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Résumé — Dans le domaine des risques industriels, l'évaluation 

quantitative de l’occurrence des événements redoutés et des 

phénomènes dangereux est devenue incontournable. La méthode du 

nœud-papillon, combinaison des arbres de défaillances et 

d'événements, est largement utilisée et constitue un outil pour la 

prise de décisions. Cette technique, dans sa déclinaison actuelle, ne 

considère pas les incertitudes liées aux paramètres d’entrée qui 

déterminent cependant la variabilité des résultats. Notre étude 

propose une méthodologie d’analyse probabiliste du nœud-papillon 

prenant en compte les incertitudes sur les taux de défaillance 

d’équipements et les erreurs humaines. Cette approche est présentée 

et est appliquée à un cas d’étude industriel simple. L’intérêt de la 

prise en compte des incertitudes dans la quantification des risques 

est démontré en ce qui concerne les prises de décisions notamment 

pour les investissements en matière de barrières de sécurité.  

Mots-clefs — méthode du nœud-papillon, incertitudes, risque 

industriel, probabilités, simulation Monte-Carlo 

Abstract— In the field of industrial risks, the quantitative 

evaluation of the occurrence of critical events and hazardous 

phenomena has become essential. The bowtie method, a 

combination of fault and event trees, is widely used and constitutes 

a tool for decision making. This technique, in its current form, does 

not take into account the uncertainties related to the input parameters 

which nevertheless determine the variability of the results. Our 

study proposes a probabilistic analysis methodology for the bowtie 

that considers uncertainties in equipment failure rates and human 

errors. This approach is presented and applied to a simple industrial 

case study. The interest of considering uncertainties in the 

quantification of risks is demonstrated with regard to decision-

making, particularly for investments in safety barriers.  

Keywords — bowtie method, uncertainties, industrial risk, 

probabilities, Monte-Carlo simulation 

I. INTRODUCTION  

Bowtie risk analysis method was first introduced by the 
Imperial Chemical Industries Company. Following the 1988 

Piper Alpha oil platform accident, the Royal Dutch Shell 
Company developed this technique to improve safety of such 
facilities. Nowadays, the bowtie method is widely used in 
industry and recommended by regulatory bodies for studying 
major hazard scenarios [1] [2]. It is a valuable tool for 
performing a detailed quantitative risk assessment, making 
decisions and communicating in industrial risk management 
[3].   

 

Fig. 1. Schematic of a bowtie 

Fig. 1 shows a representation of a bowtie which combines 
a fault tree and an event tree that are on both sides of a Critical 
Event (CE). There are several causes (C) of a CE, for example, 
equipment failures or human error.  The fault tree describes all 
the scenarios that lead to the CE. Intermediate events (IE) are 
defined to clarify the scenarios. The consequence scenarios 
depend on the success or failure of the safety barriers (SB). 
The quantification of the bowtie requires relevant input data 
relative to the occurrence of causes and to the reliability of 
safety barriers. Such data come from industrial databases, 
feedback or from expert’s judgement. In all the cases, the data 
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include sources of uncertainties, qualified as epistemic or 
aleatoric, that should be considered using appropriate 
methods.  

In the current practice, quantification of a risk consists of 
allocating an estimator related to its “occurrence”. This 
estimator is a probability or a frequency that can be 
determined by various risk analysis methods (including the 
quantified bowtie). It is then compared with threshold values, 
which makes it possible to decide on the risk acceptability. 
This approach is generally implemented through a risk 
acceptability matrix that couples probability of occurrence and 
severity levels (an example of this matrix used in French 
regulatory studies is represented in Fig. 2). Regardless of the 
chosen occurrence assessment method, the previous 
comparison goes through the evaluation of a point estimator 
(single value of probability or frequency of occurrence). This 
approach facilitates decision-making since it is then relatively 
easy to compare it to the threshold values (the estimator being 
either less than or greater than the threshold value). In such 
processes, uncertainties are implicitly taken into account 
through a supposed conservatism on the input data that feeds 
the estimator calculation.   

 

Fig. 2. Example of acceptability matrix used in French regulatory studies 

In recent years, risk assessment methods have improved. 
It is now possible to deal with the input data uncertainties and 
to propagate them on the output data. Moreover, functional 
safety standards, such as IEC 61511, recommend accounting 
for uncertainties in the management of safety instrumented 
systems in the process industry sector. Some papers have 
presented various approaches of how to deal with 
uncertainties in a quantitative risk assessment and the follow-
on decision process [4] [5]. They paid special attention to the 
highly uncertain aspect of human reliability influenced by 
organizational factors and working conditions. 

The overall objective of our work is to examine the 
possibilities of modelling uncertainties associated with bowtie 
events on risk assessment and associated decision-making. 
Section II is a brief overview of the types of uncertainty 
models encountered in risk assessment. Section III presents a 
case study used for the assessment of risk propagation with 
uncertainties, whose results are discussed in Section IV. The 
paper ends with a set of conclusion statements and 
perspectives. 

II. UNCERTAINTY MODELS 

A. Types of uncertainties 

In the risk assessment framework, quantification requires 
assessing occurrence of causes and reliability or availability 
of safety barriers. The data used in quantitative risk analysis, 
by their very nature, are necessarily subject to uncertainty. In 
addition, some values are based on assumptions to fill a 
knowledge gap in the system. The literature distinguishes two 
types of uncertainties, aleatoric and epistemic [6]. Aleatoric 

uncertainties relate to the inherent stochastic nature of the 
system behavior, hence the common term random uncertainty. 
This type of uncertainty is statistical in nature and is quantified 
by probability distributions. Epistemic uncertainties are 
caused by a lack or incompleteness of knowledge of some data 
in the context of risk analysis. Such uncertainty relates to the 
ignorance of the user about the data rather than the underlying 
randomness of the data. Often little is known about human 
errors, which is one possible occurrence of epistemic 
uncertainties in bowtie risk analysis.  

B. Models relevant in industrial risk analysis  

Industry practices for risk assessment have evolved over 
time as shown in Fig. 3. The Piper Alpha disaster (1988) led 
to the widespread use of quantitative risk assessments (QRA) 
in decision support within the North Sea oil and gas industry. 
In France, AZF accident (2001) was a turning point in the 
development of the quantitative approaches in the safety 
studies framework. We moved from a qualitative analysis, to 
a quantitative single-point analysis and then to an analysis 
with uncertainties. However, even today there is still a step to  
take into account random and epistemic uncertainties with the 
appropriate models. This step, which would make it possible 
to obtain an accurate risk analysis, would correspond to a 
major change in industrial practices, as the commercial tools 
are not available today. This development will be, however, 
essential if rational decisions and investments are to be made 
on process safety. Today, the "best" compromise might be to 
apply the probabilistic method to all types of causes. 

Fig. 3. Evolution over time of industrial risk assessment methods 

Let’s present the uncertainty models relevant in risk 
analysis: those that apply to aleatoric uncertainties and those 
specific to epistemic uncertainties 

C. Probabilistic models 

Aleatoric uncertainties can be quantified by precise or 
imprecise probability distributions whose propagation 
through the bowtie is carried out using Bayesian rules and 
Monte Carlo simulation [7].  

Precise probabilities apply typically to the failure rate of 
an equipment. Gamma and lognormal distributions often 
apply to these uncertainties, with well-documented 
parameters found in databases, such as OREDA database.  

Imprecise probabilities also apply to random uncertainties, 
but they carry an uncertainty about parameters of the 
probability distribution used to model random uncertainties 
[8]. These parameters are themselves random variables that 
are quantified by a precise probability. Imprecise probabilities 
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yield a family of distributions that includes the precise 
probability as its most probable value. 

D.  Specific models for epistemic uncertainties 

 Possibility models are one means of dealing with 
epistemic uncertainties [9] [10]. A possibility measure can be 
computed from a set of nested confidence intervals. The 
knowledge about the data is therefore divided into a finite 
number of intervals with given degrees of possibility called α-
cuts. The greater the number of α-cuts, the more precise the 
results. A confidence level is attached to each interval. A 
distribution of possibilities is then represented by two 
cumulative distributions, which bracket the lower and upper 
limits of occurrence of the event of interest. The distance 
between the two distributions is a direct measure of how 
imprecise the data is [11].  

 Belief functions apply to epistemic uncertainties defined 
by intervals that are not nested [12]. It is based on the 
definition of belief and plausibility functions that characterise 
the value of the variable. The number of α-cuts is limited to 
the number of intervals available. 

 The intervals model is applicable when the level of 
knowledge about failure rate data is low, one may only know 
that a given variable lies inside a single interval, defined by 2 
observations. It is possible to know the minimum and 
maximum bounds of the probability of occurrence without 
being able to say anything about the distribution of this 
probability within this interval [13]. Interval arithmetic can be 
used to dealing with variables defined by a single interval. 

III. CASE STUDY 

To illustrate our methodology, a didactic case study is 
considered. 

A. General description 

Fig. 4 represents a semi-batch reactor in which an 
exothermic reaction is carried out. First, reactant A is 
introduced at the lower part of the reactor, then reactant B is 
pumped into the reactor. The catalyst is added by the operator. 
The temperature of the reactor is controlled by a cooling 
system (TIC). The critical event studied is thermal runaway.  

The reactor is instrumented with two prevention barriers:  

• an alarm set at high temperature (TAH) alerting the 
operator to stop the dosing and open the cooling valve 
fully. 

• a Safety Instrumented System (SIS) at high high 
temperature (TSHH) stops the dosing and opens the 
cooling valve fully automatically (by an independent 
pilot valve bypassing the valve controller). 

 In addition, two mitigation barriers are implemented:  

• an emergency dump which stops the reaction by 
emptying the overheating reactor into a tank 
containing a cold liquid. 

• a pressure relief valve designed for the runaway 
scenario.   

 

Fig. 4. Schematic representation of the case study 

B. Bowtie of the case study 

The corresponding bowtie of the case study is shown in 
Fig. 5.  

Six causes (C1 to C6) and two safety barriers (SB1 and SB2) 
are considered. C1, C3, C4, C6 and SB1 and SB2 deviation are 
relative to equipment failures. Two causes (C2 and C5) are due 
to human errors. This results in the occurrence of 3 
consequence scenarios:  

• Consequence scenario 1 (SC1): explosion of the 
reactor due to the thermal runaway 

 

 

 Fig. 5. Bowtie of the case study 
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• Consequence scenario 2 (SC2): stop of the pressure 
increase by the opening of the pressure relief valve 

•  Consequence scenario 3 (SC3): stop of the reaction 
thanks to the emergency dump.  

C. Methodology of quantifying uncertainties 

The objective of this paper is to propose a method of 
quantifying uncertainties in risk analysis using precise 
probabilities whether the uncertainties associated with failure 
rate values are epistemic or aleatoric. In consequence the 
bowtie is entirely probabilistic. 

It should be noted that the probability of occurrence of an 
equipment failure follows the exponential distribution 
according the equation (1): 

   P(t)=1-e-λ∙t                                            (1) 

where  is the equipment failure rate 

Usually probability distribution functions are calculated 
from values taken in OREDA type database for equipment 
failures.  

Concerning human errors, the data are from expert 
judgement or literature or methods like TESEO. An analyst is 
able to provide a max probability value (Pmax), a mean 
probability value (Pmean) and a "most likely" value (Pmode).  

The distributions are then propagated along the bowtie 
using Bayesian rules and Monte Carlo simulation. In output 
we obtain probability distributions of the probability of 
occurrence of the critical event and consequence scenarios. 

This technique has a number of advantages for the analysts 
and decision makers: 

• Possible implementation with currently available 
tools used in risk analysis (for example GRIF, 
package simulation developed by and proprietary to 
TotalEnergies.) 

• Provides a range of uncertainties in the risk analysis 
results that allows for confidence in decision making. 

• Allows investments in safety barriers to be made 
without further analysis. 

• In some cases, provides quantitative evidence of the 
need to complete the bowtie sequences.  

 In our case study, two causes (C2 and C5), corresponding 
to human errors whose uncertainty is epistemic in nature, are 
treated with a probabilistic calculation identical to that used 
for other events intrinsically aleatoric (C1, C3, C4, C6, SB1 and 
SB2).  

TABLE 1. EQUIPMENT FAILURE RATE VALUES AND TYPE OF DISTRIBUTION  

Cause / 

Safety 

Barrier 

λmin 

per 

106 hr 

• λmean 

per 

106 hr 

• λmax 

per 

106 hr 

• Source of data • Type of 

distribution 

C
1
  0.79  4.13  9.61 Based on reliability 

data bases 

Lognormal 

C
3
  0.02  0.25  0.68  Based on reliability 

data bases 

Lognormal 

C
4
 0.71  1.87 3.48   Based on reliability 

data bases 

Lognormal 

C
6
 1.16  1.88  2.76  Based on reliability 

data bases 

Lognormal 

SB
1
 0.02  4.52  17.35  Based on reliability 

data bases 

Lognormal 

SB
2
 0.01  3.65  14  Based on reliability 

data bases 
Lognormal 

Table 1 presents the set of equipment failure rate values 
(for C1, C3, C4, C6, SB1 and SB2) and the type of distribution. 
For an equipment failure, databases such as OREDA 
handbook [14] report the mean failure rate at a set reference 
time tref, as well as the min and max confidence bounds of the 
failure rate, at a specified confidence, typically 90%. From 
these data, the parameters of truncated lognormal probability 
distribution are calculated.  

TABLE 2. HUMAN ERROR PROBABILITY VALUES AND TYPE OF 

DISTRIBUTION  

Cause  Pmin  

× 104 
• Pmode 

• × 104 

• Pmax 

• × 104  
• Source of data • Type of distribution 

C
2
 9.63 53.3 99.4 Expert judgement  Triangular 

Truncated lognormal 
Uniform 

C
5
  99.4 424 951 Expert judgement  Triangular 

Truncated lognormal 

Uniform 

 

The probability of human error is constant over time. The 
parameters of the chosen distribution are calculated at the 
reference time. For the triangular distribution, three values are 
initially defined: the minimal value (Pmin), the maximal value  
(Pmax) and the most probable value (Pmode). In this case, Pmean 
corresponds to the average of the three previous values. For 
the truncated lognormal distribution, the parameters are 
calculated by resolving a system of equations involving Pmax 
and Pmean. The distribution is then truncated. In order to 
compare the three proposed distributions, Pmin and Pmax values 
are the same (cf. Fig. 6). Pmean and Pmode values are the same 
for triangular and truncated lognormal distributions (cf. Fig. 
6). 

 

 Fig. 6. Probability density functions used for human error 

IV- RESULTS AND DISCUSSION 

A. Results 

The Monte-Carlo simulation (number of simulations runs: 
106, duration of simulation around 5 minutes) yields the 
probability distribution function of the probability of 
occurrence of the critical event and consequence scenarios 1 
to 3 as a function of time  

(0.5 year ≤ t ≤ 5 years). Fig. 7, Fig. 8, Fig. 9 and Fig. 10 

show the distribution of the probability of occurrence of the 
critical event, and the consequence scenarios 1 to 3 
respectively versus time in a form of a boxplot. As the vertical 
axis is plotted on a log scale, the bounds of the risk 
acceptability matrix levels (A, B, C, D and E) can be drawn as 
horizontal lines on the same graph. Therefore, these figures 
give a direct quantification of the distribution of the risk 
occurrence of an event as a function of time. In these figures, 
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the failure rates of C2 and C5 have been represented by a 
triangular distribution. 

 

Fig. 7. Boxplot representation of the time variation of the probability of 
occurrence of the critical event 

 

Fig. 8. Boxplot representation of the time variation of the probability of 
occurrence of the consequence scenario 1 

 

Fig. 9. Boxplot representation of the time variation of the probability of 
occurrence of the consequence scenario 2 

  

Fig. 10. Boxplot representation of the time variation of the probability of 
occurrence of the consequence scenario 3 

Table 3 to Table 6 show the distribution of the probability 
of occurrence of the events in the risk classes, represented in 
Fig. 7 to Fig. 10 respectively, for three times (1 year, 2.5 years, 
4 years). The results presented in theses tables correspond to 
the 3 types of distribution chosen to represent human errors. 

B. Discussion 

Fig. 7 to Fig. 10 provide an understanding of the risk 
associated with an event that is rather different from the 
current approach which considers only the mean probability 
of occurrence.  

At a given time t, the probability distribution of an event 
can spread across several risk classes. This is the case for 
example, in Table 4 at time t = 2.5 years, the explosion 
scenario occurrence probability spreads across D (≈ 64 %) and 
E (≈ 36 %) risk classes. One may wonder what decision to 
make in this situation. 

It is also possible that the probability distribution is evenly 
split between two classes. This is the case for example, in Fig. 
9 at time t = 2 years, the critical event occurrence probability 
spreads across C (≈ 50 %) and D (≈ 50 %) risk classes. It is 
therefore legitimate to ask whether it is reasonable to retain 
only class C corresponding to the median value, particularly 
with regard to decision making. 

We could expect to have a stronger dispersion of the 
values with the human error uniform distribution law. But in 
this example, the choice of the distribution laws is not 
influential. This fact may be due to the combinatorics of the 
tree. The human error doesn’t lead directly to the critical 
event.  

The results between the different laws are approximately 
the same. And the single point approach gives the same 
conclusion. But, it is not possible here to draw generalizations. 
Indeed, this may be due to the large simulation number of the 
Monte Carlo simulation, but also to the fault tree structure. 
This fault tree is simplified. It is important here to carry out 
this study on other industrial cases where the human error 
would be a minimal cut of order 1 for example. 
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TABLE 3. DISTRIBUTION OF THE PROBABILITY OF OCCURRENCE OF THE CRITICAL EVENT IN THE RISK CLASSES VERSUS TIME (BOLD VALUES SHOW THE MAIN RISK 

LEVEL AS DERIVED FROM ITS PROBABILITY DISTRIBUTION) 

Risk class 

(Probability 

bounds) 

Time (year) 

1 2.5 4 
Uniform 

distribution 

for C2 and 
C5 

Triangular 

distribution for 

C2 and C5 

• Truncated 

lognormal 

distribution 
for C2 and C5 

Uniform 

distribution 

for C2 and 
C5 

Triangular 

distribution 

for C2 and 
C5 

Truncated 

lognormal 

distribution 
for C2 and C5 

Uniform 

distribution 

for C2 and 
C5 

Triangular 

distribution 

for C2 and 
C² 

Truncated 

lognormal 

distribution 
for C2 and C5 

A (P>10-2) < 0.0 5% < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % 0.1 % 0.1 % 0.1 % 

B (10-3<P≤10-2) < 0.05 % < 0.05 % < 0.05 % 99.5 % 99.6 % 99.6 % 99.9 % 99.9 % 99.9 % 

C (10-4<P≤10-3) 100.0 % 100.0 % 100.0 %   0.5 % 0.4 % 0.4 % < 0.05 % < 0.05 % < 0.05 % 

D (10-5<P≤10-4) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % 

E (P≤10-5) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % 
Mean’s 

probability 
/Mean’s level 

3.66 × 10-4 / C 2.03 × 10-3 / B 4.09 × 10-3 / B 

 
 

TABLE 4. DISTRIBUTION OF THE PROBABILITY OF OCCURRENCE OF THE CONSEQUENCE SCENARIO 1 IN THE RISK CLASSES VERSUS TIME (BOLD VALUES SHOW 

THE MAIN RISK LEVEL AS DERIVED FROM ITS PROBABILITY DISTRIBUTION) 

Risk class 

(Probability 

bounds) 

Time (year) 

1 2.5 4 
Uniform 

distribution 

for C2 and C5 

Triangular 

distribution 

for C2 and C5 

• Truncated 

lognormal 

distribution 
for C2 and C5 

Uniform 

distribution 

for C2 and C5 

Triangular 

distribution 

for C2 and C5 

Truncated 

lognormal 

distribution 
for C2 and C5 

Uniform 

distribution 

for C2 and C5 

Triangular 

distribution 

for C2 and C² 

Truncated 

lognormal 

distribution 
for C2 and C5 

A (>10-2) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05  % < 0.05 % < 0.05 % < 0.05 % 

B (10-3<P≤10-2) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05% < 0.05 % < 0.05 % < 0.05 % 

C (10-4<P≤10-3) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % 8.8 % 8.5 % 8.6 % 

D (10-5<P≤10-4) < 0.05 % < 0.05 % < 0.05 % 63.7 % 63.6 % 63.6 % 91.2 % 91.5 % 91.4 % 

E (P≤10-5) 100.0 % 100.0 % 100.0 % 36.3 % 36.4 % 36.4 % < 0.05 % < 0.05 % < 0.05 % 

Mean’s 

probability 

/Mean’s level 

3.39 × 10-7 / E 1.12 × 10-5 / D 6.59 × 10-5 / D 

 
 

TABLE 5. DISTRIBUTION OF THE PROBABILITY OF OCCURRENCE OF THE CONSEQUENCE SCENARIO 2 IN THE RISK CLASSES VERSUS TIME (BOLD VALUES SHOW THE 

MAIN RISK LEVEL AS DERIVED FROM ITS PROBABILITY DISTRIBUTION) 

Risk class 

(Probability 

bounds) 

Time (year) 

1 2.5 4 
Uniform 

distribution 

for C2 and C5 

Triangular 

distribution 

for C2 and C5 

• Truncated 

lognormal 
distribution 

for C2 and C5 

Uniform 

distribution 

for C2 and C5 

Triangular 

distribution 

for C2 and C5 

Truncated 

lognormal 

distribution 
for C2 and C5 

Uniform 

distribution 

for C2 and C5 

Triangular 

distribution 

for C2 and C² 

Truncated 

lognormal 

distribution 
for C2 and C5 

A (>10-2) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % 

B (10-3<P≤10-2) < 0.05 % < 0.05  % < 0.05 % < 0.05 % < 0.05 % < 0.05 % 11.1 % 10.8 % 10.9 % 

C (10-4<P≤10-3) < 0.05 % < 0.05% < 0.05 % 98.5 % 98.5 % 98.5 % 88.9 % 89.2 % 89.1 % 

D (10-5<P≤10-4) 90.8 % 91.0 % 91.0 % 1.5 % 1.5 % 1.5 % < 0.05 % < 0.05 % < 0.05 % 

E (P≤10-5) 9.2 % 9.0 % 9.0 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % 

Mean’s 

probability 

/Mean’s level 

1.50 × 10-5 / D 1.94 × 10-4 / C 7.05 × 10-4 / C 

 
 

TABLE 6. DISTRIBUTION OF THE PROBABILITY OF OCCURRENCE OF THE CONSEQUENCE SCENARIO 3 IN THE RISK CLASSES VERSUS TIME (BOLD VALUES SHOW 

THE MAIN RISK LEVEL AS DERIVED FROM ITS PROBABILITY DISTRIBUTION) 

Risk class 

(Probability 

bounds) 

Time (year) 

1 2.5 4 
Uniform 

distribution 
for C2 and C5 

Triangular 

distribution 
for C2 and C5 

• Truncated 

lognormal 

distribution 

for C2 and C5 

Uniform 

distribution 
for C2 and C5 

Triangular 

distribution 
for C2 and C5 

Truncated 

lognormal 
distribution 

for C2 and C5 

Uniform 

distribution 
for C2 and C5 

Triangular 

distribution 
for C2 and C² 

Truncated 

lognormal 
distribution 

for C2 and C5 

A (>10-2) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 %  < 0 ;05 % < 0.05 % < 0.05 % 

B (10-3<P≤10-2) < 0.05 % < 0.05 % < 0.05 % 98.7 % 98.7 % 98.7 % 100.0% 100.0 % 100.0 % 

C (10-4<P≤10-3) 100.0 % 100.0 % 100.0 % 1.3 % 1.3 % 1.3 % < 0.05 % < 0.05 % < 0.05 % 

D (10-5<P≤10-4) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % 

E (P≤10-5) < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.05 % < 0.0  5% < 0.05% < 0.05 % < 0.05 % 

Mean’s 

probability 

/Mean’s level 

3.05 × 10-4 / C 2.72 × 10-3 / B 6.15 × 10-3 / B 
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Fig. 11. Risk acceptability matrix representing cases 1 and 2 

 To interpret our results to provide guidelines for decision-
makers, it is interesting to locate the probabilities in the risk 
acceptability matrix. We can highlight two cases where 
considering uncertainties brings a real interest in the decision 
making. These two cases are represented in Fig. 11. 

 Case 1 corresponds to a critical situation where a high or 
very high percentage of the probability is located in the C class 
and the severity is in “major” class. The event is then mostly 
or completely located in the “high risk” zone. The positioning 
is not biased by uncertainties on the input data. So, the 
decision-maker can be rather confident in this outcome and he 
is quite convinced that the risk is unacceptable. There is a 
"real” process safety problem. Faced with this problem, it is 
possible to consider, as a first step to look back at the bowtie 
to make sure that the accidental sequences have been correctly 
transcribed (no missing AND gate events or safety barriers, 
and/or factors that would decrease the probabilities) and then 
to consider additional safety barriers implementation. 

 Case 2 corresponds to the situation where the probability 
distribution spreads evenly in the red zone and in the ALARP 
(As Low As Reasonably Practical) zone (cf. Fig. 11). One may 
ask where the probability single-value obtained with the 
current method lies: either the mean value is in an ALARP cell 
or in a red cell. In the current practice when the mean value is 
in the ALARP zone, we should demonstrate that risk reduction 
is impracticable or if its cost is grossly disproportionate to the 
improvement gained. When it is in the red zone, there is no 
choice except to add barriers. On the other hand, taking into 
account the uncertainties, if the mean value is in the ALARP 
zone with 50% of the probability distribution being in the red 
zone, a safe approach would still be to add additional barriers 
while keeping in mind that the probability is not totally in the 
red zone. This new information may be useful for calibrating 
the performance requirements for the additional barriers. This 
situation is where our approach is the most interesting because 
it permits a reasonable decision rather than a non-conservative 
or a too conservative one.  

V – CONCLUSIONS 

 More and more design options are based on the results of 
quantified risk analysis and the stakes are therefore increasing. 
Overestimation of probability can lead to unjustified 
investments. On the contrary, an underestimation can lead to 
a lack of safety barriers or to a design not adapted to address 
the risk. The decision risk making based on quantified analysis 
results may be biased by not taking into account the 
uncertainties.   

 The approach proposed in this article is intended to be 
applicable to quantified risk analysis currently performed. 
Indeed, a choice was made to move towards a totally 
probabilistic approach (whatever the type of uncertainties) in 

order to facilitate the implementation with regard to current 
practices. 

 The case study highlights that taking uncertainties into 
account does not necessarily lead to a more complex decision 
making process. In fact, it can provide decision-makers with 
additional information enabling them to decide with a better 
knowledge of the confidence that can be placed in the 
probability values.  

 To go further, providing guidelines for decision-makers to 
facilitate the use of uncertainty analysis results seems to be a 
prerequisite for democratizing approaches to dealing with 
uncertainties. 

The development of new energies will require new 
processes. To guarantee risk control, risk analyses will remain 
essential.  However, for analysts, it will be more difficult to 
rely on experience feedback (past accidents, databases, etc.). 
From this perspective, taking uncertainty into account in risk 
quantification is a real challenge for a sustainable future. 
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