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Nowadays data is acquiring an indisputable importance in every field including engineering. In the past,

experimental data was used to calibrate state-of-the art models. Once the model was optimally calibrated,

numerical simulations were run. However, data can offer much more, playing a more important role than

calibration or statistical analysis in the modeling/simulation process. Indeed, today data is gathered and used

to train models able to replace complex engineering systems. The more and better the training data, the more

accurate the model is. However, in engineering experimental data use to be the best data but also the most

expensive in time and computing effort. Therefore, numerical simulations, cheaper and faster, are used instead

but, even if they are closed to reality, they always present an error related to the ignorance of the engineer over

the complex real system. It seems thus coherent to take advantage of each approach. This leads to the “hybrid

twin” rationale. On the one hand, numerical simulations are computed as primary data source, assuming their

inherent error. On the other hand, some experimental data is gathered to train a machine learning correction

model which fills the prediction-measurement gap. However, learning this ignorance gap becomes difficult in
some fields such as fluids dynamics, where a regression over the localized solutions can lead to non physical

interpolated solutions. Therefore, the “hybrid twin” methodology proposed in this article relies on Optimal

Transport theory, which provides a mathematical framework to measure distances between general objects and

a completely different interpolation approach between functions.

1. Introduction

Physical problems frequently introduce parameters into their math-

ematical modeling. This is especially true when the problem is complex.

In engineering, the complexity of systems is such that many parameters

are involved in their description. Therefore, one wishes to have a para-

metric model, i.e., for a given system, a solution that is a function of all

its parameters. However, the construction and training of such a model

relies on experimental and numerical data, which are costly and time

consuming. Thus, advanced mathematical regressions are proving to be

indispensable tools for the construction of such parametric solutions.

Such mathematical models need to be trained, in an offline stage,

with numerical or experimental data, solution of the engineering prob-

lem on the training points. The success of the regression methods relies

on the quality and quantity of this training data since the models can

* Corresponding author at: PIMM, Arts et Métiers Institute of Technology, 151 Boulevard de l’Hopital, F-75013 Paris, France.

E-mail addresses: sergio.torregrosa@stellantis.com (S. Torregrosa), victor.champaney@ensam.eu (V. Champaney), amine.ammar@ensam.eu (A. Ammar),

vincent.herbert@stellantis.com (V. Herbert), francisco.chinesta@ensam.eu (F. Chinesta).

only be as accurate and precise as the information and data used to ob-

tain them [6]. Therefore, the question arises of which training data to
use. Indeed, on the one hand, experimental data is usually considered

as the “correct” solution of the engineering system but turns out to be

extremely expensive and time-consuming. On the other hand, numer-

ical simulation appeared to be a promising: physically-based, cheaper

and faster.

Indeed, as engineering models become more and more complex,

their analytical solution is compromised. Moreover, the development

and democratization of more and more powerful computers, since the

mid-20th century [17], led to the emergence of the so called third

paradigm of science: the “virtual twins” or physic-based numerical sim-

ulation, reproducing a physical system using mathematical models to
emulate its complex behavior [9]. Nowadays, numerical simulation has

become an essential tool for scientific investigation and analysis of
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complex systems in engineering, drastically reducing the number of ex-

perimental tests [9,15,7].

However, “virtual twins” are limited by the size and complexity of

the problem studied, which can not be overcome despite increasingly

computation power [9]. Indeed, computational resources, and its linked

cost, are proportional to the intricacy of the engineering system. Nu-

merical simulations are, thus, do not adapted to real-time constraints.

Moreover, Albert Einstein stated another major issue of numerical sim-

ulation: “As far as the laws of mathematics refer to reality, they are not

certain, and as far as they are certain, they do not refer to reality”.

Indeed, physic-based simulations present some significant deviations

when compared to measurement data. These deviations are expected

to be biased since they represent the ignorance of the modeler on the

subjacent physics. Indeed, they are related to the inaccuracy in the

employed models, in its numerical time-space discretization or in its
parameters [9,15,28].

Although science was mainly experimental at the very beginning,

mathematical language has made it theoretic several centuries ago, ex-

pressing physics through universal laws. At the mid-20th century, as

presented before, science became also computational thanks to afford-

able computer facilities [10]. Finally, in the late 20th century, science

became also data-based. Indeed, data has massively proliferated in the

majority of scientific fields and, thanks to widely developed artificial

intelligence and machine learning techniques, data-based models (also

called “digital twins”) have partially or totally substituted physic-based

ones thanks to their lower computational complexity. Such models rep-

resent a real-world system, with all its complexity, guaranteeing at the

same time real-time constraints and without needing an insight into the

actual physics of the asset. However, they do need a lot of training data

to be built, lead to feelings of waste of acquired knowledge and to some

aversion since they usually work as black boxes [9].

This present data-based revolution lead the fourth paradigm, also

called “data-intensive science”, which provides a new framework where

data, theory and simulation can interact and reinforce each other [17].

Indeed, the most appealing solution seems to be combining both the

“digital” and “virtual” twins [9]. On the one hand we need the most

“correct” solutions to train our parametric solution but experimental

data are too expensive and time-consuming. On the other hand, we have

access to computational facilities to run “as many as needed” numerical

simulations but these present a non negligible deviation with the actual

(i.e. experimental) evolution of the system. It seems thus coherent to
use both technologies together, using the advantages of each approach

[31,7].

The “hybrid twin” (HT) is thus born, composed of a imperfect

physic-based simulation of the system (the “virtual twin”) and of a

data-based model emulating the ignorance gap between measurement

and prediction (the “digital twin”). It can be noted that the data-based

model acts as a black box. However, this becomes less inconvenient

within the hybrid twin rationale, since artificial intelligence is only ap-

plied to model the physical part that is beyond our knowledge [9].

The question that arises now is, how do we model the ignorance,

i.e. the prediction-measurement gap? One can think about learning this

gap as a difference. However, with this approach, the results of the re-

gressions could be non-physical in, for instance, fields where a given

choice of the problem parameters leads to a localized solution in differ-

ent regions (e.g. fluid mechanics). A more physical solution would be to
use Optimal Transport (OT) theory [35]. This solution has already been

applied by the authors in previous work [33]. Indeed, Optimal Trans-

port provides a mathematical framework to calculate distances between

general objects, which can be considered more physical in many fields.

Thus, the goal of this article is to present an Hybrid Twin where the

data-based model follows the Optimal Transport theory: the ignorance

is learnt as a transport of information. Hence, the prediction data is
OT-based corrected by being optimally transported to the measurement

data.

The Optimal Transport theory [35] generalizes the idea of the op-

timal solution when transporting an object from an initial to a target

point employing the minimum work, i.e. the shortest path. Indeed, this

theory minimizes the transport cost when moving a continuous distri-

bution from an initial to a final configuration [29]. Thus, OT defines

a new mathematical framework to understand and measure distances

where the geometry of the underlying space is taken into account [34].

OT introduces a completely new interpolation approach between

functions, even if they are defined over disjoint supports. Hence, in

contrast to the usual Euclidean interpolation, which results in the mix-

ture of two functions, interpolation based on OT provides a continuous

scaling and translation. Indeed, OT theory quantifies the distance be-

tween two functions by determining the cheapest manner to transport

and reshape the whole information provided by one function into an-

other. In this sense, OT considers as identical two functions differing

exclusively by a small horizontal displacement while classical 𝐿1 or 𝐿2
norms consider them as very dissimilar. Therefore, such a interpolation

point of view is more accurate to reality in many domains, such as, fluid

mechanics or computer graphics [22], hence its increasing popularity.

However, the resolution of the Optimal transport problem re-

mains not accessible in an online approach and numerically expensive

[36,5,25], notwithstanding the substantial recent progress [27,22,3,11,

30,2,21,23,8]. Among all this advances, the Lagrangian formulation of

the problem, introduced in [24], has been used to approach the Optimal

Transport problem as a mass transport problem: the source distribution

is described by a set of mass units that need to be moved to the target

distribution, while minimizing the transport cost [4]. When taken into

account the OT between two distributions, this approach can be seen as

a bipartite graph matching [18]. The method developed in this paper is
based on this interpretation of the problem. Indeed, the OT-based gap is
calculated from a Lagrangian approach and a “digital twin”, transport-

ing the prediction to the measurement, is trained.

In this paper, a two stages approach is introduced: first, the OT-

based “digital twin” is trained offline, then, this data-based correction

is applied over the “virtual twin” output in an online manner. Indeed,

physic-based simulations and their experimental counterparts are used

to train the OT-based correction model. Then, trained “digital twin”

can be used in an online manner to correct further simulations from the

“virtual twin” (from which we do not have access to the experimental

data).

First, high-fidelity simulations (the “virtual twin”) and their exper-

imental counterparts are used in the offline stage to train the model.

Note that these training solutions are computed in the parametric space

of our problem. The steps of the offline stage are as follows: first, based

on a Smoothed-Particle Hydrodynamics (SPH) decomposition [20], the

training experimental measurements and numerical high-fidelity sim-

ulations are decomposed into the sum of identical Gaussian functions

(referred as particles). Then, each Gaussian from the “virtual twin” is
matched with a Gaussian from its corresponding experimental data.

And this for all the prediction-measurements couples of the training

set. The OT-based differences between prediction and measurement can

therefore be calculated. Next, a Partial Least-square (PLS) regression

[1,32,12,14] is applied over the OT-based gaps in order to build the

OT-based “digital twin”.

Then, the just trained data-based parametric model of the ignorance

can be applied over a new numerical simulation, from which we do not

have access to the experimental data, in an online manner in order to
correct it. To this purpose, the “virtual twin” output is decomposed in
Gaussian particles and the OT-based gap, interpolated by the “digital

twin”, is added to the simulation particles. The numerical simulation

is thus corrected following the Optimal Transport theory and the so
expected experimental corresponding data is reconstructed by summing

all the Gaussians.

In this article, the principal ideas of OT theory, on which the OT-

based gap model is based, are first presented and illustrated. Then, the

“digital twin” is presented and the offline stage of the methodology is
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Fig. 1. Discrete OT formulation for 𝑁 = 4 mines and 𝑀 = 3 factories. The re-

source produced by the mines is: 𝑎1 = 3, 𝑎2 = 1, 𝑎3 = 1 and 𝑎4 = 2. The resource 
consumed by the factories is: 𝑏1 = 4, 𝑏2 = 1 and 𝑏3 = 2. The Euclidean distance 
traveled by the resource is the cost to minimize.

detailed. Next, the OT-based “digital twin”2 online application over the 
“virtual twin” is introduced. Finally, the accuracy of the OT-based cor-

rection is evaluated through several examples. It must be noted that the

main goal of this paper is to introduce the novel methodology. Thus, the

ignorance gap between measurement and prediction for the assessment

examples is here simulated, as presented in the results section. How-

ever, further work is planned and in progress to apply this approach to
a real industrial case.

2. Revisiting optimal transport

In this section, the OT framework is presented and the tools on

which the thereafter proposed OT-based parametric model of the ig-

norance is based introduced. Note that this section is an non exhaustive

introduction of the principal ideas of OT. For further documentation on

this topic, [29] and the references therein can be consulted.

Introduced by Monge [26], the initial Optimal Transport problem

consisted in calculating the most optimal path to move a given quantity

of soil from an initial to a target location where the cost function was

defined as the distance traveled by the soil. Note that in this article we

are interested in the discrete formulation of the problem. In order to
introduce the discrete perspective let us consider 𝑁 mines producing a
certain resource that needs to be transported to 𝑀 factories. We seek for

the Optimal Transport solution that minimizes a cost function defined

as the square of the total Euclidean distance traveled by the resource,

as it is showed in the Fig. 1.

On the one hand, each mine 𝑛 ∈ �𝑁� (note that the notation �𝑁�

corresponds to {1, … , 𝑛, … , 𝑁}) produces an amount 𝑎𝑛 of the resource 
and it is located at 𝑥𝑛. On the other hand, each factory 𝑚 ∈ �𝑀� con-

sumes an amount 𝑏𝑚 of this same resource and it is located at 𝑦𝑚. Hence,

two distributions, 𝛼 and 𝛽, corresponding to the resource produced and

consumed respectively can be defined following the notion of measure:

𝛼 =
𝑁∑
𝑛=1
𝑎𝑛𝛿𝑥𝑛

and 𝛽 =
𝑀∑
𝑚=1
𝑏𝑚𝛿𝑦𝑚

(1)

where 𝛿𝑥𝑛 and 𝛿𝑦𝑚 correspond to the Dirac at locations 𝑥𝑛 and 𝑦𝑚 re-

spectively.

Therefore, solving the Monge problem consists in finding the map

𝑇 connecting each point 𝑥𝑛 with a single target point 𝑦𝑚 such that the

produced resource distribution, 𝛼, is pushed toward the consumed re-

source distribution, 𝛽. It is important to note that the resource cannot be

destroyed or produced during its transport. Indeed, the transport map

𝑇 ∶ {𝑥1, … , 𝑥𝑁} → {𝑦1, … , 𝑦𝑀} satisfies the mass conservation

Fig. 2. 2D Monge problem with 𝑁 =𝑀 and 𝑎𝑛 = 𝑏𝑚 = 1∕𝑁 . Mines and factories 
are represented by red and blue circles respectively. Black arrows illustrate the

optimal matching.

∀𝑚 ∈ �𝑀�, 𝑏𝑚 =
∑

𝑛∶𝑇 (𝑥𝑛)=𝑦𝑚

𝑎𝑛, (2)

which can also be written in a compact form 𝑇#𝛼 = 𝛽. Note that the map 
𝑇 is a surjective function. Finally, this transport map is determined such

that it minimizes the transport cost. Here, we consider the square of the

𝐿2 distance between the mine 𝑛 and its corresponding factory 𝑚:

𝐶𝑥𝑛,𝑦𝑚
= ‖𝑥𝑛 − 𝑦𝑚‖22. (3)

Hence, we obtain the following minimization problem:

min
𝑇

𝑁∑
𝑛=1
𝐶𝑥𝑛,𝑇 (𝑥𝑛). (4)

The discrete Monge problem has been presented. However, in this

paper we are interested in a simplified version of the problem. Indeed,

it is first supposed that the number of mines and factories is the same,

i.e. 𝑁 =𝑀 . In addition, it is also supposed that the quantity of resource 
produced by each mine is the same and that each factory also consumes

this same quantity of resource, i.e. 𝑎𝑛 = 𝑏𝑚 = 1∕𝑁 . Thus, the transport 
map becomes a bijective function and the optimization problem (4) is

now a deterministic matching problem.

Under these assumptions, linear programming can be used to easily

solve the just simplified Monge problem. Indeed, the problem becomes

an optimal matching problem between two particle clouds. As it is illus-

trated in the Fig. 2 in 2D, each cloud is composed by the same number

of particles, every particle has the same amount of mass and the cost

is defined as the square of the 𝐿2 distance between two particles. In 
higher dimensions than 2D, the computational time needed to calculate

the distances increases but the problem does not further complexify.

Once the two particle clouds are optimally paired, the OT-based dif-

ference between them can be determined by calculating the Euclidean

distances between matched particles. Indeed, the OT-based difference

is the total sum of the 𝐿2 distances 𝛿𝑘 for all the pairs of particles.

3. Hybrid twin based on optimal transport

In this section, the two stages of the “hybrid twin” methodology are

presented in detail. First, the offline stage, where the OT-based “digital

twin” is trained, is introduced. Then, the online stage, where the “vir-

tual twin” is corrected, is presented. Finally, the whole methodology is
summarized and schematized.

The offline stage of the approach consists in the construction of the

OT-based “digital twin” and follows the next four steps. First, the nu-

merical high fidelity simulations, from the “virtual twin”, and their

experimental counterparts are decompounded into a sum of Gaussian

functions (referred as particles) following an SPH approach. It can be

noted that the number of functions and their standard-deviation are

fixed as hyperparameters. The only remaining variables are the means

of every Gaussian function (which can be seen as 𝑥 and 𝑦 coordinates

in ℝ2). Then, for each prediction-measurement couple, each Gaussian 
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from the numerical simulation is optimally matched with one Gaussian

from the experimental data. Once this matching is done, the difference

between the coordinates for the matched particles is calculated. Indeed,

this difference constitutes the OT-based gap between prediction and

measurement. Lastly, a PLS regression is applied over the OT-based dif-

ference, leading to a OT-based “digital twin” accessible in an online

manner.

In the online stage, a new numerical simulation from the “virtual

twin”, from which we do not have access to the experimental data, can

be corrected by the “digital twin” leading to the so called “hybrid twin”

approach. To this purpose, the “virtual twin” output is decomposed in
Gaussian particles and the OT-based gap, interpolated by the “digital

twin”, is added to the simulation particles.

3.1. Offline stage: the OT-based “digital twin” training

The four steps of the offline stage are here presented. Let sup-

pose that our parametric problem is defined in a parametric space

(𝜂1, … , 𝜂𝑞, … , 𝜂𝑄) where 𝜂𝑞, 𝑞 ∈ �𝑄� are the parameters. Next, let con-

sider 𝑃 prediction-measurement couples in the space (𝜂1,… ,𝜂𝑞 ,… ,𝜂𝑄)
corresponding to the 2D high-fidelity simulations and their experimen-

tal counterparts of the parametric problem. Hence, the OT-based “dig-

ital twin” relies on the simplified 2 dimensional minimization problem

(4), i.e. on a deterministic matching problem between 2 particle clouds:

the numerical data and its measurement counterpart.

3.1.1. SPH decomposition

Without loss of generality, let suppose a 2D problem. Each numerical

and experimental data sample is formally represented by a distribution

𝜓 ∶ Ω ∈ℝ2 →ℝ+. It can be noted that the image of 𝜓 is supposed strictly 
positive. Moreover, distributions are normalized:

𝜌 = 𝜓 where  = ∫
Ω

𝜓dΩ. (5)

The idea is, for each prediction-measurement couple, to decompose

the high-fidelity simulation and it experimental counterpart, i.e. 𝜌𝑣 and

𝜌𝑒, into a sum of 𝑁 Gaussian functions, also referred as particles, follow-

ing a Smoothed-Particle Hydrodynamics [20] rationale. Note that the

number of particles 𝑁 is an hyperparameter of the methodology, i.e. it
is fixed for both the numerical and experimental data, and for all the

prediction-measurement couples. Moreover, every Gaussian function

has the same standard-deviation 𝜎, which becomes also an hyperpa-

rameter of the methodology. Hence, the only variables are, for a given

distribution, the means 𝝁 of each Gaussian function, i.e. 𝑁 vectors of

2 components: 𝜇𝑥 and 𝜇𝑦 (because we are in 2 dimensions). Thus, a
normalized distribution 𝜌 ∶ Ω ∈ℝ2 →ℝ+ is approximated as follows

𝜌̄(𝐱) =
𝑁∑
𝑛=1
𝐺𝝁𝑛,𝜎

(𝐱), (6)

where 𝐺𝝁𝑛,𝜎
is a 2D-Gaussian function of standard-deviation 𝜎, 1∕𝑁

mass and mean 𝝁𝑛:

𝐺𝝁𝑛,𝜎
(𝐱) = 1

𝑁𝜎22𝜋
exp

−
(
𝐱−𝝁𝑛

)2
2𝜎2 . (7)

Therefore, each 2D distribution, of each prediction-measurement

couple, is decomposed into the sum of 𝑁 particles each of which is de-

scribed by 2 coordinates, 𝜇𝑥 and 𝜇𝑦, as it is illustrated in Fig. 3, where 
the 𝑝th prediction-measurement couple is represented. The 𝑛th ∈ �𝑁�

particle of the “virtual twin” distribution of the 𝑝th ∈ �𝑃 � couple is 
noted:

𝐺𝝁
𝑝
𝑣𝑛
,𝜎 where 𝝁𝑝

𝑣𝑛
=
[
𝜇𝑝
𝑣𝑛,𝑥
, 𝜇𝑝
𝑣𝑛,𝑦

]
∈ℝ2. (8)

Hence, one can introduce the matrix 𝝁𝑝𝑣 ∈ ℝ𝑁×2, composed by the 
coordinates 𝑥 and 𝑦 of all the particles of the “virtual twin” distribution

of the 𝑝th couple:

Fig. 3. 𝑝th prediction-measurement couple: the first row shows the experimen-

tal data and the second row the numerical one. The first column shows the

experimental measurement 𝜌𝑝𝑒 and it high-fidelity simulation counterpart 𝜌𝑝𝑣 . In 
the second column the decomposition into 𝑁 Gaussian particles is represented

showing the 𝑁 -particles clouds 𝝁𝑝𝑒 and 𝝁𝑝𝑣 , each particle represents a Gaussian 
function. The third column schematizes the particles decomposition in order to
illustrate the defined notation.

𝝁𝑝
𝑣
=

⎡⎢⎢⎢⎢⎢⎣

𝝁
𝑝
𝑣1
⋮
𝝁
𝑝
𝑣𝑛

⋮
𝝁
𝑝
𝑣𝑁

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
𝜇
𝑝
𝑣1,𝑥
, 𝜇
𝑝
𝑣1,𝑦

]
⋮[

𝜇
𝑝
𝑣𝑛,𝑥
, 𝜇
𝑝
𝑣𝑛,𝑦

]
⋮[

𝜇
𝑝
𝑣𝑁,𝑥

, 𝜇
𝑝
𝑣𝑁,𝑦

]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ℝ𝑁×2. (9)

It is important to note that the order of the particles in this matrix

𝝁
𝑝
𝑣 is not arbitrary but will be used to represent the assignment between 

point clouds: the 𝑛th particle of one cloud being matched with the 𝑛th
particle of another cloud when needed, as explained in the next sec-

tion. Finally, the same notation is introduced for the experimental data

distribution of the 𝑝th ∈ �𝑃 � couple replacing subscript 𝑣 by 𝑒.
The decomposition into 𝑁 particles of the 𝑝th prediction-measure-

ment couple, i.e. 𝜌𝑝𝑣 and 𝜌𝑝𝑒 , consists in 2 identical optimization prob-

lems. Without loss of generality, we introduce here the one related to
𝜌
𝑝
𝑣. In this optimization problem (10), the variable is 𝝁𝑝𝑣 ∈ ℝ𝑁×2. The 

discretization points of Ω, 𝐱𝑖, 𝑖 ∈ �𝐷�, follow a uniform meshing. Since 
the number of functions 𝑁 and their standard-deviation 𝜎 are fixed, the

optimization problem writes

min
𝝁
𝑝
𝑣

1
2
‖‖𝜌𝑝𝑣 − 𝜌̄𝑝𝑣‖‖22 = min

𝝁
𝑝
𝑣

1
2

⎡⎢⎢⎣
𝐷∑
𝑖=1

(
𝜌𝑝
𝑣
(𝐱𝑖) −

𝑁∑
𝑛=1
𝐺𝝁

𝑝
𝑣𝑛
,𝜎(𝐱𝑖)

)2⎤⎥⎥⎦ , (10)

where 𝐷 is the number of points of the mesh where the distribution 𝜌𝑝𝑣 is 
calculated. It can be noted that in each of these optimization problems

we seek for the 𝑁 Gaussian functions that decompose each of the data

fields. In (10) the decomposition of the 𝑝th numerical simulation has

been written as an example. Indeed, 𝝁𝑝𝑣𝑛 represents the 𝑛th particle of 
𝝁
𝑝
𝑣 as it has been explained in (9).

A Gradient Descent approach is chosen in order to solve the opti-

mization problem. It can be noted that the offline stage contains 𝑃 × 2
such optimization problems. The resolution methodology, as well as the

optimal choice for the hyperparameter 𝜎, have been presented in detail

by the authors in [33].

3.1.2. Prediction-measurement particles matching

Once the high fidelity simulations and their experimental counter-

parts are decomposed into 𝑁 particles, the optimal assignment between
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Fig. 4. Illustration of the ordering function 𝜙𝑝. For each particle 𝑛 of the distri-

bution 𝜌𝑝𝑣 , the function 𝜙𝑝 indicates the new position.

both distributions for each prediction-measurement couple, can be de-

termined. For a prediction-measurement couple, this can be understood

as the optimal matching problem between two 𝑁 -particles clouds pre-

sented in Fig. 2, where each particle is a 2D-Gaussian function repre-

sented by its 𝜇𝑥 and 𝜇𝑦 coordinates. This linear assignment problem,

where the cost function is the sum of the squared 𝐿2 distances between 
matched particles, can be resolved applying several algorithms. Here,

the algorithm matchpairs from MATLAB is used to solve the problem

[13].

Hence, for the 𝑝th prediction-measurement couple, the cost between

the decomposed numerical simulation and the experimental measure-

ment, 𝜌𝑝𝑣 and 𝜌𝑝𝑒 , writes:

𝐶𝑝
𝑣,𝑒
(𝜙𝑝) =

𝑁∑
𝑛=1

‖‖‖‖𝝁𝑝𝑣𝜙𝑝 (𝑛) − 𝝁𝑝
𝑒𝑛

‖‖‖‖22 (11)

where 𝜙𝑝 is a bijective function in the set of permutations of 𝑁 ele-

ments. To each particle 𝑛 of the distribution 𝜌𝑝𝑣, 𝜙𝑝 ∶ ℕ → ℕ associates 
its new position in the sense of order in 𝝁𝑝𝑣, as it can be seen in Fig. 4. 
It is important to remember that the order of the particles in 𝝁𝑝𝑣 and 
in 𝝁𝑝𝑒 represents the matching between particles for the 𝑝th prediction-

measurement couple. Indeed, the particle 𝝁𝑝𝑣𝑛 of the 𝑝th simulation is 
matched with the particle 𝝁𝑝𝑒𝑛 of the 𝑝th experimental measurement 
counterpart. Hence, by permuting the elements of 𝝁𝑝𝑣 or 𝝁𝑝𝑒 the assign-

ment between the two 𝑁 -particles clouds is modified. The aim here is,
thus, to find the optimal ordering corresponding to the optimal match-

ing, which minimizes the defined cost, i.e. the optimal function 𝜙𝑝. It
can be noted that here the permutation has been applied to the par-

ticles of 𝜌𝑝𝑣. However, this is an arbitrary choice since when matching 
two sets permuting one of them is enough. Then, this matching is con-

ducted for all the 𝑃 couples, i.e. 𝑃 optimal matching problems between

two N-particles clouds are solved.

3.1.3. Prediction-measurement OT-based difference

Then, the OT-based difference can be calculated. To this purpose,

for each prediction-measurement couple, the difference between the

coordinates of the matched 𝑁 particles is computed. It is important

to note that every prediction-measurement couple has been matched,

i.e. every 𝝁𝑝𝑣 has been reorganized to minimize the cost (11). Hence, 
the difference between coordinates is computed between particles op-

timally matched. This gives sense to the so called OT-based difference.

Thus, the OT-based gap of the 𝑛th particle of the 𝑝th couple is noted:

𝜹𝑝
𝑛
=
[
𝛿𝑝
𝑛,𝑥
, 𝛿𝑝
𝑛,𝑦

]
=
[
𝜇𝑝
𝑣𝑛,𝑥

− 𝜇𝑝
𝑒𝑛,𝑥
, 𝜇𝑝
𝑣𝑛,𝑦

− 𝜇𝑝
𝑒𝑛,𝑦

]
, (12)

as it is illustrated in Fig. 5. Then, the OT-based difference for the 𝑝th
couple 𝜹𝑝 ∈ℝ𝑁×2 is build as:

𝜹𝑝 =
⎡⎢⎢⎣
𝜹
𝑝

1
⋮
𝜹
𝑝

𝑁

⎤⎥⎥⎦ ∈ℝ𝑁×2. (13)

Fig. 5. Scheme of the OT-based difference for the 𝑝th prediction-measurement

couple. The experimental data decomposed into particles is represented by the

circles and its numerical counterpart by triangles. The red double arrows repre-

sent the matching between particles. It can be noted this assignment follows the

order of the particles (first experimental particle with first numerical particle,

second with second and so on) since both particles clouds have been previously

matched.

Finally, we compute this OT-based difference 𝜹𝑝 for all the 𝑃 cou-

ples.

3.1.4. “Digital twin” regression model

Finally, the OT-based “digital twin” can be built relying on a Partial

Least-Squares (PLS) regression [1,32,12,14,16]. The PLS method is a
latent variable model where principal components are determined such

as they best explain the explanatory variables, the response variables

and such as they have the strongest possible relationship between both

types of variables. The PLS regression is presented in the Appendix A.

Here, the regression is applied over the OT-based differences 𝜹𝑝, 𝑝 ∈
�𝑃 � leading to a function that, for a set of parameters from the para-

metric space (𝜂1, … , 𝜂𝑞, … , 𝜂𝑄), returns the OT-based gap for each 
particle.

For each set of parameters 𝑝 of the training set (i.e. each prediction-

measurement couple), there are 𝑁 OT-based gaps 𝜹𝑝
𝑛
, 𝑛 ∈ �𝑁�. There-

fore, in order to train the PLS regression, the parametric space  is 
extended. To each set of parameters 𝑝 of the training set, we add the

coordinates of the 𝑁 particles of the 𝑝th “virtual twin” decomposition:

𝝁
𝑝
𝑣𝑥

∈ℝ𝑁 and 𝝁𝑝𝑣𝑦 ∈ℝ𝑁 respectively.

The new parametric space is noted  ′(𝜂1, … , 𝜂𝑞, … , 𝜂𝑄, 𝜇𝑣𝑥 , 𝜇𝑣𝑦 ). 
This yield to the following (𝑃 ×𝑁) × (𝑄 + 2) matrix 𝑋 of explanatory 
variables:

𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜂11 …𝜂1
𝑞
…𝜂1

𝑄
𝜇1
𝑣1,𝑥

𝜇1
𝑣1,𝑦

⋮ ⋮ ⋮
𝜂11 …𝜂1

𝑞
…𝜂1

𝑄
𝜇1
𝑣𝑁,𝑥

𝜇1
𝑣𝑁,𝑦

⋮ ⋮ ⋮
𝜂
𝑝

1 …𝜂
𝑝
𝑞…𝜂

𝑝

𝑄
𝜇
𝑝
𝑣1,𝑥

𝜇
𝑝
𝑣1,𝑦

⋮ ⋮ ⋮
𝜂
𝑝

1 …𝜂
𝑝
𝑞…𝜂

𝑝

𝑄
𝜇
𝑝
𝑣𝑁,𝑥

𝜇
𝑝
𝑣𝑁,𝑦

⋮ ⋮ ⋮
𝜂𝑃
𝑝
…𝜂𝑃

𝑞
…𝜂𝑃

𝑄
𝜇𝑃
𝑣1,𝑥

𝜇𝑃
𝑣1,𝑦

⋮ ⋮ ⋮
𝜂𝑃1 …𝜂𝑃

𝑞
…𝜂𝑃

𝑄
𝜇𝑃
𝑣𝑁,𝑥

𝜇𝑃
𝑣𝑁,𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ℝ(𝑃×𝑁)×(𝑄+2), (14)

where 𝜂𝑝𝑞 corresponds to the 𝑞th parameter of the 𝑝th prediction-

measurement couple.
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Fig. 6. Scheme of the three steps of the online stage of the methodology.

Moreover, the (𝑃 ×𝑁) × 2 matrix 𝑌 of response variables is the con-

catenation of the 𝑃 OT-based differences 𝜹𝑝, 𝑝 ∈ �𝑃 �. Hence, the matrix 
𝑌 writes:

𝑌 =

⎡⎢⎢⎢⎢⎢⎣

𝜹1

⋮
𝜹𝑝

⋮
𝜹𝑃

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿11,𝑥𝛿
1
1,𝑦

⋮
𝛿1
𝑁,𝑥
𝛿1
𝑁,𝑦

⋮
𝛿
𝑝

1,𝑥𝛿
𝑝

1,𝑦
⋮

𝛿
𝑝

𝑁,𝑥
𝛿
𝑝

𝑁,𝑦

⋮
𝛿𝑃1,𝑥𝛿

𝑃
1,𝑦

⋮
𝛿𝑃
𝑁,𝑥
𝛿𝑃
𝑁,𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ℝ(𝑃×𝑁)×2. (15)

The PLS regression is trained using the MATLAB function

plsregress [12] leading to a regression coefficients matrix 𝐵𝑃𝐿𝑆 ∈
ℝ(𝑄+2)×2 and a constant 𝐲𝟎 ∈ℝ2 such that:

𝐲̂ = 𝐱 𝐵𝑃𝐿𝑆 + 𝐲𝟎, (16)

where 𝐱 is a new row of 𝑋, i.e. the set of parameters of a new numerical 
simulation and the coordinates 𝑥 and 𝑦 of one of its 𝑁 particles, and

𝐲̂ are the interpolated components of the OT-based correction for this 
simulation and this particle. It can be noted that the PLS regression has

been chosen since it is able to manage the correlation between variables

in the matrix 𝑋 (due to its construction).

The OT-based “digital twin” is thus built. Hence, for any “virtual

twin” simulation that has been decomposed in particles, one can com-

pute the OT-based correction to get the expected experimental counter-

part. The detailed correction methodology is presented thereafter.

3.2. Online stage: the “virtual twin” correction

The just trained OT-based “digital twin” models the “engineer igno-

rance” and can be applied over a new numerical simulation from the

“virtual twin”, from which we do not have access to the experimental

data counterpart, leading to the so called “hybrid twin”. This OT-based

correction can be done in a partially online manner.

Let introduce a new high-fidelity numerical simulation from our

parametric space (𝜂1, … , 𝜂𝑞, … , 𝜂𝑄). The corresponding normalized 

distribution is called 𝜌𝑣. Note that the experimental counterpart 𝜌𝑒 is

unknown. The three steps of the online stage, described thereafter, are

illustrated in Fig. 6.

First, the simulation is decomposed into particles following the pre-

viously described SPH approach, leading to 𝑁 Gaussian particles iden-

tified by their 𝑥 and 𝑦 means (i.e. 𝑥 and 𝑦 coordinates):

𝝁𝑣 =
[
𝝁𝑣𝑥 ,𝝁𝑣𝑦

]
∈ℝ𝑁×2, (17)

such that

𝜌𝑣 =
𝑁∑
𝑛=1
𝐺𝝁𝑣𝑛

,𝜎 (𝐱). (18)

It can be noted that the number of particles 𝑁 , as well as the

standard-deviation 𝜎, used to decompose this new numerical simula-

tion are the same that have been fixed as hyperparameters during the

“digital twin” training.

The decomposed distribution is therefore described by the set of pa-

rameters, 𝜂1, … , 𝜂𝑞, … , 𝜂𝑄, of the solved problem and by the coordinates 
𝑥 and 𝑦 of the 𝑁 particles: 𝝁𝑣𝑥 and 𝝁𝑣𝑦 respectively. Next, the trained 
PLS regression applied over this new 𝑁 inputs in  ′ returns the 𝑥 and 
𝑦 components of the OT-based correction for all the particles: 𝜹 ∈ℝ𝑁×2. 
Adding this difference to the SPH-decomposition particles leads to the

corrected positions of the particles:

𝝁𝑐 = 𝝁𝑣 + 𝜹. (19)

Then, the so expected experimental counterpart, 𝜌̂𝑒, can be recon-

structed by summing all the new Gaussian functions:

𝜌̂𝑒 =
𝑁∑
𝑛=1
𝐺𝝁𝑐𝑛

,𝜎 (𝐱). (20)

Finally, in order to recover 𝜓̂𝑒, the ratio of the total masses of the

measurement/prediction couples, 𝑣∕𝑒, is interpolated.

3.3. Model review

The “hybrid twin” approach introduced in this article is now re-

viewed, as it is illustrated in the Fig. 7. Given 𝑃 = 4 simulation-

measurement couples of a problem defined in a parametric space

(𝜂1, … , 𝜂𝑞, … , 𝜂𝑄) relying on 𝑄 parameters, the aim is to build an 
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Fig. 7. Summary diagram of the methodology: the training of the “digital twin” is colored in blue and the OT-based “hybrid twin” approach in red.

OT-based “digital twin” combining Optimal Transport theory and PLS

regressions. This ignorance model can correct a “virtual twin” simula-

tion, from which we do not have the experimental counterpart, leading

to the so called “hybrid twin” approach.

The two stages methodology proceeds as follows. First, the OT-

based ignorance model is trained offline based on the simulation-

measurement couples following the next steps (colored in blue in the

Fig. 7):

1. Preprocessing: Normalization of the distributions corresponding

to the high-fidelity numerical simulations and the experimental

counterparts to obtain unitary integral.

2. SPH decomposition: Every measurement and simulation is decom-

pounded into a sum of 𝑁 identical Gaussian functions of fixed

standard deviation 𝜎 and mass 1∕𝑁 . Remember that the number

of particles 𝑁 and the standard deviation 𝜎 of each particle are

hyperparameters of our methodology. Therefore, we need to solve

𝑃 ×2 optimization problems (two for each simulation-measurement

couple) in order to place the 𝑁 particles minimizing the error with

respect to the original data. To this purpose a Gradient Descent

approach is used.

3. 𝑃 2-dimensional matching: The locations of the 𝑁 particles for

the 𝑃 numerical simulations and for 𝑃 experimental measurements

are, thus, defined. Next, the Optimal Transport behavior is emu-

lated: for each simulation-measurement couple, each particle from

the numerical simulation is matched with one particle from the ex-

perimental counterpart. Then, the OT-based gap for each couple

is determined by computing difference between the coordinates 𝑥
and 𝑦 of the 𝑁 matched particles.

4. “Digital twin” training: Finally, the ignorance model is built us-

ing a PLS regression. The PLS model is applied over an extended

parametric space as explanatory variables and over the OT-based

difference as response variables.

Then, the “digital twin” can be used in a partially online manner

to correct a “virtual twin” simulation, from which we do not have the

experimental counterpart (colored in red in the Fig. 7):

1. A new high-fidelity simulation, computed in the parametric space

 , is decomposed into 𝑁 particles.

2. Then, the “digital twin” returns the OT-based gap that needs to be

added to these particles to obtain the particles of the experimental

counterpart.

3. Finally, these 𝑁 corrected Gaussian functions are added to recon-

struct the expected experimental data.

4. Results

4.1. Error evaluation

First of all, the error evaluation methodology is presented. Let us

introduce a testing set in the parametric space  . The 𝑃𝑡𝑒𝑠𝑡 reference so-

lutions, i.e. the experimental data, 𝜌𝑝𝑒, 𝑝 ∈ �𝑃𝑡𝑒𝑠𝑡� of this set are compared 
with the corrected numerical solutions 𝜌̂𝑝𝑒 , 𝑝 ∈ �𝑃𝑡𝑒𝑠𝑡� obtained with the 
OT based “hybrid twin” approach developed. To this purpose, three

error metrics are here defined: a maximum value error, a maximum

value position error and a 𝐿2-Wasserstein error. It can be note that 
the reference solution is also compared with the “virtual twin” solution

𝜌
𝑝
𝑣, 𝑝 ∈ �𝑃𝑡𝑒𝑠𝑡�. In this section, and without loss of generality, the error 

metrics are presented between the reference and the “hybrid twin” so-

lutions.

First, the maximum value error is calculated as a percentage of the

relative difference between the maximum value of the measurement

and the maximum value of the OT corrected solution. Hence, the maxi-

mum value error for the 𝑝th training point writes:

𝜀𝑝
𝑚𝑎𝑥

= 100
||max(𝜌𝑝

𝑒
) − max(𝜌̂𝑝

𝑒
)||

max(𝜌𝑝𝑒)
. (21)

Next, the maximum value position error is calculated as the 𝐿2 norm 
between the positions in Ω of the maximum value of the experimental 
data and of the maximum value of the “hybrid twin” solution. Note that

this error is normalized with respect to 𝑙Ω, the length of one side of Ω:

𝜀𝑝
𝑝𝑜𝑠

=
‖‖‖argmax𝐱

(
𝜌
𝑝
𝑒(𝐱)

)
− argmax𝐱

(
𝜌̂
𝑝
𝑒(𝐱)

)‖‖‖2
𝑙Ω

. (22)

Finally, the 𝐿2-Wasserstein metric 𝑊 (𝜌𝑝𝑒 , 𝜌̂
𝑝
𝑒)22 is calculated between 

the reference 𝜌𝑝𝑒 and the modeled 𝜌̂𝑝𝑒 solutions where 𝑝 ∈ �𝑃𝑡𝑒𝑠𝑡�. In order 
to calculate 𝑊

(
𝜌
𝑝
𝑒 , 𝜌̂

𝑝
𝑒

)
, a Linear Programming methodology is followed.

The Kantorovich OT problem [19] corresponds to an infinite dimen-

sional Linear Program. Indeed, given the distributions 𝜌𝑝𝑒 and 𝜌̂𝑝𝑒 , defined 
on 𝑋 and 𝑌 , the problem reads

𝑊
(
𝜌𝑝
𝑒
, 𝜌̂𝑝
𝑒

)2
2 = min

𝜋∈Π(𝜌𝑝𝑒 ,𝜌̂
𝑝
𝑒 ) ∫
𝑋×𝑌

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦), (23)

where 𝑐(𝑥, 𝑦) ∶𝑋 × 𝑌 → ℝ is the cost function and Π the set of transfer 
plans. The discretized measures 𝜌𝑝𝑒 and 𝜌̂𝑝𝑒 are defined as weighted sums 
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Fig. 8. Test set data points: (a) Finite elements solution of the problem (29) corresponding to the experimental data. (b) Finite elements solution of the problem (30)

corresponding to the “virtual twin” simulation.

of Dirac functions. The weights represent the value of the continuous

measures evaluated at the corresponding nodes 𝐱𝑖 and 𝐲𝑖 of the mesh. 
Hence,

𝜌𝑝
𝑒
=

𝐷∑
𝑖=1

(
𝜌𝑝
𝑒

)
𝑖
𝛿𝐱𝑖 and 𝜌̂𝑝

𝑒
=

𝐷∑
𝑖=1

(
𝜌̂𝑝
𝑒

)
𝑖
𝛿𝐲𝑖 . (24)

The discrete cost function is defined as

𝐶𝑖,𝑗 = 𝑐(𝐱𝑖,𝐲𝑗 ) =
‖‖‖𝐱𝑖 − 𝐲𝑗

‖‖‖22 . (25)

Therefore, the discrete formulation of the Kantorovich Optimal

Transport problem reads

𝑊
(
𝜌𝑝
𝑒
, 𝜌̂𝑝
𝑒

)2
2 = min

𝜋∈Π(𝜌𝑝𝑒 ,𝜌̂
𝑝
𝑒 )

∑
𝑖,𝑗

𝐶𝑖,𝑗𝜋𝑖,𝑗 , (26)

where 𝜋𝑖,𝑗 represents the quantity of mass transported from 𝐱𝑖 towards 
𝐲𝑗 . The set of transfer plans reads

Π
(
𝜌𝑝
𝑒
, 𝜌̂𝑝
𝑒

)
=

{
𝜋 = (𝜋𝑖𝑗 )

||||||
∑
𝑗

𝜋𝑖𝑗 =
(
𝜌𝑝
𝑒

)
𝑖
,
∑
𝑖

𝜋𝑖𝑗 =
(
𝜌̂𝑝
𝑒

)
𝑗

}
(27)

It should be noted that from now on, in order to analyze the three

different errors, the value of the error metric presented corresponds to
the mean value of the 𝑝 ∈ �𝑃𝑡𝑒𝑠𝑡� points of the test set. Hence, the three 
error metrics are noted:

𝜀𝑚𝑎𝑥, 𝜀𝑝𝑜𝑠 and 𝑊 2
2 . (28)

4.2. Heat transfer problem

As it has been presented, in the “hybrid twin” rationale there are

two data sources: the “virtual twin” numerical simulation and the ex-

perimental counterpart. Since the access to experimental data is very

expensive and for operational reasons, here the ignorance gap between

measurement and prediction is simulated. To this purpose, a physical

problem is solved using a finite elements methodology. On the one

hand, the problem is solved following the real physics equations. This

data is considered to be the “experimental data”. On the other hand, a
perturbation coefficient, representing the prediction-measurement ig-

norance, is introduced in the modeling equations before the system

resolution. This data is considered to be the “numerical data”, i.e. the

“virtual twin” simulation.

In this section, the heat equation is solved in a 2 dimensional domain

Ω where the thermal conductivity is defined as an-isotropic. On the 
domain boundary we impose an homogeneous Neumann condition. The

initial condition is defined as a Gaussian heat source that diffuses in
time. Therefore, the “experimental data” problem writes:

⎧⎪⎪⎨⎪⎪⎩
𝑘𝑥
𝜕2𝑇
𝜕𝑥2

+ 𝑘𝑦
𝜕2𝑇
𝜕𝑦2

= 𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
in Ω× [0, 𝑇𝑓 ),

𝑇 (𝑥, 𝑦, 𝑡 = 0) = 1
𝜎22𝜋 exp

−
(
𝑥−𝑠𝑥

)2+(𝑦−𝑠𝑦)2
2𝜎2 in Ω,

∇𝑇 ⋅ 𝐧 = 0 on 𝜕Ω,

(29)

where 𝜌 is the density, 𝐶𝑃 is the specific heat, 𝑇𝑓 the final time, 𝑘𝑥 and

𝑘𝑦 the thermal conductivity along the 𝑥 and 𝑦 directions respectively

and 𝐧 the outward normal from Ω. Thus, the parameters defining the 
parametric space are 𝑠𝑥, 𝑠𝑦, 𝑡, 𝑘𝑥 and 𝑘𝑦: (𝑠𝑥, 𝑠𝑦, 𝑡, 𝑘𝑥, 𝑘𝑦) ∈ℝ5. Then a 
perturbation coefficient 𝜅 is introduced in the equations. Therefore, the

“numerical data” problem writes:

⎧⎪⎪⎨⎪⎪⎩
𝜅𝑘𝑥

𝜕2𝑇
𝜕𝑥2

+ 𝜅𝑘𝑦
𝜕2𝑇
𝜕𝑦2

= 𝜌𝐶𝑃

𝜅

𝜕𝑇

𝜕𝑡
in Ω× [0, 𝑇𝑓 ),

𝑇 (𝑥, 𝑦, 𝑡 = 0) = 1
𝜎22𝜋 exp

−
(
𝑥−𝜅𝑠𝑥

)2+(𝑦−𝜅𝑠𝑦)2
2𝜎2 in Ω

∇𝑇 ⋅ 𝐧 = 0 on 𝜕Ω.

(30)

First, the finite elements resolution of both problems is presented for

the test data set. As it can be seen in Fig. 8, the 𝜅 coefficient introduces

an error between the so identified experimental and numerical data.

Here, the value chosen for 𝜅 is 0.7. Indeed, it can be noted that the 
numerical data is left-down moved and less diffused, which is coherent

with how the perturbation coefficient is introduced in the problem (30).

The OT-based “digital twin” is trained and applied to the “virtual

twin” simulations of the test set. The results are presented in the Fig. 9.

It can be observed that the OT-based correction leads to a solution

very close to the experimental data. In order to quantify the remaining

error between the corrected “virtual twin” simulations and the measure-

ments, the three error metrics are computed. Moreover, these metrics

are also computed between the original “virtual twin” and the exper-

imental data. The error values are presented in the Table 1. It can be

observed that the original ignorance gap between the “virtual twin” and

the experimental measurements is considerably reduced thanks to the

OT-based ignorance model.

Next, the influence of the perturbation coefficient 𝜅 is explored. The

evolution of the three error metrics for a range of values of 𝜅 is pre-
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Fig. 9. “Hybrid twin” approach on the test set: “virtual twin” simulations cor-

rected by the OT-based “digital twin”.

Table 1

Error metrics for the test set between the experimental

and the numerical data, and between the experimental

and the OT-based corrected data.

𝜀𝑚𝑎𝑥 [%] 𝜀𝑝𝑜𝑠 𝑊 2
2

Numerical Data 32.4 0.2 0.2

HT Corrected Data 8.1 0.004 0.02

sented in Fig. 10. It can be first observed that the error is null for 𝜅 = 1
since we are comparing a finite element solution with itself. Moreover,

note that the three error for both the original and the corrected “vir-

tual twin” simulations are symmetric with respect to 0. This is coherent 
since the further 𝜅 is from 1, the bigger the ignorance gap between sim-

ulation and measurement is. Finally, and most importantly, it should be

noticed that the corrected ignorance gap is much more smaller than the

original simulation-measurement gap, highlighting the performance of

the OT-based “hybrid twin” approach.

4.3. Fluid dynamics problem

In this section, the methodology developed is applied to a fluid dy-

namics problem. Again, since the access to experimental data is very

expensive and for operational reasons, the ignorance gap between mea-

surement and prediction is simulated. The same perturbation coefficient

strategy, followed in the heat transfer example, is here applied.

A 3D steady laminar jet into a rectangular channel is studied. In-

deed, as it is illustrated in the Fig. 11(a), a laminar jet (𝑅𝑒 = 100) enters 
a rectangular channel (Ω𝑐ℎ𝑎𝑛𝑛𝑒𝑙) of length 𝐿 and base 𝑙× 𝑙 through a cir-

cular hole of radius 𝑟 (Ω𝑖𝑛𝑙𝑒𝑡). As indicated in (32), the fluid, considered 
as incompressible, has a parabolic profile at the inlet domain Ω𝑖𝑛𝑙𝑒𝑡 with 
a maximum velocity of 𝑣𝑚𝑎𝑥. Moreover, the inlet domain Ω𝑖𝑛𝑙𝑒𝑡 is param-

eterized by its center 𝑥 and 𝑦 coordinates, 𝑠𝑥 and 𝑠𝑦 respectively, and by

its radius 𝑟. Therefore, the equation of the circle defining Ω𝑖𝑛𝑙𝑒𝑡(𝑠𝑥, 𝑠𝑦, 𝑟)
writes:

(𝑥− 𝑠𝑥)2 + (𝑦− 𝑠𝑦)2 = 𝑟2. (31)

A non slip condition is imposed on the side walls (Ω𝑤𝑎𝑙𝑙) and on the 
remaining inlet section wall. Finally, a zero gradient condition is im-

posed on the outlet section (Ω𝑜𝑢𝑡𝑙𝑒𝑡). Therefore, the “experimental data” 
problem writes:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝒗 ⋅∇𝒗 = −1
𝜌
∇𝑝+ 𝜈∇2𝒗 in Ω𝑐ℎ𝑎𝑛𝑛𝑒𝑙,

∇ ⋅ 𝒗 = 0 in Ω𝑐ℎ𝑎𝑛𝑛𝑒𝑙,
𝒗(𝑥, 𝑦, 𝑧 = 0)

= 𝑣𝑚𝑎𝑥
(
1 − 0.5

((
𝑥−𝑠𝑥
𝑟

)2
+
(
𝑦−𝑠𝑦
𝑟

)2
))

𝒛 in Ω𝑖𝑛𝑙𝑒𝑡(𝑠𝑥, 𝑠𝑦, 𝑟),

𝒗 = 0 on Ω𝑤𝑎𝑙𝑙,
∇𝒗 ⋅ 𝒏 = 0 on Ω𝑜𝑢𝑡𝑙𝑒𝑡,

(32)

where 𝜌 is the density, 𝜈 the kinematic viscosity, 𝒏 is the outward nor-

mal from Ω𝑜𝑢𝑡𝑙𝑒𝑡 and 𝒛 the elementary vector of the 𝑧 axis. Thus, the 
parameters defining the parametric space are 𝑠𝑥, 𝑠𝑦, and 𝑟: (𝑠𝑥, 𝑠𝑦, 𝑟) ∈
ℝ3. Then a perturbation coefficient 𝜅 is introduced in the problem. This 
time, the perturbation affects the position of the center of the inlet do-

main Ω𝑖𝑛𝑙𝑒𝑡 and the maximum velocity of the parabolic inlet profile 𝑣𝑚𝑎𝑥. 
Therefore, the “numerical data” problem writes:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝒗 ⋅∇𝒗 = −1
𝜌
∇𝑝+ 𝜈∇2𝒗 in Ω𝑐ℎ𝑎𝑛𝑛𝑒𝑙,

∇ ⋅ 𝒗 = 0 in Ω𝑐ℎ𝑎𝑛𝑛𝑒𝑙,
𝒗(𝑥, 𝑦, 𝑧 = 0)

= 𝜅𝑣𝑚𝑎𝑥
(
1 − 0.5

((
𝑥−𝜅𝑠𝑥
𝑟

)2
+
(
𝑦−𝜅𝑠𝑦
𝑟

)2
))

𝒛 in Ω𝑖𝑛𝑙𝑒𝑡(𝜅𝑠𝑥, 𝜅𝑠𝑦, 𝑟),

𝒗 = 0 on Ω𝑤𝑎𝑙𝑙,
∇𝒗 ⋅ 𝒏 = 0 on Ω𝑜𝑢𝑡𝑙𝑒𝑡.

(33)

In order to solve both problems, the channel is meshed with an

hexahedral mesh as it is shown in the Fig. 11(b). It should be noted

that giving the parametric inlet domain Ω𝑖𝑛𝑙𝑒𝑡(𝑠𝑥, 𝑠𝑦, 𝑟), a mesh morfing 
is computed for every point of the design of experiment. Indeed, the

shape of the mesh is changed while preserving the connectivity. Only

Fig. 10. Evolution of the three error metrics for a range of values of 𝜅: the error between the original “virtual twin” and the experimental data is plotted in blue and

the error between the corrected “virtual twin” and the experimental data is plotted in red.
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Fig. 11. (a) Scheme of the rectangular channel geometry: blue surface - Ω𝑤𝑎𝑙𝑙 , green surface - Ω𝑖𝑛𝑙𝑒𝑡, red surface - Ω𝑜𝑢𝑡𝑙𝑒𝑡 , red contour - plane of analysis Ω. 
(b) Hexahedral mesh of the channel.

Fig. 12. Mesh of the inlet plane (𝑧 = 0): (a) Original mesh with Ω𝑖𝑛𝑙𝑒𝑡 at the center of the inlet plane, i.e. 𝑠𝑥 = 𝑠𝑦 = 0, (b) Morfed mesh for a point of the plan of 
experiment where 𝑠𝑥 ≠ 0, 𝑠𝑦 ≠ 0 and with a different 𝑟. The inlet domain Ω𝑖𝑛𝑙𝑒𝑡 has been circled in red.

Fig. 13. Test set data points: (a) OpenFOAM solution of the problem (32) corresponding to the experimental data. (b) OpenFOAM solution of the problem (33)

corresponding to the “virtual twin” simulation.

node positions are updated. An example is showed in the Fig. 12. The

Computational Fluid Dynamics OpenFOAM code is used to solve both

finite volumes problems. The SimpleFoam solver is selected to solve

the Navier-Stokes equations. The 𝑧 component of the velocity field is

monitored on a plane Ω perpendicular to the channel at 𝑧 = 𝑧𝑝, as it is 
represented in the Fig. 11(a).

First, the resolution of both problems is presented in the plane Ω for 
the test data set in the Fig. 13. Again, the 𝜅 coefficient introduces an
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Fig. 14. “Hybrid twin” approach on the test set: “virtual twin” simulations cor-

rected by the OT-based “digital twin”.

Table 2

Error metrics for the test set between the experimental

and the numerical data, and between the experimental

and the OT-based corrected data.

𝜀𝑚𝑎𝑥 [%] 𝜀𝑝𝑜𝑠 𝑊 2
2

Numerical Data 18.2 0.05 0.06

HT Corrected Data 5.6 0.007 0.02

error between the so identified experimental and numerical data. Here,

the value chosen for 𝜅 is 1.4. Indeed, it can be noted that the numerical 
data is more distanced from the center of the section and the ampli-

tude of the jet is higher, which is coherent with how the perturbation

coefficient is introduced in the problem (33).

Then, the OT-based “digital twin” is trained and applied to the “vir-

tual twin” simulations of the test set. The results are presented in the

Fig. 14. It can be observed that the OT-based correction leads to a solu-

tion very close to the experimental data. Again, in order to quantify the

error, the three error metrics are applied between the original numer-

ical simulations and the experimental data and between the corrected

“virtual twin” and the measurements. The error values are presented in
the Table 2. The same remark as for the heat problem can be made,

the original ignorance gap between the “virtual twin” and the experi-

mental measurements is considerably reduced thanks to the OT-based

ignorance model.

5. Conclusion

Data is being widely used in all fields including engineering. From

its initial calibration role, data has acquired a much more important

role training models able to replace complex engineering systems. To

train those models engineers wish to use as much data as possible and

as accurately as possible, but this becomes really expensive in many

domains. The “hybrid twin” methodology brings a solution to this prob-

lem by correcting numerical data to be closer to measurement data.

However, in fields such as fluid dynamics the classical “hybrid twin”

approach leads to non physical results. Combining the “hybrid twin”

rationale with the simplified Optimal Transport Monge problem, our

approach leads to an OT-based “digital twin” able to correct “virtual

twin” simulations. The SPH decomposition of both the experimental

and “virtual twin” data is the key step of our approach, which allows

to compute and interpolate the simulation-measurement gap from an

Optimal Transport point of view. Therefore, the proposed OT-based

“hybrid twin” methodology can correct numerical simulations giving

solutions very close to the measurement counterpart data and leading,

thus, to a faster and cheaper access to data almost as much accurate

as experimental solutions. Finally, for operational reasons and since the

access to experimental data is very expensive, the ignorance gap be-

tween measurement and prediction for the assessment examples has

been simulated. Indeed, the main goal of this paper was to introduce

the OT-based “hybrid twin” methodology. However, as noted before,

further work is planned and in progress to apply this approach to a real

industrial case.
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Appendix A. Partial least squares regression: NIPALS algorithm

Let us introduce some labeled data of, for instance, a complex en-

gineering system. This data is collected in two matrices, 𝑋 and 𝑌 ,

where each row represents an observation of the system (e.g. at dif-

ferent points in time) and each column a property of the measurement,

called variable. The variables in 𝑋, called explanatory variables, are

supposed to be always available from the system while the variables

in 𝑌 , called response variables, are not always available and are the

ones we want to predict in the future. Let us suppose that there are 𝑁
observations of the system, 𝐾 explanatory variables and 𝑀 response

variables.

Principal Components Analysis (PCA) is a methodology consisting

of rewriting a rank 𝑟 matrix 𝑋 as a sum of 𝑟 rank 1 matrices. These 
matrices of rank 1, 𝑀ℎ, can be written as outer products of two vectors, 
a score one 𝑡ℎ and a loading one 𝑝𝑇

ℎ
:

𝑋 = 𝑡1𝑝𝑇1 +…+ 𝑡𝑟𝑝𝑇𝑟 , (34)

or in the equivalent form 𝑋 = 𝑇𝑃 𝑇 , where 𝑃𝑇 is built with the loading 
vectors 𝑝𝑇

ℎ
as rows and 𝑇 with the score vectors 𝑡ℎ as columns. The 

loading vectors represent the direction vectors of the best-fit lines of the

data, i.e. the lines that best explain all the observations with minimum

error. These loading vectors are orthonormal. The score vectors are the

distances from the origin to the projections of the observations onto

these lines [14]. A score/loading couple is also called a latent variable

or principal component.

The Non-linear Iterative Partial Last Squares (NIPALS) algorithm

is a sequential methodology of determining the principal components

[12,16]. The NIPALS method sequentially extracts each component,

from the first component, direction of greatest variance, until the user

considers that enough components are computed.

Indeed, from the 𝑋 matrix, the algorithm calculates 𝑡1 and 𝑝𝑇1 . Then

the outer product, 𝑡1𝑝𝑇1 , is subtracted from 𝑋 and the residual 𝐸1 is 
determined, which is used to compute 𝑡2 and 𝑝𝑇2 and so on:

𝐸ℎ =𝐸ℎ−1 − 𝑡ℎ𝑝𝑇ℎ . (35)

The NIPALS algorithm follows the next steps:

1. take a column vector 𝑥𝑗 from 𝑋 and call it 𝑡ℎ: 𝑡ℎ = 𝑥𝑗
2. calculate 𝑝𝑇

ℎ
: 𝑝𝑇
ℎ
= 𝑡𝑇

ℎ
𝑋∕𝑡𝑇

ℎ
𝑡ℎ

3. normalize 𝑝𝑇
ℎ

to length 1: 𝑝𝑇
ℎ
= 𝑝𝑇

ℎ
∕ ‖‖‖𝑝𝑇ℎ ‖‖‖

4. calculate 𝑡ℎ: 𝑡ℎ =𝑋𝑝ℎ∕𝑝𝑇ℎ 𝑝ℎ
5. compare the 𝑡ℎ used in step 2 with the one obtained in step 4. The

iteration has converged if they are equal. If not, go again to step 2.

Note that once the ℎth component is determined, the 𝑋 matrix in
2nd and 4th steps must be substituted by its residual 𝐸ℎ+1.

It can be noted that NIPALS gives the same solution than the one

resulting from the eigenvector formulae. Nevertheless, introducing the

NIPALS methodology is necessary for a good understanding of PLS.
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Fig. 15. Partial Least-Squares regression conceptual scheme where 𝑁 is the

number of observations, 𝐾 the number of explanatory variables, 𝑀 the number

of response variables and 𝑅 the number of components retained.

Indeed, the PLS model relies on the properties of the NIPALS algo-

rithm. The PLS model consists in outer relations (for the 𝑋 and 𝑌 blocks

individually) and an inner relation (linking both blocks). The outer re-

lation for the 𝑋 block reads:

𝑋 = 𝑇𝑃 𝑇 +𝐸, (36)

where 𝑇 and 𝑃𝑇 are the sets of scores and loading for the 𝑋-space

respectively and 𝐸 the residual matrix. Then, the outer relation for the

𝑌 block is:

𝑌 =𝑈𝑄𝑇 + 𝐹 , (37)

where 𝑈 and 𝑄𝑇 are the sets of scores and loading for the 𝑌 -space

respectively and 𝐹 the residual matrix. Finally, the inner relation is a
linear one between the scores 𝑈 and 𝑇 through the diagonal matrix 𝐵:

𝑈 = 𝐵𝑇 . (38)

Note that 𝑋 and 𝑌 data matrices are assumed scaled and mean-

centered. These three relations are graphically presented in Fig. 15 and

represent the three simultaneous objectives of the PLS model:

• Best explain the 𝑋-space.

• Best explain the 𝑌 -space.

• Get the strongest relationship between the 𝑋 and 𝑌 -space.

Indeed, the PLS method extracts the scores 𝑈 and 𝑇 such that they

have maximal covariance

Cov(𝑡ℎ, 𝑢ℎ) =
(
𝑡ℎ − 𝑡ℎ

)(
𝑢ℎ − 𝑢ℎ

)
, (39)

which can be rewritten as:

Cov(𝑡ℎ, 𝑢ℎ) = Correlation(𝑡ℎ, 𝑢ℎ) ×
√
𝑡𝑇
ℎ
𝑡ℎ ×

√
𝑢𝑇
ℎ
𝑢ℎ, (40)

where it can be observed that maximizing the covariance between

scores is equivalent to maximizing the three previous objectives.

Therefore, it is important to note that, since the principal compo-

nents are separately determined for the two spaces, a weak relation

will exist between each other. Thus, in order to give information about

each other, PLS regression applies the NIPALS method with exchanged

scores. Indeed, instead of applying the NIPALS algorithm A to each

block and then build a regression between the scores of each space, the

PLS-NIPALS method exchanges 𝑡ℎ and 𝑢ℎ in step 2. Moreover, since the

calculations order used for the PCA has been modified, the algorithm

does not give orthogonal components anymore. To solve this issue, the

𝑝𝑇
ℎ

are first replaced by weights 𝑤𝑇
ℎ

and an extra loop is included after

convergence. The modified NIPALS algorithm with exchanged scores

writes:

1. take a column vector 𝑦𝑗 from 𝑌 and call it 𝑢ℎ: 𝑢ℎ = 𝑦𝑗
2. calculate 𝑤𝑇

ℎ
: 𝑤𝑇

ℎ
= 𝑢𝑇

ℎ
𝑋∕𝑢𝑇

ℎ
𝑢ℎ

3. normalize 𝑤𝑇
ℎ

to length 1: 𝑤𝑇
ℎ
=𝑤𝑇

ℎ
∕ ‖‖‖𝑤𝑇ℎ ‖‖‖

4. calculate 𝑡ℎ: 𝑡ℎ =𝑋𝑤ℎ∕𝑤𝑇ℎ𝑤ℎ
5. calculate 𝑞𝑇

ℎ
: 𝑞𝑇
ℎ
= 𝑡𝑇

ℎ
𝑌 ∕𝑡𝑇

ℎ
𝑡ℎ

6. normalize 𝑞𝑇
ℎ

to length 1: 𝑞𝑇
ℎ
= 𝑞𝑇

ℎ
∕ ‖‖‖𝑞𝑇ℎ ‖‖‖

7. calculate 𝑢ℎ: 𝑢ℎ = 𝑌 𝑞ℎ∕𝑞𝑇ℎ 𝑞ℎ
8. compare the 𝑡ℎ in 4th step with the one in the preceding iteration

step. The algorithm has converged if they are equal (within a cer-

tain tolerance). If not, go to step 2.

9. calculate 𝑋 loadings: 𝑝𝑇
ℎ
= 𝑡𝑇

ℎ
𝑋∕𝑡𝑇

ℎ
𝑡ℎ

10. normalize 𝑝𝑇
ℎ

: 𝑝𝑇
ℎ
= 𝑝𝑇

ℎ
∕ ‖‖‖𝑝𝑇ℎ ‖‖‖

11. normalize 𝑡𝑇
ℎ

: 𝑡𝑇
ℎ
= 𝑡𝑇

ℎ
∕ ‖‖‖𝑝𝑇ℎ ‖‖‖

12. normalize 𝑤𝑇
ℎ

: 𝑤𝑇
ℎ
=𝑤𝑇

ℎ
∕ ‖‖‖𝑝𝑇ℎ ‖‖‖

13. find the regression coefficient 𝑏ℎ for the inner relation: 𝑏ℎ =
𝑢𝑇
ℎ
𝑡ℎ∕𝑡𝑇ℎ 𝑡ℎ

It can be noted that if the 𝑌 block consists only in one variable,

steps 5 to 8 can be omitted by fixing 𝑞ℎ = 1. Moreover, once the ℎth 
component is calculated, 𝑋 and 𝑌 must be replaced by its respective

residuals 𝐸ℎ+1 and 𝐹ℎ+1:

𝐸ℎ =𝐸ℎ−1 − 𝑡ℎ𝑝𝑇ℎ ,𝐸0 =𝑋

𝐹ℎ = 𝐹ℎ−1 − 𝑏ℎ𝑡ℎ𝑞𝑇ℎ ,𝐹0 = 𝑌
(41)

In practice, the number of components retained 𝑅 can be chosen,

for instance, by analyzing the percentage of variance explained in the

response variable as a function of the number of latent variables.

Finally, in the prediction stage, for a new 𝑋 block the scores are

extracted using weights 𝑊 and loadings 𝑃

𝑡ℎ =𝐸ℎ−1𝑤ℎ

𝐸ℎ =𝐸ℎ−1 − 𝑡ℎ𝑝𝑇ℎ ,
(42)

and the new block 𝑌 is predicted

𝑌 =
∑
𝑏ℎ𝑡ℎ𝑞

𝑇
ℎ
, (43)

where the sum is over ℎ and for all the principal components that one

wants to keep. The PLS prediction model can also be written as:

𝑌 =𝑋𝑊 (𝑃𝑇𝑊 )−1diag(𝑏)𝑄𝑇 . (44)
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