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Abstract

In this note we consider the problem of ParaTuck-2 decomposition of a three-way tensor. We provide an
algebraic algorithm for finding the ParaTuck-2 decomposition for the case when the ParaTuck-2 ranks are
smaller than the frontal dimensions of the tensors. Our approach relies only on linear algebra operations
and is based on finding the kernel of a structured matrix constructed from the tensor.

1. Introduction

ParaTuck-2 decomposition of 3-rd order tensors (multi-way arrays), proposed in [HL96], can be viewed
as a 2-level extension of the well-known CP (canonical polyadic) decomposition. It is relevant in several
applications, such as chemometrics [Bro98] and telecommunications [FdA14]. A tensor (3-way array) T ∈
FN1×N2×N3 over a field F (F = R or C) admits a ParaTuck-2 decomposition with rank (R,S) if it frontal
slices can be written as

T :,:,k = ADk(G)FDk(H)BT, (1)

A ∈ FN1×R, B ∈ FN2×S , F ∈ FR×S , G ∈ FR×N3 , H ∈ FS×N3, and Dk(G) denotes the diagonal matrix
built from a k-th column of the matrix G. In a very special case, the Paratuck-2 decomposition reduces to
the CP decomposition (when R = S and F = Dk(H) = IR for all k in (1)). Generalizations of Paratuck-2
were also proposed for higher orders [FdA14], but we focus in this paper only on the third-order case ((1)).
In this paper, we also assume that R ≤ N1, S ≤ N1.

Similarly to the CP decomposition, ParaTuck-2 enjoys strong uniqueness properties [HL96]. Under
some conditions, the factors A, B, F , Dk(G), Dk(H) can be recovered uniquely, subject to scaling and
permutation ambiguities (similarly to the CP model). Despite the usefulness and the nice features of
ParaTuck-2, there are very few effective algorithms to find a factorization (1). Many standard optimization
tools, such as alternating least squares [Bro98, pp. 68–71] suffer from slow convergence and local minima.
In many appliactions and algorithms, however, it is often considered that at least one of the factors (for
example A) is known [dOFFB19], [Bro98, p. 213], which simplifies the problem considerably. In [Nas20] it
was suggested that double contractions may lead to another way of computing updates in the alternating
least squares strategy. There are also reformulations of the ParaTuck-2 decomposition as a structured
polyadic decomposition [FdA14], but these approaches do not currently yield a reliable way to compute the
decomposition.

In this paper, we focus on the case when R ≤ N1, S ≥ N2 and N3 sufficiently large. We provide an
algebraic algorithm to compute the ParaTuck-2 decomposition under mild assumptions that hold in the
generic case. Our approach relies only on the linear algebraic operations and make use of nonlinearly
structured matrices constructed from a tensor. To our knowledge, it is the first algebraic algorithm for
ParaTuck-2 decomposition.

Notation. Tensor arrays, matrices, and vectors, will be respectively denoted by bold calligraphic letters,
e.g. A, with bold uppercase letters, e.g. M , and with bold lowercase letters, e.g. u; corresponding entries
will be denoted by Aijk , Mij , and ui. Operator •p denotes contraction on the pth index of a tensor; when
contracted with a matrix, it is understood that summation is always performed on the second index of the
matrix. For instance, (A •1 M)ijk =

∑
ℓAℓjkMiℓ. We denote by T (1) ∈ FN1×(N2N3) and T (2) ∈ FN2×(N1N3),

T (3) ∈ FN3×(N1N2) the first, second and third unfoldings of a tensor T , respectively. Let vec{T } ∈ FN1N2N3
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denote the vectorization of a tensor, and by matrN1,N2
{v} we denote for a vector v ∈ FN1N2 the matrix V

such that v = vec{V }.

2. Core tensor and its properties

2.1. Core tensor and its decomposition

In what follows, for simplicity, we assume F = R (however, the case F = R can be treated similarly).
We first note that the Paratuck-2 decomposition can be compactly written using contractions

T = C •
1
A •

2
B, (2)

where C ∈ FR×S×N3 is the core tensor with slices

C:,:,k = Dk(G)FDk(H). (3)

It is easy to see that (3) can be equivalently written as:

Cijk = FijGikHjk, (4)

where (4) can be viewed as a generalization of the tensor product of three vectors to a product of three
matrices.

If the core tensor is known, it is easy to find its factors under a simple assumption.

Assumption 1. There exists one fixed index r such that Cijr 6= 0 for any i, j.

Under Assumption 1, the factors can be obtained from the ratios of the slices. Indeed, for any k

Cijk
Cijr

=
Gik

Gir

Hjk

Hjr
; (5)

that is, for each k, the matrix X(k) ∈ FN1×N2 obtained by elementwise division of C:,:,k by C:,:,r must be
rank-one. Therefore, the matrices G and H can be recovered, for example, from the SVD of X(k).

2.2. Implicit equations for the core tensor

In this subsection, we provide equations that must be satisfied by a core tensor of the form (4). Note
that the condition (5) requires the matrices X(k) defined in the same section to be rank one. It is well
known that the defining equations for the set of matrices of rank ≤ 1 is given by 2 × 2 minors. Therefore,
the elements of the matrix X(k) must satisfy:

X
(k)
ij X(k)

pq −X
(k)
iq X

(k)
pj =

Cijk
Cijr

Cpqk
Cpqr

−
Ciqk
Ciqr

Cpjk
Cpjr

= 0

Therefore, by getting rid of the denominators, we get the equations

CijkCpqkCiqrCpjr − CiqkCpjkCijrCpqr = 0. (6)

Any core tensor of the form (4) satisfies (6) (see also Figure 1). As we will show later, under some
assumptions, equations (6) are the only nontrivial equations for the core tensor.

2.3. Determinantal representation

Note that the equation (6) can be rewritten

det

[
CijkCpqk CijrCpqr
CiqkCpjk CiqrCpjr

]
= 0 (7)

Then the system of equations (7) for all k, r ∈ {1, . . . , N3} is equivalent to vanishing of all 2× 2 minors of

Ψ(ijpq) := Ψ = [Ψℓk]
2,N3

ℓ,k=1 (8)
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CijkCpqkCiqrCpjr−
CiqkCpjkCijrCpqr = 0

i

p

j q

k

r

Figure 1: Equations for core tensor via in terms of the elements of the 2× 2× 2 subtensor C(i,p),(j,q),(k,r).

where [
Ψ1k

Ψ2k

]
=

[
CijkCpqk
CiqkCpjk

]
;

hence, for fixed (i, j) and (p, q), the set of equations (6) combined for all k, r is equivalent to

rank{Ψ(ijpq)} ≤ 1.

Remark 2.1. Under Assumption 1, we have that, for some index r, Ψ1r,Ψ2r 6= 0. Therefore, the rank of
Ψ(ijpq) is exactly 1, and there is only one (up to scaling) vector in the left kernel:

[
θ1 θ2

]
Ψ(ijpq) = 0. (9)

Note that, in terms of the factor matrices,

[
Ψ1k

Ψ2k

]
= GikGpkHjkHqk

[
FijFpq

FiqFpj

]
,

hence the vector in the left kernel can be chosen as

[
θ1
θ2

]
=

[
θ
(ijpq)
1

θ
(ijpq)
2

]
:=

[
−FiqFpj

FijFpq

]
. (10)

3. An algebraic approach to Paratuck-2 decomposition

The difficulty in finding the ParaTuck decomposition lies in finding the factor matrices A and B, and
we will show in this subsection how to find these matrix from a kernel of a structured matrix constructed
from the tensor. We will use the following following (lifting) matrix

Φ(T ) = (T (3))T ⊙ (T (3))T =
[
vec{T :,:,1}⊠ vec{T :,:,1} · · · vec{T :,:,N3

}⊠ vec{T :,:,N3
}
]
∈ R

(N1N2)
2×N3 ,

Remark 3.1. The columns of Φ(T ), in fact, correspond 4D tensors {T :,:,k ⊗ T :,:,k}
N3

k=1 reshaped in a
special way.

3.1. Key assumptions

In this paper, we use the following main assumptions.

Assumption 2. The matrix F does not have zero elements.

Assumption 3. The matrix H ⊙ H ⊙G⊙G has the maximal possible rank

rank{H ⊙H ⊙G⊙G} =
R(R+ 1)

2

S(S + 1)

2
.

Remark 3.2. The assumption (3) holds for general matrices H and G when N3 ≥ R(R+1)
2

S(S+1)
2 . Indeed,

the column space of H⊙H⊙G⊙G corresponds to the space of tensors (v⊗ v)⊗(w⊗w), whose dimension

does not exceed R(R+1)
2

S(S+1)
2 and is equal to this value for vectors in a general position.
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Note that the Assumption 2 also holds for general matrices CoreFront.
We will also use the following simplifying assumption.

Assumption 4. The matrices A and B are square (i.e., N1 = R, N2 = S) and invertible.

Remark 3.3. Assumption 4 can be relaxed to the following two conditions:

• A and B are full column rank,

• and the first and second unfoldings of the core tensor C(1) and C(2) are full row rank.

Indeed, under such conditions, we can transform the problem to Assumption 4, by computing the Tucker
decomposition of T first.

Remark 3.4. The relaxed assumption Remark 3.3 holds for general (random) matrices A and B, F ,G,H,
as long as N1 ≥ R,N2 ≥ R and N3 ≥ max(R,S). Indeed, if N1 ≥ R,N2 ≥ R, general matrices A,B are
full column rank. The condition on N3 is needed to obtain the correct ranks of the unfolding For example
C(1) is full row rank (for general factors F ,G,H) if N3 ≥ R because

C(1) =
[
Diag{G:1}F Diag{H:1} · · · Diag{G:N3

}F Diag{H:N3
}.
]

Then, under these assumptions, we get the following result on the rank of Φ(T ).

Lemma 3.5. Under Assumptions 2–4, the matrix Φ(T ) has the maximal possible rank:

rank{Φ(T )} =
R(R+ 1)

2

S(S + 1)

2
.

Proof. Note that

Φ(T ) = (B⊠A⊠B⊠A)Diag{vec{F }⊠vec{F }}(H ⊙G⊙H ⊙G).

The matrices (B⊠A⊠B⊠A) and Diag{vec{F ⊠F }} are invertible by Assumption 4 and Assumption 3,
which completes the proof.

3.2. Basis of the left kernel

Thanks to the assumptions from the previous subsection, and using the equations (6) of the core tensor,

we can get the basis of the kernel of the structured matrix Φ(T ). Let Ã = A−1 and B̃ = B−1 and

Ã =
[
ã1 · · · ãR

]
, B̃ =

[
b̃1 · · · b̃S

]
.

We also define the linear symmetrization map σ : RSRSR → RSRSR that maps

σ : y⊠z 7→
1

2
(y⊠z + z⊠y), for all y, z ∈ R

RS ,

i.e. it is a symmetrized matricization of the vector. The space σ(RSRSR) is thus the space of symmetric
vectors of dimension

RS(RS + 1)

2
.

Then we have the following proposition.

Proposition 3.6. For each pair 1 ≤ i < p ≤ R, 1 ≤ j < q ≤ S, define the following vector v(ijpq) ∈
σ(RSRSR):

v(ijpq) =θ
(ijpq)
1 σ(b̃j ⊠ ãi⊠ b̃q ⊠ ãp) + θ

(ijpq)
2 σ(b̃q ⊠ ãi⊠ b̃j ⊠ ãp),

where θ
(ijpq)
1 , θ

(ijpq)
2 are defined in (10). Then we have that:

1. Each vector v(ijpq) belongs to the left kernel of Φ(T );
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2. Under Assumptions 1, 2 and 4, these vectors are linearly independent and the vector space

V = {v(ijpq) : 1 ≤ i < p ≤ R, 1 ≤ j < q ≤ S} (11)

has dimesion

dimV =
R(R− 1)

2

S(S − 1)

2
; (12)

moreover, if, in addition, Assumption 3 is satisfied, they form a basis of the symmetrized left kernel

V = σ(lker{Φ(T }).

Proof. 1. We can rewrite (9) as

(θ1ej ⊠ei⊠ eq ⊠ ep + θ2eq ⊠ ei⊠ej ⊠ ep)Φ(C) = 0

Note that the columns of Φ(C) are spanned by the vectors w⊠w with w ∈ RRS , therefore the
corresponding symmetrization

(θ1σ(ej ⊠ei⊠ eq ⊠ ep) + θ2σ(eq ⊠ ei⊠ej ⊠ ep)) (13)

lies also in the left kernel of Φ(C). Now define Ã = A−1 and B̃ = B−1. Then we have

Φ(C) = (B̃⊠ Ã⊠ B̃⊠ Ã)Φ(T ),

hence v(ijpq) (which is a multilinear transformation applied to (13)) is in the left kernel of Φ(T ).

2. Thanks to Assumptions 1 and 2, the vectors in (13) are nonzero and they are linearly independent
because 1 ≤ i < p ≤ R, 1 ≤ j < q ≤ S, hence the set of V is also linearly independent.

3. Note that from the previous points of the proof, V ⊆ σ(lker{Φ(T }). To prove the equality, we count
the dimensions

dimσ(lker{Φ(T }) = dimσ(RSRSR)− rank{Φ(T )} =
RS(RS + 1)

2
−

R(R + 1)

2

S(S + 1)

2

=
R(R− 1)

2

S(S − 1)

2
= dim(V ),

which completes the proof.

3.3. Decoupling the factors from the left kernel

In this subsection, we show how to recover the factors from V defined in (11). Consider another
symmetrization combined with permutation π : RSRSR → RSSRR

π : z⊠y⊠ b⊠a 7→
1

2
(b⊠z + z⊠ b) +

1

2
(a⊠y + y⊠a), for all y,a ∈ R

R, z, b ∈ R
S .

Note that π(RSRSR) is spanned by the vectors of form (b⊠ b)⊠(a⊠a) and has dimension

R(R+ 1)

2

S(S + 1)

2
.

Then, obviously, we have

π(v(ijpq)) = (θ
(ijpq)
1 + θ

(ijpq)
2 )σ(b̃j ⊠ b̃q)⊠σ(ãi ⊠ ãp). (14)

Note that

(θ
(ijpq)
1 + θ

(ijpq)
2 ) = detF{i,p},{j,q}, where F{i,p},{j,q} =

[
Fij Fpj

Fiq Fpq

]

Then if all the 2× 2 minors of F are nonzero, then the dimension of π(V ) does not drop (is equal to (12)).
However, we can find the factors A and B under the following weaker conditions.
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Lemma 3.7. Let p1, . . . ,pL be the basis of π(V ).

1. Define the matrix

SA =
[
matrR2,S2{p1} · · · matrR2,S2{pL}

]
∈ R

R2×LS2

.

Then if the row Kruskal rank of F is at least 2:

krank{F T} ≥ 2,

then we have that

rank{SA} =
R(R− 1)

2
,

and the column space of SA is spanned by {σ(ãi⊠ ãp)}1≤i<p≤R

2. Similarly, for the matrix Define the matrix

SB =
[
(matrR2,S2{p1})

T · · · (matrR2,S2{pL})
T
]
∈ R

S2×LR2

.

Then if the (column) Kruskal rank of F is at least 2:

krank{F } ≥ 2,

then we have that

rank{SB} =
R(R− 1)

2
,

and the column space of SB is spanned by {σ(b̃j ⊠ b̃q)}1≤j<q≤S .

Proof. We will prove only the first statement, because the second is analogous. Indeed, we have under the
row Kruskal rank condition, for any 1 ≤ i < p ≤ R there exist 1 ≤ j ≤ q ≤ R such that detF{i,p},{j,q} 6= 0.
Therefore the space π(V ) includes as a subspace the space of vectors

span {σ(ãi ⊠ ãp)⊠w(i,p)}1≤i<p≤R,

where w(i,p) ∈ RR×R. Therefore, after the matricization, the column space of SA is spanned by

span {σ(ãi⊠ ãp)}1≤i<p≤R,

which completes the proof.

3.4. Extracting the spaces from the symmetrizations

Finally, we show how to extract the matrix A from

VA = span {σ(ãi⊠ ãp)}1≤i<p≤R.

Under Assumption 4, this space has dimension R(R− 1)/2 as all the vectors are linearly independent. Let

us denote by q1, . . . , qR(R−1)/2 ∈ RR2

the basis of this vector space VA, and by Q1, . . . ,QR(R−1)/2 ∈ RR×R

their matricizations
Qk = matr

R,R
{qk}.

We make use of the following lemma.

Lemma 3.8. The system of equations

aTQ1a = 0

...

aTQR(R−1)/2a = 0

(15)

has exactly R nonzero solutions (up to multiplications by scalar), which are {a1, . . . ,aR}
R
i=1
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Proof. Note that the system of equations (15) is equivalent to

aTσ(ãi ⊠ ãp)a, for all 1 ≤ i < p ≤ R,

where each individual equation is equivalent to

〈ãi,a〉〈ãp,a〉 = 0.

The statement can be proved by induction on R. For R = 2 (the base), we have just one equation

〈ã1,a〉〈ã2,a〉 = 0.

which gives the two possible solutions a1 or a2.
If R ≥ 3, then we there exists at least one index s such that 〈a, ãs〉 = 0. We can remove all the the

equations with i = s or p = s. Therefore a = A:,✄s
a′, where A:,✄s

∈ R
R×(R−1) is the matrix obtained by

removing the i-th column of A. Then if we define ã′ = AT

:,✄s
then

〈A:,✄s
a′, ãj〉 = 〈a′, ãj〉,

and note that
AT

:,✄s
[
ã1 · · · ��̃as · · · ãR

]
= IR−1;

hence, by the induction assumption, a′ = ej for some j ∈ {1, . . . , R− 1}, which completes the proof.

Finally, we show how to solve the system (15). By Lemma 3.8, the symmetrization of the left kernel of
the reshapings of Q is spanned by

σ(lker{
[
vec{Q1} · · · vec{QR(R−1)/2}

]
}) = span {ai⊠ai}

N
i=1.

Let Q̃1, . . . , Q̃R be the set of linearly independent symmetric matrices orthogonal to

span {Qk}
R(R−1)/2
k=1 .

Then we have that there exists a matrix W such that

Q̃k =
R∑

j=1

Wkjaja
T

j .

Thus the tensor Q̃ ∈ RR×R×R, whose frontal slices are Q̃:,:,k = Q̃k, must have the CPD

Q̃ = [[A,A,W ]],

and therefore A can be obtained from the unique CPD of Q̃.

4. The algorithm and the implementation details

4.1. Overall algorithm

Here we summarize the complete algorithm. Note that the algorithm is able to compute the decompo-
sition under Assumptions 1–4 and also when both F and F T have Kruskal rank at least 2.
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Algorithm 1: Algebraic decomposition algorithm for Paratuck
input : T ∈ RN1,N2,N3 , R, S

output: Â, B̂, F̂ , Ĝ, Ĥ
1. Compute the HOSVD of rank (R,S,N3): T = [[T c; Ac,Bc, II1 ]], Ac ∈ FI1×R,Bc ∈ FI2×S ;
2. Construct Φ(T c)

3. Compute (using the SVD) the matrix containing the basis V ∈ RR2S2×L of the symmetric part
Φ(T c) of the left nullspace of SVD (i.e., take the last (R2S2 −RS(R+ 1)(S + 1)/4) left singular
vectors and symmetrize them);

4. Build the matrices SA and SB respectively. For each of the matrices, compute the approximate
symmetric nullspaces and the corresponding bases

{Q̃A,1, . . . , Q̃A,R},

and
{Q̃B,1, . . . , Q̃B,S}.

5. Stack these matrices in tensors Q̃A and Q̃B and compute their CPDs

Q̃A = [[A′,A′,WA]] and Q̃B = [[B′,B′,WB]],

by exploiting performing joint diagonalization of matrices. 6. Set Â = AcA
′, B̂ = BcB

′.
8. Find the core tensor Ĉ = T c •1 A

† •2 B
†.

9. Set F̂ = C:,:,k, where k is some index.

10. Determine the factors Ĝ and Ĥ from rank-one approximations of elementwise divisions of Ĉ:,:,k

by F̂ .

4.2. Some numerical experiments

4.2.1. Deterministic example

We consider the following test example:

F =

[
1 1
2 −1

]
, A =

[
1 1
−1 2

]
, B =

[
1 1
1 −3

]

and

G =

[
−5 −4 −3 −2 −1 0 1 2 3 4
1 0 2 1 −3 2 −2 −1 0 1

]
, H =

[
−5 −4 −3 −2 −1 0 1 2 3 4
1 1 1 1 1 1 1 1 1 1

]
.

Algorithm 1 is able to compute a Paratuck-2 approximation with approximation error (squared Frobenius

norm of the difference: ‖T − T̂ ‖2F ) as 3.65 · 10−26; after refinement by alternating least squares, the
approximation error is reduced to 8.45 · 10−27. The alternating least squares was run for one iteration.

We also ran alternating least squares [Bro98, pp. 68–71] with random initialization (maximum 5000

iterations), and it gave an approximation error ‖T − T̂ ‖2F below 10−10 only in 8% of the cases (number of
Monte-Carlo runs was 100).

4.2.2. Random example

We next consider random example with I1 = I2 = 10, I3 = 15 and R = S = 2. We generate 100
examples, with A, B, H , F , G having i.i.d. entries drawn randomly from N(0, 1). In 99 of 100 runs the

algebraic algorithm gave the approximation error ‖T − T̂ ‖2F below 10−20 (in the remaining one example it
was ∼ 10−18).
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