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Abstract—Performance of state-of-the-art fingerprint denoising model on poor quality fingerprints degrades due to cross-
domain shift observed between training and testing domains. To address this limitation, we present a cross-domain
consistent fingerprint denoising model, which ensures that the output of two fingerprint images with the same ridge
structure, however varying contrast and ridge-valley clarity should be similar. Results indicate that the proposed CDC-
GAN outperforms state-of-the-art fingerprint denoising algorithms on challenging publicly available poor quality fingerprint
databases.

Index Terms—Fingerprints, Denoising, Biometrics.

Fig. 1. A fingerprint denoising model is trained on synthetically dis-
torted fingerprints (first row) and tested on real poor quality fingerprints
(last row). Cross-domain shift observed between the training and
testing data leads to unsatisfactory fingerprint denoising performance.

I. INTRODUCTION AND RELATED WORK

Automated fingerprint recognition systems are widely used for
access control, and law enforcement applications [1]–[7]. The
fingerprint denoising module is a key part of a fingerprint recognition
system. A fingerprint denoising algorithm improves the clarity of
ridges and valleys, removes structured background noise, and predicts
missing ridge information in poor quality fingerprint regions. As
a result, effective fingerprint denoising helps to correctly extract
ridge features, including minutiae, and obtain improved fingerprint
matching performance. However, due to the lack of annotations
for training a fingerprint denoising model, the model is trained
on synthetically distorted fingerprints and later tested on real poor
quality fingerprints (see Figure 1). However, the cross-domain shift
observed between training (source), and testing (target) domains leads
to poor generalization on challenging real poor quality fingerprints.
To address this limitation of state-of-the-art fingerprint denoising
models, this paper introduces Cross-Domain Consistent Generative
Adversarial Network (CDC-GAN), which exploits an unsupervised
consistency regularization loss in both source and target domains
to ensure cross-domain consistency in predictions of a fingerprint
denoising model.

Classical methods for fingerprint denoising exploit contextual
information [8] such as ridge orientations [9] to approximate the ridge
structure in poor quality fingerprint regions. Filtering both in spatial
[10] and frequency domain [11] are widely used classical methods
for fingerprint denoising. Recent deep learning based fingerprint
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Fig. 2. Flowchart illustrating that the proposed CDC-GAN exploits
supervised loss (L𝑑𝑒𝑛) by training on synthetically distorted and corre-
sponding good quality binarized fingerprints (source domain). Addition-
ally, to enforce cross-domain consistency, an unsupervised loss (L𝑐𝑑𝑐)
is introduced to ensure output for augmented and original fingerprint
samples (of both source and target domain) are similar.

denoising models translate a poor quality fingerprint into a better
quality one using an encoder-decoder backbone [12]–[19]. A detailed
survey on fingerprint denoising methods is presented in [20]. We
note that due to lack of annotated training dataset, all these methods
[12], [14]–[19] are trained on synthetically distorted fingerprints.
Subsequently, these methods are adversarially affected by the cross-
domain shift observed between the training (source) and the testing
(target) domains.

Research Contributions: To address the cross-domain shift, we
propose a novel Cross-Domain Consistent Generative Adversarial
Network (CDC-GAN) that is trained to ensure cross-domain consis-
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tency. To the best of our knowledge, this is the first work to introduce
a consistency regularization technique in the fingerprint denoising
domain. The cross-domain consistency regularization ensures that
the fingerprints with the same ridge structure, however, varying
backgrounds and contrast have similar outputs. Additionally, an
ablation study is conducted to provide insights on the individual
contribution of introducing consistency in source and target domains.
Results on challenging publicly available rural Indian fingerprints and
latent fingerprints signify superior denoising ability of the proposed
CDC-GAN compared to state-of-the-art.

II. PROPOSED METHOD

The proposed CDC-GAN is a deep neural network that is trained
to translate a poor quality grayscale fingerprint image to a binarized
fingerprint image with enhanced ridge-valley clarity. In order to
mitigate the cross-domain gap observed between training (source)
and testing (target) domains, in addition to a supervised fingerprint
denoising loss in the source domain, the proposed CDC-GAN
introduces an unsupervised cross-domain consistency loss in both
source and target domains. The schematic diagram of CDC-GAN is
presented in Figure 2. To formalize, let 𝑋𝑠 signifies the distribution of
distorted fingerprints in the source domain and corresponding labelled
denoised fingerprints. 𝑋𝑡 signifies the distributions of unlabelled
fingerprints in the target domain. 𝑋𝑠 = {(𝑥𝑠 , 𝑦𝑠)} and 𝑋𝑡 = {𝑥𝑡 }.
𝐿𝑑𝑒𝑛 signifies the baseline fingerprint denoising loss. 𝑜(𝑥𝑠) signifies
the denoised fingerprint generated by the proposed CDC-GAN.
𝑋𝑢𝑙 = {(𝑥′𝑠 ∈ 𝑋𝑠)∪(𝑥𝑡 ∈ 𝑋𝑡 )}. We note that 𝑥′𝑠 signifies an unlabelled
fingerprint sample from the source domain.

L𝑑𝑒𝑛 (𝑋𝑠) =
∑︁

(𝑥𝑠 ,𝑦𝑠 )∈𝑋𝑠

𝐿𝑑𝑒𝑛 (𝑜(𝑥𝑠), 𝑦𝑠) (1)

L𝑐𝑑𝑐 (𝑋𝑢𝑙) =
∑︁

𝑥𝑢𝑙∈𝑋𝑢𝑙

| |𝑜(𝑥𝑢𝑙) − 𝑜(𝑇 (𝑥𝑢𝑙)) | |1 (2)

L𝑡𝑜𝑡𝑎𝑙 = L𝑑𝑒𝑛 (𝑋𝑠) + 𝛼L𝑐𝑑𝑐 (𝑋𝑢𝑙) (3)

L𝑐𝑑𝑐 is an unsupervised loss that ensures consistency among the
output of the CDC-GAN such that the output for the input sample
𝑥𝑢𝑙 is similar to the output of the augmented sample 𝑇 (𝑥𝑢𝑙). Baseline
fingerprint denoising loss 𝐿𝑑𝑒𝑛 and model architecture are adopted
from [16]. The value of 𝛼 is empirically chosen to be 1 and 0.01
for the rural and latent fingerprints respectively. For the rural Indian
fingerprint database, changing the contrast and brightness while for
latent fingerprints, Gaussian blurring empirically turns out to be
the most effective augmentation. The choice of these augmentations
seems intuitive as the poor ridge-valley clarity observed in poor
quality rural Indian fingerprints and smudged patterns observed in
latent fingerprints are well represented by changing in contrast and
Gaussian blurring, respectively.

Implementation Details: The proposed CDC-GAN is a ResNet
based generative adversarial network [16] with an encoder-decoder
based network architecture with a total of 14141634 trainable
parameters. The model is implemented from scratch in Python using
the PyTorch library, version v1.11.0. The network is trained using
an Adam optimizer with a learning rate of 0.0002. The model is
trained with a batch size of 2 images. The training is conducted on a
GPU node with four NVIDIA GTX 1080 Ti GPU cards with 11GB
RAM per card and an E5-2620v4 CPU with 128GB RAM per node.

Fig. 3. Sample rural Indian fingerprints [21] demonstrating the supe-
rior fingerprint denoising ability of the proposed CDC-GAN compared
to state-of-the-art.

TABLE 1. Average NFIQ
fingerprint quality scores
achieved on the Rural
Indian fingerprint database
[21].

Denoising
Algorithm

NFIQ
Score
(↓)

Raw Image 2.94
Hong et al. [10] 2.05
DeconvNet
[12]

1.95

Cycle-GAN
[14]

1.76

FP-E-GAN [16] 1.31
CDC-GAN 1.30

TABLE 2. Average equal error rate
(EER) obtained on the Rural Indian
fingerprint database [21].

Denoising
Algorithm

Bozorth
(↓)

MCC
(↓)

Raw Image 16.36 13.23
Hong et al. [10] 11.01 11.46
DeConvNet [12] 10.93 10.86
Cycle-GAN [14] 29.52 27.96
FP-E-GAN [16] 7.30 5.96
CDC-GAN 5.89 5.38

III. RESULTS AND ANALYSIS

A. Performance on Rural Indian Fingerprints

We begin the performance evaluation of the proposed CDC-
GAN by assessing its performance on the publicly available Rural
Indian fingerprint database [21]. This database has 1631 poor quality
fingerprints acquired from the rural Indian population extensively
involved in physical labor. As shown in Figure 3, the proposed CDC-
GAN improves the fingerprint quality by predicting missing ridge
structure due to creases and also improving the contrast between
ridges and valleys. Thus, facilitating improved fingerprint quality
(Table 1) and matching performance characterized by reduced equal
error rate (EER) (Table 2). Corresponding histogram of fingerprint
quality scores obtained using NFIQ [22] and detection error trade-off
(DET) curves for the Bozorth [22] and the MCC matcher [23]–[25] are
presented in Figure 4. These results signify the superior performance
of the proposed CDC-GAN compared to state-of-the-art fingerprint
denoising algorithms.

B. Performance on Latent Fingerprints

Next, we evaluate the fingerprint denoising performance of the
proposed CDC-GAN on the IIITD-MOLF database [26], the largest
publicly available database of challenging latent fingerprints with
4400 fingerprint samples. Fingerprints acquired from the Lumidigm
fingerprint sensor are used as the samples enrolled in the gallery.
As depicted in Figure 5, CDC-GAN outperforms state-of-the-art
fingerprint denoising algorithms in predicting ridge information at
fingerprint regions with smudged and poor contrast ridge details.
Similar trends are reported for fingerprint quality scores (Table 3)
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Fig. 4. (a) Histogram of Nfiq fingerprint quality scores and DET curves for (b) Bozorth (c) MCC. Proposed CDC-GAN significantly outperforms
state-of-the-art fingerprint denoising algorithms on the rural Indian fingerprint database [21].

Fig. 5. Sample results obtained on IIITD-MOLF database [26] demon-
strating the limitation of state-of-the-art fingerprint denoising methods
to recover ridge details in heavily distorted fingerprint regions. On
the other hand, the proposed CDC-GAN successfully recovers ridge
information in heavily distorted fingerprints regions.

TABLE 3. Average NFIQ
fingerprint quality scores
obtained on the IIITD-MOLF
database [26].

Denoising
Algorithm

NFIQ
Score
(↓)

Raw Image 4.96
Cycle-GAN
[14]

4.90

DeConvNet
[12]

4.09

DU-GAN [17] 3.01
MU-GAN [19] 1.48
CDC-GAN 2.38

TABLE 4. Rank-50 accuracy ob-
tained on the IIITD-MOLF database
[26].

Denoising
Algorithm

Bozorth
(↑)

MCC
(↑)

Raw Image 5.45 6.06
Cycle-GAN [14] 6.29 4.65
DeConvNet [12] 14.02 14.27
Svoboda et al. [27] NA 22.36
DU-GAN [17] 23.16 27.21
MU-GAN [19] 25.09 28.61
CDC-GAN 28.00 33.09

and rank-50 accuracy (Table 4). We note that in poor quality fingerprint
regions, DU-GAN does not generate any ridge patterns as opposed
to the proposed CDC-GAN, which generates some non-smooth ridge
patterns. This explains the unusually better fingerprint quality scores
obtained for DU-GAN compared to CDC-GAN. However, since
fingerprints generated by DU-GAN have missing ridge information,
CDC-GAN significantly outperforms DU-GAN. The corresponding
histogram plots of fingerprint quality scores and cumulative matching
curve (CMC) are plotted in Figure 6.

C. Ridge Structure Preservation Ability

In order to preserve the identity information, a fingerprint denoising
algorithm must be able to preserve ridge information such as
orientation and minutiaes. We now head towards quantifying the
capability of the proposed CDC-GAN to preserve ridge details
while enhancing the ridge structure. Figure 7 (a) presents sample

TABLE 5. Average NFIQ
fingerprint quality scores
obtained on the Rural
Indian fingerprint database
during ablation study.

Denoising
Algorithm

NFIQ
Score
(↓)

Baseline 1.31
Source 1.32
Target 1.26
CDC-GAN 1.30

TABLE 6. Average equal error rate
(EER) obtained on the Rural Indian
fingerprint database during ablation
study.

Denoising
Algorithm

Bozorth
(↓)

MCC
(↓)

Baseline 7.30 5.96
Source 6.56 5.86
Target 6.10 5.67
CDC-GAN 5.89 5.38

synthetically distorted and corresponding ground truth binarized
fingerprints. A high structural similarity index metric (SSIM) value
is obtained between the ground truth and the fingerprints generated
by CDC-GAN, which successfully demonstrates the ability of the
proposed CDC-GAN to preserve ridge details while enhancing them.

D. Ablation Study

Lastly, we conduct an ablation study to individually quantify the
contribution of enforcing cross-domain consistency in source and
target domains. We find that enforcing cross-domain consistency
clearly helps as its addition renders improved verification perfor-
mance. In addition, we find that enforcing consistency regularization
in the target domain turns out to be more useful than enforcing
consistency regularization in the source domain. This is due to the
reason that the samples in the target domain are otherwise unseen
by the model (if not used to enforce consistency). Subsequently,
as anticipated, the best verification performance is achieved after
introducing cross-domain consistency loss in both source and target
domains. However, fingerprint quality is only marginally improved
after introducing cross-domain consistency. Results are reported in
Table 5 and Table 6. Samples results are presented in Figure 7 (b).

IV. CONCLUSION AND FUTURE WORK

This paper introduces consistency regularization into the fingerprint
denoising domain such that the proposed CDC-GAN is trained to
ensure consistency in the output for fingerprints with a similar
ridge structure, however varying background, and ridge-valley clarity.
Results reveal improved denoising performance obtained by CDC-
GAN compared to the state-of-the-art. In the future, we intend to
study consistency regularization techniques in the context of different
components of an automated fingerprint recognition system, such as
presentation attack detection and foreground fingerprint segmentation.
Furthermore, in the future, proposed CDC-GAN can be integrated
into existing HPC environments [28] and make them more robust.
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Fig. 6. (a) Histogram of Nfiq fingerprint quality scores and cumulative matching curves (CMC) for (b) Bozorth (c) MCC. Proposed CDC-GAN
significantly outperforms state-of-the-art fingerprint denoising algorithms on the IIITD-MOLF database [26].

(a) (b)

Fig. 7. Sample cases demonstrating (a) the ridge preservation ability of the proposed CDC-GAN (b) effect of introducing cross-domain consistency
in source and target domains.
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