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An algebraic algorithm for rank-2 ParaTuck-2 decomposition

Konstantin Usevich

Abstract

In this note we consider the problem of ParaTuck-2 decomposition of a complex three-way tensor. We
provide an algebraic algorithm for finding the rank-2 decomposition for ParaTuck-2 tensors. Our approach
relies only on linear algebra operations and is based on finding the kernel of a structured matrix constructed
from the tensor.

1. Introduction

ParaTuck-2 decomposition of 3-rd order tensors (multi-way arrays), proposed in [HL96], can be viewed
as a 2-level extension of the well-known CP (canonical polyadic) decomposition. It is relevant in several
applications, such as chemometrics [Bro98] and telecommunications [FdA14].A tensor (3-way array) T ∈
FN1×N2×N3 over a field F (F = R or C) admits a ParaTuck-2 decomposition with rank (R,S) if it frontal
slices can be written as

T :,:,k = ADk(G)FDk(H)BT, (1)

A ∈ FN1×R, B ∈ FN2×S , F ∈ FR×S , G ∈ FR×N3 , H ∈ FS×N3, and Dk(G) denotes the diagonal matrix
built from a k-th column of the matrix G. In a very special case, the Paratuck-2 decomposition reduces to
the CP decomposition (when R = S and F = Dk(H) = IR for all k in (1)). Generalizations of Paratuck-2
were also proposed for higher orders [FdA14], but we focus in this paper only on the third-order case ((1)).
In this paper, we also assume that R ≤ N1, S ≤ N1.

Similarly to the CP decomposition, ParaTuck-2 enjoys strong uniqueness properties [HL96]. Under
some conditions, the factors A, B, F , Dk(G), Dk(H) can be recovered uniquely, subject to scaling and
permutation ambiguities (similarly to the CP model). Despite the usefulness and the nice features of
ParaTuck-2, there are very few effective algorithms to find a factorization (1). Many standard optimization
tools, such as alternating least squares [Bro98, pp. 68–71] suffer from slow convergence and local minima.
In many appliactions and algorithms, however, it is often considered that at least one of the factors (for
example A) is known [dOFFB19], [Bro98, p. 213], which simplifies considerably the problem. In [Nas20] it
was suggested that double contractions may lead to another way of computing updates in the alternating
lease stuares strategy. There are also reformulations of the ParaTuck-2 decomposition as a structured
polyadic decomposition [FdA14], but these approaches do not currently yield a reliable way to compute the
decomposition.

In this paper, we focus on the case when R,S = 2 and provide an algebraic algorithm to compute a
rank-(2, 2) ParaTuck-2 decomposition if it exists. Our approach relies only on the linear algebraic operations
and make use of nonlinearly structured matrices constructed from a tensor. To our knowledge, it is the first
algebraic algorithm for ParaTuck-2 decomposition.

Notation. Tensor arrays, matrices, and vectors, will be respectively denoted by bold calligraphic letters,
e.g. A, with bold uppercase letters, e.g. M , and with bold lowercase letters, e.g. u; corresponding entries
will be denoted by Aijk , Mij , and ui. Operator •p denotes contraction on the pth index of a tensor; when
contracted with a matrix, it is understood that summation is always performed on the second index of the
matrix. For instance, (A •1 M)ijk =

∑
ℓ AℓjkMiℓ. We denote by T (1) ∈ FN1×(N2N3) and T (2) ∈ FN2×(N1N3)

the first and second unfoldings respectively of a tensor T
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2. Core tensor and its properties

In what follows, we assume F = C. We first note that the Paratuck-2 decomposition can be compactly
written using contractions

T = C •
1
A •

2
B, (2)

where C ∈ F
R×S×N3 is the core tensor with slices

C:,:,k = Dk(G)FDk(H). (3)

It is easy to see that (3) can be equivalently written as:

Cijk = FijGikHjk, (4)

where (4) is a generalization of the tensor product to product of matrices.

2.1. Basic considerations for the decomposition

Remark 2.1. In the simple (generic) case (when rank{A} = rank{T (1)} = R and rank{B} = rank{T (2)} =
S), we can always restrict ourselves to the case R = N1, S = N2; indeed, if R < N1, S < N2, we can first
compute the Tucker decomposition, and then compress to the case N ′

1 = R, N ′

2 = S.

Now let us assume that R = N1, S = N2, and that matrices A and B are invertible. If both matrices
are known, then we can obtain the core tensor as C = T •1 A

−1 •2 B
−1, and then the problem reduces to

decomposition of the core tensor.
In the following simple (generic) situation it is very easy to retrieve all the remaining factors from the

core tensor. Assume that there exists one fixed index r such that Cijr 6= 0 for any i, j. Then we have that
for any k

Cijk
Cijr

=
Gik

Gir

Hjk

Hjr

. (5)

In other words, for each k, the matrix X(k) ∈ FN1×N2 obtained by elementwise division of C:,:,k by C:,:,r

must be rank-one. Therefore, the matrices G and H can be recovered easily from the SVD of X(k).

3. Algorithms for the ParaTuck-2 decomposition

The main idea is to use the following equations for the core tensor.

3.1. Implicit equations for the core tensor

Note that the condition (5) requires the matrices X(k) defined in the same section to be rank one. It
is well known that the defining equations for the set of matrices of rank ≤ 1 is given by 2 × 2 minors.
Therefore, the condition becomes:

X
(k)
ij X(k)

pq −X
(k)
iq X

(k)
pj =

Cijk
Cijr

Cpqk
Cpqr

−
Ciqk
Ciqr

Cpjk
Cpjr

= 0

Therefore, by getting rid of the denominators, we get the equations

CijkCpqkCiqrCpjr − CiqkCpjkCijrCpqr = 0 (6)

It is easy to see that any core tensor (4) satisfies (6). But, of course (6) may define a larger set of tensors.
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3.2. Determinantal representation for the 2× 2 case

We will adopt the following simplified notation for the slices of the core tensor:

C:,:,k =

[
wk yk
xk zk

]
,

then the equation (6) becomes simply

wkzkxryr − xkykwrzr = 0, k, r ∈ {1, . . . , N3}. (7)

Then we can see that (7) is equivalent to

rank{Ψ(C)} ≤ 1, where Ψ(C) :=

[
w1z1 w2z2 · · · wN3

zN3

x1y1 x2y2 · · · xN3
yN3

]
. (8)

This is the idea that we will later on use for the decomposition: we will construct a structured matrix from
the tensor and look at its left kernel.

3.3. An algorithm for the 2× 2 case

We assume that the matrices A and B are invertible, and denote the inverses as

A
−1 = Ã =

[
ã1 ã2

]T
, B

−1 = B̃ =
[
b̃1 b̃2

]T
,

thus the core tensor will be
C = T •

1
Ã •

2
B̃.

In particular, we will have that

[
wk yk
xk zk

]
=

[
ãT

1T :,:,kb̃1 ãT

1T :,:,kb̃2

ãT
2T :,:,kb̃1 ãT

2T :,:,kb̃2

]
,

therefore the elements of the matrix Ψ(C) can be obtained as

[
wkzk
xkyk

]
=

[
(ã1 ⊠ ã2 ⊠ b̃1 ⊠ b̃2)

T

(ã2 ⊠ ã1 ⊠ b̃1 ⊠ b̃2)
T

]
vec{T :,:,k ⊠T :,:,k}. (9)

Next, we denote

T =

[
t1 t3
t2 t4

]

and define its Veronese embedding F2×2 → F10:

ϕ(T ) =
[
t21 t22 t23 t24 t1t2 t1t3 t1t4 t2t3 t2t4 t3t4

]T
.

We also denote the following map F2×2 × F2×2 → F10:

θ ([ u1 u3

u2 u4
] , [ v1 v3

v2 v4 ]) =
[
u1v1 u2v2 u3v3 u4v4 u1v2 + u2v1 u1v3 + u3v1 u1v4 + u4v1 u2v3 + u3v2 u2v4 + u4v2 u3v4 + u4v3

]T
.

Then we get that

Ψ(C) =




(
θ(ã1b̃

T

1 , ã2b̃
T

2 )
)T

(
θ(ã2b̃

T

1 , ã1b̃
T

2 )
)T


Φ(T ), where Φ(T ) =

[
ϕ(T :,:,1) · · · ϕ(T :,:,N3

)
]
.

Due to the condition (8), this implies that for a ParaTuck-2 decomposable tensor, it should hold that

rank{Φ(T )} ≤ 9.

This yields the following algorithm.
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Algorithm 1: Sketch, Paratuck, 2× 2 case
input : T

output: Ã, B̃

1. Construct Φ(T )
2. Determine the vector θ ∈ F10 in the left kernel, so that θTΦ(T ) = 0

3. Find Ã, B̃ such that
θ ∈ Span{θ(ã1b̃

T

1 , ã2b̃
T

2 ), θ(ã2b̃
T

1 , ã1b̃
T

2 )} (10)

3.4. Retrieving the factors from the kernels of a structured matrix

The last step of Algorithm 1 can be performed as follows. First, we define the following linear maps
M : F10 → F4×4,

M(θ) =




θ1
θ5
2

θ6
2

θ7
2

θ5
2 θ2

θ8
2

θ9
2

θ6
2

θ8
2 θ3

θ10
2

θ7
2

θ9
2

θ10
2 θ4


 ,

as well as the linear map S : F4×4 → F3×3:

S







M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44





 =



1 0 0 0
0 1 1 0
0 0 0 1







M11 M31 M13 M33

M21 M41 M23 M43

M12 M32 M14 M34

M22 M42 M24 M44







1 0 0
0 1 0
0 1 0
0 0 1


 .

Then an easy calculation shows that

(S ◦M)(θ) =



θ1 θ6 θ3
θ5 θ7 + θ8 θ10
θ2 θ9 θ4


 . (11)

Assuming, without loss of generality, that

ã1 =

[
−α1

1

]
, ã2 =

[
α2

−1

]
, b̃1 =

[
−β1

1

]
, b̃2 =

[
β2

−1

]
,

we obtain, after easy calculations that

(S ◦M)(θ(ã1b̃
T

1 , ã2b̃
T

2 )) = (S ◦M)(θ(ã1b̃
T

2 , ã2b̃
T

1 )) =




α1α2

−(α1 + α2)
1


 [

β1β2 −(β1 + β2) 1
]
. (12)

Therefore, we have that for any θ from the two-dimensional subspace defined in (10) the matrix S ◦
M(θ) is rank-one and is a multiple of the matrix in (12). Therefore, the coefficients α1, α2, β1, β2 can be
retrieved from any rank-one decomposition of S ◦M(θ) = σuvT and by taking the roots of the generating
polynomials, i.e. by using the relations:

u1 + u2t+ u3t
2 = u3(t− α1)(t− α2), v1 + v2t+ v3t

2 = v3(t− β1)(t− β2)

Finally, we note that from αk and βk we can easily find the matricesA = (Ã)−1 and B = (B̃)−1 themselves.
Indeed, from inversion of a 2× 2 matrix we have

A =

[
−α1 1
α2 −1

]
−1

=
1

α2 − α1

[
1 1
α2 α1

]
, B =

[
−β1 1
β2 −1

]
−1

=
1

β2 − β1

[
1 1
β2 β1

]
.

Without loss of generality (due to scaling and permutation ambiguities), we can drop the constants and
also swap the columns of A and B.
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Algorithm 2: Algebraic decomposition algorithm for Paratuck, R = S = 2 case
input : T ∈ RI1,I2,I3

output: A,B

1. Compute the HOSVD of rank (2, 2, I3): T = [[T c; Ac,Bc, II1 ]], Ac ∈ FI1×R,Bc ∈ FI2×S ;
2. Construct Φ(T c)
3. Compute the compact SVD Φ(T c) = UΦΣV

H

Φ , take θ = (UΦ):,10;
4. Build the matrix S = (S ◦M)(θ) according to (11)
5. Find the best rank-1 approximation σ̂ûv̂T of S (via SVD)
6. Find α1, α2, β1, β2 to be the roots of

û1 + û2t+ û3t
2, v̂1 + v̂2t+ v̂3t

2

7. Set

A
′ =

[
1 1
α1 α2

]
, B

′ =

[
1 1
β1 β2

]
.

and find A = AcA
′,B = BcB

′.
8. Find the core tensor C = T c •1 A

−1 •2 B
−1.

9. Set F = C:,:,1

10. Determine the factors G and H from rank-one approximations of elementwise divisions of C:,:,k

by C:,:,1, see Section 2.1.

3.5. Overall algorithm

Here we summarize the complete algorithm, i.e., what is actually computed.
Some remarks on Algorithm 2:

• The algorithm works in the generic case, but it can be modified to decide whether a given tensor
admit a complex ParaTuck-2 decomposition with ranks ≤ 2;

• In the noisy case, because we make a nonlinear transformation of our data (by the mapping Φ), at
the step 3, instead of the SVD (total least squares), it is better to take the so-called adjusted least
squares estimator (see [UM16] for more details);

• There is no restrictions in fixing the first rows of A and B to 1. We just need to allow for projective
roots (i.e. αk can be ∞).

3.6. Some numerical experiments

Algorithm 2 is implemented in Julia.

3.6.1. Deterministic example

We consider the following test example:

F =

[
1 1
2 −1

]
, A =

[
1 1
−1 2

]
, B =

[
1 1
1 −3

]

and

G =

[
−5 −4 −3 −2 −1 0 1 2 3 4
1 0 2 1 −3 2 −2 −1 0 1

]
, H =

[
−5 −4 −3 −2 −1 0 1 2 3 4
1 1 1 1 1 1 1 1 1 1

]
.

Algorithm 2 is able to compute a Paratuck-2 approximation with approximation error (squared Frobenius

norm of the difference: ‖T − T̂ ‖2F ) as 3.65 · 10−26; after refinement by alternating least squares, the
approximation error is reduced to 8.45 · 10−27. The alternating least squares was run for one iteration.

We also ran alternating least squares [Bro98, pp. 68–71] with random initialization (maximum 5000

iterations), and it gave an approximation error ‖T − T̂ ‖2F below 10−10 only in 8% of the cases (number of
Monte-Carlo runs was 100).
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3.6.2. Random example

We next consider random example with I1 = I2 = 10, I3 = 15 and R = S = 2. We generate 100
examples, with A, B, H , F , G having i.i.d. entries drawn randomly from N(0, 1). In 99 of 100 runs the

algebraic algorithm gave the approximation error ‖T − T̂ ‖2F below 10−20 (in the remaining one example it
was ∼ 10−18).
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[FdA14] Gérard Favier and André LF de Almeida. Overview of constrained parafac models. EURASIP
Journal on Advances in Signal Processing, 2014(1):142, 2014.

[HL96] Richard A Harshman and Margaret E Lundy. Uniqueness proof for a family of models shar-
ing features of tucker’s three-mode factor analysis and parafac/candecomp. Psychometrika,
61(1):133–154, 1996.

[Nas20] Kristina Naskovska. Advanced tensor based signal processing techniques for wireless communi-
cation systems and biomedical signal processing. PhD thesis, Ilmenau, Jan 2020. Dissertation,
Technische Universität Ilmenau, 2019.

[UM16] K. Usevich and I. Markovsky. Adjusted least squares fitting of algebraic hypersurfaces. Linear
Algebra Appl., 502:243–274, 2016.

6


	Introduction
	Core tensor and its properties
	Basic considerations for the decomposition

	Algorithms for the ParaTuck-2 decomposition
	Implicit equations for the core tensor
	Determinantal representation for the 22 case
	An algorithm for the 2 2 case
	Retrieving the factors from the kernels of a structured matrix
	Overall algorithm
	Some numerical experiments
	Deterministic example
	Random example


	Acknowledgements

