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Résumé—Cet article présente l’application d’une méthodologie
d’optimisation mécano-probabiliste pour faire face aux incertitudes
sur la conception d’un démonstrateur de véhicule spatial réutilisable.
La méthodologie est intégrée sous forme de module python sur l’outil
de conception COLIBRI du CNES. La méthodologie est principale-
ment composée de quatre fonctionnalités, une méthode de screening,
l’analyse de sensibilité, l’estimation de probabilités de défaillance et
l’optimisation sous incertitudes. Pour chaque fonctionnalité plusieurs
méthodes sont implémentées et appliquées au modèle de lanceur.
Les travaux montrent un caractère innovant dans le domaine des
lanceurs, par l’application de méthodes éprouvées dans des domaines
industriels fortement contraints par des aspects de fiabilité.

Abstract—This paper presents the application of a mechano-
probabilistic optimization methodology to deal with the uncertain-
ties on the design of a reusable space vehicle demonstrator. The
methodology is integrated as a python module in the COLIBRI design
tool of the CNES. The methodology is mainly composed with four
functionalities, the screening analysis, the sensitivity analysis, the
failure probability estimation and the optimization under uncertainty.
For each functionality, several methods are implemented and applied
to the launcher model. The work shows an innovative character in
the field of launchers, through the application of proven methods in
industrial fields strongly constrained by the aspects of reliability.

Keywords—Optimization, probability, sensitivity, uncertainty,
space vehicle

I. INTRODUCTION

In structure and mechanical construction, there exists a lot
of sources of uncertainties such as the geometrical tolerances,
the material properties and others [13]. These uncertainties
affect the performance, the robustness and the reliability of
the products. Some types of uncertainties can be eliminated,
by improving the knowledge about the model, or by investing
on more accurate fabrication machines and metrology tools;
while other types can not be eliminated, and their presence
is inherent of the production process, as explained in [5].

In other side, ignoring the presence of uncertainties leads to
un-robust and/or unreliable products. One way to limit their
effects is through design under uncertainties, by taking them
into consideration in the early phase of the mechanical and
structure design.

Within the framework of the guarantee of the design of
spacecraft structures under uncertainties and as part of the
search for mass gain in these structures, while ensuring their
reliability, CNES called on Phimeca to develop a mechano-
probabilistic optimization module integrated into their COL-
IBRI design tool. The ultimate objective of this study is to
perform a reliability-based design optimization of a part of a
launcher.

Indeed, a global methodology based on four complementary
functionalities, to deal with uncertainties, are implemented
and applied on the launcher model. These functionalities are
detailed in the following sections and they are enumerated
below:

• Screening analysis.
• Sensitivity analysis.
• Estimation of the failure probability.
• Optimization under uncertainty.

This work shows an innovative character in the field of
launchers, through the application of methods proven in indus-
trial fields strongly constrained by reliability aspects. Results
reveal how design under uncertainties could be applied for
such complex model.

The paper is structured as follows: section II presents an
overview of the theory, section III presents the model of the
application and the results. Finally the conclusion and some
perspectives are outlined in section IV



II. OVERVIEW OF THE THEORY

Several steps are described in the uncertainty methodology,
and each of them uses different probabilistic techniques.
Methods used in the application are developed in this section.
In all this section, it is assumed that a physical model and a
probabilistic model is defined. Let M be the physical model,
X =

(
X1, . . . , Xm

)
the random vector that follows the joint

distribution fX of dimension m and Y = (Y 1, . . . , Y n) the
output random vector of interest where Y =M(X).

A. Morris screening method

When dealing with high dimensional inputs and heavy CPU
time codes, it is often needed to reduce the input dimension
by selecting only the most relevant ones, meaning the most
influential ones on the outputs. Screening methods are devoted
to such purpose. Among them, the Morris method is one on
the most known, because it requires few simulations to get an
accurate estimate of the influential factors [7], [18].

The principle is to perform several one-at-a-time design
of experiments and only requires the bounds of the input
variables. The method acts as follows :

1) The input space must be discretized in a p levels grid
of space δ.

2) A starting point is randomly chosen in this grid xj=1.
3) A perturbation is applied to each component but one at

a time, a trajectory is then obtained containing m + 1
experiments, as shown in Figure 1.

4) The output values are computed from this trajectory.
5) Elementary effects eei associated to each input i are

computed, then for one trajectory m elementary effects
are available.

ee1
i =
M(x1, x1

i + δ)−M(x1)

δ
(1)

6) Steps 2 to 5 are iterated r times, each time starting from
a new point xj , j = {1, . . . , r}. Hence the total number
of evaluations is equal to r × (m+ 1).

Figure 1. Example of a Morris trajectory in a 4-levels grid in dimension 2.

When the r trajectories are evaluated, a sample of elemen-
tary effects of size r and dimension m is available. Statistics
from this sample can be estimated per input and according to
these values, the most influential variables are determined and
some useful interpretations can be derived:
• absolute mean µ∗i = 1

r

∑r
j=1 |ee

j
i | : high values high-

lights the important effects, so the output is sensitive to
the corresponding input.

• standard deviation σi : high values implies that it may
exist interaction and/or non linearity effects. It is not
possible to make the distinction between the two cases.
In practice, interpretation is easier using the coefficient
of variation δi = σi/µ

∗
i . Roughly, if δi < 0.5 the effect

can be considered almost linear and without interaction.
• mean µi = 1

r

∑r
j=1 ee

j
i : the classic mean of elementary

effects is compared to the absolute mean to determine
the monotonic effect. Indeed if |µi| = µ∗i , then the
elementary effects have all the same sign (positive of
negative) which means that the output is only increasing
or decreasing. Otherwise the case |µi| < µ∗i means that
the input has a non monotonic effect on the output.

In practice, dedicated graphics are used in order to help to
interpret and visualize the effects. Two graphics are usually
built, as it can be shown in the result section in the Figure 7:
σi vs µ∗i and µi vs µ∗i .

B. Global sensitivity analysis using Sobol’ indices

A global sensitivity analysis allows to provide a quantitative
ranking of the inputs regarding their influence on the outputs.
The well known Sobol’ indices are dedicated to this end [23].

This method analyzes the influence of each component of
an input random vector X on the output random vector Y
by computing Sobol’ indices. It computes, for every output
random variable Y k(1 6 k 6 n) the part of its variance due
to each input component Xi(1 6 i 6 m) of X.

Let consider only one output Y , using the Hoeffding de-
composition, the variance can be written as follow :

Var[Y ] =

m∑
i

Vi +
∑

1≤i<j≤m

Vi,j + . . .+ V1,...,m (2)

where Vi = VarXi
[E[Y |Xi]], Vi,j = VarXi,Xj

[E[Y |Xi, Xj ]]−
Vi − Vj and Vi,...,m = VarXi,...,Xm

[E[Y |Xi, . . . , Xm]] −∑m
i Vi.
The term Vi corresponds to the part of the variance of the

response only explained by the variable Xi. And Vi,j corre-
sponds to the part of the variance of the response explained
by the interaction between Xi and Xj .

The first and second order Sobol’ indices are then defined
as :

Si =
Vi

Var[Y ]
(3)

Si,j =
Vi,j

Var[Y ]
(4)

The first order Sobol’ index Si measures the part of the
variance of Y explained by Xi alone. The second order Sobol’



index Si,j measures the part of the variance of Y explained
by the interaction of Xi and Xj . Indices varies from 0 to 1,
the higher value the greater influence.

The sum of all Sobol’ indices is equal to one:
m∑
i

Si +
∑

1≤i<j≤m

Si,j + . . .+ S1,...,m = 1 (5)

Instead of computing all order of Sobol’ indices, total order
indices STi are computed. Let define the following conditional
variance :

V−i = Var [E[Y |X1, . . . , Xi−1, Xi+1, . . . XnX
]] (6)

Total order Sobol’ indices are defined as follows:

STi = 1− V−i
Var[Y ]

(7)

It corresponds with the sum of all indices related to a given
variable Xi. For example, if m = 3, the total order for the
variable X1 is ST1 = S1 + S1,2 + S1,3 + S1,2,3

In practice, it is common to compute only the first and
total order indices. A difference between both indices indicates
that interaction exists between some inputs. Moreover the total
interaction can be easily computed from the sum of all first
order indices :

Sinteraction = 1−
m∑
i

Si (8)

Estimation of the Sobol’ indices
Indices are generally estimated from a Monte Carlo simu-

lation whose evaluation cost is N × (m+ 2), where N is the
chosen simulation size. The size N is usually at least several
thousands in order to get an accurate estimate of the Sobol’
indices. This technique is hardly feasible if the model M is
computationally expensive and / or if the number of input
variables is large.

Another technique consists in using a surrogate model. One
can build its favorite metamodel and use the Monte Carlo
simulation to compute the Sobol’ indices. However, the use of
polynomial chaos expansion (PCE) can be preferred, because
of its structure (functional decomposition in an orthogonal
basis) allows to get the Sobol’ indices from a post processing
of the PCE coefficients.

C. Methods for failure probability estimation

The failure of a mechanical system occurs when require-
ments of its good functioning and/or its safety are not gathered.
The probability of occurrence of this failure event can be
assessed by taking into account the various sources of the sys-
tem uncertainties that are quantified and modeled by the input
random vector X. In that case, the outcome Y = {Y0, ..., Yn}
is uncertain and the failure event is defined by:

Y =M(X) ≤ yt (9)

where yt = {yt1 , ..., ytn} denotes here the thresholds that
should not be exceeded for the n outputs.

In structural reliability analysis, it is very common to define
a performance function, noted g, to define the system state.
This function expresses the difference between the outcome y
and the threshold y0, i.e. g = y−y0. If the performance func-
tion is unique, the reliability analysis is here called component
reliability analysis. Otherwise, if more than one performance
function is considered, the analysis is referred to system
reliability analysis. The system might be one component that
is subjected to multiple failure modes, or it might be composed
of multiple components subjected to failure. Depending on the
problem in hands, the interaction between the failure modes
could be an intersection or a union.

In this section, the union system is to be considered. Thus,
the system fails when the union of the individual failure
modes is less or equal to zero, i.e. ∪ni=1gi(x) ≤ 0, where
x = (x1, ..., xm) denotes the vector of the random input
variables and gi is the performance function of the ith failure
mode, i.e. gi = yi − yti . The case where ∪ni=1gi(x) > 0
means that the structure is safe for the input vector x. The limit
between the two situations, i.e. ∪ni=1gi(x) = 0, is called the
Limit State Function (LSF). The failure probability is defined
as the integral of the joint density function (PDF) fX(x) over
the failure domain Df = {x : ∪ni=1gi(x) ≤ 0}:

Pf =

∫
Df

fX(x)dx (10)

Except for some simple academic cases, the calculation
of this integral using traditional integration schemes or an-
alytically is impossible. Indeed, the performance function is
implicit since it is usually computed with computer codes
and algorithms, e.g. finite element code. To approximate this
integral, several methods have been proposed in the literature,
see e.g. [8], [16], [17]. In this section, the methods used to
estimate the failure probability are briefly recalled: Monte
Carlo simulation, First Order Reliability Method (FORM),
importance sampling method and subset simulation.

1) Monte Carlo simulation: The Monte Carlo simulation
method is a very popular method for the integral calculation.
Its result is considered as the reference for the failure prob-
ability estimation, if the number of simulations is enough.
The multidimensional integral of Equation 10 is computed
here by first generating a large sample of realizations of
the input random vector X according to its PDF fX. Then,
the performance function is evaluated on this sample. By
introducing the indicator function IDf

of the failure domain
Df (i.e. IDf

(x) = 1 if x ∈ Df , IDf
(x) = 0 otherwise),

equation 10 becomes:

Pf =

∫
Rn

IDf
(x)fX(x)dx = Ef [IDf

(X)] (11)

where E[.] represents the mathematical expectation. For N
realizations of the input random vector X, the Monte Carlo
estimator of Pf is expressed by:

P̂MC
f =

1

N

N∑
i=1

IDf

(
X(i)

)
=
|Nf |
N

(12)



where |Nf | indicates the cardinal of the set Nf = {i :
g(x(i)) ≤ 0}. According to the law of large numbers, this
estimator is unbiased, i.e. E[P̂MC

f ] = Pf . Its coefficient of
variation reads:

δP̂MC
f

=
σ2
P̂MC

f

E[P̂MC
f ]

=

√
1− Pf

NPf
(13)

According to the above equation, a precise estimator
P̂MC
f requires a small coefficient of variation δP̂MC

f
. This is

generally not an easy task when the performance function
is costly to evaluate. Furthermore, the number of simulations
increases drastically when small failure probabilities are to es-
timate. It should also be noted that the coefficient of variation
δP̂MC

f
does not depend on the dimension of the input random

vector, which makes the method insensitive to problems with
high dimensions.

2) First order reliability method (FORM): The estimation
of the failure probability with this method is performed in the
standard space, where the random variables are independent
standard Gaussian and are gathered in the random vector
U ∼ N (0, 1). In that case, a isoprobabilistic transformation of
the original space, called also physical space, to the standard
space is performed. Various techniques are proposed in the
literature to apply this transformation, see e.g. [19] for Nataf
transformation and [21] for Rosenblatt transformation. This
allows us to express the failure probability in the standard
space as follows:

Pf =

∫
D
′
f

ϕU(u)du (14)

where D
′

f = {u : ∪ni=1Gi(u) ≤ 0} and Gi is the transformed
performance function of the ith failure mode in the standard
space.

The main idea of this method is to approximate the LSF
locally with a linear Taylor expansion. The latter is performed
on a specific point of the LSF, generally named design point
or most probable failure point (MPFP) and corresponds to the
maximum density of probability in the standard space [16].
This point is completely defined by its coordinates which
are the solution of the following constrained optimization
problem:

u∗ = argmin
u∈R

uT u s.c. G(u) = 0 (15)

To solve this optimization problem, usual algorithms such as
Rackwitz-Fiessler algorithm [20] or Abdo-Rackwitz algorithm
could be used [1]. The distance between the MPFP P ∗ and
the origin of the standard space is noted β and it is named the
reliability index.

Once the MPFPs P ∗i are defined for each performance func-
tion Gi, each LSF is replaced with its tangent hyperplane at
P ∗i , as illustrated in Figure 2. The equation of one hyperplane
is given by:

∼
Gi(u) = βi −αT

i u (16)

Figure 2. FORM method illustration on a 2D example. The orange region
illustrates the failure domain.

where αi = −∇Gi(u∗i )/ ‖ ∇Gi(u∗i ) ‖ is the vector unit
that verifies αT

i αi = 1 and ∇ is the gradient operator. Failure
probability is calculated in that case from that approximation
and Equation 14 rewrites:

Pf =

∫
∪n

i=0

∼
Gi(U)≤0

ϕn(u)du (17)

The above integral can be calculated in a closed form and
gives this approximation for the failure probability estimate
[12]:

PFORM
f = 1− Φm(β;ρ) (18)

where β = {β1, ..., βn} and ρ = {ρij , i, j = 1, ..., n} is
the correlation matrix of LSFs, such that ρij = αT

i αj . For a
good understanding of these notions, one can refer to Figure
2, which exhibits an illustration in a two-dimensional space
the previous parameters P ∗, β, α and the tangent hyperplane
for one performance function.

It should be noted that FORM assumes the uniqueness of
the P ∗ and the linearity of the LSF. If these assumptions are
not satisfied, the failure probability estimate could be biased
w.r.t its true value.

3) Importance sampling: To reduce the computational bur-
den of Monte Carlo simulation in the context of small failure
probabilities, the importance sampling method is proposed in
[11], [22]. Its idea is to generate more simulations in the
failure domain. This is performed with the introduction of
an instrumental distribution, noted hU. The latter is used as
follows in the formulation of the failure probability:

Pf =

∫
Rn

IDf
(u)

fU(u)

hU(u)
hU(u)du (19)

= Eh

[
IDf

(U)
fU(U)

hU(U)

]



Figure 3. Illustration of the importance sampling method in the standard
space.

For N simulations drawn according to the instrumental density
hU, the failure probability estimator can be expressed by:

P̂fIS =
1

N

N∑
i=1

IDf
(U(i))

fU(U(i))

hU(U(i))
(20)

Using an instrumental density defined in the standard space
is a common choice. The aim is to generate simulations in
the vicinity of the MPFP P ∗, previously introduced in section
II-C2. Thus, the instrumental density is a multivariate standard
normal PDF ϕm centered on P ∗ and it writes:

hU = ϕm(u− u∗) =
1

(2π)n/2
exp

(
− (u− u∗)t(u− u∗)

2

)
(21)

where u∗ is the coordinate vector of P ∗. The failure proba-
bility estimator, given in 20, rewrites:

P̂fIS =
1

N

N∑
i=1

IDf
(U(i))

ϕm(U(i))

ϕm(U(i) − u∗)
(22)

The convergence of this method is relatively better since the
rate of failing simulations is almost 50%, see Figure 3. If more
than one MPFP has to be considered, one can use a mixture of
multivariate standard normal PDFs centered on the different
MPFPs, see e.g. [3].

D. Optimization under uncertainties

The ultimate phase of the design under uncertainties is the
model optimization under it. Deterministic optimization (DO)
type is the classical optimization, its formulation is given
in equation 23 where X is the vector of control variables,
having X̄ as nominal values, P (k) is the vector of the
environmental parameters with dimension k. The objective and
constraint functions are given by f(X̄, P (k)) and g(X̄, P (k))
respectively. The optimal and admissible design configuration
is obtained by X̄OptAdm.

Find X̄OptAdm such that :

X̄OptAdm = arg max
X̄

f(X̄, P (k))

Subject to : g(X̄, P (k)) ≥ 0

(23)

As explained in [6], there exists three types of optimization
under uncertainties:
• Robust design optimization design (RDO).
• Reliability based design optimization (RBDO).
• Reliability-based robust design optimization (RBRDO)

The main difference between these types is where the uncer-
tainties are taken into consideration:
• In RDO: the uncertainties are mainly included in the

objective functions.
• In RBDO: the uncertainties are mainly included in the

constraint functions.
• In RBRDO: the uncertainties are mainly included in both

objective and constraint functions.
In this work, we are interested in RBDO type, which aims
to found reliable and optimal design. It consists in optimizing
deterministic objective function under probabilistic constraints.
Many papers have studied RBDO like [2], [9], [14] and [24].
As given in [15], RBDO problem can be formulated by equa-
tion 24, where the associated uncertainties on X and P are
given with the vector of random variables w. The probabilistic
constraint functions are given by g(X(X̄, w), P (w)). The
allowed failure probability threshold is given by Pftarget and
the optimal and reliable design configuration is obtained by
X̄OptRel. Alternative formulations for RBDO problem can be
found in the literature in [6] and [25].

Find X̄OptRel such that :

X̄OptRel = arg max
X̄

f(X̄, P (k))

Subject to : Prob g(X(X̄, w), P (w)) ≤ 0 ≤ Pftarget

(24)

The main difference between the results of determin-
istic optimization and RBDO is that the first one, leads
to an optimal point which is located on the boundary
of the deterministic feasible domain which is defined by:
[X ∈ Rn | g(X,P ) ≥ 0]. Such as optimal point produces
unreliable design, where its failure probability is usually about
50%. At this optimal point, slightest uncertainty is enough to
put the model on the failure domain. However the optimal
point resulting from RBDO problem is far from the boundary
of the deterministic feasible domain, and the corresponding
distance is controlled by the admissible failure probability
threshold. This difference between X̄OptRel and X̄OptAdm is
shown in Figure 4 taken from [15], where an example of op-
timization problem is illustrated, the problem has two control
variables (R and h). The optimal point X̄OptAdm is found on
the constraint (i.e. the limit state function) as expected but this
configuration is likely to lead to a probability of failure about
50%. On the contrary, the optimal point X̄OptRel is shifted
from the constraint, it has been specially found such as the
probability of failure is equal to Pftarget = 0.1.



Figure 4. Example of difference between DO and RBDO results [15].

III. APPLICATION ON THE VEB

The uncertainty methodology is applied as part of the
CALLISTO project, which is a reusable vehicle demonstrator
in which CNES is the prime contractor in partnership with the
DLR and the JAXA. An illustration of the vehicle is shown
in Figure 5. The study focuses on the vehicle equipment bay
(VEB) which is located on the top. The final objective is to
reduce the mass of the VEB while ensuring its reliability.

Figure 5. Illustration of the CALLISTO project.

This section starts presenting the physical model and the
probabilistic model of the inputs. Then a section shows the
results of the probabilistic analyses.

A. Presentation of the model

The VEB is modeled by a finite element model, using
Nastran, where a static and a buckling analysis is performed.
Some characteristics of this model are provided below:
• Unit evaluation: about 5 minutes.
• Number of random variables: 47 divided into 3 cate-

gories:

– 20 thickness variables,
– 1 Young Modulus,
– 26 loading variables : general forces, aerodynamic

forces and QSL.

Inputs are assumed to follow a Gaussian distribution with
a coefficient of variation of 3% for the thicknesses and
5% for the other variables.

• Output of interest : 2 maximum Von Mises
(VM) stress (MAX Stress VM Z1 and
MAX Stress VM Z2), one maximum flux
(MAX IF Flux).

Figure 6. Finite element model of the vehicle equipment bay.

The main difficulty of this study is to consider several
outputs which implies to use system reliability techniques. It
was initially planned to study more outputs but due to some
delay this parts is not ready for the current paper. All the
probabilistic analyses were performed using the OpenTURNS
library [4]. These methodologies are currently integrated into
the Colibri design tool of CNES.

B. Result

The uncertainty methodology has been applied in the fol-
lowing order :

1) Morris analysis : the goal is to reduce the number of
inputs to take into account in the probabilistic analysis.
Due the required time for a unit evaluation (parallel
evaluations were not possible), it will be required to
use a surrogate model. It is then easier to build the
metamodel with the lowest possible number of inputs.

2) Sobol analysis : it will provide an accurate ranking of
the inputs.

3) Probability of failure estimation : this allows to get a first
probability of failure estimation before the optimization
step and to adjust parameters method.

4) Optimization under uncertainty : this is the main goal
which is optimizing the mass subjected to the respect of
a target probability of failure.



1) Screening analysis: The Morris analysis has been per-
formed with the following parameters:

• grid discretization number: 6
• number of trajectories r = 15
• total number of model evaluations: 720

Among the 47 random inputs, only 7 appears (4 thicknesses
and 3 forces) to be influential on the 3 outputs (all taken
together). The Figure 7 shows the Morris result for one output,
only the 7 selected inputs are represented. It can easily be seen
that 3 inputs are mainly influential (µ∗ is high, they are on
the right side of each figure). The 4 other influential inputs
are close to the defined threshold that splits the influential
and non influential area. Moreover, based on the figure, it is
possible to conclude that the inputs have a monotonous effect
but as σ is high, it may exist non linearity or interaction.

Figure 7. Morris graphics for the first Von Mises stress output.

2) Sensitivity analysis: The Sobol indices are computed us-
ing the Polynomial Chaos Expansion (PCE) surrogate model.
In order to build this metamodel a design of experiments
(optimized Latin Hypercube) of size 850 has been computed.
In order to validate the metamodel, the leave-one-out cross
validation criterion Q2 is computed as well as a R2 using a
test sample of 720 points, also built with an optimized Latin
Hypercube DOE. All these validation values are greater than
0.92 for the three outputs so the metamodel can be used with
confidence in further analysis.

N.B. : in order to get an accurate PCE, for each output,
only its own influential input variables were considered.

From the PCE, Sobol indices are computed for the 3 outputs.
Results are shown in Figure 8, the main influential variable
for the 3 outputs is the force M FINS N1, the value of the
first order index is at least 0.5. The first order and total order
indices are almost equals, which means that no interaction of
some inputs has influence on the output variability.

It also shows that the selected thicknesses have differ-
ent influences according to the chosen output. The input
Actuator Outer Doubler is important for the first VM stress
and the flux whereas it is not for the second VM stress.
Actuator Inner Doubler is only influential for the first VM
stress, and Upper F ins Cyl b and Upper F ins Cyl d are
important for the second VM stress. To finish the last forces

(F FINS N3 1 and M FINS N3 1) may not be consid-
ered as influential, they were selected during the screening
analysis (it only uses bounds) but taking into account their
input distribution in Sobol’ analysis reduces their influence to
almost nothing.

Figure 8. Sobol indices of the 3 outputs (2 Von Mises stress and one flux).

3) Probability evaluation: The current problem needs to
take into account 3 failure events, each associated to one



outputs. The probability of failure that must be computed
is defined in Equation 26. This is a union event of the 3
individual events.

Pf = Prob
(
MAX Stress VM Z1 > 4.2× 108

∪ MAX Stress VM Z2 > 4.56× 108 (25)
∪ MAX IF Flux > 8.3× 105

)
= Prob (E1 ∪ E2 ∪ E3)

Here the events E1, E2 and E3 are introduced to simplify
the notation in the optimization section.

This probability can be estimated using several reliability
technique : Monte Carlo simulation, FORM + Importance
Sampling, Subset simulation or metamodel-based technique.
In the current study, due to a lack of time, the PCE metamodel
built for the Sobol’ analysis has been used to compute the
probability of failure. In order to avoid to do prediction outside
the domain of definition, the design of experiments used to
build the metamodel was built from an extended distribution.
The coefficients of variation of the input random variables
were 4 times greater than the original definition.

Results of the probability failure are given in table I. The
three estimation techniques provide equivalent results.

Table I
PROBABILITY OF FAILURE RESULT VALUES

Method Probability value 95% confidence length
Monte Carlo simulation 6.38× 10−3 1.25× 10−3

FORM System 5.70× 10−3 None
Importance sampling 6.54× 10−3 1.28× 10−3

Importance factors can be derived from the simulations,
it corresponds with a reliability sensitivity. This is the
weight of each inputs regarding the failure of the system.
These factors are shown in Figure 9, it can be seen that
the force M FINS N1 is the most important, which is
consistent with the Sobol indices. Secondly the thickness
Actuator Outer Doubler appears also as an important vari-
able.

4) RBDO: The optimization performed consists in mini-
mizing the sum of the thickness variables, with the constraint
that the probability of failure remains lower than a probability
threshold. The current used optimization algorithm does not
allow to optimize the random variables, only deterministic
parameters can be optimized. So all thicknesses will be now
considered as deterministic parameters. However to keep a
conservative estimation of the probability of failure, the chosen
constant value will not be the mean but the quantile at 1% of
the original distribution (Gaussian with 3% of coefficient of
variation)

Let be P the set of the variables to be optimized
P = {Actuator Outer Doubler,
Actuator Inner Doubler, Upper F ins Cyl b,
Upper F ins Cyl d} and X the set of the random variables
X = {F FINS N3 1,M FINS N1,M FINS N3 1}.

Figure 9. Reliability importance factors.

The optimization problems writes :

minP
∑
p∈P

p (26)

s.t. Prob(E1 ∪ E2 ∪ E3) < Pf,threshold (27)
Pmin ≤ P ≤ Pmax (28)

with Pmin and Pmax are the boundaries of the optimized
parameters.

This optimization problem has been solved using a
global optimization algorithm from the NLopt library
(Steven G. Johnson, http://github.com/stevengj/nlopt), named
GN ORIG DIRECT L [10]. The probability threshold is set
to Pf,threshold = 10−3.

The table II sums up the main value of the optimization
results. It shows that the objective has been slightly minimized
(loss of 6×10−4). However in the same time the probability of
failure has been improved, as it respects the given threshold.
This means that some critical thicknesses have been increased
in order to improve the reliability and in the same time less
important thicknesses decreased making the total thickness
lower than the value at the initial start.

Table II
OPTIMIZATION UNDER UNCERTAINTY RESULTS

Initial objective (at the quantile values) 0.0474
Initial probability of failure 3.4× 10−3

Final objective (at the quantile values) 0.0468
Final probability of failure 9.9× 10−4

Eventually it is possible to update the probability of failure
computed in the section III-B3 by considering once again the
thicknesses as random variables. First it requires to compute
the mean of these thicknesses assuming the optimized values
are the quantiles at 1% of Gaussian distribution with 3% of
coefficient of variation.

The probability of failures before and after the optimization
procedure are given in table III.



Table III
PROBABILITY OF FAILURE AFTER THE OPTIMIZATION STEPS

Thickness mean Probability estimation
(importance sampling)

95% confidence length

Original mean 6.54× 10−3 1.25× 10−3

Modified mean 3.73× 10−5 7.30× 10−6

IV. CONCLUSION

This paper presents a reliability-based design optimization
(RBDO) of a part of a launcher using a mechano-probabilistic
optimization module, which is developed by Phimeca based
on the OpenTURNS library. The objective is to apply the
probabilistic methods to the field of launchers by optimizing
the design of the vehicle equipment bay and considering the
inherent uncertainties of the system.

A screening analysis is first performed in order to reduce
the number of uncertain inputs. The analysis shows that among
the 47 random inputs, only seven of them must be considered
in the probabilistic design. Then, for the failure probability
estimation, three failure events were considered, each one of
them is associated to one output. The problem is treated as a
system problem and three reliability methods are used: Monte
Carlo simulation, FORM system and importance sampling.
The results of the three methods converge roughly to the same
estimate for the failure probability.

The final step of this study is the RBDO. The aim is to
reduce the sum of the thickness variables under the constraint
that the failure probability should not exceed a given threshold.
In the present study, it is shown that the critical thicknesses
have to be increased, unlike the less important ones which
can be reduced. Thus, the reliability is improved and the total
thickness decreases compared to the initial one.
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