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Chapter 4
System-to-User and User-to-System
Adaptations in Binaural Audio

Lorenzo Picinali and Brian F. G. Katz

Abstract This chapter concerns concepts of adaption in a binaural audio context (i.e.
headphone-based three-dimensional audio rendering and associated spatial hearing
aspects), considering first the adaptation of the rendering system to the acoustic
and perceptual properties of the user, and second the adaptation of the user to the
rendering quality of the system.We start with an overview of the basicmechanisms of
human sound source localisation, introducing expressions such as localisation cues
and interaural differences, and the concept of the Head-Related Transfer Function
(HRTF), which is the basis of most 3D spatialisation systems in VR. The chapter then
moves to more complex concepts and processes, such as HRTF selection (system-
to-user adaptation) and HRTF accommodation (user-to-system adaptation). State-
of-the-art HRTF modelling and selection methods are presented, looking at various
approaches and at how these have been evaluated. Similarly, the process of HRTF
accommodation is detailed, with a case study employed as an example. Finally, the
potential of these two approaches are discussed, considering their combined use in
a practical context, as well as introducing a few open challenges for future research.

4.1 Introduction

Binaural technology is the solution for sound spatialisation which is the closest to
real-life listening. It attempts tomimic the entirety of acoustic cues associatedwith the
human localisation of sounds, reproducing the corresponding acoustic pressure signal
at the entrance of the two ear canals of the listener (binaural literallymeans “related to
two ears”). These two signals should be a complete and sufficient representation of the
sound scene, since they are the only information that the auditory system requires in
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order to identify the 3D location of a sound source. Thus, binaural rendering of spatial
information is fundamentally based on the production (either through recording or
synthesis) of localisation cues that are the consequence of the incident sound upon
the listener’s torso, head, and ears on the way to the ear canal, and subsequently to
the eardrums. These cues are, namely, the ITD (interaural time difference), the ILD
(interaural level difference) and spectral cues [48, 68]. Their combined effects are
represented by the Head-Related Transfer Function (HRTF), which characterises the
spectro-temporal filtering of a locus of source positions around a given head.1

4.1.1 Localisation Cues and Their Individual Nature

The ILD and ITD as a function of source position are determined principally by
the size and shape of the head, as well as the position of the ears on the two sides.
In order to better understand these localisation cues, Fig. 4.1 shows how ITD and
ILD vary as a function of both distance (1.5–10m) and azimuth. This comparison
highlights potential effects of ITD/ILD mismatch, especially if they occur near the
interaural axis where they can affect distance perception. The results were obtained
by Boundary ElementMethod (BEM) simulation of the HRTF using the open-source
mesh2hrtf software [110, 111]. The mesh employed was obtained from an MRI
scan of a Neumann dummy recording head (model KU-100), previously used in
HRTF computation [32] and measurement [4] comparisons. These cues vary as a
function of frequency. For this example, the ITD was calculated using the Thresh-
old lp –30 dB method (for a summary of various ITD estimation methods see [50]),
which detects the first onset using a –30 dB relative threshold on a 3 kHz low-pass fil-
tered version of theHRIR, as this has been shown to be themost perceptually relevant
method for ITD estimation among 32 different estimation methods and variants [7,
50]. The ILD was calculated as the difference of left and right HRIR RMS values,
after applying a 3kHz high-pass filter. The use of low-pass and high-pass filters for
the two different acoustic cues is based on previous studies showing the frequency
dependence of the different auditory cues [101], with ITD being dominated by low-
frequency content (with interpretation of phase information being inconclusive for
frequencies smaller than head dimensions) and ILD varying more significantly with
high-frequency content (where the wavelength is less than the dimensions of the
head). The application of a 2–3 kHz filter can be used to generally separate the con-
tributions of the pinnae in the HRIR [50]. One can observe that ITD varies little over
the simulated distance range, while becoming more vague and ambiguous near the

1 We use the term HRTF to indicate the set of filters, each representing a pair of transfer functions
from a point source in space at a given distance around a given head to the left and right ear,
normalised by the transfer function with the body absent. The plural, HRTFs, therefore, represents
a collection ofmore than oneHRTF, typically for different heads or test conditions. The head-related
impulse response or HRIR is the time domain transform of the HRTF.
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Fig. 4.1 Isocontours for ITD (left) and ILD (right) as a function of azimuth (in degrees) and radial
distance (from 1.5 to 10m) obtained via numerical simulation of the HRTF of a dummy head (not
shown to scale). ITD (3 kHz low-pass Head-Related Impulse Response—HRIR, Threshold, –30 dB
first onset method) 50 µs contours. ILD (3 kHz high-pass HRIR, RMS difference) 1 dB contours
(from [48])

interaural axis. In contrast, the ILD varies with distance in the same interaural axis
range of 70◦–110◦.

Other physical interactions between the sound wave and the torso, head, and pin-
nae (the external parts of the ear) introduce a range of spectral cues (principally
through series of peaks and notches) which can be used to judge whether a sound
source is e.g. above or below, to the front or rear of the listener, while ITD and ILD
remain relatively unchanged. Considering the various morphological regions of the
pinnae, as indicated later in Sect. 4.2.1—Fig. 4.2a, each of these is potentially related
to specific characteristic of the HRTF filters. As such, individual morphological vari-
ations will result in different HRTFs. When reproducing binaural audio, it has been
experimentally demonstrated that using an HRTF that does not match the one of
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the listener has a detrimental effect on the accuracy and realism of virtual sound
perception. For example, it has been noted that listeners are able to localise virtual
sounds that have been spatialized using their own HRTFs with a similar accuracy
to free field listening, though some studies have shown poorer elevation judgements
and increased front-back confusions [67], which may be due to the idealised ane-
choic nature of HRTFs and the importance of slight head movements and associated
dynamic cues [37, 102]. These errors can significantly increase when using someone
else’s HRTF [99]. Furthermore, using non-individual HRTFs (see Sect. 4.1.2) has
been shown to affect various perceptual attributes when considering complex scenes,
in addition to those associated with source localisation: i.e. Coloration, Externalisa-
tion, Immersion, Realism and Relief/Depth [87]. In this chapter, the primary focus
is on localisation as the perceptual evaluation metric. Chapter 5 introduces and dis-
cusses other relevant metrics.

4.1.2 Minimising HRTF Mismatch Between the System
and the Listener

Various means have been investigated to minimise erroneous or conflicting binaural
acoustic localisation cues relative to the natural cues delivered to the auditory sys-
tem and, as such, improve the quality of the resulting binaural rendering. Majority
of research has focused on improving the similarity between the rendering sys-
tems’ localisation cues and those of the individual listener. This is generally termed
“individualisation” or “individualised” binaural rendering. To clarify questions of
nomenclature, we propose the following terms:

• individual to identify the HRTF of the user;
• individualised or personalised to indicated an HRTF modified or selected to best
accommodate the user;

• non-individual ornon-individualised to indicate anHRTF that has not been tailored
to the user and

• dummy head or so-called generic HRTF sets are specific instances of non-
individual HRTFs, often designed with the goal of representing a certain pool
of subjects.

While not exhaustive, a general overview of individualisation methods is discussed
here.

Binaural Recordings and Synthesis

The first and most direct method to create an individual rendering is to perform
the recording with binaural microphones placed in the ear canal of the listener. This
is however, in most cases, an impractical solution. The second still rather direct
method is to measure the HRTF of an individual for a collection of spatial positions
and to then use this individual HRTF to produce an individual binaural synthesis

http://dx.doi.org/10.1007/978-3-031-04021-4_5
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rendering through convolution of the sound source with the relevant incident direc-
tion HRTF [14, 105]. While this is the most common method employed to date,
it is generally limited to those with the facilities and equipment to carry out such
measurements [4].

The general pros and cons between binaural recordings and binaural synthe-
sis merit mention. While individual binaural recordings provide arguably the most
accurate 3D audio capture/reproduction method, they require the sonic environment
and the individual to be situated accordingly. For any reasonable production, this
would resemble a theatrical piece being performed around the individual in a first
person context. The recording would capture the acoustic detail of the soundscape,
including reflections from various surfaces, diffraction and scattering effects. How-
ever, the head orientation of the individual would be encoded into the recording,
imposed on the listener at playback. If presented to another individual, the issues of
HRTF mismatch are introduced, degrading the spatial audio quality to an unknown
degree for each individual. In laboratory conditions, this method suffers additional
difficulty, as the individual takes part in the recording, making the presentation of
unfamiliar material difficult. In contrast, binaural synthesis allows for the scripting,
manipulation and mixing of 3D scenarios without the intended listener present. With
real-time synthesis, head tracking can be incorporated allowing freedom of move-
ment by the individual, a basic requirement for VR applications. HRTF mismatch is
alleviated through the use of individual HRTFs. However, the quality of the produc-
tion is affected by the level of detail in the acoustic simulation of the environment,
including elements such as source and surface properties. Highly complex scenes
and acoustic environments can require significant computational resources (the inter-
ested reader can refer to Chap. 3 for further details on this topic). Spatial synthesis
using HRTF data is also affected by the measurement conditions of the employed
HRTF, predominantly the measurement distance. If sound sources are to be rendered
at various distances, this requires either multiple HRTF datasets, or deformation of
the individual HRTF data to approximate such changes in distance. Further discus-
sion of these details is beyond the scope of this chapter. In continuing, the focus will
be limited to questions concerning the individual nature of the HRTF as integrated
into an auditory VR environment through binaural synthesis.

Introduction to System-to-User and User-to-System adaptation

A variety of alternative methods exist in order to improve the match between the
HRTF used for the rendering and the specific HRTF of the listener. It is the aim of
this chapter to present an overview of those approaches that have been evaluated
and validated through experimental research. In order to map the various methods
and at the same time simplify the narrative and facilitate the reading, the text has
been organised in two separate sections. Section 4.2 presents research which looks
at matching the rendering system to the specific listener (system-to-user adaptation),
thus aiming to provide every individual with the best HRTF possible. Section 4.3
looks at the problem from a diametrically opposite point of view, introducing studies
where the listener is trained in order to adapt to the rendering system (user-to-system

http://dx.doi.org/10.1007/978-3-031-04021-4_3
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adaptation), therefore aiming at improving the performance of a specific individual
when using non-individual HRTFs.

While a rather extensive number of studies exist on the topic of system-to-user
adaptation, a more limited amount of research has been carried out focusing on user-
to-system adaptation. For this reason, while Sect. 4.2 is presented as an extensive
review of several research projects, Sect. 4.3, after an initial overview, then dives
more in depth into one specific study carried out by this chapter’s authors, giving
details of the methodology and briefly discussing the results. Section 4.5 concludes
by presenting a brief overview of open challenges on this topic.

4.2 System-to-User Adaptation: HRTF Synthesis and
Selection

Two main approaches exist for obtaining individual (or at least personalised) HRTFs
without having to measure them acoustically. The first one focuses on numerical
simulations, therefore using mathematical methods to generate an HRTF for a given
individual from 3D models of the head, torso, and pinnae. Techniques such as the
Boundary Element Method (BEM), Finite Element Method (FEM), and Finite Dif-
ference TimeDomain (FDTD)methodwhich are commonly employed in diffraction,
scattering, and resonance problems allow one to calculate the HRTF of a given indi-
vidual based on precise geometrical data (e.g. coming from a 3D scan of the head and
pinnae), which have been used for this purpose since the late 1990s, and have shown
increased uptake and success in the past years thanks to technological advancements
in domains such as high-performance computing and high-resolution 3D scanning.
An example of such a resulting 3D mesh from a Neumann KU-100 dummy head
can be seen in Fig. 4.2b. The second one relies on using HRTFs from available
datasets, either transforming them in order to provide a better fit for a given listener
or selecting a best fit considering, for example, preference or performance, e.g. using
a sound localisation task or signal metric. Due to the relative independence between
the ITD and the Spectral Cues, the HRTF can be decomposed and different elements
addressed by different methods, e.g. an ITD structural model can be used with best
fit selected Spectra Cues [22, 78].

As can be expected, each of these approaches comes with specific challenges.
Moreover, the success in employing one or the other depends significantly on factors
such as the available data (quantity and quality), the time constraints in order to run
the tests and the calculations, and the context for which the rendering is needed (i.e.
the requirements in terms of quality, interactivity, etc.). An overview of the various
techniques and related challenges, including solutions found through state-of-the art
research studies, is presented in the following sections.
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Fig. 4.2 Pinna morphology nomenclature and example BEM mesh (from [91])

4.2.1 HRTF Modelling

Various attempts have been made to investigate the function of the pinna, linking
HRTFs to its morphology as well as that of the head and torso. Early work by Teran-
ishi and Shaw [93] looked at creating a physical model of the pinnae and analysing
the various excitation modes generated by a nearby point source. The model, based
on very simple geometries, showed responses similar to those of real data, and rep-
resented one of the first steps towards better understanding the spatially varying
acoustic role of the pinna. Similar work was done by Batteau [12], who created a
mathematical representation of the acoustical transformation performed by the pinna
and produced the first mathematically described theory of sound source localisation
based on a reflection-diffraction model. These studies were the baseline of research
carried out 30 and more years later, when the available computational power allowed
to create more complex models, and to validate those by comparing themwith exper-
imental measures (e.g. [58]). Further modelling work was carried out looking at
simplified models and approximations. Notable examples are those of Genuit [26]
based on a structural simplification model of the pinnae, Algazi and colleagues [1]
based on an approximation of the head and the torso using ellipsoidal and spherical
models, and Spagnol and colleagues [89] looking at ray-tracing analysis of pinna
reflection patterns. It is relevant to note that many of the early studies focused on
models for understanding the various phenomena and principles involved, rather than
models for binaural audio rendering. For these early studies, much of the research
on spatial perception was carried out independently from acoustical/morphological
studies regarding the details of the pinnae.
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Structural Modelling

One of the first experiments using these techniques applied to HRTFs (including
pinnae) was carried out by Katz [49, 51, 52]. This work focused on using BEM to
calculate HRTFs by modifying various aspects of the geometrical models, for exam-
ple, eliminating the pinna, changing the size and shape of the head, and accounting
for hair acoustic impedance. Results fromnumerical simulationswere then compared
with experimental measures, validating the technique and improving our understand-
ing of the role of the pinnae inmodifying the incoming sound in a direction-dependent
manner. Similar work was carried out in the same period by Kahana [44, 46]. Such
simulations were initially limited, due to computational resources, to an upper fre-
quency of 6 kHz, then extended to 10 and 20 kHz in later studies [32, 45]. Even
in these cases the validation was performed comparing the numerical model results
with experimental measurements showing a good match between the two, also in
light of the variances observed between different HRTF measurement systems for
the same individual [4, 47]. The computational complexity of these numerical meth-
ods was a major limitation in the early years of using this technique for generating
HRTFs. Various optimisation techniques are being proposed [35, 55, 70], allowing
significantly faster computation times with reasonable processing resources (i.e. no
longer needing super computers). This led to the development of easy-to-use and
open-source tools for the numerical calculation of HRTFs. A notable example is
mesh2hrtf [110], a software package centred on a BEM solver, as well as tools
for the pre-processing of geometry data, generation of evaluation grids and post-
processing of calculation results. It is essential here to consider a major challenge to
be tackled when approaching HRTF synthesis from geometrical models, which is the
acquisition and processing of the 3D models from which the HRTFs are computed.
Evaluations of various 3D scanning methods, specifically looking at capturing the
geometry of the pinnae, have been carried out [44, 69, 80].

Numerical simulations also brought significant benefits with regard to repeata-
bility, replicability and reproducibility. A comparison of different numerical tools
for simulating an HRTF from scan data by Greff and Katz [32] (here employing
the high-resolution scan of a Neumann KU-100 shown in Fig. 4.2b) showed little
variance. In contrast, a similar comparison of acoustical HRTF measurements using
the same head at different laboratories [4] showed significant variations between
resulting HRTFs. Another significant advantage of numerically modelling HRTFs
rather than measuring them is that with physical measurements on human subjects
it is difficult or impossible to isolate the influence of different morphological char-
acteristics on the actual HRTF filters.

Morphological Relationships

Exploring and modelling the relationship between geometrical features and filter
characteristics is indeed a very important step for advancing our understanding of
the spatial hearing processes. Research in this area was strongly advanced with the
distribution of the CIPIC HRTF database [2], which included associated morpho-
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Fig. 4.3 Two pinna created with the parametric model developed in [91]

logical parameter data for most subjects. This effort was followed with the LISTEN
HRTF database [98], providing similar data. Benefiting from the power of numer-
ical simulation and controlled geometrical models, Katz and Stitt [91] investigated
the effect of morphological changes by varying specific morphological parameters,
an extension of the CIPIC set of morphological parameters to provide more unique
solutions. In order to do this, they created a Parametric Pinna Model (PPM) and
with BEM they investigated the sensitivity of the HRTF to specific morphological
alterations. Examples of pinnae created using this PPM can be seen in Fig. 4.3.
Evaluations included the use of auditory models [88] to identify those morpholog-
ical changes most likely to affect spatial hearing perception. In line with previous
studies, morphological features near to the rear of the helix were found to have little
influence on HRTF objective metrics, while the dimension of the concha had a much
more relevant impact, both looking at the directional and diffuse HRTF spectral com-
ponents. 2 Other relevant findings include the importance of the region around the
triangular fossa, which is often not considered when looking at HRTF personalisa-
tion, and the fact that the relief (or depth, directions parallel to the interaural axis)
parameters were found to be at least as important as side-facing parameters, which
are more frequently cited in morphological/HRTF studies.

Such interest in binaural audio, combined with major advancements in terms of
available technologies, has encouraged the publication of large datasets of BEM-
generated HRTFs and correspondent high-accuracy 3D geometrical models. An
example is the Sydney York Morphological and Acoustic Recordings of Ears
(SYMARE)database [42],whichwas then followedbyother examples of either head-
related or more reduced complexity pinnae-related datasets [18, 34]. The availability

2 The diffuse field component is the spatial average of the HRTF. When removed from the HRTF,
the result is a diffuse field equalised directional transfer function (DTF) [64].
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of such large datasets opened the door to the use of machine learning approaches to
tackle the issue of morphology-based HRTF personalisation. An example is the work
by Grijalva and colleagues [33], where a non-linear dimensionality reduction tech-
nique is used to decompose and reconstruct the HRTF for individualisation, focusing
on elements which vary the most between positions and across individuals. Results
may offer improved performance over linear methods, such as principal component
analysis (e.g. [81]).

HRTFs, Binaural Models and Perceptual Evaluations

It is evident that since the 1990s a large amount of work has been carried out looking
at synthesising HRTFs and better understanding the relationship between these and
morphological features of the pinnae, head and torso. Nevertheless, it must be reiter-
ated that very few of the reviewed studies have included perceptual evaluations on the
modelled HRTFs [18, 56], and that in no case such subject-based validations were
extensive enough to fully support the use of synthesised HRTFs instead of measured
ones. It is therefore clear that significant research is still needed in order to develop
and validate models that can describe, classify and ultimately generate individual
HRTFs from a reduced set of parameters.

While numerical assessments can be very useful when trying to better explain
experimental results, they cannot be the only way to explore and validate the quality
of the rendering choices. Binaural models (e.g. [88]) could become an invaluable
tool to help overcome such limitations, as they offer a computational simulation of
binaural auditory processing and, in certain cases, also allow to predict listeners’
responses to binaural signals. Using them, it is possible to rapidly perform com-
prehensive evaluations that would be too time-consuming to implement as actual
auditory experiments (e.g. [17]).

An example of this approach can be found in [29], where an anthropometry-based
mismatch function between HRTF pairs, looking at the relationship between pinna
geometry and localisation cues, was used to select an optimal HRTF for a given
individual, specifically looking at vertical localisation. The outcome of the selection
was then evaluated using an auditory model which computed a mapping between
HRTF spectra and perceived spatial locations. While this study outlined that the best
fittingHRTF selectedwith the proposedmethodwas predicted to yield a significantly
improved vertical localisation when compared to a selected generic HRTF, it must be
reiterated that the reliability of perceptual models is still to be thoroughly validated,
and potential biases can be identified and dealt with only through actual perceptual
evaluations. Another similar application of binaural models has been recently pub-
lished, focusing on the comparison between different Ambisonics-based binaural
rendering methods [25]. The very large number of independent variables (e.g. each
method was tested with Ambisonics orders from 1 to 44), as well as the complex-
ity of the interactions between such variables, would make it very challenging to
run perceptual evaluations with subjects. This study showed not only that models’
predictions were consistent with previous perceptual data, but also contributed to
validate the models’ ability to predict user responses to binaural signals.
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It is likely that models will never be able to provide 100% accurate assessments
near to the zone of perfect reproduction, in part due to the difficulties in modelling
processes such as cognitive loading and procedural/perceptual learning. However,
it is reasonable to expect them to provide broadly correct predictions for larger
errors. This means that they could be particularly useful when prototyping rendering
algorithms and designing HRTF personalisation experiments, in order to rapidly
reduce the number of conditions and variables which are subsequently assessed
through real subject-based perceptual evaluations.

Artificial intelligence and machine learning should play an important role in such
future research, looking at improving both HRTF synthesis and selection processes,
as well as perceptual models accuracy and reliability.

4.2.2 HRTF Selection

A different approach for obtaining individual (or at least personalised) HRTFs with-
out having to acousticallymeasure them is to rely on availableHRTFdatabases, either
transforming/tuning the transfer function according to certain subjective criteria, or
designing a process for selecting the best fitting HRTF for a given subject. Regarding
thefirst option, asmentioned at the beginning of this section, it is generally known that
frequency-independent ITDs from a given HRTF can be modified and personalised
according to e.g. the head circumference of a given listener [9]. Such a technique is
implemented in a few binaural spatialisers [22, 78]. However, the personalisation of
other HRTF features, such as monoaural and interaural Spectral Cues, presents more
significant challenges. Early works in this direction looked at improving vertical
localisation by scaling the HRTF in frequency [64, 65]. Other “simpler” approaches
to tuning were found to be effective, for example, by manually modifying frequency
and phase for every HRTF direction, for the left and right ears independently [86].
Hwang and colleagues [40] carried out a principal component analysis on the CIPIC
HRTFs and used the output components to develop a customisation method based
on subjective tuning of a generalised HRTF. Such customisation allowed listeners
to perform significantly better in vertical perception and front-back discrimination
tasks. The same approach was used to modify and personalise a KEMAR HRTF,
resulting also in this case in significantly improved vertical localisation abilities [84].

HRTF Selection Methods

Methods for selecting a best fit HRTF based on subjective criteria can be grouped
into two general categories: physical measurement-based matching and perceptual
selection. The first pertains to selecting an HRTF from an existing set based on mor-
phological measurements or sparse acoustical measurements. Of importance is the
determinationof the relevantmorphological features, as theypertain to spatial hearing
and HRTF-related cues, as examined by [91]. Zotkin and colleagues [112] looked at
a selection strategy based on matching certain anthrophometric pinnae parameters of
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the specific subject with those of HRTFs within a dataset, while providing associated
low-frequency information using a “head-and-torso” model. Comparison between
a non-personalised HRTF and the selected HRTF via this method showed height-
ened localisation accuracy and improved subjective perception of the virtual auditory
scene when using the latter. A similar approach was used by [81], where advanced
statistical methods were employed to create a subset of morphological parameters,
whichwere then employed for predictingwhatmight be the subject’s preferredHRTF
based on measurement matching. HRTFs selected using this method performed bet-
ter than randomly selected ones. An alternate selection perspective was proposed
in [30], where a reflection model was applied to the picture of the pinnae of the
subject, facilitating the extraction of relevant anthropometric parameters which were
then used for selecting one or more HRTFs from an existing database. This selection
method resulted in a significant improvement in elevation localisation performances,
as well as an enhancement of the perceived externalisation of the simulated sources.
The relationship between features of the pinna shape and HRTF notches, focusing
specifically on elevation perception, was successfully used in [27] for selecting a best
fitting HRTF from pinna images. Interestingly, studies on Spectral Cues have sug-
gested the importance of notches over peaks in the HRTF [31]. Another work from
Geronazzo and colleagues [28] introduced a rather original approach by developing
the Mixed Structural Modelling (MSM), a framework for HRTF individualisation
which combines structural modelling and HRTF selection. The level of flexibility
of this solution, which allows to mix modelled and recorded components (therefore
HRTF selection and synthesis), is particularly promising when looking at the HRTF
personalisation process.

HRTF Evaluation

It must be highlighted that whether selection is based onmeasured or perceptual data,
the evaluation of said method is necessarily perceptual as the final application is a
human-centred experience. With this in mind, a fundamental yet unanswered ques-
tion is: “What determines the suitability of an HRTF for a given subject?” [48].When
establishing whether an HRTF is a good fit, should one look at how precisely sound
sources can be localised using that HRTF (direct approaches), or should other sub-
jective metrics (e.g. realism, spatial quality or overall preference) be employed [87]?
In employing perceptual selection, the choice of protocol becomes more critical.
In addition, as was observed with acoustical measurements, the repeatability of the
measurement apparatus (here the response of human subjects) must be examined and
taken into account. As an example, past studies using binaural audio rendering for
applications other than spatial hearing research (e.g. [74]) relied on simple percep-
tually based HRTF selection procedures which, at a later stage, resulted in being less
repeatable than originally thought [6]. Without extensive training as seen in some of
the principal earlier studies, the reliability of naive listeners (those situations which
are also more representative of applied uses of binaural audio rather than studies on
fundamental auditory processing) must be taken into account. Early studies onHRTF
selection through ratings [53, 74] assumed innate reliability in quality judgements.
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Fig. 4.4 Trajectory graphic
description reference for
HRTF quality ratings:
horizontal (left) and median
(right) plane trajectories
indicating the start/stop
position and trajectory
direction (• ���) (from [92])

More recently, studies have shown that such reliability cannot be assumed, but must
be evaluated, with some listeners being highly repeatable while others are not [6].

It can be assumed that different HRTFs will, for a given subject, result in different
performances in a sound source localisation task. From this we can infer that an
optimal HRTF could be selected looking at such performances, for example, using
metrics such as localisation errors and front-back and up-down confusion rates (see
Sect. 4.3.2 for metric definitions). This assumption has been the baseline of several
studies where an HRTF selection procedure was designed and evaluated based on
localisation performances [41, 83, 96]. Suchmethods previously required specialised
hardware, though current consumer Virtual Reality (VR) devices, thanks to their
increasingly higher performance in terms of tracking capabilities (e.g. [43]), can now
be employed for rendering and reporting the perceived direction of the sound source.
However, these methods still remain rather time-consuming, as a large number of
positions across the whole sphere should be evaluated in order to obtain reliable
results.

Alternatively, HRTF selection can be the result of subjective evaluations based
on indirect quality judgement approaches. Several research works have looked at
asking listeners to rate HRTFs based on the perceived quality of some descriptive
attributes, from the overall impression [106] to how well the auditory presentation
matched specifically described locations or movements of the virtual source [53, 83,
85] (e.g. Fig. 4.4). Several methods have been introduced for ultimately being able
to select one or more best performing HRTFs; these include ranking [83], rating on
scales [6, 53, 82], multiple selection-elimination rounds [97] and pairwise compar-
isons [85, 106]. In general, there seems to be an agreement on the fact that expert
assessors (as defined by [107]) perform significantly better (i.e. in a more reliable
and repeatable manner) if compared with initiated assessors [6, 54]. To gain further
insight into indirect method results, somework has been carried out to develop global
perceptual distance metrics with the aim to describe both HRTF and listener simi-
larities [8]. In addition to proposing and evaluating a set of perceptual metrics, this
work encourages further research into novel experiment design which could help in
minimising the need for data normalisation and, more importantly, outlines the need
for further investigations on the stability of these perceptual experiments/evaluations,
specifically looking at repeatability and training.
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Methods Comparison

Few studies have examined the similarity between direct (i.e. localisation perfor-
mances) and indirect HRTF selection methods. Using an immersive VR reporting
system for the localisation test, results from [108] indicated a significant and pos-
itive mean correlation between HRTF selection based on localisation performance
and HRTF ranking/selection based on quality judgement; the best HRTF selected
according to one method had significantly better rating according to metrics in the
other method. In contrast, using a gestalt reporting method through the use of an
avatar representation of the listener’s head, results from [54] showed no signifi-
cant correlations. A number of protocol differences exist between these two studies,
including the type of tasks used for both methods, the user interface (see [10, 11]
regarding localisation reporting method effects), the stimuli signals, as well as the
metrics evaluated in the quality judgement task.

4.3 User-to-System Adaptation: HRTF Accommodation

The previous section examined HRTF selection and individualisation methods in
the signal domain. While such methods aim to provide every individual user with
the best HRTF possible, such approaches are not always available in all conditions.
However, evidence is increasingly available showing that the adult brain is adaptable
to environmental changes. It has been demonstrated that this adaptability (or plas-
ticity) regarding spatial auditory processing can lead to a reduction in localisation
error over time in the case when a listener’s normal localisation cues are significantly
modified.

It has been established that one can adapt to modified HRTFs over time, with
ear moulds inserted in the pinnae [19, 38, 94, 95], or with non-individual HRTFs
through binaural rendering [73, 77, 90, 92, 99, 109]. Studies have shown that one can
adapt to distorted HRTFs, e.g. in [60] where participants suffering from hearing loss
learned to use HRTFswhose spectrum had beenwarped tomove audio cues back into
frequency bands they could perceive. HRTF learning is not only possible, but lasting
in time [62, 92, 109]: users have been shown to retain performance improvements up
to 4months after training [109].Given enough time, participants using non-individual
HRTFs may achieve localisation performance on par with participants using their
own individual HRTFs [73, 77, 92].

This concept has been successfully used to improve user localisation performance
within virtual auditory environments when using non-individual HRTFs. Readers are
referred to [61, 104] for more general reviews on the broader topic of HRTF learning.
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4.3.1 Training Protocol Parameters

Learning methods explored in previous studies are often based on a localisation
task. This type of learning is referred to as explicit learning [61], as opposed to
implicit learning where the training task does not immediately focus participant
attention on localisation cues [73, 92]. Performance-wise, there is no evidence to
suggest either type is better than the other. Implicit learning gives more leeway for
task design gamification. The technique is more and more applied to the design of
HRTF learning methods [39, 73, 90, 92], and while its impact on HRTF learning
rates remains uncertain [90], its benefit for learning, in general, is, however, well
established [36]. On the other hand, explicit learning more readily produces training
protocols where participants are consciously focusing on the learning process [63],
potentially helping with the unconscious re-adjustment of auditory spatial mapping.

As much as the nature of the task, providing feedback can play an important
role during learning. VR technologies are more and more relied upon to increase
feedback density in the hope of increasing HRTF learning rates (in Chap. 10, the
interested reader can find further insights on multisensory feedback in VR). While
results encourage the use of a visual virtual environment [60], it has been reported
that proprioceptive feedback alone can be used to improve learning rates [16, 73].
Direct comparison of experimental results suggests that active learning with direct
feedback is more efficient (i.e. leads to faster improvement) than passive learning
from sound exposure [61]. There is also a growing consensus on the use of adaptive
(i.e. head-tracked) binaural rendering during training to improve learning rates [19],
despite the generalised use of static head-locked localisation tasks to assess perfor-
mance evolution [61]. It is not trivial to ascertain whether the benefit of head-tracked
rendering comes from continuous situated feedback improving audio cue recalibra-
tion, or from unbalanced comparison, as static head-locked rendering creates user
frustration and results in less sound exposure [90]).

Studies on the training stimulus indicate that learning extends to more than the
signals used during learning [39, 90]. This result is likely dependent on specific char-
acteristics of the stimuli and how these relate to auditory localisation mechanisms,
i.e. whether they present the transient energy and broad frequency content necessary
for auditory spatial discrimination [24, 57, 72].

There is no clear cut result on optimum training session duration and scheduling.
Training session duration reported in previous studies ranges from ≈8 min [66] to
≈2h [60]. Comparative analysis argues in favour of several short training sessions
over long ones [61]. Training session spread is also widely distributed in the litera-
ture, ranging from all sessions in one day [57] versus one every week or every other
week [92]. Where results suggest spreading training over time benefits learning (all
in 1 day versus spread over 7 days) [57] outcomes from [73, 92] indicate that weekly
sessions and daily sessions result in the same overall performance improvement (for
equal total training duration). There is some example of latent learning (improvement
between sessions) in the literature [66], naturally encouraging the spread of training
sessions. Regardless of duration and spread, studies have shown that learning sat-
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uration occurs after a while. In [59], most of the training effect took place within
the first 400 trials (≈160 min), a result comparable to that reported by [20] where
saturation was reached after 252 to 324 trials.

One of the critical questions not fully answered to date is the role of the HRTF
fit in the training process or how similar the training HRTF is to the actual HRTF of
the individual. It would appear that a certain degree of affinity between a participant
and the training HRTF facilitates learning [73, 92]. In contrast, lack of adaptation
can occur if the HRTF to be learned is too different from one’s own HRTF. This
is evidenced by mixed adaptation results in studies where ill-suited HRTF matches
were tested.

4.3.2 HRTF Accommodation Example

We present here as an example HRTF learning study by Stitt et al. [92], which
examined the effect of adaptation to non-individual HRTFs. This study was cho-
sen for this example as it provides a controlled study over a significant number of
training sessions. As a “worst-case” real-world scenario, perceptually worst-rated
non-individual HRTFs were chosen by each subject to allow for maximum poten-
tial for improvement, another factor of interest in its design. This study is part of
a series of studies on the subject of user-to-system adaptation, providing continuity
of comparisons [15, 73, 77]. The methodology consisted of a training game and a
localisation test to evaluate performance carried out over 10 sessions. Subjects using
non-individual HRTFs (group W10) were tested alongside control subjects using
their own individual measured HRTFs (group C10).

Prior to any training, subjects were assigned non-individual HRTFs based on
quality judgements of rendered sound object trajectories for 7 HRTF sets, taken as
“perceptually orthogonal” [53]. These trajectories, shown in Fig. 4.4, were presented
to subjects as a reference. Following the results of [8], which examined the reliability
and repeatability of HRTF judgements by naive and experienced subjects, this rating
task was performed three times, leading to a total of six ratings per subject, counting
the two trajectories, with the overall judgement rating taken as the overall mean.
The lowest rated HRTF for each subject was then used as that subject’s worst-match
HRTF. This method is an improvement over alternate methods which are either
uncontrolled (e.g. a single HRTF used by all listeners) or limited in the extent of
relative spectral changes presented to subjects when compared to their individual
HRTFs.

The training procedure for the 10 sessions was devised as a simple game with a
searching task in which the listener had to find a target at a hidden position in some
direction (θ, φ), ignoring radial distance. Subjects searched for the hidden target by
moving the motion-tracked hand-held object around their head (see concept in Fig.
4.5). For the duration of the search, alternating pink/white noise (50–20000 Hz) with
an overall level of approximately 55 dBA measured at the ear was presented to the
listener, positioned at the location of the tracked hand-held object relative to the
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Fig. 4.5 Training game
concept design

subject’s head. This provided a link between the proprioceptively known position of
the subject’s own hand and spatial cues in the binaural rendering. The alternation
rate of the pink/white noise bursts increased with increasing angular proximity to the
target direction using a Geiger counter metaphor [71, 79]. Once the subject reached
the intended target direction, a success sound would play, spatialised at the target’s
location. The training game lasted 12min and subjectswere instructed to find asmany
targets as possible in the time available. Sessions 1–4 occurred at 1-week interval,
while the remaining sessions occurred at 2-week interval.

It should be emphasised that no auditory localisation on the part of the subject
was actually required to accomplish this task, only tempo judgements of the alter-
nation rate of the pink/white noise bursts and proprioceptive knowledge of one’s
hand position. HRTF adaptation was therefore an implicit result of game play, but
not the task of the game as far as the participant was aware. This task was designed
to facilitate learning with source positions outside of the visual field of view, as well
as to function for individuals with visual impairments.

Performance Evaluation Metrics

The HRTF accommodation was evaluated via localisation tests. Subjects were pre-
sented a brief burst of noise (to limit the influence of any possible head movement
during playback) and would subsequently point in the perceived direction of the
sound using the hand-held object. No feedback was given to subjects regarding the
target position. The noise burst consisted of a train of three, 40ms Gaussian broad-
band noise pulses (20000 Hz) with 2 ms raised cosine window applied at onset and
offset and 30ms of silence between each burst [73]. There were 25 target directions
with 5 repetitions of each target, resulting in the tested sphere including a full 360◦
of azimuth, and –40–90◦ of elevation.

Two types of metrics were used to analyse localisation errors: angular and confu-
sion metrics. The interaural coordinate system defines a lateral and polar angle Fig.
4.6a. The lateral angle is the angle between the interaural axis and the line between the
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Fig. 4.6 Interaural polar coordinate system and associated polar angle cone-of-confusion zone
definitions

origin and the source. The lateral angle approaches cones-of-confusion along which
the interaural cues (ITD and ILD) are approximately equal. A cone-of-confusion is
defined by the contour around the listener for a given ITD or ILD (see Fig. 4.1). For
ITD, these contours can be generally represented by a hyperbolic function, where
the difference in arrival time to the two ears is constant and the vertex is on the
interaural axis, between the two ears. The intersection of the ITD and ILD cones-of-
confusion for a given stimulus prescribes a closed curve (approaching a circle). The
ITD and ILD are insufficient to resolve the localisation ambiguity, requiring further
information, such as from Spectral Cues or head movements. The polar angle is the
angle between the horizontal plane and a perpendicular line from the interaural axis
to the point, such that the polar angle prescribes the source location on the cone-
of-confusion. The polar angle is primarily linked with the monaural, Spectral Cues
in the HRTF. This independence of binaural and Spectral Cues makes the interaural
coordinate system a natural choice when looking at localisation performance. If the
perceived ILD, ITD and Spectral Cues of a given source do not adequately coincide
with the expectations of the auditory system for a single point in space, uncertainty in
localisation response ensues. The most commonly referenced uncertainties are polar
angle confusions.

Polar angle confusions are classified using a traditional segmentation of the cone-
of-confusion [73, 92], revised in [108]. The classification results in three potential
confusion types, front-back, up-down and combined, with a fourth type correspond-
ing to precision errors, represented schematically in Fig. 4.6b. The precision category
designates any response close enough to the real target so as not to be associated to
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Fig. 4.7 Result analysis by subgroup. a Mean absolute polar angle error and 95% confidence
intervals for groupsW10+,W10– andC10 across sessions 1–10. bResponse classification analysis:
Mean classification of results for groupW10 by type (precision (×), front-back error (©), up-down
error (�) and combined error (�)) for groups W10+ (—, 3 subjects) and W10– (- -, 5 subjects)
over sessions 1–10 (from [92])

the other confusion types. In short, responses classified under precision are for those
within±45◦ of the target angle, front-back classified errors are responses reflected in
the frontal plane, and those classified up-down are for those reflected in the transverse
plane. Any responses that fall outside of these regions are classified as combined type
errors.

Performance Evaluation Results

Results examined the evolution of polar angle error and confusion rates. As ameasure
of accommodation, the rate of improvement was defined as the gradient of the linear
regression of polar angle error. The rates of improvement for the 8 subjects spanned
values of 0.5◦ to 4.6◦/session over sessions 5–10 (as results for initial sessions have
been shown to be influenced by procedural learning effects [59]). In contrast, results
for the control group over the same sessions spanned 0◦ to 2.2◦/session. A clustering
analysis of the test group relative to the control group, C10, separated those whose
rate of improvement exceeded that of the control group (subgroup W10+) and the
remaining subjects (W10–) who did not. This second group failed to exhibit clear
HRTF adaptation results over and above that of the control groupwhose improvement
can be considered primarily as procedural learning.

The polar errors are shown in Fig. 4.7a for groupsW10+,W10– and C10. Group
W10+ approached a similar level of absolute performance toC10. This demonstrates
that these subjects were able to adapt well to their worst-rated HRTF to a level
approaching subjects using their individuallymeasured one. It also shows clearly that,
despite continuous training, some subjects (W10–) exhibited little or no improvement
beyond the procedural learning seen in C10.
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The response classification results for groupsW10+ andW10– are shown in Fig.
4.7b. At the outset of the study, it can be observed that up-down and front-back
type error rates are comparable between the two subgroups, with W10– exhibiting
more combined type errors. This metric could be a potential indicator for identifying
poor HRTF adaptation conditions. Subsequently, it can be clearly seen that group
W10+ exhibits a steady increase in precision classified responses, with reductions in
front-back errors over sessions 3–5 and subsequent reductions in combined errors.
In contrast, groupW10– exhibits generally consistent response classifications across
sessions, with only small increases in precision classification mirrored by a decreas-
ing trend in front-back errors. For all subjects, it can be noted that the occurrence of
up-down errors is quite rare.

Results of this accommodation study show that adaptation to an individual’s per-
ceptually worst-rated HRTF can continue as long as training is provided, though the
rate of improvement decreases after a certain amount of training. A subgroup achiev-
ing localisation performance levels approaching the control group with individual
HRTFs. These performance levels were comparable to those observed in [73] with
identical test protocol, where subjects performed only three training sessions using
their perceptually best rated HRTF.

4.4 Discussion

It is clear that, while various methods and tools are available for selecting a best fit
HRTF for a given listener, there is no established evaluation protocol to determine
how well these methods work and compare with each other. While some work is
advancing in proposing common methodologies and metrics [75], the lack of estab-
lished methods raises some very relevant questions about the feasibility of a unique
HRTF selection task which performs reliably and independently from factors such
as the listeners expertise, the signals employed, the user interface, the context where
the tests are carried out and, more in general, the task for which the final quality
is judged. It seems evident that any major leap forward in this field is limited until
two primary issues are addressed: (1) the establishment of pertinent metrics to per-
ceptually assess HRTFs and (2) the relationship between these metrics and specific
characteristics of the signal domain HRTF filters.

The use of HRTF adaptation, in examining the results of this and previous studies,
has been shown to be a viable option to improve spatial audio rendering, at least
with regard to localisation. The level of adaptation achievable is related to the initial
suitability (perceptual similarity) between the systemHRTF and the user’s individual
HRTF, with more suitable HRTFs showing more rapid adaptation. No significant
effect has been found regarding the specific training intervals, though spreading out
sessions is better than multiple sessions on the same day. The adaptation method
could be integrated into a stand-alone game application, or as part of device setup
and personalization configurations, typical of most VR devices to some degree. The
major limitation, once the training HRTF is chosen, is the need for repeated training
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Fig. 4.8 Example active HRTF learning training game. Training setup: (top-left) participant in
the experiment room, (bottom-left) third person view of the training platform, (right) participant
viewpoint during the training (from [77])

sessions, and this must be made clear to users so that they do not expect ideal results
from the start.

The combination of user-to-system and system-to-user adaptation is a promis-
ing solution. While user-to-system adaptation appears limited by the initial training
HRTF employed, system-to-user adaptation methods provide various means of pro-
viding, if not a perfect individual HRTF, a reasonable near approximation. As such,
selection of a pretty-good HRTF match followed by user training could be a viable
real-world solution.

An example of such a tailored HRTF training has been tested in [77]. In this work,
as compared to the previous mentioned study in Sect. 4.3.2, the subject was aware of
the goal of the training, with specific HRTF-based localisation difficulties presented
with increasing difficulty (see Fig. 4.8). In addition, a bestmatchHRTF conditionwas
employed using an interactive exploration method, rather than the general ranking
described in Sect. 4.2.2 and a worst-case selection scenario. Results indicated that
the proposed training program led to improved learning rates compared to that of
previous studies. A further addition of this study was the inclusion of a simulated
room acoustic response, moving from the typical anechoic conditions of previous
studies to a more natural acoustic for the user. Results showed that the addition of
the room acoustics improved HRTF adaptation rate across sessions.

4.5 Conclusions and Future Directions

While binaural audio and spatial hearing have been studied for over 100 years, major
advancements in these fields have occurred in the last two to three decades, possi-
bly thanks to progress in real-time computing technologies. It has been extensively
shown that everyone perceives spatial sound differently thanks to the particular shape
of their ears, head and torso. For this reason, either high-quality simulations need to
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be uniquely tailored to each individual listener, or the listener needs to adapt to the
configuration (i.e. the HRTF on offer) of the rendering system, or again some combi-
nation of both using individualised HRTFs. This chapter has provided an overview of
research aimed at systematically exploring, assessing and validating various aspects
of these two approaches. But while there is a good level of agreement on certain
notions and principles, e.g. that using non-individual HRTFs can result in impaired
localisation performance which can however be improved through perceptual train-
ing, there are still open challenges in need of further investigation.

A rather general but very important question that has yet to be addressed is how
we can measure whether a simulated immersive audio experience is suitable and of
sufficient quality for a given individual. Previous work has established a certain level
of standardisation for assessing general audio quality (e.g. related to telecommuni-
cation and audio compression algorithms), but equivalent work has yet to be carried
out in the field of immersive audio. Objective and subjective metrics for assessing
HRTF similarity have been explored and evaluated in the past [5], and recently pub-
lished research suggests that additional metrics might exist, e.g. looking at speech
understanding performance [21] or machine learning artificial localization tests [3,
13]. Nevertheless, extensive research is still needed in order to understand and model
low-level psychophysical (sensory) as well as high-level psychological (cognitive)
spatial hearing perception.

Factors other than choices related to binaural audio processing could also have an
impact on the overall perception of the rendered scenes. The fact that high-quality,
albeit non-interactive, immersive audio rendering can be achieved through record-
ings done with a simple binaural microphone, which by definition do not account for
individualised HRTFs, can be considered an example of the major complexity and
dimensionality of the problem. Matters such as the choice of audio content, the con-
text of the rendered scene, as well as the experience of the listener (e.g. whether they
have previously participated in immersive audio assessments) have been shown to be
relevant when assessing the perceived quality of the immersive audio rendering [6,
54]. Such a discussion found a natural continuation in Chap. 5.

Looking more in depth at the need to quantify the individually perceived quality
of the rendering, the understanding of the perceptual weighting of morphological
factors contributing to spatial hearing becomes an essential target to be achieved.
Data-based machine learning approaches may be a useful tool when tackling this, as
well as challenges related to user-to-system adaptation. Examples include allowing a
certain level of customisation of the training by individually and adaptively varying
the difficulty of the challenge, maximising learning and at the same time avoiding
an overload of sensory and cognitive capabilities. Further explorations on spatial
hearing adaptation shall focus on exploring the transferability of the acquired training
between different hearing skills (e.g. [100]) and examining to what extent spatial
auditory training performed in VR is transferable to real-life tasks.

Another very relevant yet still under-explored area of research is employing cog-
nitive and psycho-physiological measurements when trying to assess both the quality
of rendered spatial hearing cues and the cognitive effort during HRTF training. In
the first case, measures related with behavioural performance, as well as electroen-
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cephalographic markers of selective attention, could be used to assess the suitability
of immersive rendering choices [23], possibly opening the path towards passive
perceptual-based HRTF selection. In the second case, similar metrics, with the addi-
tion of other measures of listening effort such as pupil dilation [103], could be
employed for customising spatial hearing training routines, maximising outcomes
while maintaining engagement and feasibility of the proposed tasks.

Final Thoughts

While most studies have focused on laboratory conditions to isolate specific percep-
tion elements, recent context-relevant studies have begun to examine the impact of
spatial audio quality on task accomplishment. For example, [76] compared perfor-
mance in a first-person-shooter VR game context with different HRTF conditions.
Results showed performance for extreme elevation target positions was affected by
the quality of HRTFmatching. In addition, a subgroup of participants showed higher
sensitivity to HRTF choice than others. At the same time, low-level sensory percep-
tion is only one of the dimensions where immersive audio simulations can have a
significant impact. In order to significantly advance our understanding of the impact
of HRTF personalisation in virtually rendered scenes and tasks, research needs to
move beyond the evaluation of individual immersive audio tasks and metrics (e.g.
sound localisation and/or perceived quality of the rendering), moving towards the
evaluation of full experiences. The impact of immersive audio beyond perceptual
metrics such as localisation, externalisation and immersion [87] is an as yet unex-
plored area of research, specifically when related with social interaction, entering
the behavioural and cognitive realms.

In the past, several studies have been published in which auditory-based AR/VR
interactions were created and evaluated without considering HRTF choice or using
HRTF personalisation approaches that had not previously been appropriately vali-
dated from a perceptual point of view, or again ignoring the effects of HRTF accom-
modation, or blaming them in order to justify unexpected results. Considering our
current knowledge and experience in immersive audio research, we are keen to rec-
ommend carrying out some level of personalisation of the spatial renderingwhen per-
forming studies which involve auditory-based or multimodal interactions in AR/VR.
As a baseline, ITDs can easily be customised to match the head circumference of
the specific listener (as mentioned above, this function is already implemented in
a few spatialisers, such as [22, 78]). Furthermore, HRTF selection routines, both
perceptual and morphology based, could be very beneficial if carried out before the
experiment, albeit it is important for the repeatability of such choices to be assessed
with the specific subject (i.e. repeating the selection several times in order to ver-
ify the consistency across the trials, and possibly discard subjects/methods which
do not show a sufficient level of repeatability). Regarding the use of synthesised
HRTFs, until these are validated through extensive perceptual studies our advice
is to use measured ones, possibly coming from the same dataset in order to avoid
measurement-based differences.
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In addition to these recommendations, it is important to emphasize that the future
of immersive audio research will need to include studies focusing on different con-
texts (e.g. AR/VR interactions, virtual museum explorations and virtual assistant
avatars), exploring the impact (and need) of HRTF personalisation on complex tasks
such as interpersonal exchanges and distance learning in VR. Furthermore, in order
to ensure a sufficient level of standardisation and consistently advance the achieve-
ments of research in this area, it seems evident that a concerted and coordinated effort
across disciplines and research groups is highly desirable.
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