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Integration of Logarithmically Smooth Functions over Large Domains

This paper seeks to explore the properties of logarithmically smooth functions, and especially their behavior with integration. In particular, the focus in this paper is on the exploration of logarithms to assist in overcoming slow convergence (as the number of points n approaches ∞) of integrals calculated with relatively simple methods such as the Trapezoid Rule.

The Trapezoid Rule is the particular focus for numerical integration performance, since it is relatively simple and therefore unoptimized, by definition, for problems that are logarithmically smooth. This means that there is a great capacity to adapt the problem to handle bounds of equations that span multiple orders of magnitude. One notable property of such boundaries is that they appear almost linear in logarithmic-logarithmic space, and at least better behaved in logarithmic-linear space (at times even better behaved then logarithmic-logarithmic space).

Using multiple different adaptations based off the mathematical properties of logarithms, multiple different methods were implemented.

This included the standard Trapezoid Rule LinTrapz1 (or trapz() in MATLAB), Trapezoid Rule using logarithmically-spaced points LinTrapz2, a log-space variant of Trapezoid Rule LogTrapz1, and a linlog-space variant LogTrapz2. The amount of time for regular Trapezoid Rule LinTrapz1 and LinTrapz2 to execute was fast for logarithmically smooth problems, but the logarithmic adaptations LogTrapz1 and LogTrapz2 converged much faster while taking longer to execute.

Introduction 1.Overview

This paper will discuss and explore functions that are logarithmically smooth over large domains. Certain problems involve integrating over large domains, meaning that the bounds are separated by many multiple orders of magnitude. For example, bounds that span multiple decades like [10 -5 , 10 5 ] cover many decades, possibly neglecting precision when trying to approximate the integral. This is especially problematic when the integral involves an asymptotic function like f (x) = e -x 0.5 .

(1) In particular, certain functions show vastly different behavior over logarithmic space versus linear space 1 .

Methods of Analysis

Generally, in Newton-Cotes methods, integrands are approximated by a polynomial of order n in the interval [ such that n = 1 (⇒ p 1 (x) = a 0 +a 1 x). Thus the approximation becomes

f (x) ≈ f (a) + f (b) -f (a) b -a (x -a).
The multi-step Trapezoid Rule applies this approximation repeatedly over n subin-

tervals 2 creating the formula b a f (x) dx ≈ h 2 [f (a) + 2f (x 1 ) + • • • + 2f (x n-1 ) + f (b)]
where h = b-a / n . The error can be derived, given that n = 1, as

ε = 1 2 b a f (ξ)(x -a)(x -b) dx ⇒ ε = 1 2 f (η) (x -a)(x -b) dx ⇒ ε = 1 2 f (η) x 3 3 b a -• • • • • • (a + b) x 2 2 b a + ab[x] b a ⇒ ε = 1 2 f (η) - (b -a) 3 12 where η ∈ [a, b].
For equally-spaced points, the error can be shown as

ε = (b -a) 3 12n 2 ,
and thus the error is of the order O(1/n 2 ). Alongside the adaptation of the methods

1 See Figure 1. 2 i.e., b a f (x) dx = x1 a f (x) dx + x2 x1 f (x) dx + • • • + xn-1 xn-2 f (x) dx + b xn-1 f (x) dx.
themselves, analytical adjustment to the problems will be investigated where the logarithmically smooth properties of the integrands are taken into account. The primary mode of measuring performance in integrating will come in the form of various methods of error analysis and especially convergence studies.

Real-World Problems

The problems that need to be adapted for better behavior should tend toward utilizing logarithms and exponential functions since they tend to cause the Trapezoid Rule to inefficiently space the points (for example, Eq. 1 would cause too many points to be allocated to regions that do not contribute significantly to the final value of the integral). For such problems, convergence to the solution proves challenging.

Stress Relaxation Function

A certain class of functions to inspect are stress relaxation functions. An example function3 would be problem defined as

G(t) = ∞ -∞ e H(s) e -t s d log s. (2) 
Because d log s ds = 1 s ⇒ d log s = ds s [START_REF] Shanbhag | Evaluating Integrals of Functions with Smoothness Properties in Log-Log Space Using Trapezoidal Rule[END_REF], the equation can be reframed as

G(t) = ∞ 0 e H(s) s e -t /s ds. (3) 
The stretched exponential function H(s) is defined as

H(s) = - s τ c β (4) 
given that τ c ∈ R >0 and β ∈ [0, 1]. The convergence of the integral as defined from Eq.

3 fares much better given uneven spacing between quadrature points. For example, the values will be set such that β = 0.5 and τ c = 104 . In order to do this, the problem needs to be adapted 4 into the form given by the Trapezoid Rule summation

I ≈ f (x n ) + f (x 0 ) + n-1 i=1 2f (x i ) (5)
passed into G(t) as defined from Eq. 2:

Eq. 2 passed into the following

G(t) = ∞ -∞ exp H(s) - t s d log s (6) ⇒ G(t i ) ≈ log(s np ) -log(s 0 ) 2(n p -1) × • • • • • • e H(s)-t i /s 0 + e H(s)-t i /s np + • • • • • • np-1 j=1 •2e H(s)-t i /s j (7) 
⇒ G(t i ) ≈ log(

sn p s 0 ) 2(n p -1) × • • • • • • np j=0 α j × e H(s)-t i /s j (8) ⇒ G(t i ) ≈ np j=1
w j e H(s j )-t i /s j (9)

where the weights w are defined as

w j = log sn p s 0 α j (n p -1) , (10) 
α as s, t are lists of logarithmically-spaced points, and n p is the number of points chosen (for this example, n p = 100). In this example, t min = 10 -3 , t max = 106 , s min = t min 10 , and s max = 10t max . Under these conditions the integrand appears to be much better behaved for integrating under log-log space as seen in Figure 3.

α j = 2 for j ∈ {1, n p } 1 otherwise , (11) 

Viscosity Function

The viscosity of a fluid can be represented by η 0 defined in relation to G(t) (as defined from Eq. 2, Eq. 3) such that

η 0 = ∞ 0 G(t) dt. (12) 
Similar to the previous section, the computation of the integral must rely on approximations over a relatively large domain owing to the lack of an analytical solution in addition to a lack of simplification or adjustment to rid the problem of the problematic boundaries.

As a result, this problem relies on numerical approximation with bounds spanning multiple decades 5 . Because of this limitation, a general approximation can be rep-resented by

η 0 ≈ tmax t min G(t) dt. ( 13 
)
The solution to Eq. 12 can be represented as

η 0 = ∞ 0 ∞ 0 e H(s)-t s s ds dt. (14) 
Adapting this to numerical methods involves multiple calls to a method for every point t i . This means that G(t) itself will have to also adapt as a Trapezoid Rule function. The pseudocode 6 for the implementation follows:

eta_0 = 0; h = t[length(t)] -t[1]; h /= (2 * length(t)); for i = 2:length(t)-1 eta_0 += 2 * G(t[i]); endfor eta_0 += G(t[1]); eta_0 += G(t[length(t)]); eta_0 *= h; return eta_0;
where t is adapted as a list of points. The following is the pseudocode 6 to calculate G(t): Note that the G(t) here is defined from Eq. 9 where Figure 4 uses unmodified Trapezoid Rule to plot as defined from Eq. 3.

def G(t): s = [s_min,..., s_max] sum = 0; h = s[length(s)] -s[1]; h /= 2 * length(s); for i = 2:length(s)-1 sum += 2 * f(s[i],t); endfor sum += f(s[1],t); sum += f(s[length(s)],t); sum *= h; return sum; where f (s, t) = exp s τc β -t s s . ( 15 
)
Note that the input value t for G(t) is one list element rather than the list t. Also note that the h defined in both sections includes the halving in addition to h = (b -a)/n. For now, only the graph of G(t) will be shown. For this example, τ c = 10 4 , β = 0.5, t min = 10 -3 , t max = 10 6 , s min = t min 10 = 10 -4 , and s max = 10t max = 107 . The length of both lists s and t was 100 points each. The behavior even in linear space is favorable for lower-order methods such as the Trapezoid Rule (Figure 4).

Molecular Weight Distribution (Molar Mass)

The weight distribution of industrial polymers following a Schulz-Zimm distribution can be represented by the formula 7

w(Z) = 1 Z √ 2πσ 2 × • • • • • • exp - (log(Z) -µ) 2 2σ 2 (16) 
where σ 2 and µ are defined by the polydispersity index such that

σ 2 = log( ) (17) 
and

µ = log (Z w ) + 1 2 log ( ). ( 18 
)
The normalization functions Z w and Z n of this distribution 7 are defined as

Z w = ∞ 0 Z • w(Z) dZ (19) 
Figure 4: Linear-linear plot versus a logarithmic-logarithmic plot applied to the integrand of Eq. 14. Note that the integrand is G(t) with t being a list on the interval [10 -3 , 10 6 ] with the number of points n p = 100. This plot would benefit with logarithmic adaptation for the integral in G(t), but not as much for η 0 . Note that this plot is a direct plot of G(t) while Figure 3 is a plot of adapted method applied to G(t) as defined from Eq. 9.

and

Z n = ∞ 0 Z • n(Z) dZ. (20) 
where n(Z) is defined as the numberdistribution of chain lengths given by

n(Z) = Z n • w(Z) Z (21) 
A normal distribution can be imposed onto n(Z) causing the integral to become

∞ 0 n(Z) dZ = 1. ( 22 
)
This equation gives the new relation

∞ 0 w(Z) Z dZ = 1 Z n , (23) 
which can be used to approximate the value 1 / Zn and therefore Z n . Given Z w and , the value for Z n can be solved combining the definitions from Eqs. 16, 17, 18, and 23 forming the integral

1 Z n = ∞ 0 exp (-ζ) Z 2 √ 2π log dZ (24) 
where

ζ = log Z -log Z w + log 2 2

log .

For example, given that Z w = 10 and = 1.05, the graphs of the equation solving for seemed to indicate better performance with the Trapezoid Rule, since its logarithmic-logarithmic space graph appears linear, which is handled well given that the Trapezoid Rule is second-order (Figure 5).

General Form

The type of problem explored in this thesis involves boundaries that are separated by many orders of magnitude. This can include bounds of an integral like [0, ∞) which require adaptation to finite values. A suitable example would be an integral equation of the form

D f (x) dx ( 25 
)
where D is a range for x ∈ R such that 10 -3 ≤ x ≤ 10 9 . This form of problem can cause significant issues given that the boundaries can cause high error. This is especially true for quadrature methods that rely only on linear spacing of points. Given that The Trapezoid Rule is second-order [START_REF]Integrals as Sums and Derivatives as Differences[END_REF], a sufficient example to try would always lead to an error ε such that ε > 0, like the equation

f (x) = - 1 x 2 (26) 
whose bounds are D = {x | 10 -3 ≤ x ≤ 10 9 }. This would form an integral problem

I = 10 9 10 -3 - 1 x 2 dx. ( 27 
)
Solving this problem gives the analytical solution

I = 1 x 10 9 10 -3 ⇒ I = 1 x 10 9 - 1 x 10 -3 ⇒ I = 1 10 9 - 1 10 -3 ⇒ I = -999.999999999
The analytical solution is very far off from what the Trapezoid Method returned. As is standard with quadrature methods where given an interval of [10 -3 , 10 9 ] with the number of points set to 10 n , n ∈ Z >0 , as n → ∞, I → -999.999999999. The results given from the trapz() function in MAT-LAB show an extremely slow convergence, so much so that it is not feasible to use it given time and memory restraints (Table 1).

Attempting to run trapz() with any n larger than 9 fails owing to time and memory overflow8 . Evidently, the error is extremely large, and given rate of convergence, n = 11 would return a solution approaching the true value. Unfortunately, with n = 9, we only have 10 9 points which can hardly cover the region near x = 0.

Methods

Methods to adapt the aforementioned problems for better precision and behavior include adapting each problems' approximation into logarithmic-space whether analytically or by means of the methods used to calculate the results of each integral. Some integrals, especially those with bounds that span [0, ∞) diverge (an example would be the function f (x) from the previous section integrated from 0 → ∞). 

Using Log-Space Points

In using linearly-spaced points in a quadrature method like the Trapezoid Rule, precision to handle functions (especially but not limited to asymptotic functions) is neglected in favor of the points accounting for the high order of magnitude (ex. in bounds like [10 -5 , 10 5 ]). The precision is so poorly affected that it can mess with any semblance of an approximation because the calculation is ruined.

For example, consider an problem optimized for the Gauss-Hermite Quadrature containing a function f (x) defined as

f (x) = x exp -x 2 (28) 
with an integral

x 1 x 0 f (x) dx. ( 29 
)
whose bounds are x 0 = 0 and x 1 = ∞. The analytical solution is solved as

∞ 0 x exp -x 2 dx = 1 2 . ( 30 
)
Using the Trapezoid Rule (specifically the trapz() function in MATLAB) on this function with boundary approximations of x 0 = 0 and x 1 = 10 9 initially failed for the linearly spaced points (every point as defined by y i = f (x i ) returned 0). This required a new lower bound that would work for both spaces, and so x 0 = 10 -3 worked. This integral was thus

I = 10 9 10 -3 x exp -x 2 dx. ( 31 
)
Using logarithmically-spaced points proved to have a profound effect on approaching the true value of the integral (see Table 2 and Figure 6). The rate of convergence for logarithmically-spaced points was much quicker than that of the linearlyspaced points. The equation's asymptotic nature contributed to this effect, and this is even true for only one horizontal asymptote (the greatest expected effect was on those functions with asymptotes horizontally and vertically).

Adapting Trapezoidal Method

for Logarithmically Smooth Functions

Logarithmic-Logarithmic Adaptation

Some problems may be better suited for using adaptation of the equation itself. This may not always be true for all equations but it can prove to increase performance under certain circumstances.

Consider an integral which takes the form I =

x 1

x 0 In a circumstance where the integral spans multiple decades, adjustment to logarithmic-logarithmic space suggests better behavior with integration over logarithmic-logarithmic space, causing for faster convergence overall. For example, let the bounds be x 0 = 10 -2 , x 1 = 10 3 , and the value α = 0.01. The graphs in linear space versus logarithmic-logarithmic space appears very promising for improved integral precision (Figure 8). The integral value for this equation should be

1 1 + αx 2 dx (32)
I = x 1 x 0 1 1 + 0.01 • x 2 dx = 10 tan -1 x 10 x 1 x 0 (33) 
⇒ I = 10 tan -1 x 1 10 -10 tan -1 x 0 10

⇒ I = -10 tan -1 10 -2 -• • • • • • 10 tan -1 10 -3 + 5π ⇒ I ≈ 15.5979666044.
If the initial equation were to analytically be adapted to logarithmic-logarithmic space, it would involve setting it up as log y = m log x + n ⇒ y = e n x m [START_REF] Shanbhag | Evaluating Integrals of Functions with Smoothness Properties in Log-Log Space Using Trapezoidal Rule[END_REF]. The new method, called LogTrapz1, adapts the Trapezoid Method into a new summation where f (x i , x i+1 ) (35) is defined as

I = np-1 i=0 f x i , x i+1 (34) 
e n • (x m+1 i+1 -x m+1 i ) / (m+1)
for m = -1,

e n log ( x i+1 / x i ) for m = -1, m is 9 m = log y i+1 -log y i log x i+1 -log x i ( 36 
)
and n is 10

n = log y i -m log x i (37) 
such that x is a set of points of length n p defined as {x 0 , x 1 , • • • , x np-1 , x np }, and y is a list of points of length n p defined as {y(x 0 ), y(x 1 ), • • • , y(x np-1 ), y(x np )}. The error analysis plot shows that after 10 8 points, the linearly-spaced points undoubtedly begin to perform better than the logarithmically-spaced points (Table 3, Figure 7).

Despite the ultimately worse accuracy of the logarithmically-spaced points, the result converged faster with logarithmically-spaced points.

Logarithmic-Linear Adaptation

The essential issue with LogTrapz1 is that it falters in certain types of problems, specifically those that have slopes that fail to adapt well in logarithmic conditions: "One problem with . . . integrating functions with large slopes d log y d log x . . . is that at large x, the function decays rapidly (steep negative slope) in log-log space." [START_REF] Shanbhag | Evaluating Integrals of Functions with Smoothness Properties in Log-Log Space Using Trapezoidal Rule[END_REF]. This common theme shows in Figure 3 In order to mitigate the problem posed by the original logarithmiclogarithmic space adaptation, an adaptation that can work better for accuracy and performance would involve mapping the function into logarithmic-linear space, either using a linear x-axis and a logarithmic y-axis, or a logarithmic x-axis and a linear y-axis. For now, a linear x with a logarithmic y will be used to form a new LogTrapz2. A visual example (Figure 9) illustrates a mitigation to the problem owing to more balanced appearances in both adaptations.

An adaptation using logarithmic-linear space seems warranted owing also to potential overflow issues:

9 See [START_REF] User | The Origin Forum -Integrating log-log data?[END_REF] and [START_REF] Dilithiummatrix | Numerics -Integral in Log-Log Space[END_REF]. 10 See [START_REF] Dilithiummatrix | Numerics -Integral in Log-Log Space[END_REF]. 

f (x i , x i+1 ) = y i+1 b × • • • • • • [exp (b(x i+1 -x i )) -1] (42)
such that x is a set of points of length n p defined as {x 0 , x 1 , • • • , x np-1 , x np }, and y is a list of points of length n p defined as {y(x 0 ), y(x 1 ), • • • , y(x np-1 ), y(x np )}.

The performance from LogTrapz2 indicates that the error is consistently smaller than the linearly-spaced points (Figure 10, Table 4). Despite the time performance being slightly worse for the logarithmically-spaced points, the time performance for both distributions of points shows a vast improvement over the average times from LogTrapz1 (∼75 seconds for LogTrapz2 versus ∼ 100 seconds for LogTrapz1).

Potential Issues with Analytical Adaptation

A potential issue with adapting formulae into logarithmic space is that there is a potential for discontinuity, potentially causing a singularity. This arises from the fact that log a (0) = -∞ for a ∈ R. A basic example could be if there were a function g(x) = log e f (x) -1 (43)

where

f (x) = x 2 . ( 44 
)
The function Eq. 43 given Eq. 44 behaves identically to Eq. 44 on its own passing LogTrap2 at 10 9 points) (Figure 13). The LogTrapz methods were computationally expensive, but proved to have superior performance in convergence (Tables 5 and6).

A noticeable trend in comparing the size methods was that logarithmically-spaced points proved to be the most cost-effective move in gaining faster convergence. This is noticeable across the LinTrapz methods and especially in the LogTrapz methods.

ber of points reaches by LogTrapz1, both LogTrapz methods perform much better than the LinTrapz methods when the problem is logarithmically smooth.

Figure 1 :

 1 Figure 1: Plots of f (x) as defined from Eq. 1 on a linear scale (left) and a logarithmic scale (right) over the interval [0, 10 -3 ].

  a, b] f (x) ≈ p n (x) = n i=0 a i x i .The Trapezoid Rule is an integral of the polynomial p n (x)

Figure 2 :

 2 Figure 2: Linear-linear plot versus a logarithmic-logarithmic plot applied to the integrand of Eq. 3, labeled here as f (s).

Figure 3 :

 3 Figure3: Linear-linear plot versus a logarithmic-logarithmic plot applied to the approximation of G(t) defined from Eq. 9 over the interval of t ∈ [10 -3 , 10 6 ], s ∈ [10 -4 , 10 7 ], and with n p = 100. Note that the G(t) here is defined from Eq. 9 where Figure4uses unmodified Trapezoid Rule to plot as defined from Eq. 3.

Figure 5 :

 5 Figure 5: The integrand of Eq. 24 plotted over linear-linear space and logarithmic-logarithmic space over the interval [10 -5 , 10 5 ]. Note that the plot shows the plot of f (Z) = w(Z) / Z rather than 1 / Zn .

Figure 6 :

 6 Figure 6: Comparing the convergence between Trapezoid Rule applied to Eq. 31 with linearlyspaced points versus logarithmically-spaced points.

Figure 7 :

 7 Figure7: LogTrapz1 applied to an approximation of Eq. 32 using the formula defined from Eq. 33, comparing linearly-spaced points versus logarithmically-spaced points.

  , Figure 4, and possibly Figure 8.

Figure 9 :

 9 Figure 9: Plotting approximations of defined from Eq. 3 over multiple spaces: Linear-linear space, upper left; logarithmic-logarithmic space, upper right; linear-logarithmic space, bottom left; logarithmic-linear space, bottom right.
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Figure 11 :

 11 Figure 11: A singularity forms at g(x = 0) (Eq. 43) versus expected behavior from f (x = 0) (Eq. 44).

Figure 12 :

 12 Figure 12: A singularity in the graph of g(x) = f (x) 3 f (x)2 , where f (x) is defined from Eq. 44.

Figure 13 :

 13 Figure13: All six methods' convergence to the true value of Eq. 33. Note the generally consistently better performance by the methods employing logarithmically-spaced points (solid lines), versus the performance of the methods employing linearly-spaced points (striped lines).

  

  

Table 1 :

 1 Trapezoid Method Applied in MATLAB to Eq. 27

	Num. of points 10 n Approximation Percent Error
	n = 1	-5.5556e+13	-5.5556e+12
	n = 2	-5.0505e+12	-5.0505e+11
	n = 3	-5.0050e+11	-5.0050e+10
	n = 4	-5.0005e+10	-5.0004e+09
	n = 5	-5.0001e+09	-5.0000e+08
	n = 6	-5.0000e+08	-4.9999e+07
	n = 7	-5.0000e+07	-4.9999e+06
	n = 8	-5.0000e+06	-4.9990e+05

Table 2 :

 2 Trapezoid Method Applied to Eq. 31

	Number of	Lin-Space	Log-Space	Lin-Space	Log-Space
	Points 2 n	Approximation	Approximation	Percent Error	Percent Error
	n = 1	499.9995	499.9995	9.9900e+04	9.9900e+04
	n = 2	166.6665	183.9400	3.3233e+04	3.6688e+04
	n = 3	71.4285	1.1678	1.4186e+04	133.5607
	n = 4	33.3333	0.8044	6.5667e+03	60.8895
	n = 5	16.1290	0.5405	3.1258e+03	8.0972
	n = 6	7.9365	0.5091	1.4873e+03	1.8136
	n = 7	3.9370	0.5022	687.4016	0.4444
	n = 8	1.9608	0.5006	292.1569	0.1101

See[START_REF] Shanbhag | Integration over Large Domains[END_REF] 

See[START_REF] Shanbhag | Integration over Large Domains[END_REF] and[START_REF]Integrals as Sums and Derivatives as Differences[END_REF].

This is especially true with an asymptotic function.

This pseudocode was adapted for the width of the column.

See[START_REF] Shanbhag | How Many Monodisperse Fractions are Required to Discretize Polydisperse Polymers?[END_REF].

Running on a 2019 Macbook Pro at n = 8.5 takes ∼40 seconds.

such that a and b are applied to subintervals of the equation f (x i , x i+1 ). The ultimate end formula, including replacing b into the equation (a was unused), is like that of Eq. 34 except that f (x i , x i+1 ) is defined instead except for a singularity at x = 0 (Figure 11). This is especially problematic because the discontinuity is a genuine divergence versus a mere hole in the graph (like if g(x) = f (x) 3 f (x) 2 , which would result in identical behavior between g(x) and f (x) in the plot except for a hole, as shown in Figure 12).

Comparison of Performance

In this section, the following methods will be tested:

• LinTrapz1: Trapezoid Rule with linearly-spaced points (trapz() in MATLAB).

• LinTrapz2: Trapezoid Rule with logarithmically-spaced points.

• LogTrapz1: Log-log space Trapezoid Rule with logarithmically-spaced points, as defined from Eq. 34 and Eq. 35.

• LogTrapz2: Lin-log space Trapezoid Rule with logarithmically-spaced points, as defined from Eq. 34, Eq. 41, and Eq. 42.

The function defined in Eq. 33 was tested and the convergence rate is consistently faster across all methods employing logarithmically-spaced points on average (with the exception of LinTrapz1 sur- 

Conclusion

Overall, the cheapest modification to make for the most improvement is using logarithmically-spaced points. While the LogTrapz methods show faster convergence for a time, the method that showed to be most optimized for all applications was LinTrapz2. There are perhaps more applications in need of the LogTrapz methods, where the problems are harder to integrate in linear space entirely, like the stress relaxation function (Eq. 2). In general, the LogTrapz methods have proven useful for a more useful result for the same number of points given a smaller number of points.

The real-world adaptations to logarithmic space indicated that functions that are adaptable to logarithmic space can have their own limitations, logarithmic adaptations can be worth the effort since computing time versus accuracy could be a considerable trade-off if the number of points did not start to get too high (many cases throughout the experimentation in this thesis showed 10 9 points to begin causing issues, but this may change depending on the problem).

Ultimately, the increased performance from applying logarithmically-spaced points proved to be very beneficial for faster convergence. Despite the break from the trend as the num-