n) ≥ 3216 — not enough computation was done to unveil the pattern for
the larger n’s!

Figure 3. extension = "5,3,12524,unram" — s0(n) in the cubic unrami-
fied extension of Q5 for n < 12524. Again, note how the red points — the n’s
for which s0(n) ≥ 12524 — give the illusion of s0(n)− b decreasing.

https://github.com/Team-Konstantin/Bounded-Functions-on-Character-Varieties/tree/writeup
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A.5. Some results.

Definition A.5.1. Given a natural number n, let sq(n) be the sum of digits of n in base q.

Recall Definition A.3.2:

Definition. For n = a + b(q − 1), let s0(n) be the minimal s ≥ b such that (g
(a),s
b )0≤b≤s

satisfies νπ(γb(g
(a),s
b )) = −wq(n), if such s exists; otherwise set s0(n) =∞.

We define the following more intuitive quantity:

Definition A.5.2. For n = a + b(q − 1), let Cap(n) = a + bs0(n). Alternatively, Cap(n) is
the minimal N ≥ n such that the oL-span of {σi,j : 0 ≤ i ≤ j ≤ N} contains a polynomial of
degree n and π-valuation of the leading term −wq(n).

Here, the equivalence of the two definitions follows from the definition of s0(n).
Let n = a + b(q − 1). Analysing the computational results, we are led to believe that, if

sq(n) < p, then s0(n) = b. This is made clear by the following:

Theorem A.5.3. Let n be a positive integer such that sq(n) < p. Let j = n and i = sq(n).
Then σi,j is a polynomial of degree n, with π-valuation of leading term equal to −wq(n).

Recall the definition of the polynomials cn(Y ) from [dSI09]:

[Y ](t) =
∞∑
n=1

cn(Y )tn

Translating the definition of the polynomials σi,j(Y ) and using Lemma 4.3.8, we get:

([Y ](t))i =

( ∞∑
n=1

cn(Y )tn

)i
=
∞∑
j=i

σi,j(Y )tj .

Using the binomial theorem, this gives:

σi,j =
∑

n1+n2+...+ni=j

cn1cn2 . . . cni

Of course, for i = 1 we obtain σ1,j = cj . So, the proof of the Theorem 3.1 in [dSI09] shows
that Cap(n) = n for n equal to some power of q. We will extend this result to all n that
have sq(n) < p, where sq(n) is the sum of digits of n, written in base q. For this, we need the
following lemma:

Lemma A.5.4. Let n1, n2, . . . , ni be positive integers. Then, wq(n1)+wq(n2)+. . .+wq(ni) ≤
wq(n1 + n2 + . . .+ ni). Equality holds if and only if sq(n1) + sq(n2) + . . .+ sq(ni) = sq(n1 +
n2 + . . .+ ni), that is, if there is ”no carrying” in the sum n1 + n2 + . . .+ ni.

Proof. Direct calculations show that

wq(n) =
n− sq(n)

q − 1

Substituting into our inequality, we need to prove

sq(n1) + sq(n2) + . . .+ sq(ni) ≥ sq(n1 + n2 + . . .+ ni)

which can be checked by direct calculations or by induction. Equality holds in the initial
inequality if and only if it holds here, which is to say there is ”no carrying” in the sum
n1 + n2 + . . .+ ni. �
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Now, we are ready for:

Proof of Theorem A.5.3. Recall that

σi,j =
∑

n1+n2+...+ni=j

cn1cn2 . . . cni

where each ck is a polynomial of degree at most k, with π-valuation of the leading term at
least −wq(n) (as it is in Int(oL, oL)).

Let’s look at each of the terms cn1cn2 . . . cni . As each ck has degree at most k, this con-
tributes to the coefficient of Y k in σi,j if and only if deg(cn1) = n1, deg(cn2) = n2, . . . ,deg(cni) =
ni. For the moment, assume this is the case. Then, the coefficient of Y n in this product is the
product of leading coefficients of the cni ’s, which has π-valuation at least −(wq(n1)+wq(n2)+
. . . + wq(ni)). Now, using Lemma A.5.4, this is at least −wq(n1 + n2 + . . . + ni) = −wq(n),
with equality if and only if sq(n1) + sq(n2) + . . .+ sq(ni) = sq(n) = i, so the ni’s are powers
of q. That is, the only contribution to the coefficient of Y n in σi,j that has small enough
valuation comes from permutations of the unique way of writing n as a sum of i powers
of q. In other words, if n = brbr−1 . . . b1b0(q) is the writing of n in base q, then the only
terms that have a possible contribution are obtained when (n1, n2, . . . , ni) is a permutation
of (q0, q0, . . . , q1, . . . , qr), where each qk appears bk times.

But, by [dSI09], when k is a power of q, ck is a polynomial of degree exactly k, with
π-valuation of leading term exactly −wq(k). So, when (n1, n2, . . . , ni) is a permutation as
above, the product cn1cn2 . . . cni is a polynomial of degree n, with π-valuation of leading term
equal to −wq(n). Moreover, as proved before, if (n1, n2, . . . , ni) is not such a permutation, the
product cn1cn2 . . . cni has the coefficient of Y n either 0 or of π-valuation larger than −wq(n).

As there are
(

i
b0,b1,...,br

)
such permutations, with p -

(
i

b0,b1,...,br

)
(because i < p by the

initial assumption on n), the final sum σi,j has degree n, with π-valuation of leading term
−wq(n). �

Definition A.5.2 then gives:

Corollary A.5.5. Let n be a positive integer such that sq(n) < p. Then Cap(n) = n.

The numerical data suggests that this is the largest set on which Cap(n) = n.

A.6. SageMath Code. (tested on Sage 9.4)

1 extension = "3,2,100,ram" # Choose the extension to compute with

2 precision = 1000 # Choose the precision that Sage will use

3

4 parse = extension.split(’,’)

5 p = int(parse [0]) # Prime to calculate with

6 d = int(parse [1]) # Degree to calculate with

7 N = int(parse [2]) # Cutoff; must be divisible by q-1

8 ram = parse [3]

9

10

11 # Python imports

12 from time import process_time

13 import matplotlib.pyplot as plt

14 import numpy as np

15
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16 # Definitions

17 from sage.rings.padics.padic_generic import ResidueLiftingMap

18 from sage.rings.padics.padic_generic import ResidueReductionMap

19 import sage.rings.padics.padic_extension_generic

20

21 power = p^d - 1

22 t_poly = ""

23

24 if ram == "ram":

25 t_poly = f"x^{d}-{p}"

26 else:

27 # generate poly for unramified case

28 Fp = GF(p)

29 Fp_t.<t> = PolynomialRing(Fp)

30 unity_poly = t^(power) - 1

31 factored = unity_poly.factor ()

32 factored_str = str(factored)

33 start = factored_str.find("^"+str(d))

34 last_brac_pos = factored_str.find(")",start)

35 first_brac_pos = len(factored_str) \

36 - factored_str [:: -1]. find("(",len(factored_str)-start)

37 t_poly = factored_str[first_brac_pos:last_brac_pos ]. replace(’t’,’x’)

38

39

40 # Define the polynomial to adjoin a root from

41 Q_p = Qp(p,precision)

42 R_Qp.<x> = PolynomialRing(Q_p)

43 f_poly = R_Qp(t_poly)

44

45 # Define the p-adic field , its ring of integers and its residue field

46 # These dummy objects are a workaround to force the precision wanted

47 dummy1.<y> = Zp(p).ext(f_poly)

48 dummy2.<y> = Qp(p).ext(f_poly)

49

50 o_L.<y> = dummy1.change(prec=precision)

51 L.<y> = dummy2.change(prec=precision)

52 k_L = L.residue_field ()

53 print(L)

54

55 # Find the generator of the unique maximal ideal in o_L.

56 Pi = o_L.uniformizer ()

57

58 # Find f, e and q

59 f = k_L.degree () # The degree of the residual field extension

60 e = L.degree ()/k_L.degree () # The ramification index

61 q = p^f

62

63 # Do linear algebra over the ring of polynomials L[X]

64 # in one variable X with coefficients in the field L:

65 L_X.<X> = L[]
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66 L_Y.<Y> = L[]

67

68 v = L.valuation ()

69

70 # The subroutine Dmatrix calculates the following sparse matrix of coefficients.

71 # Let D[k,n] be equal to k! times the coefficient of Y^k in the polynomial P_n(Y).

72 # I compute this using the useful and easy recursion formula

73 # D[k,n] = \sum_{r \geq 0} \pi^{-r} D[k-1,n-q^r]

74 # that can be derived from Laurent ’s Prop 1.20 of "outline9 ".

75 # The algorithm is as follows: first make a zero matrix with S rows and columns

76 # (roughly , S is (q-1)* Size), then quickly populate it one row at a time ,

77 # using the recursion formula.

78 def Dmatrix(S):

79 D = matrix(L, S,S)

80 D[0,0] = 1

81 for k in range(1,S):

82 for n in range(k,S):

83 r = 0

84 while n >= q^r:

85 D[k,n] = D[k,n] + D[k-1,n-q^r]/Pi^r # the actual recursion

86 r = r+1

87 return D

88

89

90 # \Tau^{(m)} in Definition 10.10 of "bounded26 ":

91 def TauMatrix(Size , m, D=None):

92 if D is None:

93 D = Dmatrix ((q - 1) * (Size + 1))

94 R = matrix(L, Size ,Size , lambda x,y: D[m + (q-1)*x, m + (q-1)*y])

95

96 # Define a diagonal matrix:

97 Diag = matrix(L_X , Size ,Size , lambda x,y: kronecker_delta(x,y) * X^x)

98

99 # Compute the inverse of R:

100 S = R.inverse ()

101

102 # Compute the matrix Tau using Lemma 10.11 in "bounded26 ":

103 Tau = S * Diag * R

104

105 return Tau

106

107 def underscore(m, i):

108 return m + i*(q-1)

109

110 def w_q(n):

111 return (n - sum(n.digits(base=q))) / (q-1)

112

113 def compute_s(N, filename=None):

114 assert N%(q-1) == 0

115
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116 t_start = process_time ()

117 D = Dmatrix(N)

118 t_end = process_time ()

119 print(f"D matrix: {t_end -t_start : .2f} sec")

120

121 s0_s = [-1 for _ in range(N)]

122

123 for a in range(q-1):

124 t_start = process_time ()

125 Tau_a = TauMatrix(N//(q-1), a, D)

126 t_end = process_time ()

127 print(f"a={a}, Tau matrix: {t_end -t_start : .2f} sec")

128

129 B_old = Matrix (0,0)

130 d = 0

131 for s in range(N // (q -1)):

132 t_start = process_time ()

133

134 # 1. Use the non -zero rows from previous calculations

135 # 2. Add a 0 column to its left

136 # 3. Add rows corresponding to entries from the j_th column of Tau_a

137 B = Matrix(L, 2*s-d+1, s-d+1)

138 B[0,0] = 1 # Tau_a[s, s]

139 B[1:s-d+1, 1:] = B_old

140 for i in [0 .. s-1]:

141 coeffs = Tau_a[i, s].list()

142 B[s-d+1+i, B.ncols()-len(coeffs )+d:] = vector(L, reversed(coeffs[d:]))

143

144 # Perform Gaussian elimination

145 i0 = 0

146 ks = []

147 for k in range(B.ncols ()):

148 valuation_row_pairs = [

149 (v(B[i,k]), i) for i in range(i0 , B.nrows ()) if B[i,k] != 0]

150

151 if not valuation_row_pairs:

152 raise ValueError("B is not full -rank")

153 minv , i_minv = min(valuation_row_pairs)

154 ks.append(k)

155

156 # Swap the row of minimum valuation with the first bad row

157 B[i0 , :], B[i_minv , :] = B[i_minv , :], B[i0 , :]

158

159 # Divide the top row by a unit in o_L

160 u = B[i0 , k] / Pi^int(e * v(B[i0 , k]))

161 B[i0 , :] /= u

162

163 # Cleave through the other rows

164 for i in range(i0 + 1, B.nrows ()):

165 if v(B[i, k]) >= v(B[i0, k]):
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166 B[i, :] -= B[i, k]/B[i0 , k] * B[i0 , :]

167

168 i0 += 1

169

170 d_is_updated = False

171 for b in [d .. s]:

172 n = a + b*(q-1)

173 if v(B[s-b, s-b]) * e == -w_q(n):

174 if s0_s[n] == -1:

175 s0_s[n] = s

176 else:

177 if not d_is_updated:

178 d = b

179 d_is_updated = True

180 B_old = B[:s-d+1, :s-d+1]

181

182 t_end = process_time ()

183 print(f"a={a}, s={s}: {t_end -t_start : .2f} sec", end=’\r’)

184 if filename is not None:

185 with open(filename , ’w’) as f:

186 f.write("n,s0\n")

187 for n, s0 in enumerate(s0_s):

188 f.write(f"{n},{s0}\n")

189 print()

190

191 plt.style.use(’bmh’)

192 fig = plt.figure(figsize =(15,6), dpi =300)

193 for n, s0 in enumerate(s0_s):

194 if s0 != -1:

195 b = n // (q-1)

196 plt.plot(n, s0 -b, ’x’, c=’C0’)

197 else:

198 plt.plot(n, 0, ’x’, c=’C1’)

199 plt.xlabel(r"$n = a + b(q-1)$")
200 plt.ylabel("$s_0(n) - b$")
201 plt.title(str(L))

202 plt.minorticks_on ()

203 plt.grid(which=’both’)

204 plt.grid(which=’major’, linestyle=’-’, c=’grey’)

205

206 return s0_s , fig

207

208

209 s0_s = compute_s(N);
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“Fonctions L et Arithmétique”, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2010, Lab. Math.
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