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Abstract. We propose a new loss function that we call Laplacian loss,
based on spatio-temporal Laplacian representation of the motion as a
graph. This loss function is intended to be used in training models for
motion reconstruction through 3D human pose estimation from videos.
It compares the differential coordinates of the joints obtained from the
graph representation of the ground truth against the one of the esti-
mation. We design a fully convolutional temporal network for motion
reconstruction to achieve better temporal consistency of estimation. We
use this generic model to study the impact of our proposed loss function
on the benchmarks provided by Human3.6M. We also make use of vari-
ous motion descriptors such as velocity, acceleration to make a thorough
evaluation of the temporal consistency while comparing the results to
some of the state-of-the-art solutions.

Keywords: 3D human pose estimation, motion reconstruction, neural
network, loss functions, Laplacian representation, evaluation metrics

1 Introduction

The 3D human pose estimation is a topic that has been extensively studied in
recent years. The goal is to reconstruct the 3D skeletal pose from the image. One
way to achieve this goal involves first to estimate the 2D joint locations from
the image [5,18]. Then, from these 2D joint locations, the 3D skeletal pose can
be estimated. This process can be extended to video data. Given an input video
or a sequence of 2D joint locations for each frame of the video, the objective
becomes to compute the 3D joint positions for each frame. Working with video
brings some advantages. In particular, adding temporal information can improve
the learning of depth information [15]. Therefore, new solutions using temporal
features from the input data are the subject of recent research.

Many deep learning methods learn from temporal information. Among these,
previous methods based on Recurrent Neural Networks (RNN) have shown their
efficiency but in return are very time consuming. Other more efficient solutions
have then been proposed, based on convolutional neural networks [7,19]. In this



case, the motion is considered as a temporal signal of joint positions on which
convolution filters are applied. Some researchers propose to learn temporal fea-
tures from adjacent frames through a convolution network, and then regress this
information to estimate the central frame [17]. This solution improves the pose
estimation but the temporal consistency of the motion is not necessarily better
since the poses are still estimated one by one. In theory, the more accurate the
pose estimation per frame, the more continuous the reconstructed motion. How-
ever, sufficient accuracy to obtain a temporally plausible reconstructed motion
has not yet been achieved. Given this fact, we propose to use a convolutional
neural network, called CVM-Net, to reconstruct motion through sequence-to-
sequence pose estimation. The goal then becomes a motion reconstruction task.
In this paper, the idea is not to outperform the spatial accuracy of recent neu-
ral network approaches, but to propose an approach that better preserves the
temporal consistency.

Besides the design of this fully convolutional network, our main contribution
is the definition of a new loss function for sequence-to-sequence pose estimation,
called the Laplacian Loss Function. This function exploits a spatio-temporal
representation of the poses sequence, inspired by the Laplacian graph 3D + ¢
model [16]. Indeed, for this kind of sequence-to-sequence neural network, using
only the default Joint Position Loss function (average Euclidean loss for each
posture of the sequence), leads to the averaging of the posture errors over the
whole motion sequence. This is achieved by filtering out extreme postures and
by favouring those postures that are most representative of the training data. By
focusing on the Laplacian representation of motion, we take into account both
the spatial structure of each pose, constrained by the skeleton, and the temporal
trajectories of the skeletal joints.

Our goal is to preserve the temporal consistency of the reconstructed mo-
tion first and then achieve an acceptable spatial accuracy. Therefore, we need
adequate metrics for the evaluation of the neural network that consider the tem-
poral characteristics of movements. On the spatial aspect, the Mean Per-Joint
Positions Error (MPJPE) used in all state-of-the-art solutions is the best choice.
Most approaches limit their evaluation to this metric since most of them focus
only on achieving the best accuracy in reconstructing the joint positions. Very
few approaches make a temporal consistency evaluation. For that, they use the
Mean Per-Joint Velocity Error (MPJVE), that evaluates the estimated velocity
error of the joints, computed on adjacent poses. This metric is a good start to
evaluate the temporal consistency of a motion. However, motion characteristics
are not limited to the velocity. We propose to extend the evaluation to the accel-
eration, so we propose a metric to evaluate the acceleration of the reconstructed
motion, that is the Mean Per-Joint Acceleration Error, MPJAccE.

In this paper, we present in Section 3 the generic network for sequence-to-
sequence estimation that we propose and the reasons for our choice. In Sec-
tion 4, after presenting some traditional loss functions, we propose a new spatio-
temporal loss function based on the Laplacian representation of the motion.
Section 5 presents the extended metrics that we propose to evaluate the tem-



poral consistency of reconstructed motion. Finally in Section 6 we present and
discuss the results of our experiments, including an ablation study for the Lapla-
cian loss and the evaluation results based on metrics computed from motion
descriptors.

2 Related Work

In this paper, we address the issue of reconstructing motion from video through
3D human pose estimation.

2.1 3D Human Pose Estimation

3D human pose estimation consists in estimating 3D skeletal poses given an
image or 2D joint locations. According to the type of data used as input, we
have two main categories. The first category uses the image as input and directly
estimates 3D poses. In this case, the methods compute 2D and 3D features,
such as heat maps and other features (camera focal length, depth information)
to estimate the final 3D poses. These methods generally involve two stages: a
features detection stage followed by a 3D pose estimation [24, 9,12, 22]. Yang et
al. [24] use a 3D estimation pose network and a pose discriminator to ensure that
the estimated poses are plausible. Wei et al. [22] use a framework to generate
heat maps and bone maps in order to extract 2D pose hypotheses. They then use
a pose regressor or a selection-based algorithm on these hypotheses to compute
the final 3D pose.

In the second category, one starts by estimating 2D joint locations in the im-
age using a 2D pose estimator. From the estimated 2D joint locations, through
various methods, it is possible to estimate the corresponding 3D poses. The
main advantage of this approach is that it is more efficient on videos in the wild,
due to the use of state-of-the-art 2D estimators. Some researchers propose lifting
models [13, 3, 6, 26, 20, 27]. Martinez et al. [13] propose an approach using consec-
utive linear layers to perform a 2D-to-3D joint positions regression. Combining a
2D-t0-3D pose regression and a 3D-to-2D pose re-projection modules, Biswas et
al. [3] use information in . Chen et al. [6] present an unsupervised algorithm that
lifts 2D joints to 3D skeletons. They show that adding random 2D projections
and an adversarial network allows the training process to be self supervised using
geometric consistency. Shimada et al. [20] decide to first estimate 3D pose from
2D joints locations, and then make the estimated pose more realistic, through
foot contact prediction and physics-based pose optimization. Zou et al. [27] and
Zhao et al. [26] represent the 2D joint locations as a graph structure and use a
Graph Convolutional Networks to estimate the 3D pose from it. Azizi et al. [2]
encode transformations between joints using the Mobius Transformation and
propose a new light Spectral GCN to achieve state-of-the-art results. All these
approaches focus on 3D pose regression and achieves great results in 3D pose
estimation.



2.2 Motion Reconstruction

Network architecture Many 3D pose estimators are currently proposed in the
literature. Most of them only work on one image at a time. When receiving a
video as input, they estimate the pose at each frame, and then directly concate-
nate the outputs. This way of reconstructing a motion does not take into account
the temporal characteristics of motion. This leads to some unsteady movements
in the results, and very few approaches have considered these effects [14, 17,4,
19,21,23,7,8]. Among them, Metha et al. [14] choose to infer the pose at time
t — 1 to estimate the pose at time ¢. Wang et al. [21] represent the 2D skeleton
input as a spatio-temporal graph and propose a Graph Convolution Network to
predict 3D poses. Xu et al. [23] choose to first estimate 3D poses and then use a
trajectory completion framework to correct the sequence. More recently, Shi et
al. [19] propose a CNN approach coupled with a skeleton model to correct the
spatial joint positions. In their solution, two independent CNN models are first in
charge of estimating the sequence of rotations and the bone lengths to preserve
some of the skeleton constraints. From these features, they apply the forward
kinematics model to obtain the sequence of 3D poses. Another solution proposed
by Chen et al. [7] is to predict the length and direction of the bones through-
out the sequence and compute the 3D poses from these. Our approach is based
on temporal convolution to estimate 3D pose sequence from 2D joint locations
sequence (obtained from video using a state-of-the-art 2D pose estimator).

Loss function Since motion reconstruction refers to spatio-temporal data, it
is necessary to have an appropriate loss function to ensure a better learning
process. The loss functions used in 3D human pose estimation are insufficient
for this task because they focus on spatial accuracy alone. To solve this situation,
some researchers propose new loss functions based on temporal characteristics
of the motion. Among them, some choose to calculate the loss function by using
the first derivative, that is the velocity [25,4]. Wang et al. [21] propose a loss
function, called Motion Loss, computed from a motion pose encoding space.
They project the predicted and ground truth joint positions into this space and
compute the difference between the two encoded information. This difference
evaluates the quality of the reconstructed motion. Unlike them, we propose a
spatio-temporal loss function as a solution to the learning process.

3 Deep Learning and motion temporal features

The human pose estimation task consists in estimating with accuracy the joints
locations of the skeleton. Therefore, it mainly focuses on the spatial aspect of the
motion, whether it uses a single frame or multiple frames. Our aim is to preserve
the temporal aspect of the reconstructed motion, while achieving acceptable
joint position errors.

Recent approaches prove that including temporal features of the motion im-
proves the results in human pose estimation. A good technique to process tempo-
ral data is to use a RNN (Recurrent Neural Network). It allows to use information
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Fig.1: CVM-Net architecture. Temporal Convolution Neural Networks for mo-
tion reconstruction. This is a generic approach that combines 1D convolution to
transform the 2D poses sequence into a 3D poses sequence. It also learn long
duration relation between joints via dilation parameters




from previous frames to estimate the current one. However the computation is
time and resources consuming. To overcome this drawback, an efficient and less
consuming solution is to use Convolutional Neural Networks (CNN). In a sur-
vey conducted by Kiranyaz et al. [11], some studies on 1D convolution networks
prove that they have a low computational complexity and are well-suited for
low-cost and real-time applications. Besides, Arsalan et al. [1] have also proven
1D convolution to be effective for trajectory-based air writing recognition. By
considering a motion as a set of skeletal joint trajectories, 1D convolution is
therefore a suitable choice to build our model.

1D convolution applies filters using a time window. It takes as input b x
T; X Ciy and output b X Thyy X Coy, where b is the batch size, T, and Ty,
represent respectively the sequence lengths of the input and output, and Cjj,
and C,,; the channels or features for input and output. Moreover, we can use a
dilated convolution to apply filters on non-consecutive frames to learn features
at different time scales. Another advantage of the fully convolutional neural
network is that it does not require a fixed sequence length and as a result can
be easily generalized.

Like many recent solutions, we have built our CVM-Net neural network to
estimate poses through temporal convolution. By using multiple temporal con-
volution layers on frames in a time interval [t — 7,¢ 4 3], of length 7 + 1, the
accuracy of the the central frame estimation ¢ is improved. But unlike most
of these approaches, our solution estimates multiple output frames (T,,;) from
multiple input frames (T},), with Ty, = Tout.

We used this neural network to study of the different functions we propose
in this paper, namely the loss function and the motion evaluation metrics.

4 Loss Functions

The loss function is one of the main part of a neural network. This is a key
element in the training of neural networks, which indicates to the model its
erroneous behaviour and brings possible corrections. The loss function is chosen
according to the task at hand. Existing loss functions for human pose estimation
and motion reconstruction focus on either the spatial aspect or the temporal
aspect of the movement. Both are computed separately and them combined.
This can be a limitation since each aspect, spatial or temporal, is considered
independently. It is therefore necessary to find the appropriate coefficients of the
linear combination while computing the global loss. In this section, we propose
a loss function based on both the temporal and spatial characteristics of the
motion.

4.1 Existing Loss Functions

Joint Position Loss This is the most commonly used loss function in a single
frame pose estimation context. It computes an average distance between the



joint positions of the ground truth poses and the estimated poses. Applied to
multiple frames poses estimations it is defined as:

T J .
Y3 P = Puglla (1)
t=1 j=1

where P; ; and ﬁt,j are respectively the 3D estimated position and the 3D
ground truth position of joint j at time ¢. This function, if used solely as loss
function, works well for single frame pose estimation. But, when working on
motion reconstruction, it is limited because it tends to average the joint positions
loss over the whole sequence. The less represented poses in the motion can be
biased by the more represented ones, affecting the overall motion reconstruction.

<l
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Motion Loss Wang et al. [21] propose a loss function as a distance in motion
space. It is based on the encoding motion from a sequence of poses, by computing
differential values between same joints at different time scales. It can be a sub-
traction, an inner-product or a cross-product. They encode both the estimated
and the ground truth poses sequences. The loss is then computed between the
encoded ground truth and reconstructed poses. They then combine this motion
loss with the joint positions loss to compute an overall cost function defined by:

L=Lp+X*xLy (2)

where L); represents the motion loss, Lp the joint position loss and A a
coefficient to apply on the motion loss.

4.2 Laplacian Loss

We propose a loss function for spatio-temporal features learning, which is based
on the Laplacian representation of motion as a 3D + t graph, as defined by Le
Naour et al. [16]. The skeleton joints of the motion are considered as the nodes
of the graph. The 3D + ¢ graph is then obtained by i) first, connecting the joints
to form the skeleton at each frame; these are the spatial edges. ii) We then create
temporal edges by connecting joints between consecutive frames. Let’s consider
a motion of length 7" by a skeleton of J joints, and let v; ; be a node of the graph,
representing the joint j of the skeleton at time ¢. We create the temporal edges
by connecting v;; to v;;—1 and v; 41 which are the joints j of skeletons at time
t—1 and t+1 respectively. The graph 3D+t is then defined by G = (V, EgUET),
with V' = {v;,,} the set of all the joints, Eg the set of spatial edges and Er the
set of temporal edges.

Using this spatio-temporal graph allows to define in an unified structure,
the spatial and temporal relations between each joints of the sequence. From
the graph 3D-+t, we extract the matrix L. It is a square matrix of dimension
(N x N) where N = T x J represents the total number of joints (the number of
frames T in the sequence is multiplied by the number of joints J per skeleton).



Fig.2: Graph 3D+t of a motion of length 3 for a skeleton of 17 joints. The black
edges represent the temporal edges of E7 while the coloured edges represent the
spatial edges of Eg.

w;, ; represents the weight attributed to each edge of the graph. In our case we
apply uniform weights for both spatial and temporal edges.

_ lif(i,j)GES or Ep
1 0 otherwise

wi (3)
Let’s define the matrix A, so called differential coordinates matriz, computed
from the Laplacian matrix L and the joint positions matrix P is of dimension
(Nx3):A=LxP.
A is then of dimension (N x 3). The matrix A represents the differential co-
ordinates of each joint relatively to its neighbours. The closer the differential
coordinates of the estimated poses to those of the ground truth, the better the
reconstructed motion. We can therefore compute an average distance error be-
tween the differential coordinates of the ground truth and those of the estimation.
This distance represents our loss value computed as follows:

N
1 £ -
La= gy 2lan -4 (4)

where N = T.J is the total number of joints with T" the sequence length and J
the number of joints for a skeleton, A9 is the matrix of differential coordinates
computed from the ground truth and A9¢ the matrix of differential coordinates
computed from the estimation. By training the neural network with such a loss



function will allow to learn the connections between the joints locations it pre-
dicts, thus taking into account implicitly the skeletal structure and the temporal
evolution of the joints.

L computes the mean absolute error between the differential coordinates
extracted from the ground truth joint positions and the estimated joint positions.
This loss is based on a differential representation of the original output and does
not consider the absolute joint positions. Therefore we combine it with the joint
positions loss to compute an overall loss:

L=Lp+axLa (5)

where Lp is the joint positions loss, £ is the Laplacian loss and « is the
coefficient applied on the Laplacian loss.

5 Evaluation Metrics for Temporal Consistency
Performance

There are two existing metrics for evaluating human pose estimation. The main
metric used in the state of the art is the Mean Per Joint Position Error (MPJPE,
same formula as the Joint Position Loss 1). Tt evaluates the spatial accuracy
of the models, using the average errors in estimating the joint positions. The
lower the error, the better the accuracy. The Mean Per Joint Velocity Error, on
the other hand, evaluates the temporal consistency by computing the average
velocity error between the estimation and the ground truth. In the state-of-the-
art, it is computed as defined in equation 7. Temporal consistency refers to how
close the reconstructed motion is to the ground truth in terms of smoothness,
velocity, or acceleration.

Vit = Pjii1 — Pjy (6)

T—1 J
11 _
MPIVE = o % 5 ; Zl loej —Te 2 (7)
=iz

where v, ; and T, ; represent the velocity vectors of joint j at time ¢, respec-
tively from the ground truth and the estimation.

In order to extend the temporal consistency evaluation to other motion de-
scriptors. Therefore we define M PJAccE metric (Mean Per Joint Acceleration
Error in equation 9), which is based on acceleration.

aji+1 = Pjiya — 2% Pjpp1 + Pjy (8)

H

-2

MPJAccE =

T-2 3 )

J
Z llar,; — a2

where a; ; and @ ; represent the acceleration vectors of joint j at time ¢, respec-
tively from the ground truth and the estimation.

HM
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6 Experiments

6.1 Ablation Study

To evaluate the performance of our new loss function, we first set up training-
test experiments using the neural network architecture proposed in section 3.
We use the same training environment for each session. In these experiments,
we compare three configurations of loss functions.

— CVM-Net uses only the joint position loss Lp as cost function (baseline).
— CVM-Net 4+ L), uses a combination of the joint positions loss £p and the
Motion Loss L as proposed by Wang et al. [21] in an overall function.

— CVM-Net + L, finally uses a combination of the joint positions loss and

our Laplacian Loss L in an overall function.

Table 1: Comparison of the three loss functions: CVM-Net (baseline), CVM-Net
+ L, CVM-Net + LA, with the reconstructed errors MPJPE (under Protocol-
1) and MPJVE. Protocol-1 computes the MPJPE from joint positions relative
to the root joint (central hip) by aligning the root joints of both the estimation
and the ground truth. a) Comparison of loss functions with MPJPE; b) with
MPJVE. For both metrics, the lower the better.

(a) MPJPE comparison results in mm.

MPJPE Dir. Dis. Eat. Greet. Phon. Phot. Pos. Purch.

CVM-Net 85.25 129.41 109.17 101.22 117.17 137.31 86.12 293.37
CVM-Net w/ Ly 83.67 107.73 118.72 95.51 113.39 131.98 82.64 221.00
CVM-Net w/ LA 80.77 82.53 104.96 87.07 101.80 107.00 77.41 98.85

MPJPE Sit.  SitD. Smok. Wait. WalkD. Walk. WalkT. Avg

CVM-Net 152.75 248.98 119.87 105.45 261.62 87.20 87.81 142.47
CVM-Net w/ Ly 148.74 232.07 113.56 95.76 195.00 85.04 83.95 127.99
CVM-Net w/ L4 137.33 178.99 103.43 84.37 104.32 79.16 76.30 100.62

(b) MPJVE comparison results in mm/frame

MPJVE Dir. Dis. Eat. Greet. Phon. Phot. Pos. Purch. Sit.

CVM-Net 3.34 4.63 3.39 4.73 3.11 3.87 3.17 9.21 2.78
CVM-Net w/ La 3.25 4.73 3.15 4.44 291 3.84 2.95 11.39 2.54
CVM-Net w/ La 2.88 2.94 2.59 3.58 2.29 2.79 2.60 3.55 1.94

MPJVE SitD. Smok. Wait. WalkD. Walk. WalkT. Avg

CVM-Net 492 3.15 355 6.86 571 484 4.50
CVM-Net w/ Lp 4.64 287 3.29 6.83 501 4.22 4.42
CVM-Net w/ LA 3.22 2.25 2.56 4.13 4.20 3.60 3.01
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The study is achieved with the benchmark Human3.6M [10] that contains
millions of frames of captured data. For each configuration previously defined, we
evaluate the MPJPE (through Protocol-1) and MPJVE using 2D joint locations
ground truth as input (obtained from the benchmark). The evaluation consists of
using the full dataset for the training-evaluation experiments. The dataset is split
into a training set and a test set according to the subjects whose movements were
captured (subjects 1, 5, 6 and 7 for training and subjects 9, 11 for evaluation).

Table 1 presents the comparative results obtained with the different loss
functions within the framework of Protocol 1 of the Human3.6M benchmark.
Compared to the baseline, we observe an average decrease of 14.48mm when
we add the Motion Loss £, in the training process. In addition, the Laplacian
loss L provides a significant improvement of 41.85mm (average decrease in
MPJPE). This shows that combining the joint positions loss with our Laplacian
loss significantly improves accuracy. It also minimizes the velocity error by an
average of 1.49mm/ frame. This shows the efficiency of our spatio-temporal loss
function that combines both the spatial relationships (between joints of the same
skeleton) and the temporal relationships (between joints of consecutive frames).

Some visualisation results are displayed in Figure 3.

6.2 Evaluation Metrics Study

Usually, human pose estimators are evaluated with the MPJPE metric which
calculates the average error of the joint positions for each pose. Very few are
evaluated with the MPJVE metric, which calculates the error on the velocity
of movement. In our case, since we focus on the temporal aspect of motion,
we added to MPJPE and MPJVE, a new acceleration-based metric, MPJAccE
(see section 5). We compare our approach with some state-of-the art solutions
using these three metrics. We chose three different types of approaches based on
their input and output settings (sequence—to—sequence, sequence-to-pose, pose-
to-pose). First the approach of Pavllo et al. [17] is a sequence-to-pose approach
from which we derived ours. The second solution from Shi et al. [19] is one of
the best sequence-to-sequence approaches in motion reconstruction that makes
use of forward kinematics. The knowledge of the skeleton constraints (angle
limits, bones lengths) is embedded in this model. Finally, the solution from
Zhao et al. [26] is a pose-to-pose approach that achieves good results on 3D
human pose estimation. Table 2 shows the results obtained during our evaluation.
Our approach using La, although far behind the state-of-the art results for
MPJPE (2.5% less accurate), achieves good results for MPJVE and MPJAccE.
The MPJVE results show that our proposal is comparable to the other solutions,
although it is a generic approach. We achieve the best results for the MPJAccE
metric. Since our approach does not take into consideration the preservation
of skeletal bone lengths, unlike other methods, it is normal that the MPJPE
measurement is unfavourable to us. As for the MPJVE metric, which calculates
the vector of changes in position (both in velocity and direction), it filters in a
certain way the joint positions. The acceleration (second order derivative), which
characterizes the variations of the velocity, reflects another measure of motion
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Input Prediction GT

Fig. 3: Visualisation results of CVM-Net + £ on Human3.6m. On the left the
input as 2D joint locations. On the middle our prediction and on the right the
ground truth.

features that filters the velocity. The results on the two metrics MPJVE and
MPJAccE show that our method better preserves the temporal characteristics
of the original motion than other approaches.

7 Conclusion

In this paper we have presented a new spatio-temporal loss function based on the
representation of the motion as a 3D+t graph. We have shown that this function
improves both the spatial accuracy and the temporal consistency of 3D sequence-
to-sequence pose estimation for motion reconstruction. We have used a temporal
convolutional neural network for sequence-to-sequence pose estimation on a large
scale dataset Human3.6M. Although this generic model does not challenge state-
of-the art solutions on spatial accuracy with MPJPE evaluation, it has proven
the efficiency of the Laplacian Loss in the spatio-temporal encoding of motion
and the improvement of the temporal consistency. Moreover, such a solution is
to be preferred in a situation where we are interested in the differential features
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(speed, acceleration), for the in-depth analysis of the movement for example.
Based on these preliminary results, our future work will integrate this Laplacian
loss with other strategies — including bone length constraints — to improve the
spatial accuracy while preserving the current temporal consistency. We will also
integrate this loss function into the training of existing state-of-the-art methods
in order to further validate its efficiency and improve the results, both on spatial
and temporal aspects. Finally, we intend to propose a post-processing method
based on the Laplacian representation to correct the results of the methods
having obtained the best scores (spatial accuracy) and thus to obtain a better
temporal consistency.

In this work we also have proposed a new protocol for evaluating temporal
consistency in motion reconstruction through 3D sequence-to-sequence pose es-
timation. Velocity and acceleration measurements provide metrics that extend
the classical position metric and allow to evaluate different solutions according
to criteria related to the temporal quality of motion.
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Table 2: Comparison with state-of-the-art solutions. a) Comparison with MPJPE
under Protocol-1, b) MPJVE comparison, ¢) MPJAccE comparison. Best results
are in bold. Legend : (i) sequence-to-sequence approach, () sequence-to-pose
approach with multi-frames as input and single frame as output, (x) pose-to-
pose approach, f=frame

(a) MPJPE comparison results in mm.

MPJPE Dir. Dis. Eat. Greet. Phon. Phot. Pos. Purch.

Shi et al. [19] (1) 45.48 51.28 49.43 51.91 52.58 66.46 50.59 48.46
Pavllo et al. [17] (1) 33.88 43.99 44.28 48.96 44.62 65.80 32.79 55.12
Zhao et al. [26] (x) 38.62 43.08 35.89 40.15 40.85 50.14 42.56 40.40

Ours(+L£) (1) 80.78 82.50 104.44 87.03 101.16 106.88 77.43 98.24

MPJPE Sit.  SitD. Smok. Wait. WalkD. Walk. WalkT. Avg

Shi et al. [19] (1) 55.90 64.25 53.79 52.84 58.85 49.99 4825 53.47
Pavllo et al. [17] (1) 45.61 48.09 57.29 47.09 45.16 43.30 46.67 46.84
Zhao et al. [26] (x) 47.81 56.47 42.20 42.25 42.29 33.39 36.00 42.14
Ours(+£4) () 136.73 178.48 102.98 84.33 103.65 79.24 76.39 100.34

(b) MPJVE comparison results in mm/f

MPJVE Dir. Dis. Eat. Greet. Phon. Phot. Pos. Purch.

Shi et al. [19] (f) 3.08 3.38 2.41 3.64 2.39 3.41 271 287
Pavllo et al. [17] (f) 2.78 2.42 3.10 3.72 2.68 2.87 3.12 2.71
Zhao et al. [26] (x) 2.57 2.84 2.40 3.41 2.14 2.60 2.56 2.92

Ours(+£4) (1) 2.89 2.93 2558 3.58 229 2.79 2.60 3.54

MPJVE Sit. SitD. Smok. Wait. WalkD. Walk. WalkT. Avg

Shiet al. [19] ({) 1.53 2.19 244 269 556 4.43 413 3.12
Pavllo et al. [17] (1) 3.43 2.27 2.07 2.31 2.98 2.24 3.11 279
Zhao et al. [26] (x) 1.57 2.18 2.02 253 3.83 4.02 349 2.74
Ours(+£4) (1) 1.94 322 225 256 4.13 419 359 3.01

(c) MPJAccE comparison results in mm/f?

MPJAccE Dir. Dis. Eat. Greet. Phon. Phot. Pos. Purch.

Shi et al. [19] (1) 1.87 2.22 1.26 2.04 151 2.18 1.43 1.52
Pavllo et al. [17] (1) 2.33 2.05 2.47 276 2.13 2.88 2.56 2.26
Zhao et al. [26] (x) 1.74 1.94 1.61 2.40 1.40 1.81 1.64 2.15

Ours(+£4) (f) 1.121.211.03 1.42 0.98 1.23 1.06 1.83

MPJAccE Sit. SitD. Smok. Wait. WalkD. Walk. WalkT. Avg

Shi et al. [19] (1) 0.66 1.04 1.50 1.58 4.57 3.17 290 1.96
Pavllo et al. [17] (1) 2.72 2.05 2.09 2.07 234 1.81 264 234
Zhao et al. [26] (x) 1.02 1.52 1.23 1.64 283 3.01 234 189
Ours(+£a) () 088 1.91 0.88 1.03 1.91 193 1.50 1.33
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