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Fiabilité Incertidute Paris

Phimeca Engineering
Paris, France

girard@phimeca.com

Résumé—Les scooters électriques en accès libre sont devenues
des acteurs majeurs du transport sur de courtes distances. La raison
de leur succès réside dans le gain de temps et la liberté que procurent
ces véhicules en libre-service. La batterie Lithium Ion est un élément
clé qui représente environ un tiers du coût total de l’appareil et affecte
ses performances globales [2].

Le but de ce travail a été de développer un modèle de batterie
applicable à la gestion d’une flotte de scooters électriques en libre-
service. L’utilisation quotidienne aléatoire de la flotte a été simulée
par processus de Markov. La batterie a été modélisée avec Modelica,
un langage particulièrement adapté à la conception de modèles 0D/1D
par l’utilisation d’équations différentielles.

La validation du modèle a été effectuée sur les données de Battery
NASA Prognostic Dataset [5], un jeu de données largement utilisé
dans de nombreuses publications scientifiques [6], [7].

Abstract—Free-floating electrical scooters (ES) have become
major players in short-distance transportation. The reason for their
success lies in the time saving and the freedom given by the self-
service vehicles. Their key element is the Lithium Ion battery, which
affects the overall performance and account for about one-third of
the total ES cost [2].

The scope of this work has been to develop a battery model to be
applied to the case of the management of an e-scooter free-floating
fleet. Random daily usage of the fleet has been simulated by the
use of Markov processes, while the battery has been modeled with
Modelica, a language particularly suited for designing 0D/1D models
by use of differential equations.

The validation of the model has been performed with respect to
the Battery NASA Prognostic Dataset [5], which has been extensively
used in many scientific publications [6], [7].
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I. INTRODUCTION

Micro mobility spreads rapidly over the course of the
last four years. Since their launch in 2018, the companies
of shared electric scooters (ES) and e-bikes have increased
the number of vehicles available in the big cities, following
the growing demand from users. In Europe, Paris has been
among the promotors of sharing services, first with the Velib

The project leading to this application has received funding from the
European Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement No 955393

company, which in 2007 launched its (non-electrical) bikes
fleet with 7000 bikes and 750 stations, then with different
private companies such as TIER, Lime, and others. The city
currently offers different experiences, such as docked and free-
floating fleets of e-bikes and e-scooters with different price
plans and strategies.

E-scooters and e-bikes are principally used for mid-range
transportation, where the distance is too long for walking,
while the usage of the cars can be inconvenient due to parking
or environmental concerns. Also, the shared service allows
avoiding the initial investment necessary to buy the vehicles
and the worries about the parking and the possibility of it
getting stolen. In particular, the free-floating fleet, without the
need of a docked station in which leaving the vehicle, gave
the user a great amount of freedom, even if concerns remain
on the wilds parking on sidewalks.

The use of this kind of vehicle is made possible by the
availability of always more efficient Lithium-ion batteries.
Batteries affect the overall performance, in particular of e-
scooters, which rely completely on the battery itself for their
operations, while e-bikes can also work as a simple bike if the
battery is discharged. The battery is also the main economical
factor, accounting for about one-third of the overall e-scooter
cost [2].

Lithium-Ions are the preferred solution for the e-scooters
battery, given their excellent energy density and longevity with
respect to other battery types. A battery pack is composed
of many individual cells, which for lithium-ion (Li-Ion) are
usually 18650 (18x65mm cylinder). Each of the cells has a
nominal potential of 3.6V and operates between 2.5V (0%
charge) to 4.2V (100% charge). Packing in series or in
parallel many individual Li-Ion cells, it allows obtaining higher
voltages or currents respectively. If used correctly, batteries
can last hundreds of cycles due to their rechargeable nature.
However, they are subject to irreversible degradation processes
which can affect their performances and eventually leads to the
inability to supply the necessary power. On the other side, if
used improperly, the failure can be sudden, and lead to the



explosion of the battery.
In order to avoid so, every battery is equipped with a Battery

Management System (BMS), which monitors that the Li-Ion
batteries are working in the nominal conditions (Voltage and
Temperature, etc.) and guarantee that the charging process
stops when the voltage reaches 4.2V. Nonetheless, the amount
of data available from the batteries allow the development of
strategies for diagnostic and prognostic purposes, to further
improve the safety and optimize and maximize the Remaining
Useful Life (RUL) of the battery. This consequently allows
to derive smarter strategies for the batteries recharge and
replacement.

In this work, the battery has been modeled following [4]:
the novelty of the approach lies in the usage of the Modelica
language to describe the discharge behavior of the battery with
both continuous or varying discharge profiles. The model has
been validated with data from the NASA prognostic laboratory
[5]. As described in [7], the electrochemical degradation
processes happening in the battery cause a drop in the released
voltage, which can be described as an increment of the internal
resistance R0 and a decrease of the maximum number qmax

of moving Lithium-Ions from the negative to the positive
electrode.

The usage of an e-scooter dockless fleet has been simulated
by the use of Markov processes, using transition probabilities
based on the time of the day, the state of charge of the battery,
and the current state of usage. The possible state has been
simplified as “Run” when the scooter is used, “Sleep” when
the scooter is stopped and “Charge”, meaning the scooter
is brought to the recharging center. This allows obtaining a
plausible random daily usage, which is used to feed the model
in order to compute the e-scooter battery State of Charge,
assuming for simplicity’s sake a constant discharge rate of
2A.

The interaction between the Modelica model and the
random daily usage has been performed employing the
Functional Mock-Up Interface (FMI), which allows utilizing
the Modelica degradation model directly within a python
script. This way has two great advantages: it allows the use
of the Modelica language to build the model, and in the
meantime it is possible to perform easily sensitivity analysis
and understand the impact of controlled usage behavior, which
will not be possible in a simple Modelica framework.

This paper is organized as follows. Section II describes
briefly the language Modelica and the equation used to derive
the Li-Ion model. In Section III it is described how the
Random Daily Usage of e-scooters has been built. Results are
then presented in Section IV. Lastly, Section V derives the
conclusions and the future development of this work.

II. MODELICA BATTERY MODEL

A. Modelica

A model is a mathematical description of a system that aims
to recreate its functionality in a digital framework. It recurs to a
set of equations, solved in different fashions. In order to avoid
the computational burden of methods such as finite elements,

0D/1D models are often used to describe systems through
ordinary differential equations. Modelica is a programming
language well suited for designing 0D/1D models [8]. In a
Modelica framework, the model is a system of differential
equations, solved by dedicated multipurpose third-party tools
such as OpenModelica [9].

To calibrate the model parameters and allow interaction
between the model and other programming languages, more
suited for statistical analysis or uncertainties quantification, the
Functional Mock-Up Interface (FMI) standard [10] has been
proposed. This standard allows treating the numerical model as
a black box in other language frameworks, since it consists of
an XML file describing the variables of the model and a set of
possible compiled functions for carrying out the simulations.
Treating it as a black box, it allows using the Functional Mock-
Up Unit (FMU) as a function, defining inputs, and obtaining
the results of the simulation as output.

Thanks to PyFMI [11] it is possible to include the FMU in
a python script, facilitating the statistical analysis as well as
the tuning of the parameters to optimize the numerical model.
An example of the optimization and tuning of the parameters
will be given in the IV section.

B. Lithium-Ion Batteries

Lithium-Ion Batteries are electrochemical devices able to
directly store energy and release it when necessary. The
main advantages of the Li-Ion with respect to other kinds
of electrochemical converters lie in their rechargeable nature,
without memory effect, higher energy density, and longer life
cycle. Li-Ions are composed of different cells, which allows
them to be packed in different configurations according to the
purpose of the application. The nominal voltage of the single-
cell lies between 3.6 and 3.85 V, which can be increased in the
battery pack by connecting them in series or parallel to reach
the necessarily required levels of voltages or currents. The
most commonly used cell is the 18650 (18x65 mm cylindrical),
with a nominal voltage of 3.7 V and a maximum voltage
of 4.2V, which will be the scope of this work. A schematic
structure of a Lithium-Ion Battery can be appreciated in Fig.
1: during discharge, the mobile Li-Ion resides in the negative
electrode, and when a load is applied current is allowed to
flow from the positive to the negative electrode. This results
in the liberation of Li Ions and electrons, which move towards
the positive electrode through the separator.

During usage, the performance of the battery degrades. The
two main factors that contribute to the degradation of the
battery performances are the loss of active ions and an increase
in the internal battery resistance. The main processes leading
to these phenomena are:

1) Solid Electrolyte Interface (SEI) growth: formation of
a solid layer on the surface of active material, which
can happen both during cycling and storage at high
temperatures.

2) Lithium Corrosion: Lithium corrodes, leading to an
irreversible loss of mobile ions.



Figure 1: Schematic structure of a Lithium-Ion Battery [12]

However, the processes are usually not localized and deeply
influenced by external conditions, such as temperature and
usage, making the degradation of these devices difficult to
comprehend and predict. Also, some phenomena, such as
the capacity recovery phenomenon [13], allow the battery to
recover some of the lost capacity, which also increases the
difficulties in understanding the overall processes inside the
batteries.

C. Battery Model

The battery has been modeled by the use of the Modelica
language. The final goal of this model is to simulate the
output voltage and temperature of the cell battery, in order to
compute its State of Charge (SOC). The cut-off voltage of the
battery, meaning the one defining the End of Discharge (EOD)
has been defined at 2.5V. The overall battery voltage V is
obtained by the difference between the potential at the positive
current collector and the negative current collector, minus the
voltage drops caused by solid-phase ohmic resistance V0 and
the surface overpotential Vη .

The State of Charge (SOC) of the battery is defined as:

SOC =
qn

0.6qmax
(1)

where qn is the number of ions at the negative electrode,
where qmax is the maximum available number. From qi and
qmax we can define the mole fraction xi, where i can be n
(negative) or p (positive), as:

xi =
qi

qmax
(2)

The battery is considered fully charged when xp = 0.4.
Considering that from definition qmax = qp + qn, it follows
that xn + xp = 1, from which the factor 1/0.6 of (1). On the
other side, when the battery is fully discharged, xn = 0 and
SOC = 0.

The main equations used to compute the temperature and
the output voltage of the battery will now be reported. The

Parameter Value

U0,p 4.03 V

Ap,0 -33642.23 J/mol

Ap,1 0.11 J/mol

Ap,2 23506.89 J/mol

Ap,3 -74679.26 J/mol

Ap,4 14359.34 J/mol

Ap,5 307849.79 J/mol

Ap,6 85053.13 J/mol

Ap,7 -1075148.06 J/mol

Ap,8 2173.62 J/mol

Ap,9 991586.68 J/mol

Ap,10 283423.47 J/mol

Ap,11 -163020.34 J/mol

Ap,12 -470297.35 J/mol

U0,n 0.01 V

An,0 86.19 J/mol

Table I: Battery Model Parameter [14].

interested reader can find a detailed description of these
equations in [14].

The potential equilibrium of an electrode is described by
the Nerst equation:

VU,i = U0 +
RT

nF
ln

(
1− xi

xi

)
+ VINT,i (3)

where U0 is a reference potential, R is the universal gas
constant, T is the Temperature of the battery, F is the Faraday
constant, and VINT,i the activity correction term. n indicates
the number of electrons transferred in the reaction, equal to
1 in the case of Li-Ion. During discharge, xp grows from 0.4
to 1, while xn decreases from 0.6 to 0. This results in the
decrease of VU,p − VU,n.

The activity coefficient VINT,i is related to the Gibbs excess
free energy, computed by Redlich-Kister expansion:

VINT,i =
1

nF

(
Ni∑
k=0

Ai,k

(
(2xi − 1)k+1 − 2xik(1− xi)

(2xi − 1)1−k

))
(4)

with Np = 12 and Nn = 0. The A parameters have been listed
in Table I.

The variation of the mole fractions xi, which determine
the variation of the voltages, can be derived by the following
differential equation, describing how the charge moves through
the electrodes. Electrodes are also divided into two volumes,
bulk (subscript b) and surface (subscript s). This difference
is important because in the electrode the reaction takes place
at the surface, causing a concentration gradient between bulk



and surface. The diffusion rate from bulk to the surface can
hence be described as:

q̇bs,i =
1

D
(cb,i − cs,i) (5)

where D is the diffusion constant and c are the
concentrations of Li-Ion at the bulk and surface of the two
electrodes. The charge q variations can hence be described as:

q̇s,p = iapp + q̇bs,p (6)

q̇b,i = −q̇bs,i (7)

q̇s,n = −iapp + q̇bs,n (8)

iapp is the applied current. With these equations we can
compute xs,i and xb,i, and substitute the mole fraction at the
surface xs,i in (3) in place of the total mole fraction. In this
way, it is possible to explicitly account for the concentration
overpotential at the surface layers, since the observed voltage
is only dependent on surface behavior. At the end of the
discharge process, the difference between bulk and surface
potentials causes a redistribution of ions in the electrodes,
resulting in a raising of the voltage, which can be appreciated
in Fig. 4.

The output voltage drops further due to the Ohmic
Overpotential V0 and the Surface Overpotential Vη,i,
respectively defined as:

V0 = iappR0 (9)

Vη,i =
RT

Fα
arcsinh

(
Ji
2Ji0

)
(10)

Eq. (10) is the Butler-Volmer equation, simplified since α,
the symmetry factor is 0.5 for Li-Ion while Ji and Ji0 are the
current density and the exchange current density, defined as:

Ji = i/Si (11)

Ji0 = ki(1− xs,i)
α(xs,i)

1−α (12)

with ki being a lumped parameter. Since the voltage drops
take place at the surface level, the exchange current density is
computed using xs,i.

Voltage drops in the battery do not happen instantaneously,
hence to take that into account we consider:

V̇ ′
0 = (V0 − V ′

0)/τ0 (13)

V̇ ′
η,i = (Vη,i − V ′

η,i)/τη,i (14)

The temperature variation of the battery can be computed
as:

Ṫ =
(V ′

0 + V ′
η,p + V ′

η,n)iapp

mc
+

T0 − T

τT
(15)

Parameters τ are empirical time constants to account for
the transients. Having defined all the components, it is finally
possible to define the output battery voltage as:

V = VU,p − VU,n − V ′
0 − V ′

η,p − V ′
η,n (16)

Figure 2: Concepts of the system states and associated transition matrix

Figure 3: Simulation of random daily usage of the e-scooters.

III. RANDOM DAILY USAGE

The random daily usage of a fleet of e-scooters has been
simulated by the use of Markov processes. Markov processes
are a class of stochastic processes in which the future state of a
system is only dependent on the current state. It is particularly
well suited for predicting behaviors within large systems, and
for that reason has been used to simulate the behavior of the
e-scooters fleet.

To describe the behavior, it has been assumed that the e-
scooters can assume three states, meaning ”Run”, ”Charge”
and ”Sleep”. The states describe the condition in which the
ESs are used, recharged, or in the streets waiting for being
used. The laws regulating the passage between two states in
a Markov process are defined by a transition matrix, which
described the probability that the scooters changes or remain
in their current state, illustrated in Fig. 2

The described fleet is a free-floating, meaning that the e-
scooters can not be plugged into the recharging dock directly
by the user, but are left directly in the street at the end of the
usage. For this reason, it is not possible to pass directly from
state Run to state Charge and opposite, hence the transition
probabilities PRC and PCR are 0.

Furthermore, to simulate in a realistic possible way the
usage of the ESs, the transition probabilities are dependent
on other factors, such as the time of the day or the ES battery
State of Charge. This is to include the dependencies of a
real-life application, in which the e-scooters are more liked



Figure 4: NASA Battery B0005 [5]

to be used during certain phases of the day, for example
during the morning or afternoon commute to work, and the
fact that scooters are more likely to be used when they have
a sufficiently high level of SOC.

Fig. 3 shows the simulation of 5 scooters during 5 days of
usage. The blue dots represent the state, while the red lines
simulate the discharge/charge cycles of the batteries.

IV. RESULTS

The model has been calibrated based on the NASA Battery
Dataset [5]. In particular, the model has been calibrated using
the battery denominated B0005. Fig. 4 shows the behavior of
the Voltage of the battery and the effect of aging on it. As
described in II-B, the aging leads to the increment of R0 and
a decrement of qmax. As a result, the voltage reaches the cut-
off, 2.6V, faster, and the equilibrium voltage after the cut-off
is higher.

The battery has been first calibrated by replicating the
results of the battery B0005 at its first cycle, which
corresponds to 0% damage, hence a State of Health (SOH)
of 100%. The main parameters used for this simulation are
shown in Table II. The simulation uses a starting temperature
of 24°, and a constant discharge current of 2A. When the cut-
off is reached, the current is brought to zero and the voltage
stabilizes at its equilibrium point. The comparison between the
voltage of the two can be appreciated in Fig. 6.

On the other side, to define the SOH of 0% has been
taken the last cycle of the B0005, meaning Cycle 167. The
increase of R0 and the decreasing of qmax allows to tune
the model in order to obtain the correct duration of the
discharge, while the variation of D is the main factor in the
increase of the equilibrium potential. To obtain these results,
the degradation has been assumed linear for simplicity’s sake,
and the parameter R0 has been increased from 0.1 to 0.15
Ohm, meaning an increase of 0.25% per cycle. qmax decreased
from 11500 C to 8250, with a decrease of 0.2% per cycle and
lastly, coefficient D increased by 0.35% per cycle.

Figure 5: Comparison between Battery B0005 and the Modelica Model

Parameter Value Value
(SOH 100%) (SOH 0%)

qmax[C] 11500 8250

R0[Ω] 0.1 0.15

D[mols/C/m3] 9× 106 5× 106

Table II: Model Parameter

We present now the results obtained by the interaction
between the physical model and the ESs random daily usage.
The process is iterative since the daily usage depends on
the State of Charge, which is computed by the model. The
discharge rate of the battery is assumed constant and equal to
2A. It is worth noting that the behavior is representative of
a single battery cell, and not a complete battery pack, which
consist of different cell stacked together, and is able to increase
the amount of working time of an e-scooter.

Fig. 6 shows the voltage behavior for a single same
discharge cycle at the beginning and the end of the life of the
battery. To compare them, we generate a single random usage,
where the last run is performed until the batteries reach 2.5V,
the End of Discharge (EOD). The effect of the degradation of
the performances can be appreciated in a shorter time to reach
the EOD and a generally lower output voltage throughout the
overall discharge cycle.

As a consequence, as can be appreciated in Fig. 7, the SOC
of the battery decreases more rapidly, with an increase in the
slope between the beginning and end of life.

V. CONCLUSIONS

The scope of this work has been to develop a reliable
model for the batteries to be applied to the case of a fleet
of free-floating e-scooters. The model has been built using
the Modelica language, which allows directly writing the
equations, in contrast with the typical variable assignment
of programming languages. In this way, it is the simulation



Figure 6: Comparison between same random walk with a battery at SOH
100% and a battery at the end of its lifetime

Figure 7: Comparison between SOC of same random walk with a battery at
SOH 100% and a battery at the end of its lifetime

engine that takes care of manipulating the equations in order
to solve them, which results in a more simple and intuitive
way of defining the model. The daily usage of the e-scooter
has been simulated by use of a Markov process, in which
the transition matrix probabilities allow to consider various
variables in their use, such as the State of Charge and the
time of the day.

The interaction between Modelica and python through the
use of the Functional Mock-Up Interface standard allowed us
to validate the model and integrate it with the generation of
daily random usage, allowing to compute the State of Charge
and the degradation of the battery during the lifetime.

The calibration and validation of the model performed
will allow future work to focus on more practical aspects,
such as the usage of prognostics methods in order to
predict the Remaining Useful Life of the battery and the
associated quantification of the uncertainties. In this way will
be possible to derive optimal strategies for the maintenance

and replacement of the batteries of the fleet.
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